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Abstract

In this paper, we propose a new data synthe-
sis method called LogicPro, which leverages
LeetCode-style algorithm Problems and their
corresponding Program solutions to synthesize
Complex Logical Reasoning data in text for-
mat. First, we synthesize complex reasoning
problems through source algorithm problems
and test cases. Then, standard answers and
intermediate variable outputs are obtained for
each problem based on standard python solu-
tions and test cases. Finally, with the guidance
of code intermediate variables, we synthesize
the text reasoning process for each reasoning
problems. Through this method, we can syn-
thesize data that is difficult, scalable, effective,
and comes with golden standard answers and
high-quality reasoning processes. As a result,
with our 540K synthesized dataset constructed
solely from 2,360 algorithm problems, our ap-
proach ! achieves significant improvements in
multiple models for the datasets BBH?", Log-
icBench, DROP, AR-LSAT, and GSM8K, etc.
outperforming a wide range of existing reason-
ing datasets.

1 Introduction

With the rapid development of artificial intelli-
gence, Large Language Models (LLMs) (Bi et al.,
2024; Liu et al., 2024a) demonstrate excellent per-
formance in reasoning tasks. The success of these
models is inseparable from the support of large-
scale and high-quality reasoning data. However,
data acquisition and processing face numerous chal-
lenges in the real world. As a viable alternative,
synthetic data (Wang et al., 2024) can effectively
alleviate this problem and further enhance (Dubey
et al., 2024; Adler et al., 2024) the model’s reason-
ing capabilities.

*Corresponding author.
'Code and data are publicly available at https://github.
com/jiangjin1999/LogicPro

LeetCode 679. 24 Game

You are given an integer array cards of
length 4. You have four cards, each
containing a number in the range [1, 9]. |.|task is fo ... (Game Rules) ... you are given the
You should arrange the numbers on these| :|cards with numbers 8, 7, 6, 5. Your challenge

Number Game: 24 Points

: Imagine you are a contestant on a new game
-|show called "The Magic 24 Points", where your

cards in a mathematical expression using | [is fo determine whether it's possible to arrange
the operators ['+', '-', '*', '/'] and the *|these numbers and operations to achieve exactly|
-|24. can you find a valid expression, or prove

-|that reaching 24 is impossible with these cards?

parentheses ‘(' and ')’ to get the value
24. Please give code to solve it.

“Code Reasoning § !
. Text Reasoning

aioht_be an iscnssibla task ioh these spacific ombacs. 90

(8-7))) = 24. Result: True@:

Figure 1: Left: LeetCode 679. 24 Game - original
algorithm problem and standard Python solution. Right:
Our synthesized complex reasoning problem: 24-point
and g4o-api response.

Synthetic data (Liu et al., 2024b) has wide ap-
plications in mathematics and code domains. For
mathematical data, synthetic data can be gener-
ated through problem-driven methods such as evol-
instruct (Luo et al., 2023a; Zeng et al., 2024), prob-
lem restatement (Yu et al., 2023), back-translation
(Lu et al., 2024), and few-shot examples (Dalvi
et al., 2021), or knowledge-driven methods based
on knowledge bases (Dalvi et al., 2021) and con-
cept graphs (Tang et al., 2024). For code data, it
generates diverse and high-quality instruction data
with self-evolutionary methods (Wang et al., 2023;
Luo et al., 2023b) or combined with open-source
references such as OSS-Instruct (Wei et al., 2024).

In the complex logical reasoning domain, there
is relatively less research on data synthesis. Previ-
ously, some work uses logical proposition-based
soft reasoning methods (Tafjord et al., 2021; Clark
et al., 2021) to synthesize training data, aiming
to improve models’ reasoning ability and inter-
pretability (Saeed et al., 2021; Dalvi et al., 2021).
Additionally, Sinha et al. (2019) and Tian et al.
(2021) use kinship graphs and first-order logic
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to synthesize person relationship reasoning data
and logical entailment reasoning data respectively.
More recently, Morishita et al. (2023) using for-
mal logic theory, Parmar et al. (2024) covering 25
patterns across different logic types, and Morishita
et al. (2024) utilizing formal language programs to
synthesise reasoning data.

Previous methods primarily used propositional
logic or formal languages as the source of logic.
Instead, we find that algorithmic questions and pro-
gramming languages like LeetCode provide a dif-
ferent source of logic. Algorithmic problems typ-
ically involve explicit input-output relationships,
recursive and iterative structures, and operations
on data structures. All of these constitute a unique
pattern of reasoning. At the same time, algorithmic
problems are naturally related to real-world task
contexts, such as path-planning, data sorting, and
resource allocation problems, which can often be
mapped to real-world application scenarios.

As shown in Figure 1, we discover that while
an algorithm problem can be easily solved through
code, LLMs often make mistakes when the same
problem is transformed into a specific text reason-
ing question. Inspired by this observation, we pro-
pose a data synthesis method aimed at generating
high-quality reasoning problems and reasoning pro-
cesses by utilizing widely available algorithmic
problems and their code solutions.

Our approach consists of data collection and
three steps. For data collection, we collect a large
number of existing LeetCode algorithmic problems
and their code solutions, while collecting or con-
structing diverse test cases. First, by combining
the original algorithm problem with test cases, it
is transformed into a specific text reasoning prob-
lem. Then, the original standard code solution is
combined with the test cases to generate the cor-
responding python code solution. By running the
code, the final output result and the values of key
intermediate variables can be obtained. Finally,
based on the code output, the model is guided to
synthesize the complete reasoning process for the
current problem.

This data synthesis method offers significant ad-
vantages: sufficient difficulty, scalability, effective-
ness, and high-quality reasoning paths. Specifi-
cally, the sufficient difficulty is reflected in mod-
els performing worse on LogicPro compared to
other baseline data; scalability was demonstrated
by collecting more algorithmic problems and con-
structing more test cases to further scale the data;

effectiveness is shown through performance im-
provements across multiple models on multiple
Out-of-Distribution (OOD) benchmarks.

Our main contributions are summarized as fol-
lows:

1. We propose a novel data synthesis method
called LogicPro, which uses LeetCode-style
data as seeds to synthesize text-formatted com-
plex logical data through algorithmic prob-
lems and program solution.

2. With this approach, we can synthesise a 540K
dataset from just 2,360 algorithmic problems
that is sufficiently difficult, scalable, and ef-
fective, as well as having standard answer and
high-quality reasoning process.

3. The experimental results show that our ap-
proach achieves significant improvements
in multiple models for the datasets BBH?",
LogicBench, DROP, AR-LSAT, and GSMS8K,
etc. outperforming a wide range of existing
datasets.

2 Approach

In this section, we elaborate on the LogicPro data
synthesis process. It mainly includes: data collec-
tion and construction of test cases (Section 2.1),
how to synthesize textual complex logical reason-
ing problems (Section 2.2), how to obtain interme-
diate variable outputs from code (Section 2.3), and
how to synthesize high-quality reasoning processes
based on intermediate variable outputs and synthe-
sized questions (Section 2.4). An overview of our
approach is shown in Figure 2.

2.1 Data Collection

In the data collection phase, source Leet data was
collected test cases were constructed. We collect
2,360 official LeetCode problems as initial seeds
for LogicPro’s synthetic data. However, due to the
limited number of test cases in the original data,
GPT-4 is used to reconstruct test cases for each
question. Specifically, we prompt GPT-4 to gen-
erate 150 test cases for each LeetCode problem,
sample three times, and then perform consolida-
tion, deduplication, and filtering on the three re-
sults. Eventually, 2,360 LeetCode algorithm prob-
lems were compiled with standard Python solu-
tions, each containing up to 300 test cases.
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( Data Collection

Step 1: Construct Complex Reasoning Problem

LogicPro

Algorithmic Problem

LeetCode 70: Climbing Stairs
You are climbing a staircase. It takes
“n" steps to reach the top. Each time
you can either climb "1" or "2" steps.
In how many distinct ways can you =

1-step and 2-step moves.

