CrafText Benchmark: Advancing Instruction Following in Complex
Multimodal Open-Ended World

Zoya Volovikova'?>  Gregory Gorbov>?  Petr Kuderov'>
Aleksandr 1. Panov!'?3  Alexey Skrynnik!?
L ATIRI, Moscow, Russia
2MIPT, Moscow, Russia

3FRC CSC RAS, Moscow, Russia
{volovikova, kuderov, panov, skrynnik } @airi.net

Abstract

Following instructions in real-world conditions
requires a capability to adapt to the world’s
volatility and entanglement: the environment
is dynamic and unpredictable, instructions can
be linguistically complex with diverse vocabu-
lary, and the number of possible goals an agent
may encounter is vast. Despite extensive re-
search in this area, most studies are conducted
in static environments with simple instructions
and a limited vocabulary, making it difficult
to assess agent performance in more diverse
and challenging settings. To address this gap,
we introduce CrafText, a benchmark for eval-
uating instruction following in a multimodal
environment with diverse instructions and dy-
namic interactions. CrafText includes 3,924
instructions with 3,423 unique words, cover-
ing Localization, Conditional, Building, and
Achievement tasks. Additionally, we propose
an evaluation protocol that measures an agent’s
ability to generalize to novel instruction for-
mulations and dynamically evolving task con-
figurations, providing a rigorous test of both
linguistic understanding and adaptive decision-
making.

1 Introduction

Instruction following is a research area dedicated
to developing methods that enable an agent to act
within an environment based on natural language
instructions and sensory input, such as visual ob-
servations.

In real-world scenarios, decision-making in
instruction-following tasks becomes increasingly
complex due to the world’s volatility and intri-
cate interdependencies. The environment is dy-
namic and unpredictable, requiring the agent to
continuously adjust its decisions. Additionally,
many instructions involve interactions with ob-
jects, and since the world contains a vast num-
ber of objects—each with multiple possible in-
teractions—the space of potential goals further

Instruction:
“Find the northermost lake and
set up a crafting area there.”

Figure 1: An illustration depicting an agent navigating
the CrafText environment to solve a task. The agent pro-
gresses from the starting point towards the northernmost
lake, collecting the necessary resources along the way
to set up a crafting table. A Done marker indicates the
location where the task is completed.

increases. Furthermore, instructions themselves
can be phrased in multiple ways, making proper
grounding essential: the agent must correctly in-
terpret the instruction in terms of its intended goal
and determine the specific objects and interactions
required to achieve it.

Thus, an Al agent faces two primary challenges:
(1) making decisions in a dynamically changing en-
vironment, and (2) generalizing its ability to follow
instructions across diverse tasks and formulations
by effectively linking natural language to observa-
tions.

Individually, both challenges are well studied.
Decision-making under dynamic and uncertain con-
ditions in Reinforcement Learning (RL) has been
explored in various studies (Padakandla, 2021; At-
tar and Dabirian, 2019). RL-based methods excel
in open-world scenarios, where agents adapt to
procedurally generated environments, evolving ob-
jects, and unpredictable interactions (Hafner, 2022;

26131

Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 26131-26151

July 27 - August 1, 2025 ©2025 Association for Computational Linguistics


mailto:volovikova@airi.net,kuderov@airi.net,panov@airi.net,skrynnik@airi.net

Matthews et al., 2024; Guss et al., 2019). These
approaches enable generalization, allowing agents
to transfer learned policies to new settings and in-
teract with unseen objects (Stanic¢ et al., 2023).

Ways to connect different modalities, such as
text and vision, can be found in studies on lan-
guage grounding. Architectures like CLIP (Yao
et al., 2022) and FILM (Perez et al., 2018) facili-
tate this connection by mapping textual instructions
to visual inputs. These models have shown strong
performance in tasks such as visual question an-
swering (VQA) (de Faria et al., 2023; Ishmam et al.,
2024), open-vocabulary segmentation, and image
description (Zhang et al., 2022; Yao et al., 2022).

There are also studies that bridge language
grounding and RL, addressing the problem of
instruction following. These approaches lever-
age FiILM (Zhong et al., 2019) and CLIP (Pais-
cher et al., 2023; Lynch et al., 2023) to encode
task-relevant features from both textual and vi-
sual modalities. However, these studies are con-
strained by the environments they rely on, which
are often static or use procedurally generated in-
structions, limiting linguistic diversity. While en-
vironments like (Lin et al., 2023), (Hanjie et al.,
2021), and (Zhong et al., 2019) introduce dynamics,
their vocabulary remains restricted due to template-
based instruction generation. Conversely, (Shridhar
et al., 2020), (Chen et al., 2019) and (Chen et al.,
2019) offer richer vocabularies but lack diverse
interactions and environmental dynamics. Such
settings narrow the search space for optimal poli-
cies, making it difficult to assess how well trained
algorithms generalize to more dynamic and linguis-
tically varied real-world conditions.

In this paper, we introduce CrafText, a bench-
mark designed to evaluate an agent’s ability to fol-
low complex natural language instructions in an
interactive, multimodal environment. Unlike exist-
ing benchmarks, CrafText features an open-ended
world dynamic with amount objects and way to
interact with it, where objects change properties
over time, requiring agents to continuously adapt
and generalize beyond fixed action sequences.

We developed a linguistically diverse dataset
with 3,924 instructions and 3,423 unique words
to support instruction-following in this chal-
lenging setting.  Tasks fall into four cate-
gories—Localization, Conditional, Building, and
Achievement—evaluating an agent’s ability to in-
terpret directions, follow conditions, construct

structures, and achieve complex goals. Each in-
struction is paired with validation functions to sys-
tematically assess whether an RL agent success-
fully completes the specified goals.

Additionally, we propose a specialized evalua-
tion protocol to test the agent’s ability to general-
ize to novel instruction formulations and unseen
goal configurations, providing a rigorous measure
of both linguistic flexibility and adaptive decision-
making.

To summarize, we make the following contribu-
tions:

e We introduce CrafText, a benchmark for train-
ing agents on goal-driven tasks with natural
language instructions in a dynamic environ-
ment.

* We develop a dataset of 3,924 instructions, cat-
egorized into four distinct task types, Localiza-
tion, Conditional, Building, and Achievement,
along with validation functions for precise
task verification in RL.

* We propose an evaluation protocol that as-
sesses both linguistic adaptability and gener-
alization to novel goal configurations.

* We conduct a thorough evaluation, analyz-
ing agent performance in CrafText using two
well-known baselines: PPO with instruction
embeddings as goal representations and Dy-
nalang, a specialized approach for multimodal
tasks.

* We implement CrafText as an open-source
benchmark, providing its dataset and evalua-
tion framework with support for XLLA acceler-
ation, enhancing computational efficiency and
scalability. The dataset and code for CrafText
are publicly available'.

2 Related Work

In this section, we provide an overview of existing
multimodal environments and approaches for train-
ing agents in language-grounded decision-making.
The focus is on highlighting the limitations of
current environments in terms of versatility, dy-
namism, and language grounding, contrasted with
the capabilities of CrafText, designed to address
these gaps.
Environments For Instruction Following.

"https://sites.google.com/view/craftext

26132


https://sites.google.com/view/craftext

on
2] =]
-5 . =)
> 5= o -% ) 4 » = —
£ S: ES% Fiz $F s, e of E%y _&3
‘B 2o .._EE = .28 s = gc s 5 AL S5 S8¢
& 88 2gg g°< g5 g ©& ©8 g5 AsE
Environment & ~ A =E£3 A ? e ) o < ) o &
HomeGrid link X X X X v X X v X
BabyAlI link X X X X v X X v X
RTFM link X v X X v X X v X
Messenger link X v X X v X X v/ X
Touchdown link v v X X X X X v X
Alfred link v X X X X v X v X
Cereal Bar link v X X v X X X v X
IGLU link X v X v X X X X X
MineDojo link v v v v v v X 4 X
CraftAssist link v v X v v v X v X
CrafText (ours) link v v v v v v v v v

Table 1: This table provides a comparison of CrafText with several other multimodal environments across various
characteristics, including vocabulary size, instruction length, benchmarking capabilities, stochastic transitions, world
dynamics, the number of game objects, GPU acceleration, procedural world generation, and evaluation protocols.
CrafText offers a well-balanced combination of features, supporting both stochasticity and dynamic world elements,

with a significant number of game objects.

Our research focuses on developing benchmarks
for training and evaluating agents in instruction-
following tasks within dynamically changing envi-
ronments, featuring diverse goals, interaction pos-
sibilities, and complex linguistic structures.