I
tet ||z | -+ uero| ... K€ I
2360 q R
- | Imagine you are on a fitness challenge where you

need to climb a staircase to reach the top. The ata
staircase has a total of 17 steps. Each fime you can |imb to
either climb 1 step or 2 steps. In how many distinct |

(1] ways can you reach the top of the staircase by the tep
end of the challenge ? Consider all combinations of

th26 >
Input

4
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climb to the top?
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Problem-Program Consistency Check '\ S| Solvability Check i
[ ©) (= it
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Step 3: Program-Guided Reason
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Test Cases P I

Step 2: Obtain Intermediate Variable From Program

l [ n=|
© I iz

n=1

To find the number of distinct ways to climb staircase with

\‘l
&3

17 steps using 1-step and 2-step climbs, you can recognize

n =1 # Test_sample_input_1
n = nput_2
n = nput_3
n_= 17 # Test_sample_input_17
n = 18 # Test_sample_input_18

Python Solution

def climbStairs(n):
if n <= 2:

for _ in
a,b=b,a+b
return b

1
2
3
4
5
6
7

climbStairs(n)

that this is a Fibonacci-like sequence problem.
Define f(n) as the number of ways to reach the n-th step.
The recurrence relation is:

f(n) = f(n - 1) + f(n - 2,

This relation holds because to reach the n-th step, you can
either come from the (n-1)-th step (with a 1-step climb) or
from the (n-2)-th step (with a 2-step climb)

Using these, calculate up to f(17):
= f(3)=f(2)+ f(1)=2+1=3

| Step 17 - 987, = 1597 I f(4)=f(3)+f(2)=3+2:=5

| Final values:

1 The final answer is 2584, .

- £(16) = £(15) + f(14) = 987 + 610 = 1597

£(17) = £(16) + £(15) = 1597 + 987 = 2584

Thus, there are 2584 distinct ways to climb to the top of | |

" Execution Check _.
% -

4y = = ~Fail = = = b~

the staircase with 17 steps.

Figure 2: An overview of LogicPro (Example: LeetCode-70 Climbing Stairs): 1. Construct Complex Reason
Problem (Section 2.2 Step 1), based on source algorithm problems and test cases to synthesize complex reasoning
problems. 2. Obtain Intermediate Variable From Program (Section 2.3 Step 2) 3. Program-Guided Reason (Section
2.4 Step 3), synthesizing the final Input-Output from complex reasoning problems and intermediate variable outputs.

2.2 Step 1: Construct Complex Reasoning
Problem

[ Step o——

... rewrite the algorithmic question to a text logical
reasoning problem ...

1. incorporate the test case into ... 2. ...

3. randomly introduce some background information
to diversify the question ...

Input:

{souce_algorithmic_problem}

{test_case}

Output:
Wnthetic_complex_reasoning_problem}

/

Figure 3: Schematic Diagram of Step 1.

In the first step, we synthesize complex reason-
ing problems based on the original algorithm prob-
lems and test cases. As shown in Figure 3, the input
includes the source LeetCode algorithm problems
and specific test case. In this process, the LLM
needs to combine test cases and algorithm prob-
lems, while randomly adding some background
information, to synthesize a complex reasoning
problem. Referring to the example in Figure 2, the
model combine LeetCode Problem 70 "Climbing
Stairs" and the test case input n=17 into a specific

text reasoning problem.

For the data flow in this step, 699K complex
reasoning problems in text format are generated.
Subsequently, after conducting consistency check
(5K+) and solvability check, we select 595K quali-
fied problems for the next step.

Problem-Program Consisitency Check The
purpose of this module is to examine the consis-
tency between code and text reasoning problem.
In the second step, we rewrite the original stan-
dard Python solution and generate test case spe-
cific python code. To ensure consistency between
the rewritten Python code and the text reasoning
problems generated in the first step, we perform
consistency checks on the code and problems. Af-
ter inspection, SK+ data entries are filtered out.
Prompt is in Appendix C.2 Figure 12.

Solvability Check This check module is de-
signed to check whether the synthesised questions
are solvable. In the first step, a large number of
textual reasoning problems were generated by com-
bining the original LeetCode problems with the
test cases generated by GPT-4. However, some
of these problems are unsolvable or meaningless.
This is mainly because the test cases generated by
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GPT-4 are not entirely perfect. Although GPT-4
ensures that the generated test cases comply with
the problem requirements and code format, these
test cases may still deviate from the core testing
points of the problems, or the sample length is too
long, resulting in unsolvable synthesized problems.
After detection, we have screened out and filtered
98K unsolvable problems. Prompt is in Appendix
C.2 Figure 13.

2.3 Step2: Obtain Intermediate Variable from
Program

/step2: — I S

...provide the test case specifc Python code

solution ...

1. Print the final result ... 2. ...

3. ... print key intermediate variables ...
Input:

{source_python_solution}

{test_case}
{synthetic_complex_reasoning_problem}
Qutput:

%St_ case_specific_code_with_process_print} /

Figure 4: Schematic Diagram of Step 2.

In the second step, we input Python code solu-
tions, test cases, and synthesized reasoning prob-
lems to generate test case specific python code. As
shown in Figure 4, we require the model to gener-
ate python code solutions related to the test cases
and ensure that the code prints the final result to the
result variable. In addition, to simulate the human
reasoning process, the model is required to print
key intermediate variables in the code.

For example, for the climbing stairs problem
shown in Figure 2, the model needs to generate
python code for the specific test case of climbing 17
stairs, and print intermediate variables in the code,
namely the calculation process of the Fibonacci se-
quence at each step. Finally, by executing the code,
the output of the intermediate variables can be ob-
tained, which will assist in the reasoning synthesis
for the next step.

For the data flow of this step, the final answer
to each problem is obtained by running the com-
bined code that integrates the test cases with the
standard Python solution. Meanwhile, we modify
the code to print important intermediate variable
values. Then, through execution check, we finally
obtain 544K data points, including standard an-
swers and code intermediate variable outputs for
each problem.

Execution Check This check module is designed
to detect errors that occur during code execution.
In the step 2, the output of intermediate variables
in the code was obtained by modifying the original
standard Python solution for these errors, we per-
form data filtering, which can be divided into two
categories: The first category involves modified
code that encounters errors during execution and
still fails to run properly after multiple sampling
attempts; The second category involves code that
executes correctly but still contains error messages
in the intermediate variable outputs due to the use
of try-catch functionality. After detection, these
two types of issues result in the filtering of S0K
error codes.

2.4 Step3: Program-Guided Reasoning

[seps.  0—= O\

... analyze and identify the key intermediate
variables ... to solve complex logical reasoning

problems. ... modify the code to print these key
intermediate variables to simulate the step-by-step
process of problem-solving as a human would do.
Input:

{synthetic_complex_reasoning_problem}
{intermediate_variable_output}

Output:
{final_reasoning_process}

/

Figure 5: Schematic Diagram of Step 3.

In the third step, the input consists of the com-
plex reasoning problem generated in the first step
and the intermediate variable output obtained in the
second step. These elements are used to synthesize
the final reasoning process. As shown in Figure 5,
the model (Llama3.1-70B-Instruct) answers syn-
thesized complex reasoning questions by analyzing
intermediate variable data.

Taking the example in Figure 2, based on the
calculation process of the Fibonacci equation in the
intermediate variable output, the model success-
fully synthesized a high-quality reasoning process
as the final output of LogicPro data. The goal of
this step is to generate golden reasoning processes
with logic and accuracy, thereby ensuring the com-
pleteness and credibility of the reasoning.

For the data flow in this step, based on the
text-format complex reasoning problems and corre-
sponding code intermediate variable outputs ob-
tained from previous steps, we use this impor-
tant intermediate variable information to guide the
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model in generating high-quality reasoning pro-
cesses for complex reasoning problems. Finally, a
high-quality resoning quetion-answer datasets with
540k input-output pairs is obtained.

3 Experiments

3.1 Experimental Setup
3.1.1 Training

This section elaborates on the experimental settings
related to training. We introduce: (1) the baseline
datasets used for comparison with our LogicPro;
(2) experimental design to verify the effect of dif-
ferent synthetic data. (3) the model configurations
used in training and analysis; (4) the parameters
and implementation details of the training process.

Baseline Data To comprehensively evaluate the
effectiveness of our method, we select multiple
mainstream logical reasoning data synthesis meth-
ods as baseline comparisons, including RuleTakers
(Clark et al., 2021), LogicNLI (Tian et al., 2021),
ProofWriter (Tafjord et al., 2021), CLUTRR (Sinha
et al., 2019), RuleBert (Saeed et al., 2021), Log-
icBench (Parmar et al., 2024), and FLD (Morishita
et al., 2023). The detailed information of these
datasets can be found in Appendix A.1 Table 5.

Experimental Design To better simulate the ac-
tual training scenarios of LLMs, we use two types
of base data: first, 100K general domain data ex-
tracted from OpenHermes-2.5 (Teknium, 2023),
and second, LogiCoT (Liu et al., 2023) as the spe-
cialized base data for logical reasoning domain.
By mixing these different base data with baseline
data and our synthetic data for training separately,
we systematically analysed the impact of different
synthetic data on model performance.

Models We conduct systematic experimental re-
search on foundation models of various scales and
architectures. The main experiments employ four
representative models: Qwen-7B and Llama3-8B
as small-scale representatives, and Qwen2-72B and
Llama3-70B as large-scale model representatives.
For in-depth understanding of model behaviors, we
select Qwen2-7B and Llama-8B for fine-grained
analysis experiments.

Training Details In terms of training implemen-
tation, we use Megatron-LM as the training frame-
work with the following configurations: a cosine
learning rate schedule is adopted with an initial
learning rate of le-5, a warmup ratio of 0.03, and

the learning rate decays to 0; the maximum se-
quence length is set to 8192, with a global batch
size of 128, and the number of training epochs is
set to 3. All experiments are completed with Su-
pervised Fine-tuning (SFT) on a computing cluster
consisting of 32 NVIDIA A100 GPUs.

3.1.2 Evaluation

This section details the experimental setup asso-
ciated with the evaluation. We present: (1) the
benchmarks used to evaluate the different synthetic
data; and (2) the implementation details of the eval-
uation process.

Benchmarks To comprehensively evaluate the
model’s complex logical reasoning capabilities,
ten representative benchmark datasets for testing
are selected , including BBH?" (Suzgun et al.,
2023), LogicBench (Parmar et al., 2024), DROP
(Dua et al., 2019), AR-LSAT (Zhong et al., 2021),
Boardgamga (Kazemi et al., 2024), FOLIO (Han
et al., 2022), GSM8K (Cobbe et al., 2021), Multi-
LogicEval (Patel et al., 2024), ProofWriter (Tafjord
et al., 2021), and MATH (Hendrycks et al., 2020).
Notably, for our synthetic data LogicPro, all bench-
mark are out-of-domain tests. In comparison, some
baseline data, same as some benchmark, are syn-
thesized based on propositional logic or first-order
logic. Additionally, LogicBench’s training and
test sets are completely in-domain. Furthermore,
BBH, as a core benchmark for evaluating models’
complex logical reasoning capabilities, includes
27 challenging reasoning tasks. Based on this, we
apply weights to all data subsets to calculate the
final average score. Due to space limitations, only
the evaluation results of seven benchmarks are pre-
sented in the main text, with complete results avail-
able in Appendix A.2 Table 6.

Evaluation Details In the inference phase, we
use the vLLM (Kwon et al., 2023) framework for
deployment. The inference configuration adopts
greedy decoding strategy and sets the maximum
generation length to 4096 tokens. For the evalua-
tion of model output, we adopt Qwen-2.5-72B as
the model evaluator to score. The specific evalua-
tion prompt template can be found in Figure 14.

3.2 Main Results

Table 1 shows the main results where LogicPro
outperforms previous synthesis methods across
multiple benchmarks. On the representative Big
Bench Hard benchmark, LogicPro improves the
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Model BBH?>" LogicBench DROP ARLSAT #BoardQA FOLIO GSMSK #Avg
Qwen2-7B-RuleTakers 45.4 59.1 65.7 16.5 422 44.6 80.9 45.8
Qwen2-7B-LogicNLI 43.3 71.3 67.4 17.8 453 41.7 81.6 45.0
Qwen2-7B-ProofWriter 40.8 68.6 64.3 17.0 36.9 36.3 80.9 43.2
Qwen2-7B-CLUTRR 43.0 72.0 64.0 17.0 51.9 41.2 80.4 45.0
Qwen2-7B-RuleBert 46.2 69.1 67.4 16.5 43.8 40.7 81.7 47.3
Qwen2-7B-LogicBench 447 *95.9 67.4 17.8 41.4 38.7 82.1 46.6
Qwen2-7B-FLD 42.0 69.5 68.3 14.8 34.9 45.6 80.0 43.8
Qwen2-7B-LogicPro (ours) 50.9 73.5 68.3 19.1 48.1 46.1 81.5 51.2
Llama3-8B-RuleTakers 38.5 59.9 65.9 12.6 47.3 433 67.9 40.3
Llama3-8B-LogicNLI 40.4 54.0 65.3 12.6 41.0 56.0 69.3 41.8
Llama3-8B-ProofWriter 37.2 62.1 66.4 15.2 31.3 47.8 69.1 39.5
Llama3-8B-CLUTRR 40.5 61.1 66.6 10.4 43.7 56.0 69.5 42.2
Llama3-8B-RuleBert 34.7 48.8 66.5 15.2 43.6 51.5 68.9 374
Llama3-8B-LogicBench 41.0 *93.5 66.2 10.9 38.6 62.7 69.8 43.7
Llama3-8B-FLD 35.7 67.8 61.2 13.5 39.1 50.0 64.6 38.2
Llama3-8B-LogicPro (ours) 45.0 67.9 68.8 15.2 44.3 48.3 74.2 46.2
Qwen2-72B-RuleTakers 61.3 72.4 76.6 19.6 61.0 49.3 88.5 61.3

Qwen2-72B-LogicNLI 61.7 80.7 77.0 21.3 60.4 58.2 87.3 61.6
Qwen2-72B-ProofWriter 61.8 75.5 71.2 16.5 55.0 44.0 88.0 61.5

Qwen2-72B-CLUTRR 68.1 79.0 78.4 24.4 61.0 59.7 89.4 66.7

Qwen2-72B-RuleBert 67.8 74.1 76.5 19.6 55.2 62.7 88.0 66.5

Qwen2-72B-LogicBench 67.1 *97.0 77.9 24.8 57.3 60.5 88.4 67.2
Qwen2-72B-FLD 65.4 72.4 76.3 17.0 45.5 53.7 86.9 63.6
Qwen2-72B-LogicPro (ours) 72.4 81.7 79.6 274 66.4 55.2 89.1 70.4
Llama3-70B-RuleTakers 51.5 69.1 75.6 19.1 61.5 53.9 86.8 52.7