However, most existing environments are not
well-suited for this research direction, as they are
often designed for a specific task. For example,
CraftAssist (Gray et al., 2019) and IGLU (Kise-
leva et al., 2023) center around 3D construc-
tion but remain deterministic, preventing environ-
mental changes from influencing decision-making.
Similarly, Touchdown (Chen et al., 2019), Al-
fred(Shridhar et al., 2020) and CerealBar (Suhr
et al., 2019), despite offering a rich instruction vo-
cabulary, lack environmental dynamics and provide
only a limited range of interactions with objects.

Dynamic environments such as HomeGrid (Lin
et al., 2023), BabyAI(Chevalier-Boisvert et al.,
2018), RTFM(Zhong et al., 2019), and Messen-
ger (Hanjie et al., 2021) allow state changes, but
their object interactions are limited, and their in-
structions are often procedurally generated, reduc-
ing linguistic diversity. More detailed information
about each environment can be found in the Ap-
pendix H

Moreover, none of the environments, including
MineDojo (Fan et al., 2022), which allows configur-
ing dynamic conditions, provide a dual evaluation
protocol for analyzing both the ability to generalize
to new linguistic constructions and the ability to
generalize to new goals.

In contrast to existing environments, CrafText
presents an instruction-following challenge in a
complex open-ended world: it features a dynamic
environment, a large number of interactive objects
with diverse interaction possibilities, and a rich set
of linguistically varied instructions. This creates
a vast decision space where the agent must learn
to find an optimal policy. Additionally, the bench-
mark is fully implemented in JAX, utilizing XLA
acceleration for efficient large-scale experimenta-
tion.

Instruction Following Task Language ground-
ing in intelligent agents focuses on enabling agents
to understand and execute textual instructions
within virtual environments. Instruction follow-
ing requires models to map natural language com-
mands to appropriate actions, often integrating vi-
sual and textual information. Approaches to policy
learning in multimodal environments can be cat-
egorized into three main groups. The first group
utilizes CLIP (Radford et al., 2021) to establish
a shared representation space for textual and vi-
sual inputs, aiding in instruction grounding (Pais-
cher et al., 2023; Lynch et al., 2023). The sec-
ond group employs projection layers (Perez et al.,
2018; Zhong et al., 2019; Hanjie et al., 2021)
to align linguistic and perceptual features. The
third category integrates transformer-based archi-
tectures, such as EmBERT (Suglia et al., 2021)
and Vision-and-Language Navigation (Savva et al.,
2019), to process multimodal signals for task execu-
tion. Additionally, methods like those in (Li et al.,

26133


https://github.com/jlin816/homegrid
https://github.com/mila-iqia/babyai
https://github.com/mlfoundations/rtfm/tree/main
https://github.com/ahjwang/messenger-emma
https://github.com/lil-lab/touchdown
https://github.com/askforalfred/alfred
https://github.com/lil-lab/cerealbar
https://github.com/iglu-contest/gridworld
https://github.com/MineDojo/MineDojo
https://github.com/facebookresearch/craftassist
https://sites.google.com/view/craftext

2022) and (Brohan et al., 2023) leverage transform-
ers to improve instruction following. Finally, ap-
proaches such as Dynalang (Lin et al., 2023) em-
ploy cross-attention or hidden subspace compres-
sion to enhance the flexibility of text-conditioned
policies, often within model-based reinforcement
learning frameworks (Hafner et al., 2023). Beyond
these, some methods frame instruction following
not merely as a problem of multimodal alignment,
but as a planning task — decomposing instructions
into sequential steps that are issued to the agent
over time (Volovikova et al., 2024).

3 Problem Statement

The environment is formalized as a goal-
based Partially Observable Markov Decision
Process (POMDP), represented by the tuple
(S, A,0,T,R,G,~). This framework models the
task of grounding natural language instructions to
agent behavior in a partially observable and dy-
namic environment. The agent must interpret a
provided textual instruction I, infer the underlying
goal g € G, and execute actions to achieve it.

The state space S describes all possible con-
figurations of the environment, while A defines
the agent’s actions. Observations o € O provide
partial information about the current state and in-
clude both environmental data and the instruction I,
which describes the desired outcome of the agent’s
actions. The agent must use I to recover a latent
goal g € G by approximating a grounding func-
tion f, (/) that predicts g from the instruction. This
grounding process forms the core of the task, requir-
ing the agent to apply natural language processing
techniques to interpret the instruction and link it to
a meaningful goal.

The policy 7(a | 0) maps the agent’s actions to
observations o. The agent maintains a belief state
b(s), a probability distribution over possible states,
to handle partial observability and guide decision-
making under uncertainty.

The objective is to find an optimal policy 7* that
maximizes the expected cumulative reward over
time. Formally,

T

7 = argmax E, [Z Y R(st,at, 9) | 00] :

s
t=0

The environment introduces stochasticity

through its transition dynamics 7 (s’ | s,a), where

the same action may lead to different outcomes. It

is also dynamic, as states can evolve independently
of the agent’s actions due to external factors like
autonomous entity movement. These complexities
demand a robust ability to interpret instructions,
infer goals, and act effectively under uncertainty,
forming the core challenges of this framework.

4 CrafText

BUILD

BUILD SQUARE

3x3 stone square

Instructions:

* "Construct a square using 9
rock blocks”,

* "Build three rows of three stone
blocks, one above the other, to
form a square.”

2x2 plant square

Instructions:
BUILD LINE

BUILD CROSS

LOCALIZATION
ACHIEVEMENTS

CONDITIONAL

Figure 2: The figure illustrates the hierarchical structure
of the CrafText dataset. Each category contains mul-
tiple scenarios, each scenario includes different goals,
and each goal is associated with multiple variations of
instruction phrasing.

CrafText is a benchmark designed to evaluate an
agent’s ability to follow instructions in a complex,
open-ended environment. The goal of the agent is
to solve a diverse set of tasks, formulated in differ-
ent ways in natural language, under dynamic condi-
tions. The world is taken from Craftax (Matthews
et al., 2024) (Appendix G), providing a rich and
interactive setting for agent evaluation.

As part of CrafText, we provide a dataset (see
Section 4.1) that includes instructions from vari-
ous task categories. The language used in these
instructions is complex, featuring a large vocab-
ulary. Each instruction is paired with a function
that checks whether the agent has met the specified
goal. Additionally, we introduce an instruction
generation framework (Section 4.2), which was

26134



Gathering Pipeline
Leeer) 2

Scenario Checker

Environment

CrafText

Dataset 1  Sample goal

Template build_square($BLOC_ID, $SIZE)

2 CHAT-GPT @

Goal #1

® Set of Scenario Checkers

Template
["Build a 2x2 square of
stone blocks."...]

Instructions

® Set of Goals and Instructions

Goal Checker  build_square(STONE, 2)

Goal #2
[

Scenario Checker

build_square($BLOC_ID, $SIZE)

2 Sampleinstruction

o

= Reward,

Instructions [ Set up a garden by arranging

plants in a 3«3 square..",...] Goal #2

Goal Checker  build_square(PLANT, 3) Instructions

Goal #3, #4, #5 ..

["Set up a garden by arranging

Action Instruction,

POV

Figure 3: Left: Data Gathering Pipeline — experts define goal templates expanded with GPT to generate tasks,
instructions, and goal-checking functions (e.g., build a square with stones or plants). Middle: CrafText Dataset
— features 162 goals and 972 instructions (162 x 6), combining scenario checkers, goals, and instructions with
varied parameters like block type and size. Right: Interactive Environment — the agent follows instructions and takes
actions based on visual observations, while Goal Checkers verify progress by evaluating the state. The environment

provides rewards and updates until the goal is achieved.

used to collect the data. This system allows for
the expansion of the dataset by incorporating new
tasks and scenarios while maintaining linguistic
complexity.

We also present the CrafText environment (Sec-
tion 4.3), which enables issuing new instructions
to the agent within an episode and performing ver-
ification at each step. The implementation lever-
ages JAX for high performance and computational
speed, ensuring efficient training of agents in dy-
namic conditions (Appendix G).

The data gathering pipeline, an overview of the
dataset, and the agent-environment loop are illus-
trated in Figure 3.

4.1 Dataset: Overview and Structure

The CrafText dataset has a hierarchical structure
(Figure 2), distinguishing three key concepts: Sce-
narios, Goals, and Instructions. Scenarios repre-
sent abstract task classes that are not yet parameter-
ized, such as building a square or placing an object
at a certain distance from another. Goals are param-
eterized instances of these scenarios, specifying
concrete details like building a 2x2 wooden square
or placing a table to the left of a lake. Instructions
are natural language variations of a goal’s formula-
tion, providing multiple ways to express the same
objective (see Appendix C for examples).