Llama3-70B-LogicNLI 58.5 69.9 78.0 17.8 58.5 58.3 84.5 57.8

Llama3-70B-ProofWriter 55.3 31.9 75.3 15.2 58.7 51.0 65.4 53.2
Llama3-70B-CLUTRR 57.8 71.8 74.0 20.9 62.1 61.3 75.1 57.3

Llama3-70B-RuleBert 56.0 68.7 75.0 13.9 51.5 51.0 854 55.1

Llama3-70B-LogicBench 614 *93.2 78.4 21.3 58.7 50.0 84.6 60.8

Llama3-70B-FLD 57.2 74.4 75.0 16.5 46.3 56.9 85.5 56.4
Llama3-70B-LogicPro (ours)  63.7 72.7 78.8 22.3 65.0 54.2 87.6 62.4

Table 1: Main results of LogicPro with baseline data. Where #BoardQA represents BoardgameQA and #Avg
represents Average. Bold denotes the best score in that baseline, underline denotes the second highest score, and *
denotes same-distribution data. See Table 6 for more details.

average performance by 2.3% - 4.7% compared to
the previous best baseline across different model
type and scales, and shows at least 10% improve-
ment over general baseline data. On LogicBench
(a benchmark measuring propositional logic capa-
bilities), LogicPro achieves the best performance
except when LogicBench itself is used as the train-
ing set. On FOLIO (a benchmark measuring first-
order logic capabilities), except for Qwen2-7B, the
performance of the other three models trained with
LogicPro is inferior to other baseline data. This
may be because some baseline synthetic data is es-
sentially generated based on first-order logic, mak-
ing their data distribution closer to FOLIO, leading
to better performance. On GSM8K (mathematical
reasoning benchmark), different synthetic data has

relatively minor impact on model performance. On
OOD benchmarks such as DROP (reading com-
prehension reasoning) and ARLSAT (law school
admission test reasoning), LogicPro also demon-
strates advantages across multiple model founda-
tions, further validating its performance on out-of-
distribution tasks. The weighted average results
across all benchmarks show that on the Qwen?2
foundation, 7B and 72B models improve by 3.9%-
8% and 3.1%-9.1% respectively compared to base-
lines; on the Llama3 foundation, 8B and 70B mod-
els improve by 2.5%-8.8% and 1.6%-9.7% respec-
tively compared to baselines.

Additionally, for different scale models, we find
that our LogicPro still shows advantages on large-
scale models. This indicates that although large-
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scale models possess stronger reasoning capabil-
ities, our data still provides important value for
improving their performance. It is speculated that
this may be related to the high difficulty level of
LogicPro itself, with detailed analysis in section
4.4.

4 Analysis
4.1 Ablation Study

Qwen2-7B BBH?” LogicBench  #Avg
Source_LeetCode 41.0 63.4 42.2
LogicProw/o mter-var ~ 48.247.2 69.6.6.2 49.046.8
LogicProy, mter-var  50.9199  73.5:101 512490

Llama3-8B BBH?” LogicBench  #Avg
Source_LeetCode 36.6 51.4 38.5
LogicProw mer-var  44.0474  63.61122  45.1466
LogicProy, mter.var 45.0484 6791165  46.2,77

Table 2: Ablation study. Source_LeetCode is the source
2360 LeetCode algorithm questions and code solu-
tion. LogicProw/o meer-var and LogicProy, meervar indi-
cate whether the construction process uses intermediate
variables. In other words, LogicProyo mter-var 1S a di-
rect distillation of the text problems in LogicPro and
LogicProy, 1nter-var is our final LogicPro data. Llama3.1-
70B-Instruct is the model to distill and generate final
reasoning trajectories.

As shown in Table 2, we conduct ablation studies
to validate LogicPro’s effectiveness in synthesizing
questions and generating high-quality reasoning
processes. First, we compare Source_lLeetCode
with LogicProy/o mter-var t0 analyze the effect
on synthesizing text reasoning questions. For
BBH, our method improves the performance of
Qwen2-7B and Llama3-8B by 7.21% and 7.34%
respectively, with significant improvements of
6.8% and 6.6% on the Average metric. Sub-
sequently, we compare LogicProy/o mter-var With
LogicProy, meer.var to analyze the effect of code
intermediate variables in the reasoning process.
The results show that introducing code interme-
diate variables as guidance can further improve
data quality compared to directly distilling syn-
thesized questions. Specifically, compared to
LogicProw/o mter-var» it achieves improvements of
2.68% and 1.04% on BBH, and improvements of
2.2% and 1.1% on the Average metric.

4.2 Performance Gain on All Baseline Data

As shown in Table 3, we combine all baseline data
to evaluate the effect of introducing LogicPro. The

Qwen2-7B BBH?" LogicBench  #Avg
All_Baseline 43.1 92.8 47.1
All* + LogicPro 48.8,57 96.3. 35 523,52
Llama3-8B BBH?" LogicBench  #Avg
All_Baseline 429 94.3 47.6
All* + LOgiCPI‘O 47.6_;,_4.7 95.0+0_7 51-2+3.6

Table 3: Results of continuous performance improve-
ment on existing data. All_Baseline represents that we
mix all baseline data from the main experiment. All* +
LogicPro represents that we further mix LogicPro data
for comparison.

experimental results show that on top of integrating
all baseline data, the addition of LogicPro can fur-
ther improve model performance. On the BBH task,
it brings improvements of 5.6% and 4.7% respec-
tively, while for average performance, it improves
by 5.2% and 3.6% respectively.

It is worth emphasizing that our goal is not to
propose a method to replace existing synthetic
data, but rather to introduce a novel data synthesis
strategy. Different from previous synthetic data,
our data’s logic comes from LeetCode algorithm
problems and programming languages, rather than
propositional logic and formal languages. As the
results above, our data complements existing data
to further enhance the model’s complex reasoning
capabilities.

4.3 Data Scaling Analysis

In Figure 6, we demonstrate the impact of three
data scaling methods on BBH and Average metrics
to analyze how the total data amount, number of
algorithm problems, and number of test cases in
data synthesis methods affect model performance.
Overall, the Data scaling method shows a steady
upward trend, indicating that the synthesized data
after mixing effectively improves model perfor-
mance, while also revealing potential for further
improvement through expanded data scale.

In contrast, the Leetcode Problems scaling
method shows more fluctuation. As the number of
Leetcode problems increases from 30% to 100%,
both BBH and Average metrics display multiple
patterns of decline followed by increase. This may
be due to distributional differences in the data gen-
erated from different algorithm problems, leading
to fluctuations in the mixed data results.

The Test Cases method generally shows an up-
ward trend, but model performance declines after
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Model #Rule LogicNLI #Proof CLUTRR RuleBert LogicBench FLD | LogicPro
Qwen2-7B-Instruct 73.0 62.8 64.5 46.3 53.6 74.5 54.1 39.3
Qwen2-72B-Instruct ~ 78.3 78.9 73.8 72.0 54.1 77.3 69.1 46.3
Llama3-8B-Instruct  69.0 63.3 62.1 67.0 47.8 75.5 515 41.2
Llama3-70B-Instruct  80.6 79.6 78.9 83.8 65.5 82.8 64.4 55.6
Average 75.2 71.2 69.8 67.3 55.2 77.5 59.8 45.6

Table 4: Results from different baseline data and LogicPro’s difficulty comparisons on four open source models.
#Rule represents RuleTakers and #Proof represents ProofWriter. The metrics for the results in the table are accuracy

rates, and smaller is better.

Big Bench Hard

Data
Leetcode Problems
—+— Test cases

0 100 200 300 400 500

Average

racy (%)

—e— Data
44 Leetcode Problems
—— Test cases

0 100 200 300 400 500
Data-Amount (K)

Figure 6: The results of the three scaling methods, Data,
Leetcode Problems and Test Cases, on BBH and Av-
erage. Data means we randomly sample 10K-50K-
100K~500K-540K from LogicPro; Leetcode Problems
means that we sample 2%-10%-20%~90%-100% ac-
cording to the number of algorithmic problems; 7est
cases means that we select all algorithmic problems
and sample the number of test cases for each problem
according to 2%-10%-20%~90%-100%.

the number of test cases increases to 80%. This
may be attributed to two factors: First, there is
diminishing marginal utility of test cases. With
a fixed number of algorithm problems, simply in-
creasing test cases may reach a performance im-
provement bottleneck, and only further increasing
the number of algorithm problems can effectively
breakthrough. Second, the impact of test case qual-
ity: The large number of test cases directly gen-
erated by GPT4 are limited in quality. Although
increasing quantity brings some improvement, con-
structing higher-quality test cases is still needed for
more significant optimization.

In summary, to further improve the performance
of the model, it is necessary to enhance the qual-
ity of test cases while increasing the number of
algorithmic problems. This can break through the

bottleneck of data expansion. On this basis, the
model’s capabilities can be continuously enhanced.

4.4 Difficulty Comparison with Baseline Data

As mentioned above, LogicPro is a sufficiently diffi-
cult dataset. To further validate this point, in Table
4 we compare the performance between various
baseline datasets and LogicPro across four open-
source models. Specifically, we randomly sample
5K samples from each baseline dataset and Log-
icPro for evaluation, where LogicPro uses a uni-
form sampling strategy to ensure each algorithm
problem is fairly selected.

The results show that four open-source models
Qwen2-7B-Instruct, Qwen2-72B-Instruct, Llama3-
8B-Instruct, and Llama3-70B-Instruct perform
quite well on existing baseline datasets, with aver-
age accuracy exceeding 50%, and some datasets
even reaching over 70%. However, their perfor-
mance drops significantly on the LogicPro dataset,
with an average accuracy of only 45.6%. Notably,
as mentioned in the "Main Results" section, Log-
icPro still poses significant challenges for Large
Language Models, which may explain why there
is still considerable space for improvement in their
performance on large-scale models.

S5 Related work
5.1 Synthetic Reasoning Data

Synthetic data has played an important role in en-
hancing LLMs’ reasoning capabilities (Dubey et al.,
2024), especially in mathematics and coding do-
mains.

For mathematical reasoning, synthetic data gen-
eration includes problem-driven methods such
as evol-instruct (Luo et al., 2023a; Zeng et al.,
2024), problem restatement (Yu et al., 2023), back-
translation (Lu et al., 2024), and few-shot examples
(Dalvi et al., 2021), as well as knowledge-driven
methods that rely on knowledge bases (Dalvi et al.,
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2021) or concept graphs (Tang et al., 2024) to gen-
erate new problems by sampling key reasoning
points (Huang et al., 2024).

In terms of code reasoning (Chen et al., 2025),
from Code Alpaca’s (Wang et al., 2023) use of self-
instruct to generate 20K instruction data based on
seed tasks, to WizardCoder’s (Luo et al., 2023b)
use of Code evol-instruct to generate more complex
tasks, to Magicoder’s use of oss-instruct (Wei et al.,
2024) to extract 75K instructions from open source
code. Synthesizing data continuously improves the
model’s code reasoning capabilities.

In contrast, there is less research on synthetic
data for complex logical reasoning. Learning com-
bines formal logic theory (Morishita et al., 2023)
to synthesize data using basic reasoning rules to
train language models’ multi-step reasoning abil-
ities. LogicBench (Parmar et al., 2024) not only
constructs logical reasoning benchmark datasets
but also provides synthetic data based on formal
logic.

LeetCode-style algorithm problems contain rich
reasoning processes. This paper synthesizes high-
quality complex logical sreasoning data based on
the formal logic of programming languages to en-
hance models’ reasoning capabilities.

5.2 Symbolic Reason Enhances LLLM Reason

Symbolic language was initially used for formal
logical reasoning, mathematical computation, and
program verification, playing a crucial role in early
artificial intelligence applications such as expert
systems (Hatzilygeroudis and Prentzas, 2004) and
automated theorem provers (Loveland, 2016). With
the rapid development of LLMs, symbolic reason-
ing, as a structured reasoning approach, has further
enhanced the reasoning capabilities of large models
through their integration.

There are two main approaches to combining
symbolic reasoning with LLMs. The first approach
utilizes symbolic language for planning and reason-
ing. Some research combines LLMs with symbolic
solvers like Python (Gao et al., 2023) and SAT (Ye
et al., 2023) to solve mathematical (He-Yueya et al.,
2023) and logical reasoning problems (Pan et al.,
2023), reducing the reasoning burden on models.
Additionally, some work employs symbolic lan-
guage as a planning (Hao et al., 2024; Wen et al.,
2024) tool to strengthen LLMs’ reasoning capabili-
ties.

The second approach involves using symbolic
language to generate training data. Early research

(Tafjord et al., 2021; Clark et al., 2021) adopted
neural network-based soft reasoning methods to
synthesize training data from logical rules ex-
pressed in natural language, improving reasoning
capabilities and interpretability (Saeed et al., 2021;
Dalvi et al., 2021). Recently, more research has
explored the application of symbolic methods in
synthetic training data. Li et al. (2024) formal-
izes seed data and replaces certain variables to
synthesize mathematical reasoning data; Morishita
et al. (2023) constructs synthetic corpora based
on formal logic; Shao et al. (2024) generates in-
ductive reasoning data through case-to-code map-
ping; Parmar et al. (2024) provides more compre-
hensive propositional logic benchmarks; Morishita
et al. (2024) strengthens LLLM reasoning capabili-
ties through principled synthesis of logical corpora.
These studies have advanced the development of
logical reasoning capabilities.

In this paper, we further explore the application
of symbolic methods in data synthesis, utilizing
formal logical information embedded in LeetCode
algorithm problems to synthesize complex logical
reasoning data.

6 Conclusion and Future Work

This paper presents a new data synthesis method
called LogicPro. This approach utilizes LeetCode-
style algorithm problems and solutions to gener-
ate complex logical reasoning data. By synthe-
sizing a 540K dataset from just 2,360 seed prob-
lems, our approach ensures scalability, difficulty,
and high-quality reasoning paths. Results show
that LogicPro enhances model performance across
multiple reasoning benchmarks, including BBH?7,
LogicBench, DROP, AR-LSAT, and GSM8K, out-
performing a wide range of existing datasets.

For future work, considering the vast number
of algorithmic problems in the real world, such as
problems from Luogu, ACM competitions, and var-
ious online judges, we can collect more algorithmic
problem data to further expand LogicPro’s dataset.
Additionally, our data includes both result signals
(code execution results as standard answers) and
process signals (intermediate variables during code
execution), which may provide new insights for
reinforcement learning.

Limitations

Our method explores an algorithm based on
LeetCode-style approach to synthesize complex
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logical reasoning data. In the future, one of our
improvement directions is to build more compre-
hensive and diverse test cases. However, the gener-
ation of test cases itself is an independent research
field. More advanced test generation techniques
are expected to further enhance the quality and
generalization ability of synthetic datasets. Further-
more, although LeetCode’s official 2,360 problems
have achieved significant results, there are still nu-
merous high-quality algorithm problems in the real
world, such as Luogu, ACM competitions, and
various Online Judge (OJ) platforms. Meanwhile,
new algorithm problems continue to emerge. If
these resources can be fully utilized, the quality
and coverage of synthetic data will be further en-
hanced, leading to a larger data scale and better
performance.