To verify the completion of each instruction, we
call a function that checks the execution of the
scenario corresponding to the instruction with the
given parameters. For example, for the instruction
"Place a 2x2 wooden square,” we call the Square
Placement checker function with the parameters
block = WOOD and side length = 2.

All scenario verification functions were imple-
mented by a person familiar with the mechanics of
the Craftax environment. In total, we have 12 sce-
narios across four task categories: Building, Condi-
tional, Localization, and Achievements.

Scenarios Categories. Building scenarios re-
quire the agent to construct a specified structure
while remembering the starting point, since it may
need to step away during construction to gather
additional resources for placing blocks. In Con-
ditional scenarios, the agent’s understanding of
instructions is tested with tasks such as "Craft a
sword after gathering two stones," "Craft a sword
before gathering two stones,” or "Craft only a
sword or only a pickaxe — whichever is needed
for construction.”" Localization scenarios evaluate
the agent’s ability to correctly interpret spatial in-
structions, including compass directions (south,
east, west, north) and relative directions (to the
right, above, to the left, below) to accurately po-
sition objects relative to other map elements. Fi-

26135



nally, Achievement scenarios involve the agent per-
forming standard in-game tasks—such as collect-
ing wood, mining a diamond, or building a fur-
nace—without additional complications in the in-
structions, sometimes requiring multiple achieve-
ments at once or the exclusion of certain actions. A
more detailed breakdown of task categories can be
found in the Appendix B, along with examples of
instructions.

Dataset Complexity Levels. In Craftax, which
serves as the foundation for the benchmark, inter-
acting with objects requires completing preliminary
action sequences of varying lengths. For exam-
ple, placing a stone involves the following steps:
collecting wood — crafting a table — making a
pickaxe — mining stone. Based on the length and
complexity of these sequences, instructions are cat-
egorized into three difficulty levels: Easy, Medium,
and Hard. The Easy category includes tasks from
the Achievement scenarios, assessing the agent’s
ability to complete in-game achievements and their
combinations. The Medium category covers all
scenario types but is limited to tasks requiring rela-
tively short action sequences (fewer than 10 steps).
The Hard category includes tasks with either highly
complex goals or long action sequences. A detailed
list of task categories, their difficulty levels, and cor-
responding examples can be found in Appendix B.

Test Dataset. A key feature of our dataset is the
inclusion of a dedicated test set designed to eval-
uate the agent’s ability to generalize beyond the
training distribution. The Paraphrased subset as-
sesses whether the agent can achieve the same goals
encountered during training when instructions are
reworded, allowing us to measure its ability to gen-
eralize across linguistic variations.

The New Objects subset evaluates the agent’s un-
derstanding of object properties by introducing new
combinations of familiar objects. While all objects
were present during training, they now appear in
novel configurations. For example, if the training
set included placing a stone block next to a lake
and constructing a square from plantations, the test
set might require constructing a square from stone
blocks. If the agent succeeds, it demonstrates an
understanding that stone blocks, like plantations,
can be placed and that any placeable object can be
used to construct geometric shapes such as squares.

Examples of instructions in these test datasets
can be found in Appendix C.

Dataset Size. The dataset consists of 12 sce-

narios with a total of 476 goals, 203 of which are
reserved for testing. The goals are distributed based
on complexity: 100 are classified as Easy (fully en-
compassing the Achievements category), 277 as
Medium (which consists of multiple categories, in-
cluding Achievements, leading to instruction over-
lap), and 219 as Hard. For each goal, we provide
approximately 5—6 instructions, resulting in a total
of around 3,924 instructions. The vocabulary size
(unique word count) is 2,923. Detailed information
is available in Appendix B.

4.2 Instruction Generation Pipeline

In our benchmark, we aim to ensure both a substan-
tial volume of textual instructions and a complex
instructional language. Many existing approaches
generate instructions by relying solely on proce-
dural templates, resulting in limited linguistic di-
versity and a small vocabulary, despite a high in-
struction count. To address this, we introduce the
Instruction Generation Pipeline, which combines
procedural goal generation for precise verification
with large language models to achieve linguistic
diversity.

The pipeline is centered around scenario checker
functions implemented by our team, which encode
the logic for goal verification. For each scenario
checker, we define an acceptable range of parame-
ters—such as block type, shape, and relative posi-
tion—forming a reusable template for generating a
large number of potential goals. For example, the
template BUILD_&SQUARES&_WITH_&STONE&
includes the parameters shape = square and
material = stone. By enumerating combi-
nations of such parameters, we obtain a broad space
of goals. A subset of these goals is selected for
further refinement and instruction generation (see
Appendix J).

At this stage, GPT-4 is used to generate natu-
ral language instructions and paraphrases corre-
sponding to each selected goal, as well as the
function call format needed to invoke the appro-
priate checker with the correct arguments. GPT-
4 is prompted using a fixed, task-aware template
(Appendix J), and operates strictly as a language
generator, without contributing to the underlying
task logic or correctness checks.

This approach enables the automatic generation
of a diverse set of instructions from a single in-
put scenario, requiring only the implementation
of a scenario verification function and its param-

26136



eter template. We evaluated the scalability of the
dataset (see Appendix E) and demonstrated that,
based on only 12 scenarios, our dataset generation
pipeline can be empirically expanded to produce up
to 2,895 goals and more than 14,475 instructions.

4.3 Environment

We developed the CrafText environment, an ex-
tension of Craftax that enables natural language
instructions in the agent-environment loop. This
extension is compatible with both Craftax-Classic
and the full version of Craftax. The both possi-
ble observation types (visual and vector-based) of
Craftax are augmented with instructions.

Episode Start: At the start of each episode,
the instruction and corresponding checker are ran-
domly selected from the available options. It’s
worth noting that a single checker can corre-
spond to multiple instructions because it’s reusable
through parameters. After that, the world is cre-
ated, meaning that even for the same instruction,
the environment can vary.

Reward System The agent receives a reward
of 1 for completing an instruction at the end of
the episode. To verify completion, at each step,
we run the corresponding Scenario Checker with
goal-specific parameters. Additionally, we use the
reward provided by the Craftax environment to
incentivize discovering new achievements, scaling
it down by a factor of 50.

Episode Termination An episode concludes ei-
ther when the step limit is reached (episode trun-
cation), when the agent dies, or when the scenario
checker function confirms that the instruction has
been successfully completed.

JAX-acceleration The entire code for the
checker functions is implemented in JAX, making
the environment highly parallelizable (using JIT
compilation) and allowing fast, large-scale training
with GPU acceleration.

S Experiments

In this section, we address the following research
questions (RQs) through comprehensive experi-
ments:

RQ1. (Task Handling in Dynamic Environ-
ments): How difficult is it for the agent to manage
various categories of tasks in dynamic conditions?

RQ2. (Generalization to New Instructions
and Goals): Can the agent generalize its behavior:

* To paraphrased instructions that define the

same goals as in the training set but are pre-
sented differently (Test Paraphrased)?

* To new goals that require solving familiar
tasks but involve different combinations of
objects and interactions not seen during train-
ing (Test New Objects)?

To address these questions, we train several
methods in the Medium part of our dataset and eval-
uate them using Success Rate (SR) as the primary
metric. SR measures the proportion of episodes in
which the agent successfully completes the given
instruction. Each method was validated on two test
datasets: Test Paraphrased and Test New Objects,
as described in Section 4.1. To ensure a fair com-
parison, all models were trained for 48 hours on a
Tesla V100 GPU. Below, we describe the baselines
used in our evaluation.

PPO-T (Text-Augmented PPO). This method
builds on the PPO (Schulman et al., 2017) imple-
mentation from the Craftax Baseline, using iden-
tical hyperparameters (Appendix L). To enable in-
struction understanding, we integrate frozen Distil-
BERT embeddings by extracting the [CLS] token
from the final hidden layer as a high-level repre-
sentation. This embedding is concatenated with
visual features to form a joint textual-visual repre-
sentation. A GRU module is included to maintain
contextual memory across time steps, enhancing
the agent’s ability to model sequential dependen-
cies.

PPO-T+ (Plan-Augmented PPO). To promote
generalization, PPO-T+ extends PPO-T by intro-
ducing a planning step: each instruction is con-
verted into a structured plan using GPT-4 (Ap-
pendix J). The agent then follows the same train-
ing procedure as PPO-T, utilizing both visual ob-
servations and the GPT-generated plans to inform
decision-making.

FiLM. This baseline adopts PPO as the optimiza-
tion method and integrates language through FiLM
layers (Perez et al., 2018), which apply feature-
wise affine transformations to visual features condi-
tioned on text. In our setup, transformation param-
eters are computed from the instruction and modu-
late each convolutional layer in the visual encoder,
enabling instruction-aware visual processing.

Dynalang. Dynalang (Lin et al., 2023) is a
model-based method built on DreamerV3, de-
signed for grounding language in multimodal envi-
ronments. Rather than predicting actions directly,

26137



2 I < 4
Instruction type  Algorithm Conditional Build Localization Achievements Total
PPO-T 0.15 0.25 0.33 0.55 0.40
Train Set PPO-T+ 0.17 0.24 0.30 0.70 0.45
Dynalang 0.00 0.12 0.15 0.17 0.15
FiLM 0.07 0.38 0.29 0.76 0.43
PPO-T 0.12 0.13 0.35 0.50 0.36
Paraphrased PPO-T+ 0.16 0.17 0.30 0.48 0.35
Dynalang 0.00 0.09 0.13 0.10 0.05
FiLM 0.10 0.20 0.30 0.53 0.35
PPO-T 0.12 0.13 0.17 0.34 0.22
New objects PPO-T+ 0.20 0.17 0.19 0.43 0.28
Dynalang 0.00 0.09 0.09 0.14 0.10
FiLM 0.17 0.20 0.19 0.38 0.26

Table 2: The success rates of PPO, PPO-T+, FiLM, and Dynalang evaluated across 50 seeds, each representing a
distinct world for every instruction within the complete set of Medium Tasks, where higher success rates indicate
better performance. The best-performing approach is highlighted using tan boxes.

it forecasts future textual and visual states. Instruc-
tions are processed via the TS tokenizer, with op-
tional embeddings. This approach achieves strong
results in environments such as Messenger and
BabyAl, demonstrating its effectiveness in learning
predictive, grounded representations.

5.1 Task Handling in Dynamic Environments
(RQI)

Despite extensive training under optimal condi-
tions, all tested algorithms exhibit suboptimal per-
formance on the training set. Dynalang, achieves
only a 0.15 success rate (SR), significantly under-
performing across individual tasks. This result
is particularly notable given DreamerV3’s strong
performance in environments like Crafter, which
shares similarities with Craftax. One possible ex-
planation is that the combination of complex tex-
tual instructions and the dynamic nature of the en-
vironment makes the learning process significantly
more difficult.

On the other hand, PPO-T, PPO-T+ and FiLM,
which incorporate BERT-based instruction encod-
ing without additional modifications, outperform
Dynalang but still achieve only moderate success
rates (SR: PPO-T = 0.40, PPO-T+ = 0.45, FiLM
= 0.43). This suggests that even with stronger
language representations, existing methods strug-
gle to generalize effectively in dynamic conditions,
highlighting the need for further improvements in
instruction-following capabilities.

We also conducted additional experiments on
our Easy subset in a zero-shot setting, using large
language models such as DeepSeek, MISTRAL,
and Qwen/QWQ (see Appendix M). In these exper-
iments, the models received a textual description
of the agent’s current view instead of an image.
Despite this simplification of the observation space
and the impressive reasoning capabilities of mod-
ern LL.Ms, the models still struggled to solve even
simple tasks in a dynamic environment. This sug-
gests that, without training a reinforcement learn-
ing agent to optimize long-term behavior, it re-
mains too difficult for LLMs alone to make effec-
tive decisions for instruction following.

5.2 Generalization to New Instructions and
Goals (RQ2)

We observe a general drop in performance on the
Paraphrased test set across all models. For PPO-T,
PPO-T+, Dynalang, and FiLM, the Success Rate
(SR) falls from 0.40, 0.45, 0.15, and 0.43 on the
training set to 0.36, 0.35, 0.05, and 0.35, respec-
tively.

Interestingly, PPO-T+ suffers the most from
paraphrasing, with a drop of 0.10, despite achiev-
ing the highest SR on the training set. This sug-
gests that reformulated instructions may lead it to
construct execution plans that diverge significantly
from those encountered during training, thereby
reducing its robustness to linguistic variation.

At the same time, PPO-T+ achieves the high-

26138



est SR on the test set with entirely new goals New
Objects (SR = 0.28), outperforming FiLM (0.26),
PPO-T (0.22), and Dynalang (0.10). This indi-
cates that PPO-T+ is better at decomposing novel
instructions into reusable subtasks, even when sur-
face forms are unfamiliar — a sign of effective
goal-level generalization.

FiLM comes closest to PPO-T+ in this setting,
achieving competitive results without the explicit
intermediate-step inference mechanism used by
PPO-T+. The strong performance of FiLM may
stem from its architectural design: FiLM layers
in the encoder allow for more flexible integration
of textual and visual information, which proves
beneficial in handling novel object configurations.

6 Conclusion

We introduced CrafText, a benchmark for study-
ing instruction following in dynamic environ-
ments with diverse objects, interactions, and high-
vocabulary textual instructions. Agents must solve
tasks across multiple categories, including Con-
struction, Localization, Conditional tasks, and
multi-step Achievement-based challenges.We show
that agents that performed well in static environ-
ments with limited vocabulary, such as Dynalang,
struggle with complex linguistic constructions and
fail to generalize in dynamic environments. Our
benchmark highlights the advantages of planning-
based approaches, demonstrating that preprocess-
ing instructions aids in solving novel tasks. How-
ever, without the ability to adapt plans based on
agent behavior, unfamiliar task formulations re-
main challenging. Future work could focus on
dynamic plan adjustments through fine-tuning with
environmental feedback.

7 Acknowledgments

This work was supported by the Ministry of Eco-
nomic Development of the Russian Federation
(code 25-139-66879-1-0003). We thank Dmitry
Lukashevsky for contributing to the project after
the initial submission by extending the dataset
with additional instructions and improving the
instruction-checking functions used to evaluate the
agent. Although these changes were made post-
submission and are not reflected in the original re-
sults, we sincerely appreciate his help in improving
the benchmark.

8 Limitation

The main limitation of this study is the absence of
human-generated instructions in the dataset. While
Al-generated instructions offer consistency and
scalability, they may not capture the depth and nu-
ance of human-crafted instructions, potentially lim-
iting the model’s ability to generalize to complex,
context-rich tasks common in real-world applica-
tions. Although ChatGPT-like models enhance ac-
cessibility, future work will focus on enriching the
dataset with human input.

Another limitation is the lack of real-world in-
teractive elements, where instructions are part of a
dynamic conversation involving negotiation, clari-
fication, collaboration, and adaptation. Expanding
the benchmark to include such interactions would
provide a more comprehensive evaluation of an
AT’s ability to handle nuanced, real-life scenarios.

References

Mehran Attar and Mohammadreza Dabirian. 2019. Re-
inforcement learning for learning of dynamical sys-
tems in uncertain environment: A tutorial. arXiv
preprint arXiv:1905.07727.

Anthony Brohan, Yevgen Chebotar, Chelsea Finn, Karol
Hausman, Alexander Herzog, Daniel Ho, Julian
Ibarz, Alex Irpan, Eric Jang, Ryan Julian, et al. 2023.
Do as i can, not as i say: Grounding language in
robotic affordances. In Conference on robot learn-
ing, pages 287-318. PMLR.

Howard Chen, Alane Suhr, Dipendra Misra, Noah
Snavely, and Yoav Artzi. 2019. Touchdown: Natural
language navigation and spatial reasoning in visual
street environments. In 2019 IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR),
pages 12530-12539. IEEE Computer Society.

Maxime Chevalier-Boisvert, Dzmitry Bahdanau, Salem
Lahlou, Lucas Willems, Chitwan Saharia, Thien Huu
Nguyen, and Yoshua Bengio. 2018. Babyai: A plat-
form to study the sample efficiency of grounded lan-
guage learning. arXiv preprint arXiv:1810.08272.

Ana Claudia Akemi Matsuki de Faria, Felype de Cas-
tro Bastos, José Victor Nogueira Alves da Silva,
Vitor Lopes Fabris, Valeska de Sousa Uchoa, Dé-
cio Gongalves de Aguiar Neto, and Claudio Filipi
Goncalves dos Santos. 2023. Visual question answer-
ing: A survey on techniques and common trends in
recent literature. arXiv preprint arXiv:2305.11033.

Linxi Fan, Guanzhi Wang, Yunfan Jiang, Ajay Man-
dlekar, Yuncong Yang, Haoyi Zhu, Andrew Tang,
De-An Huang, Yuke Zhu, and Anima Anandkumar.
2022. Minedojo: Building open-ended embodied
agents with internet-scale knowledge. In Thirty-sixth

26139


https://openreview.net/forum?id=rc8o_j8I8PX
https://openreview.net/forum?id=rc8o_j8I8PX

Conference on Neural Information Processing Sys-
tems Datasets and Benchmarks Track.