Ethics Statement

This study is based on data from 2360 algorithmic
questions on the fully open-source LeetCode plat-
form. All data are from publicly available sources
and do not involve any personal privacy informa-
tion. Our study strictly adheres to the terms of use
and privacy policies of the platforms from which
the data was sourced. We ensure that the rights
of all users and platform regulations are respected
during data collection and processing. Through
the use of publicly available data, we aim to ad-
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mote progress in the field of algorithms and com-
puter science
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A Details of Experiment

A.1 Baseline Data Statistics

In Table 5, we statistics on the size of the baseline
data, the logical sources of the synthetic data.

Dataset Size  Logic Source Source

RuleTakers 480K  Soft Rule (Clark et al., 2021)
LogicNLI 48K  FOL (Tian et al., 2021)
ProofWriter 580K  Soft Rule (proof) (Tafjord et al., 2021)
CLUTRR 50K  Kinship Graph (Sinha et al., 2019)
RuleBert 310K Soft Rule (Saeed et al., 2021)
LogicBench 12K Propositional Logic  (Parmar et al., 2024)
FLD 300K Formal Logic (Morishita et al., 2023)

LogicPro (ours) 540K Program Logic LogicPro

Table 5: Data Statistics.

A.2 Complete Main Results

Given space constraints, we show the complete
results for all benchmarks in Table 6.

Results for All Subsets of BBH In the table 7,
we give the histogram results for all baseline data
and LogicPro on the 27 subsets of BBH.

Results for Base Data In section 3.1, paragraph
Experimental design, we mentioned that in order to
simulate the actual large model training manufac-
turers, we choose the generic domain and logical
reasoning domain data as the base data. The results
of the base data without adding any synthetic data
are given in Table 7.

B Details of Analysis

Complete results of the ablation study The
complete results on all benchmarks of the ablation
study are presented in Table 8.

Complete results of the Performance Gain The
complete results of Performance Gain on All Base-
line Data on all baselines are in Table 9.
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Model BBH? LogicBench DROP AR-LSAT BoardgameQA FOLIO GSMSK Multi-LogiEval ProofWriter MATH Average

Qwen2-7B-RuleTakers 45.4 59.1 65.7 16.5 422 44.6 80.9 53.8 20.0 40.8 45.8
Qwen2-7B-LogicNLI 433 71.3 67.4 17.8 453 41.7 81.6 48.7 36.5 40.6 45.0
Qwen2-7B-ProofWriter 40.8 68.6 64.3 17.0 36.9 36.3 80.9 434 63.5 40.3 432
Qwen2-7B-CLUTRR 43.0 72.0 64.0 17.0 51.9 412 80.4 56.3 36.9 40.1 45.0
Qwen2-7B-RuleBert 46.2 69.1 67.3 17.8 43.8 40.7 81.7 59.3 34.6 40.7 473
Qwen2-7B-LogicBench 44.7 95.9% 67.4 17.8 414 38.7 82.1 67.3 18.0 413 46.6
Qwen2-7B-FLD 42.0 69.5 68.3 14.8 349 45.6 80.0 50.5 373 40.6 43.8
Qwen2-7B-LogicPro (ours) 50.9 73.5 68.3 19.1 48.1 46.1 81.5 62.0 28.5 41.6 51.2
Llama3-8B-RuleTakers 385 59.9 65.9 12.6 473 433 67.9 64.2 294 19.8 40.3
Llama3-8B-LogicNLI 40.4 54.0 65.3 12.6 41.0 56.0 69.3 62.3 35.0 19.8 41.8
Llama3-8B-ProofWriter 372 62.1 66.4 15.2 31.3 47.8 69.1 62.8 454 19.5 395
Llama3-8B-CLUTRR 40.5 61.1 66.6 10.4 43.7 56.0 69.5 63.1 35.1 20.0 422
Llama3-8B-RuleBert 34.7 48.8 66.5 15.2 43.6 515 68.9 65.4 28.2 19.5 374
Llama3-8B-LogicBench 41.0 93.5% 66.2 10.9 38.6 62.7 69.8 65.2 389 20.2 43.7
Llama3-8B-FLD 35.7 67.8 61.2 13.5 39.1 50.0 64.6 60.0 384 17.8 382
Llama3-8B-LogicPro (ours) 45.0 67.9 68.8 15.2 443 48.3 74.2 68.0 37.7 23.0 46.2
Qwen2-72B-RuleTakers 61.3 724 76.6 19.6 61.0 49.3 88.5 60.7 70.6 54.6 61.3
Qwen2-72B-LogicNLI 61.7 80.7 77.0 21.3 60.4 58.2 87.3 64.3 48.9 53.6 61.6
Qwen2-72B-ProofWriter 61.8 75.5 772 16.5 55.0 44.0 88.0 63.0 70.7 55.0 61.5
Qwen2-72B-CLUTRR 68.1 79.0 78.4 24.4 61.0 59.7 89.4 59.2 54.0 56.2 66.7
Qwen2-72B-RuleBert 67.8 74.1 76.5 19.6 55.2 62.7 88.0 1.7 60.2 552 66.5
Qwen2-72B-LogicBench 67.1 97.0* 77.9 24.8 57.3 60.5 88.4 879 572 554 67.2
Qwen2-72B-FLD 65.4 724 76.3 17.0 455 53.7 86.9 60.0 56.5 54.7 63.6
Qwen2-72B-LogicPro (ours)  72.4 81.7 79.6 274 66.4 55.2 89.1 72.1 543 55.8 70.4
Llama3-70B-RuleTakers 515 69.1 75.6 19.1 61.5 53.9 86.8 744 33.1 36.3 52.7
Llama3-70B-LogicNLI 58.5 69.9 78.0 17.8 58.5 583 84.5 67.5 31.3 345 57.8
Llama3-70B-ProofWriter 553 319 753 15.2 58.7 51.0 65.4 50.3 493 24.6 532
Llama3-70B-LogicPro (ours) ~ 63.7 72.7 78.8 223 65.0 542 87.6 723 335 40.5 62.4

Table 6: Complete evaluation results for all benchmark.
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Figure 7: Qwen2-7B and Llama3-8B model performance across 27 BBH subset.
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Model BBH LogicBench DROP ARLSAT BoardgameQA FOLIO GSMS8K Multi-LogiEval ProofWriter MATH Average
Qwen2-7B-base 41.4 68.0 65.3 16.8 42.4 38.96 79.4 52.9 28.2 40.9 43.1
Qwen2-7B-LogicPro  50.9 73.5 68.3 19.1 48.1 46.1 81.5 62.0 28.5 41.6 51.2

Model BBH LogicBench DROP ARLSAT BoardgameQA FOLIO GSM8K Multi-LogiEval ProofWriter MATH Average
Llama3-8B-base 40.5 62.3 65.3 124 40.0 43.73 69.7 60.1 30.8 20.0 41.6
Llama3-8B-LogicPro  45.0 679 68.8 152 443 483 742 68.0 377 23.0 46.2

Table 7: Result of not adding any synthetic data (only two types of base data).