Jonathan Gray, Kavya Srinet, Yacine Jernite, Hao-
nan Yu, Zhuoyuan Chen, Demi Guo, Siddharth
Goyal, C. Lawrence Zitnick, and Arthur Szlam. 2019.
Craftassist: A framework for dialogue-enabled inter-
active agents.

William H Guss, Brandon Houghton, Nicholay Topin,
Phillip Wang, Cayden Codel, Manuela Veloso, and
Ruslan Salakhutdinov. 2019. Minerl: A large-scale
dataset of minecraft demonstrations. arXiv preprint
arXiv:1907.13440.

Danijar Hafner. 2022. Benchmarking the spectrum of
agent capabilities. In International Conference on
Learning Representations.

Danijar Hafner, Jurgis Pasukonis, Jimmy Ba, and
Timothy Lillicrap. 2023. Mastering diverse do-
mains through world models. arXiv preprint
arXiv:2301.04104.

Austin W Hanjie, Victor Y Zhong, and Karthik
Narasimhan. 2021. Grounding language to entities
and dynamics for generalization in reinforcement
learning. In International Conference on Machine
Learning, pages 4051-4062. PMLR.

Md Farhan Ishmam, Md Sakib Hossain Shovon,
Muhammad Firoz Mridha, and Nilanjan Dey. 2024.
From image to language: A critical analysis of visual
question answering (vqa) approaches, challenges,
and opportunities. Information Fusion, page 102270.

Julia Kiseleva, Alexey Skrynnik, Artem Zholus,
Shrestha Mohanty, Negar Arabzadeh, Marc-
Alexandre Coté, Mohammad Aliannejadi, Milagro
Teruel, Ziming Li, Mikhail Burtsev, et al. 2023.
Interactive grounded language understanding in a
collaborative environment: Retrospective on iglu
2022 competition. In NeurIPS 2022 Competition
Track, pages 204-216. PMLR.

Liunian Harold Li, Pengchuan Zhang, Haotian Zhang,
Jianwei Yang, Chunyuan Li, Yiwu Zhong, Lijuan
Wang, Lu Yuan, Lei Zhang, Jenq-Neng Hwang, et al.
2022. Grounded language-image pre-training. In
Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 10965—
10975.

Jessy Lin, Yuqing Du, Olivia Watkins, Danijar Hafner,
P. Abbeel, Dan Klein, and Anca D. Dragan. 2023.
Learning to model the world with language. ArXiv,
abs/2308.01399.

Corey Lynch, Ayzaan Wahid, Jonathan Tompson, Tianli
Ding, James Betker, Robert Baruch, Travis Arm-
strong, and Pete Florence. 2023. Interactive lan-
guage: Talking to robots in real time. IEEE Robotics
and Automation Letters.

Michael Matthews, Michael Beukman, Benjamin Ellis,
Mikayel Samvelyan, Matthew Jackson, Samuel Cow-
ard, and Jakob Foerster. 2024. Craftax: A lightning-
fast benchmark for open-ended reinforcement learn-
ing. In International Conference on Machine Learn-
ing (ICML).

Sindhu Padakandla. 2021. A survey of reinforcement
learning algorithms for dynamically varying environ-
ments. ACM Computing Surveys (CSUR), 54(6):1—
25.

Fabian Paischer, Thomas Adler, Markus Hofmarcher,
and Sepp Hochreiter. 2023. Semantic helm: A
human-readable memory for reinforcement learning.
Advances in Neural Information Processing Systems,
36:9837-9865.

Ethan Perez, Florian Strub, Harm De Vries, Vincent
Dumoulin, and Aaron Courville. 2018. Film: Vi-
sual reasoning with a general conditioning layer. In
Proceedings of the AAAI conference on artificial in-
telligence, volume 32.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sas-
try, Amanda Askell, Pamela Mishkin, Jack Clark,
etal. 2021. Learning transferable visual models from
natural language supervision. In International confer-
ence on machine learning, pages 8748-8763. PMLR.

Manolis Savva, Abhishek Kadian, Oleksandr
Maksymets, Yili Zhao, Erik Wijmans, Bhavana
Jain, Julian Straub, Jia Liu, Vladlen Koltun, Jitendra
Malik, et al. 2019. Habitat: A platform for embodied
ai research. In Proceedings of the IEEE/CVF
international conference on computer vision, pages
9339-9347.

John Schulman, Filip Wolski, Prafulla Dhariwal,
Alec Radford, and Oleg Klimov. 2017. Proxi-
mal policy optimization algorithms. arXiv preprint
arXiv:1707.06347.

Mohit Shridhar, Jesse Thomason, Daniel Gordon,
Yonatan Bisk, Winson Han, Roozbeh Mottaghi, Luke
Zettlemoyer, and Dieter Fox. 2020. Alfred: A bench-
mark for interpreting grounded instructions for ev-
eryday tasks. In Proceedings of the IEEE/CVF con-
ference on computer vision and pattern recognition,

pages 10740-10749.

Aleksandar Stani¢, Yujin Tang, David Ha, and Jiirgen
Schmidhuber. 2023. Learning to generalize with
object-centric agents in the open world survival game
crafter. IEEE Transactions on Games.

Alessandro Suglia, Qiaozi Gao, Jesse Thomason,
Govind Thattai, and Gaurav S. Sukhatme. 2021.
Embodied bert: A transformer model for embod-
ied, language-guided visual task completion. ArXiv,
abs/2108.04927.

Alane Suhr, Claudia Yan, Charlotte Schluger, Stan-
ley Yu, Hadi Khader, Marwa Mouallem, Iris Zhang,
and Yoav Artzi. 2019. Executing instructions in

26140


http://arxiv.org/abs/1907.08584
http://arxiv.org/abs/1907.08584
https://openreview.net/forum?id=1W0z96MFEoH
https://openreview.net/forum?id=1W0z96MFEoH
https://api.semanticscholar.org/CorpusID:260438420
https://api.semanticscholar.org/CorpusID:236975859
https://api.semanticscholar.org/CorpusID:236975859

situated collaborative interactions. arXiv preprint
arXiv:1910.03655.

Zoya Volovikova, Alexey Skrynnik, Petr Kuderov, and
Aleksandr I Panov. 2024. Instruction following with
goal-conditioned reinforcement learning in virtual
environments. In ECAI 2024, pages 650-657. 10S
Press.

Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Man-
dlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan, and
Anima Anandkumar. 2024. Voyager: An open-ended
embodied agent with large language models. Trans-
actions on Machine Learning Research.

Lewei Yao, Jianhua Han, Youpeng Wen, Xiaodan Liang,
Dan Xu, Wei Zhang, Zhenguo Li, Chunjing Xu, and
Hang Xu. 2022. Detclip: Dictionary-enriched visual-
concept paralleled pre-training for open-world detec-

tion. Advances in Neural Information Processing
Systems, 35:9125-9138.

Hao Zhang, Feng Li, Shilong Liu, Lei Zhang, Hang
Su, Jun Zhu, Lionel M Ni, and Heung-Yeung Shum.
2022. Dino: Detr with improved denoising anchor
boxes for end-to-end object detection. arXiv preprint
arXiv:2203.03605.

Victor Zhong, Tim Rocktischel, and Edward Grefen-
stette. 2019. Rtfm: Generalising to novel envi-
ronment dynamics via reading. arXiv preprint
arXiv:1910.08210.

26141


https://openreview.net/forum?id=ehfRiF0R3a
https://openreview.net/forum?id=ehfRiF0R3a

Appendix
A DATASET: Generation Prompt

This section presents the main GPT-4 prompt
(see Figure 4) used in the instruction generation
pipeline.

The code for checking played is following:
#Implementation of the scanerio checker ()

A scenario consists of instructions given by player 1 to
player 2. Player 2 follows these instructions, which are
then verified by a corresponding function. For the
function scenario.py, please provide realistic examples
of instructions that player 1 might give, along with 5
paraphrases for each.

Requirements:

1) When specifying target objects (objects with which
the player will interact), use different synonyms in
paraphrases to assess the vocabulary range of player 2.

2) Present the target objects in varying orders to
evaluate how well player 2 understands different
language structures.

3) For each set of paraphrases, sort them from the
simplest language to the most complex.

4) Ensure the instructions are as varied as possible
with a broad vocabulary.

Format your answer as a Python dictionary with the
following structure:

instructions = {
instruction_id: {
"instruction': "Example instruction here",
"instruction_paraphrases': [
"Paraphrase 1 here",
"Paraphrase 2 here",
"Paraphrase 3 here",
"Paraphrase 4 here",
"Paraphrase 5 here"
1,
'check_lambda': \
lambda ...:scenario_function(...): ...
}
}

Figure 4: The prompt used for instruction generation in
CrafText. The label (1) indicates the actual implementa-
tion of the scenario verification function.