Qwen2-7B BBH LogicBench DROP AR-LSAT BoardgameQA FOLIO GSMS8K Multi-LogiEval ProofWriter MATH Average
Source_LeetCode 41.0 63.4 584 18.3 32.8 382 79.7 54.8 262 40.6 422
LogicPro-w/o.Inter-Var ~ 48.2 69.6 62.9 16.5 47.6 50.7 80.5 62.9 30.0 40.1 49.0
LogicPro-w.Inter-Var  50.9 735 68.3 19.1 48.1 46.1 81.5 62.0 28.5 41.6 51.2

Llama3-8B BBH LogicBench DROP AR-LSAT BoardgameQA FOLIO GSMS8K Multi-LogiEval ProofWriter MATH Average
Source_LeetCode 36.6 514 62.1 12.8 38.9 482 69.5 62.4 31.6 20.5 38.5
LogicPro-w/o.Inter-Var ~ 44.0 63.6 66.8 13.6 43.5 56.0 73.9 63.1 36.6 20.0 45.1
LogicPro-w.Inter-Var ~ 45.0 67.9 68.8 15.2 443 48.3 74.2 68.0 37.7 23.0 46.2

Table 8: Complete results of the ablation study.

C Prompts
C.1 Complete Prompts for The Three Steps in
The Main Methodology

The complete prompts for data collection and steps
1, 2, and 3 are in Figure 8, 9, 10, and 11.

C.2 Prompts in the remaining modules

The complete prompts for Problem-Program Con-
sisitency Check and Solvability Check are in Figure
12 and 13.

In the evaluations, the prompt used for model
evaluation is shown in Figure 14.

D LogicPro Examples

We give our synthetic data samples in figures 15
and 16, synthesised from two LeetCode algorithm
questions, game 24 and stair climbing.
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Qwen2-7B BBH LogicBench DROP ARLSAT BoardgameQA FOLIO GSMS8K Multi-LogiEval ProofWriter MATH Average
All_Baseline_Data 43.1 92.8 63.6 152 48.4 60.5 79.2 65.7 67.9 39.9 47.1
All_Baseline_Data + LogicPro  48.8 96.3 66.8 20.4 55.4 64.2 80.6 71.1 67.9 41.0 523

Llama3-8B BBH LogicBench DROP AR-LSAT BoardgameQA FOLIO GSM8K Multi-LogiEval ProofWriter MATH Average
All_Baseline_Data 429 94.3 66.9 17.0 48.2 64.9 78.4 74.4 69.1 39.7 47.6
All_Baseline_Data + LogicPro  47.6 95.0 68.6 16.5 51.6 61.9 794 76.8 66.4 40.2 51.2

Table 9: Complete results of the Performance Gain.

Data Collection: Obtain Test Cases

| have an algorithmic problem and its python code, please help me
construct 150 different test case inputs.

1. The constructed test case inputs need to fulfill the requirements of the
algorithmic problem and be compatible with the provided Python code.

2. Please enclose the constructed test case inputs in the following python
format; please enclose each test case input individually.

“python

# Test case input 1

# Your input here

“python
# Test case input 2
# Your input here

“python
# Test case input 150
# Your input here

3. Ensure that all test cases are unique and as diverse as possible based
on the topic and Python code.
4. Consider various aspects of the input type to ensure diversity, such as:

- Range of values: Include small, medium, and large values, as well
as edge cases.

- Special cases: Consider cases like empty input, maximum allowed
input size, or inputs that might cause edge conditions.

- Pattern variations: If the input is a sequence, vary the sequence
patterns (e.g., sorted, reverse-sorted, random order).

- Combining elements: If the input is a composite data structure (e.g.,
array of strings), combine different types of elements.
5. Generate inputs with varying difficulty levels (low, medium, high)
considering the problem statement and the provided Python code:

- Low difficulty: Simple and straightforward inputs that cover basic
scenarios.

- Medium difficulty: Moderately complex inputs that include more
diverse and realistic scenarios.

- High difficulty: Complex inputs that test edge cases and challenging
conditions.
6. Ensure that all test cases adhere to the constraints provided in the
problem description.
7. Provide only the input for the test cases, do not include the output.
8. Please do not omit the output. Give each specific test cases.

Input:
{souce_algorithmic_problem}
{source_python_solution}
Output:

{test_cases}

Step 1: Construct Complex Reasoning Problem

I have an algorithmic question and a corresponding test case.
Please rewrite the algorithmic question as a text-only logical
reasoning question based on the test case.

Instructions:

1. Please incorporate the test case into the description of the
algorithm question;

2. Please first give the name of this logical reasoning task; then
give the question that contains the test case.

3. Please randomly introduce some background information to
diversify the question, such as mentioning a hypothetical scenario,
a story, or real-life application related to the logical reasoning task.

Please rewrite the algorithmic question into a text-only logical
reasoning question based on test case:

Input:

{souce_algorithmic_problem}

{test_case}

Output:

{synthetic_complex_reasoning_problem}

Figure 8: Complete prompts for Data Collection: con-
struct test cases.

Figure 9: Complete prompts for step 1.
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Step 2: Obtain Intermediate Variable From Program

Problem-Program Consistency Check

Step 2.1: Obtain Test Case Specific Code

Please provide a Python code solution for the current complex

logical reasoning problem, referring to the given Python code.

- The code should print the final result.

- Please give the final python code in the following format:
“python

- Please ensure that after running the code, the output result of the
algorithm is returned through the variable ‘result’.

Input:
{synthetic_complex_reasoning_problem}
{source_python_solution}

Output;

{test_case_specific_code}

Step 2.2: Print Intermediate Variable

Please analyze and identify the key intermediate variables used in

the Python code to solve complex logical reasoning problems.

Based on your analysis, modify the code to print these key

intermediate variables to simulate the step-by-step process of

problem-solving as a human would do.

- Please give the final python code in the following format:
“python

Input:
{synthetic_complex_reasoning_problem}
{test_case_specific_code}

Output:
{test_case_specific_code_with_process_print}

Figure 10: Complete prompts for step 2.

Step 3: Program-Guided Reasoning

Please analyze and identify the key intermediate variables used in

the Python code to solve complex logical reasoning problems.

Based on your analysis, modify the code to print these key

intermediate variables to simulate the step-by-step process of

problem-solving as a human would do.

- Please give the final python code in the following format:
“python

- No need to output Example Output.

Input:
{synthetic_complex_reasoning_problem}
{intermediate_variable_output}

Output:

{final_reasoning_process}

Figure 11: Complete prompts for step 3.

| have a programming problem statement and its corresponding code
implementation. Both the problem and the code have been rewritten. Please
carefully read the problem statement and the code, and verify if the rewritten
code fully matches the rewritten problem description.

Follow these steps to complete the task:

1. **Understand the problem statement**: Summarize the requirements of the
rewritten problem, including the input, output, and the functionality to be
implemented.

2. **Analyze the code logic**: Explain what the code does, including how it
handles input, its core logic/algorithm, and the output it produces.

3. **Check for consistency**: Compare the rewritten problem with the code
and determine whether they match. If they don't match, identify the
inconsistencies and explain why.

Return the result in **JSON format** with the following structure:
"json

\

"is_consistent": true, // or false

"issues": [ /I If inconsistencies exist, list specific issues; if consistent,
leave the array empty
{

"type": "LogicMismatch", // Example issue types: LogicMismatch (logic
doesn't match), MissingDetails (problem lacks details), etc.
"description": "Detailed description of the issue"

}

**Rewritten Problem Statement:**
{synthetic_complex_reasoning_problem}

**Rewritten Code:**
{test_case_specific_code}

Please evaluate and return the verification result in the specified JSON format.

Figure 12: Prompts for Problem-Program Consisitency
Check.

Solvability Check

Your task is to act as a professional reasoning evaluator. Your goal is to
determine if the given problem is a valuable reasoning task. Consider
the following two aspects:

1. **Problem Type**: The given problem must pertain to logical or
inferential reasoning.

2. **Solvability**: The given reasoning problem must be solvable based
on the conditions provided in the problem. (You may attempt to solve it
step by step to verify its solvability.)