B DATASET: Tasks Description

The dataset consists of a set of instructions of dif-
ferent types, examples of which are provided in
Figure 10.

Conditional. In the Conditional category, the
agent is required to understand the sequence of

actions it needs to perform and the order in which
these actions should be carried out.

Example

Instruction: "After collecting coal, the player should
gather wood and then place a stone on the crafting table."

Figure 5: Sequencing Instruction Example

The focus here is on understanding temporal
relationships between actions (see an example at
Figure 5).

Build. The Building category involves tasks
where the agent must construct specific shapes or
structures based on verbal instructions.

Example

Instruction: "Arrange the tables in a square pattern using
9 stone blocks."

Figure 6: Building Instruction Example

This category tests the agent’s spatial reason-
ing and ability to translate instructions into precise
constructions (see an Example at Figure 6 ).

Localization. In the Localization category, the
agent must determine from which side it should
position an object and in relation to which reference
object.

Example

Instruction: "Place the table two steps to the left of the
lake."

Figure 7: Localization Instruction Example

In this example, the agent needs to: 1) Identify
the lake 2) Determine the left side 3) Understand
relative positioning Additionally, these tasks may
involve directional terms such as left, right, above,
below, north, south, west, and east.

This category is particularly challenging as it
requires the agent to integrate directional instruc-
tions with map-based navigation (see an example
at Figure 7.

Achievements Tasks. The Achievements cate-
gory contains tasks that require the agent to com-
plete in-game achievements. It also includes tasks
that instruct the agent to perform actions involving
combinations of achievements (Figure 8).

26142



Examples

Instruction: "Forge a sturdy pickaxe from stone."
Instruction: "Craft a wooden pickaxe but avoid making
a stone pickaxe."

Instruction: "Craft a stone sword and eliminate all
undead."

Figure 8: Achievements Tasks

This type of task evaluates the agent’s ability
to understand achievements by interpreting tasks
and identifying the necessary actions. It also tests
whether the agent can combine multiple achieve-
ments in sequence or simultaneously. Additionally,
it assesses the agent’s ability to follow constraints,
ensuring specific conditions are met while complet-
ing a task.

C DATASET: Instructions Examples

. GOAL:
Train: place STONE,
task . sidelLEFT,

Place a stone one block to the left of the furnace”, it 4 ek

instructions relevant FURNACE

+ "Position a rock a unit to the west of the kiln.",

- "To the immediate left of the heating station, deposit a piece of rock.",

+ "Beside the furnace, specifically to its left, position a stone block.",

+ "Should you find yourself in the vicinity of the furnace, it is your duty to
move a stone one block to its left.”,

+ "In the relentless dance of stone and fire, a single stone must find itself
moved a measure to the left of the ever-watching furnace, a silent
testament to the delica

Test Paraphrase:
instructions
+ "Put a stone block just left of the smelter.",
+ “Inrelation to the foundry, ensure there's a stone one square to the
left of it”.
- "One space to the left of the apparatus for smelting ore, situate a
piece of stone.",
+ "In spite of its weight and hardness, your task is to adjust a unit to the
left, a rock bearing the vicinity of the kiln.",
+ "In the shadowy realm of the searing furnace, thy charge is to take a
stone, sturdy and unyielding, and relocate it a block to the west, under
the vigilant watch of the ever-hungry kiln.",

n
. unse® ons

Test New Objects: oo

task GOAL:

o lace FURNACE,

"Place the furnace four blocks above the stone", ‘s)ide TOP,
instructions dist 4 block,
relevant STONE

- "Position the kiln four spaces top of the rock",

+ "Arrange the smelter four blocks upward from the stone",

- "Set the forge four spots to the north of the boulder",

- "Situate the blast furnace four notches above the stony block",

+ "Install the heating chamber at a distance of four blocks to the
top from the solid pebble"

Figure 9: Examples of instructions in dataset.

D DATASET: Per Category Scenarios,
Goal, Instructions

In our dataset, there is a division into the training
set, the test set with rephrased instructions (7est
Paraphrased), and the test set with new tasks (7est

New Object). For example, in the localization sce-
nario, where blocks need to be placed relative to
other blocks at a certain distance, if the training
set includes a task to place a stone block to the left
of a furnace, then in 7est Paraphrased, it may be
rephrased as "find the furnace and place a stone
block one block north of it." In Test New Object, a
new combination of parameters appears, such as a
task to place a furnace four blocks above a stone.
The complexity of Test New Object lies in the fact
that the agent has multiple ways to approach the
task. It can either find existing stone blocks and
place the furnace relative to them or place both the
stone and the furnace itself, as in the training task.
This adds variability to the problem and requires
the agent to be flexible in decision-making. See
Figure 9 for more examples.

E DATASET: Assessing the Scalability

Table 3 summarizes possible and implemented
goals across different scenario classes and complex-
ities. It lists the class, number of arguments (Args),
possible goals, and implemented goals. Each in-
struction’s complexity level (Easy, Medium, Hard)
is also indicated. The dataset defines 3,480 possi-
ble goals, which expand to over 20,000 instructions
when factoring in paraphrases.

Despite having 476 distinct goals, the dataset’s
scalability stems from a function-based task gener-
ation process. This approach systematically com-
bines predefined goals, environmental parameters,
and paraphrased instructions, creating diverse train-
ing interactions for instruction-following agents.

A key example is the place function, which
checks whether an object is positioned relative to
a target at a specified side (right, left, top, bot-
tom) and distance. With four object types and four
distances, this results in 512 unique goals. Each
goal is paraphrased in six ways, producing 3,072
instructions from this function alone.

This scalability extends to other task-generating
functions, enabling continuous dataset expansion.
Appendix E details how this methodology scales
to 3,480 unique goals and approximately 20,880
instructions with paraphrases.

F ENVIRONMENT: Perfomance

Efficient simulation speed is a cornerstone of rein-
forcement learning (RL) environments, enabling
faster training cycles and broader experimentation.
CrafText, built on top of Craftax, leverages the

26143



ACHIEVEMENTS

Scenario Scenario

Scenario
is_goal_achieved is_goal_achieved

is_goal_achieved

Parameters
DEFEAT_ZOMBIE

Parameters
EAT_COW

Parameters
COLLECT_IRON

Instruction

Ensure the zombie is
fully defeated before
moving on.

| Instruction Instruction
Locate a cow in the

é Find a cave or a mine
environment.

with iron ore blocks.

Scenario Scenario

Scenario
is_sequence_correcr is_sequence_correcr

is_sequence_correcr

Parameters
frist: 1- TABLE
second: 2 - FURNACE
Instruction

First, craft a table.
Then, place two

Parameters
frist: 4 - STONE
second: 3 - TABLE

Instruction

Collect four stone
blocks first, then place

Parameters
frist: 1 - FURNACE
second: 1- STONE

Instruction

Before collecting stone,

furnaces. three tables in a place a furnace.
structured layout.
Scenario Scenario Scenario
check_relative_position check_relative_position i check_relative_position
Parameters Parameters Parameters

frist: FURNACE
second: WATER
b side: 2-bottom

Instruction

frist: FURNACE
second: WATER
side: 1-top
Instruction

frist: TABLE
second: LAVA
side: 2-right
Instruction

Place a table one
block to the right of
the lava.

Place a furnace one

Place furnaces north of
block below the lake.

the lake.

Scenario Scenario Scenario
build_square build_line build_cross
Parameters Parameters Parameters
block: TABLE block: STONE block: FURNACE
side_size: 3 diagonale: True diagonale: False
size: 4 size: 1
Instruction Instruction Instruction
Build a cross using
Build 2 3x3 i

Construct a diagonal

furnaces, ensuring that
line using stone blocks.

each arm consists of one

block.

square using tables.

Figure 10: Example instruction set for different tasks.

Name Class Name Args  Possible Goals Implemented Goals Complexity
achievements achievements  list 500 164 EASY
build_line build 3 75 57 MEDIUM
square build 2 25 28 MEDIUM
Cross build 3 75 10 HARD
localization_place localization 3 120 91 MEDIUM
place_item_after_collection conditional 3 80 55 MEDIUM
collect_item_after_place conditional 3 80 56 MEDIUM
build_line_and_localization_place =~ combo 4 25x25 5 HARD
build_line_after_collect combo 4 25x25 5 HARD
collect_item_and_build_square combo 4 25x25 5 HARD
Total 2830 476

Table 3: Summary of Possible Goals and Implemented Goals, with Complexity.

26144



computational power of JAX and advanced paral-
lel execution to demonstrate remarkable scalabil-
ity. As the number of parallel environments grows,
CrafText’s steps per second (SPS) increase propor-
tionally, unlocking the potential for large-scale RL
research and development.

To evaluate performance, we measured the en-
vironment’s speed over 5000 steps using an agent
with random behavior. The experiments com-
pared SPS across different base Craftax environ-
ments and hardware configurations, including de-
vices such as Tesla V100 GPUs. On Classic
Craftax, training on 1024 environments achieved
approximately 44,630 SPS, while on CrafText, the
same configuration yielded around 9,100 SPS on a
Tesla V100.

CrafText (Craftax Classic)

—— Tesla V100

128 256 512 1024 2048
NUM ENVS

Figure 11: SPS of CrafText environment based on
Craftax Classic environment

CrafText (Craftax)

24000 —=— Tesla V100

20000

16000

12000

®
o
s}
)

SPS (Steps Per Second)

128 256 512 1024 2048
NUM ENVS

Figure 12: SPS of CrafText environment based on
Craftax environment

G Craftax

Craftax is a benchmark designed to facilitate re-
search in open-ended RL. It builds upon the me-
chanics of the Crafter (Hafner, 2022) environment,
providing a complex, procedurally generated world
where agents must engage in deep exploration,
long-term planning, and memory utilization while
adapting to novel situations. The primary reward
function in Craftax consists of achieving specific
tasks that are grouped into four categories: *Basic’
(1 reward), "Intermediate’ (3 rewards), ’Advanced’
(5 rewards), and ’Very Advanced’ (8 rewards), en-
hancing the incentive structure for exploration and

Figure 13: Examples of the visual observation input in
Craftax, showcasing different perspectives of the envi-
ronment provided to the agent for decision-making.

engagement. The observational input for agents
is represented in two formats: a pixel-based input
of size 110 x 130 x 3 and a symbolic representa-
tion with 512 dimension. The action space consists
of 43 discrete actions, allowing agents to perform
various interactions and movements within the envi-
ronment. To succeed, agents must navigate diverse
terrains, face 19 distinct creatures, and utilize var-
ious combat and crafting mechanics across nine
unique procedurally generated floors.

CrafText VS Craftax. CrafText builds upon
Craftax by introducing instruction-based tasks,
which require more than just a dataset of textual
instructions. Each task is paired with a checker
function that validates task execution at every en-
vironment timestep, providing continuous moni-
toring of the agent’s progress. This per-timestep
validation is critical for ensuring correct task com-
pletion in dynamic environments. The checker sig-
nals the termination of an episode when a task is
successfully solved and is tightly integrated with
a task-based reward function, enabling immediate
feedback essential for reinforcement learning.

To maintain the performance benefits of the orig-
inal Craftax, CrafText implements these checker
functions with XLLA acceleration. This ensures that
per-timestep validation and reward computation are
computationally efficient, even in large-scale multi-
modal RL settings. Furthermore, by decoupling the
instruction-checker dataset from the Craftax envi-
ronment’s core implementation, CrafText supports
seamless extensibility, enabling researchers to eas-
ily expand the benchmark with new tasks using the
provided toolset.

CrafText is more than an environment—it is a
comprehensive benchmark designed to evaluate
natural language understanding and other capabil-
ities in multimodal settings. Its evaluation proto-

26145



#dynamic

RTFM

#dynamic

MESSENGER

#dynamic

BABY-AI

#dynamic

HOME-GRID

#complex_instructions

#slow :(
#slow #dynamic #slow :(
#complex_instructions  #complex_instructions #complex_instructions #complex_instructions
IGLU CRAFT-ASSIST MINE-DOJO ALFRED

= ]

CERAL-BAR

,‘l
- ‘

Figure 14: Visualizations of multimodal environments.

col supports testing approaches using a hold-out
dataset, which, while a correct methodology, re-
mains underrepresented in the RL community. The
protocol categorizes tasks into Conditional, Build-
ing, Localization, and Combination, each with
varying difficulty levels (Easy, Medium, Hard). It
also includes two state-of-the-art baselines, Dy-
nalang and a large-scale PPO, both specifically
adapted to the environment. The PPO baseline was
trained for 1 billion environment steps in 12 hours
on a single GPU, achieving over 20k steps per sec-
ond (SPS), showcasing the benchmark’s scalability
and accessibility to a broad range of researchers.
Finally, we emphasize that building upon prior
research is central to scientific progress. Craftax it-
self was developed on top of Crafter and NetHack.
Similarly, CrafText extends Craftax by introduc-
ing a benchmark for goal-driven natural language
tasks in dynamic visual environments, supporting
scalable task expansion and pioneering the use of
XLA-accelerated multimodal benchmarks.

H Instruction Following Environments

RTFM is an environment where the agent must un-
derstand and apply procedural game instructions to
navigate a dungeon. The agent reads procedurally
generated manuals and uses the acquired knowl-
edge to defeat enemies and interact with the game
world. A key feature is the need for text compre-

hension in a dynamic setting.

Messenger presents a message-delivery chal-
lenge where the agent must navigate while avoid-
ing obstacles and interacting with NPCs. The task
requires choosing optimal routes and adapting to a
dynamically changing environment, adding a layer
of strategic complexity.

Baby-AlI features a grid-based world where the
agent follows simple language instructions. Tasks
involve moving to specific locations and interacting
with objects, requiring basic language comprehen-
sion and action planning in a discrete space.

Home-Grid simulates a household environment
where the agent performs daily tasks. It moves
through rooms, manipulates objects, and interacts
with the surroundings based on given instructions.
This environment models real-world scenarios with
an emphasis on object management and action se-
quencing.

Touchdown is a city navigation simulation
where the agent follows complex natural language
instructions to traverse an urban environment. The
setting consists of realistic 3D scenes, and success-
ful task execution demands understanding spatial
directions and adapting to detailed route descrip-
tions.

IGLU focuses on spatial reasoning, requiring the
agent to construct 3D structures by following ver-
bal or textual instructions. The environment empha-
sizes precise execution of building tasks, making

26146



spatial understanding and object placement crucial.

Craft-Assist immerses the agent in a Minecraft-
like world where it collaborates with humans to
complete construction tasks. The agent interprets
commands, interacts with the environment, and par-
ticipates in cooperative work, posing challenges in
language comprehension and behavior modeling.

Mine-Dojo provides an open-ended Minecraft
world where the agent undertakes diverse tasks
such as resource gathering, crafting, exploration,
and combat. This environment requires complex
planning and engagement with various mechanics,
making it one of the most versatile interactive set-
tings.

CEREALBAR is a collaborative instruction-
following environment where a leader gives natural
language instructions to a follower in a 3D game
setting. The agent must accurately interpret and
execute instructions to collect valid sets of cards.
This setup emphasizes multi-agent coordination,
real-time decision-making, and natural language
understanding.

ALFRED places the agent in a photorealistic
kitchen setting, where it executes household tasks
such as cooking, cleaning, and organizing objects.
The environment models complex object interac-
tions and demands sequential execution of instruc-
tions while accounting for physical constraints.

I TRAINING: Curve Analysis

We ran each baseline model—Dynalang,
PPO+BertEmb (PPO-T), and
PPO+BertEmb+GPT4Plan (PPO-T+) s—on

the Medium portion of our dataset, training each
model for 60 hours on an Tesla V100 GPU.
Figure 15 shows the result Success Rate, with
checkpoints recorded every 12 hours on both
the training and test sets. Overall, we observed
similar performance with and without GPT-4 plans
during training (overall 60h += 0.47). In contrast,
Dynalang produced much weaker results (0.15),
possibly because it requires additional training
time due to its world model training process.

On the test set, the model incorporating GPT-
4 plans achieved the best performance for every
task type (overall 0.28, compared to PPO+BertEmb
at 0.23 and Dynalang at 0.1). We attribute this
improvement to the capability of large models like
GPT-4 to simplify complex instructions. Moreover,
on both the training and test sets, using GPT-4 plans
yielded higher performance on conditional tasks

(Training: 0.18 vs. 0.16 without plans; Test: 0.21
vs. 0.17 without plans). These results highlight
that incorporating additional planning can help the
agent solve puzzles and logical tasks that require
understanding conditions expressed in text.

J TRAINING: Prompt for GPT-4 plan
generation

Craftax is a virtual environment designed for explo-
ration, crafting, and task completion. The proce-
durally generated world includes resources (trees,
stones, coal, iron), interactive objects (crafting ta-
bles, furnaces, chests), and diverse terrains (water,
grass, sand). The agent operates in this dynamic
environment, performing actions such as moving,
collecting resources, crafting, placing objects, and
interacting with surroundings. Completing tasks
often involves gathering resources, crafting items,
and strategically placing objects.
The agent has a fixed set of discrete actions:

* Movement: Navigate the map (up, down, left,
right).

* Resource Collection:
stones, or gather coal.

Chop trees, mine

* Crafting: Create tools (e.g., pickaxes) or
structures (e.g., furnaces).