Please reason step by step and conclude with either ‘Yes’ or ‘No’.

Given Problem:
{synthetic_complex_reasoning_problem}

Figure 13: Prompts for Solvability Check.
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Model Evaluation

[Instruction]

Please act as an impartial judge and evaluate the quality of the response
provided by an Al assistant to the user question displayed below. Your
evaluation should consider the correctness. You will be given a reference
answer and the assistant's answer. Begin your evaluation by comparing
the assistant's answer with the reference answer, you must identify
whether the response is correct or wrong by strictly following this format: "
<correct or wrong>", for example: "<correct>" or "<wrong>".

[Question]
{question}

[The Start of Reference Answer]
{answer}
[The End of Reference Answer]

[The Start of Assistant's Answer]
{completion}
[The End of Assistant's Answer]

Figure 14: Prompt for Model Evaluation.
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(Number Game: 24 Points |

Question:
Imagine you are a participant in a mind-bending game show where the objective is to reach a target number using mathematical operations. You are
given four cards, each displaying a number between 1 and 9.
such a way that the result equals 24.
Keep the following rules in mind:
- The division operator * /* is used for real division, not integer division.
- Each operation must involve exactly two numbers (i.e., no unary operations are allowed).
- You cannot combine numbers to form multi-digit numbers.
Given the cards with numbers [9, 5, 8, 2], determine whether it is possible to create an expression that evaluates to 24. Can you devise such an
expression, or prove that it's impossible to do so?

Answer:

## Step 1: Understand the problem and the rules

The problem requires arranging four given numbers (9, 5, 8, 2) into a mathematical expression using the operators *+,*-*,*** and */*, as well as
parentheses, to get a result equal to 24. The division operator */* performs real division, each operation involves exactly two numbers, and numbers
cannot be combined to form multi-digit numbers.

## Step 2: Consider all possible combinations of humbers and operations
To find an expression that evaluates to 24, we need to consider all possible combinations of the given numbers and the allowed operations. This
includes trying different orders of operations and different pairings of numbers for each operation.

## Step 3: Start with the first two numbers and try all possible operations
Begin with the numbers 9 and 5. We can try adding, subtracting, multiplying, or dividing these numbers. The results are:
- Addition: 9+ 5= 14
- Subtraction: 9 -5=4
- Multiplication: 9 * 5 = 45
- Division: 9/5=18

## Step 4: Continue with the next numbers and try all possible operations
Now, we have the results from the previous step (14, 4, 45, 1.8) and the remaining humbers (8, 2). We need to try all possible operations between these
results and the remaining numbers.

## Step 5: Analyze the results from Step 3 and continue with the most promising ones
From Step 3, we see that 14 is a promising result because it is closer to 24 than the other results. Let's continue with 14 and try operations with 8 and
2.

- Using 14 and 8: 14 + 8 = 22 (too high), 14 - 8 = 6 (too low), 14 * 8 = 112 (too high), 14 / 8 = 1.75 (not useful).

- Using 14 and 2: 14 + 2 = 16 (too high), 14 - 2 = 12 (oo low), 14 * 2 = 28 (too high), 14 / 2 = 7 (nhot useful).

## Step 6: Consider alternative combinations Since the direct approach with 14 did not yield a straightforward solution, let's consider alternative
combinations, such as using 8 and 2 first.

-8+2=10

-8-2:=6

-8*2=16

-8/2=4

## Step 7: Combine the results from alternative combinations with the remaining humbers

Now, let's combine these results with 9 and 5.
- Using 10 (from 8 + 2) and 9: 10 + 9 = 19 (foo high), 10 - 9 = 1 (too low), 10 * 9 = 90 (Yoo high), 10 / 9 = 1.11 (not useful).
- Using 10 (from 8 + 2) and 5: 10 + 5 = 15 (too high), 10 - 5 = 5 (too low), 10 * 5 = 50 (too high), 10 / 5 = 2 (not useful).

## Step 8: Re-evaluate the approach based on the given intermediate variables Given the intermediate variables, we see a path that leads t0 24: 9 + 5
=14, then 8 + 2 = 10, and finally 14 + 10 = 24. This suggests a specific order of operations that achieves the target.

The final answer is: $\boxed{Yes}$

Figure 15: Data Example for 24 Game.
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| Climbing Stairs ]

Question:

Imagine you are climbing a staircase that has 22 steps. Each time you take a step, you can either move up 1 step or 2 steps. In how many distinct ways
can you reach the top of the staircase if you start from the bottom?

Consider the scenario where you are undergoing a physical fitness challenge that involves climbing stairs. The goal is to determine all possible step
combinations you can take to reach the 22nd step, starting from the ground level. How many unique ways can you complete this challenge?

Answer:
To solve this problem, let's break it down into manageable steps and analyze the pattern of climbing the stairs.

### Step 1: Understand the Problem
We have a staircase with 22 steps, and we can climb either 1 step or 2 steps at a time. We need to find out how many distinct ways we can reach the
top of the staircase, starting from the bottom.

### Step 2: Identify the Base Cases
- If there's only 1 step, there's only 1 way to climb it (1 step at a time).
- If there are 2 steps, there are 2 ways to climb them (either 2 steps at once or 1 step at a time, twice).

### Step 3: Recognize the Pattern For any step beyond the second, the number of ways to reach that step is the sum of the humber of ways to reach|
the step immediately before it (since we can climb 1 step from there) and the number of ways to reach the step 2 steps before (since we can climb 2
steps from there).

### Step 4: Apply the Pattern to the Problem

Let's denote the number of ways to reach the nth step as W(n). Based on our pattern:

- W(1) = 1 (only one way to climb 1 step)

- W(2) = 2 (two ways to climb 2 steps: 1+1 or 2)

- For any n>2, W(n) = W(n-1) + W(n-2) because we can reach the nth step from either the (n-1)th step (by taking 1 step) or the (n-2)th step (by
taking 2 steps).

### Step 5: Calculate for n = 22

We need to calculate W(22) using the formula W(n) = W(n-1) + W(n-2), starting from the base cases W(1) = 1 and W(2) = 2, and iteratively applying the
formula until we reach W(22).

### Step 6: Iterative Calculation
-WEB)=W(@)+W(1)=2+1=3
-W(@4)=W@B)+W((@2)=3+2=5
-W(5B)=W(4)+W(@B)=5+3=8

- W(6)=W(5)+W(4)=-8+5=13
-W(7)=W(6)+W()=13+8=21
-W(8)=W(7)+W(6)=21+13 =34

-W(9) = W(8)+W(7)=34+21=55

- W(10) = W(9) + W(8) = 55 + 34 = 89

- W(11) = W(10) + W(9) = 89 + 55 = 144

- W(12) = w(11) + W(10) = 144 + 89 = 233

- W(13) = W(12) + W(11) = 233 + 144 = 377

- W(14) = W(13) + W(12) = 377 + 233 = 610

- W(15) = W(14) + W(13) = 610 + 377 = 987

- W(16) = W(15) + W(14) = 987 + 610 = 1597

- W(17) = W(16) + W(15) = 1597 + 987 = 2584

- W(18) = W(17) + W(16) = 2584 + 1597 = 4181

- W(19) = W(18) + W(17) = 4181 + 2584 = 6765
- W(20) = W(19) + W(18) = 6765 + 4181 = 10946
- W(21) = W(20) + W(19) = 10946 + 6765 = 17711
- W(22) = W(21) + W(20) = 17711 + 10946 = 28657

### Step 7: Conclusion
There are 28657 distinct ways to climb a staircase of 22 steps, where you can climb either 1 step or 2 steps at a time, starting from the bottom.

Figure 16: Data Example for Climbing Stairs.
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