* Object Interaction: Use objects (e.g., cook
food in a furnace).

* Placement: Place crafted objects in specific
locations.

Task: Create a step-by-step action plan (maxi-
mum 5 steps) for the agent in Craftax to achieve
the following instruction:

“{instruction}”
Response Format:

1. Using only object names existing in the
Craftax environment, provide the plan as a
numbered list.

2. Each step should outline a specific action or
logical task for the agent, such as resource
collection, crafting, or object placement.

3. Keep steps clear, concise, and implementable
in Craftax, with a maximum of 5 words per
step.

26147



—— PPO-B —— PPO-B-GPT4Plans
Total Success Rate Over Time

—— Dynlang

—— PPO-B —— PPO-B-GPT4PInas
Total Success Rate Over Time

—— Dynlang

R pE—— e

L S

0.28
2
So.22
80.17
[
go.11
12
0.05

e

12h 24h 36h 48h 60h
Achievements Conditional

12h 24h 36h 48h 60h
Achievements Conditional

o o | g = [ |s%
[ Q - =
go.62 5oL 033 50.16
2 oL o 20.11
foas § 0.08 go.22 i 0'07
So24 goos So1 \/\/ éoloz
—_— T .
0.05 0.02
12h  24h  36h  48h  60h 12h  24h  36h  48h  60h 12h  24h  36h 48h 60h 12h  24h 36h 48h  60h
Build Localization Build Localization
0.28 0.37 0.20 0.21
— " 3 2 /\‘*/‘\*
5023 50.29 8015 801617 et
2017 8021 %011 \\/\ go.11
o 0.11 o v
g /\/\ g0 '//\/‘ Zo.06 g 0.07 /\/
0.05 0.02
0.05 0.02

12h 24h 36h 48h 60h

(a) Train

12h  24h  36h 48h  60h 12h  24h  36h  48h  60h

(b) New objects

Figure 15: The training performance and corresponding validation curves on the test set (other parameters) for the
three baselines: PPO+BertEmb, PPO+BertEmb+GPT4Plans, and Dynalang.

Check yourself!

!ATTENTION! Ensure the plan uses only ob-
ject names and actions existing in Craftax. Replace
any incorrect terms in the instruction with their
correct Craftax equivalents.

K TRAINING: Analysis of Failure Cases

We analyze agent failures by evaluating the Success
Rate for each instruction in our dataset and then
aggregating these results based on key features: the
types of objects the agent must interact with, spe-
cific task parameters (e.g., the length/width of items
to be placed or the shape of the constructed struc-
ture), and the level of instruction complexity. By
examining difficulties in interacting with various
game elements, constructing complex shapes, and
adapting to paraphrased instructions, we identify
patterns of failure and determine where improve-
ments can be made to enhance the agent’s task
comprehension and execution.

The Figure 16 presents the aggregated SR for
tasks involving different in-game elements. The
highest SR is achieved for tasks requiring interac-
tion with TREE (SR = 0.9), which is not surprising
given that trees are abundant and do not demand
specialized skills. In contrast, the lowest SR val-
ues occur for WATER (SR = 0.03), IRON (SR =
0.02), COAL (SR =0.01), and PLANT (SR = 0.00).
These more challenging tasks involve searching for
specific objects and making use of appropriate in-
ventory tools.

The agent struggles with building shapes larger

0.90
0.78

o
©

o
o

0.45
0.40 0.40

o
>

SR (Success Rate)
o
o

0.03 0.02 0.01 0.00

&
& & >
< & Q\Y’

o
o

‘?y
(/0

Figure 16: Aggregated SR for tasks involving different
game elements, highlighting varying levels of interac-
tion difficulty.

than two blocks, making such configurations rare
and rewards infrequent (see Tables 4 and 5). Al-
though it can place two blocks in a line effectively
(e.g., SR=0.78), performance drops sharply with
three-block lines (SR=0.2) or diagonals (SR=0.07).
Constructing squares is especially difficult (highest
SR=0.09).

Block Type Length Diagonal SR

STONE 4 False 0.81
CRAFTING_TABLE 2 False 0.78
FURNACE 2 False 0.72
STONE 2 True 0.67
CRAFTING_TABLE 3 False 0.20
CRAFTING_TABLE 3 True 0.07

Table 4: Success rate averaged by goal (Line and Diag-
onal Construction)

26148



Block Type Side Size  Average_SR
STONE 2 0.09
STONE 3 0.004
CRAFTING_TABLE 2 0.00
FURNACE 2 0.00

Table 5: SR Averaged by Goal (Square Construction)

Finally, tasks using paraphrased instructions
(e.g., synonyms instead of direct object names)
present additional challenges for the agent. The
average SR for tasks without paraphrases is 0.37,
but it drops to 0.28 when paraphrased instructions
are used. This underscores the difficulty of gener-
alization in understanding varied instructions.

Greatest Challenges in the CrafText
Environment

1. Environmental Features

Dynamic Instruction Following Task Setup.
An agent needs to interpret the same instruction in
changing visual and spatial contexts. Experimental
results (Table 2): Despite extensive training, agent
performance remains suboptimal even on the train-
ing set. This plateau highlights the difficulty of
adapting to the dynamic and stochastic nature of
the environment. Success rates (SR) on the training
set: PPO-T = 0.4, PPO-T+ = 0.45, Dynalang =
0.15, FiLM = 0.43.

Multi-Step Tasks with Implicit Preconditions.
Many tasks require multi-step action sequences
where each subsequent step depends on success-
ful completion of earlier ones. These may in-
volve collecting resources, crafting intermediate
items, and combining subgoals into a coherent plan.
Experimental results (Appendix K): (1) Tasks in-
volving complex objects like IRON, COAL, and
PLANT have very low SRs: 0.02, 0.01, and O re-
spectively. (2) Even for simpler objects like the
CRAFTING_TABLE, increasing the line size from
2 to 3 blocks reduces SR from 0.78 to 0.2.

2. Linguistic Features

Linguistic Variation and Paraphrasing. Each
goal is expressed through multiple paraphrases that
differ lexically and syntactically. The agent must
understand diverse formulations, recognize equiva-
lence, and map them to the same behavior (See the
Example in Table 6).

Experimental results (Table 2): Performance
drops significantly on paraphrased instructions:
PPO-T: 0.4 — 0.36, PPO-T+: 0.45 — 0.35, Dy-

nalang: 0.15 — 0.05, FiLM: 0.43 — 0.35.
Examples: Goal = Make a line with size 2
from Crafting Table

Instruction SR

Make a line of 2 blocks
using table

0.85

Construct a row of 2 pieces

with the crafting station 0.46

Arrange a sequence of 2 blocks

with the crafting platform 0.33

Table 6: The visualization of how language formulation
affects RL agent behavior.

3. Generalization to Novel Combinations

Test New Objects Split. Includes instructions
with new combinations of objects, spatial relations,
and parameters. The agent must generalize beyond
memorized templates and recombine known ele-
ments in novel ways. Experimental results (Table
2): All baselines show strong performance drops:
PPO-T: 0.4 — 0.22, PPO-T+: 0.45 — 0.28, Dy-
nalang: 0.15 — 0.10, FiLM: 0.43 — 0.26.

L. TRAINING: Hyperparameters

The training of our models relies on carefully se-
lected hyperparameters for both the language pro-
cessing module and the reinforcement learning
agent. The Dynalang model utilizes a deep lan-
guage MLP with 5 layers of 1024 units each, a
GRU with 4096 recurrent units, and a total param-
eter count of 281 million, optimized using Adam
with a learning rate of 1 x 10~ and SiLU activa-
tions.

For the RL component in PPO-T, PPO-T+, and
FiLM, we employ PPO with 1024 parallel environ-
ments and a training horizon of 1 billion timesteps.
PPO training uses a learning rate of 0.0002, a dis-
count factor of 0.99, GAE lambda of 0.8, and 4
update epochs per batch, with 8 minibatches per
update. We apply clipping with € = 0.2, an entropy
coefficient of 0.01 to encourage exploration, and
a value function coefficient of 0.5 for stabilizing
value estimates. The agent network uses tanh
activations with a hidden layer size of 512 units.
Additionally, we enable optimistic resets with a
reset ratio of 16 to improve exploration efficiency.
Instructional inputs are processed using a Distil-

26149



Model

Trained Achievements (one)

Achievements (combo) New objects

DeepSeek No 0.15 0.07 0.06
MISTRAL No 0.21 0.10 0.09
Qwen No 0.21 0.10 0.07
PPO-T Yes 0.78 0.55 0.34
PPO-T+ Yes 0.87 0.70 0.43
Dynalang Yes - 0.17 0.14
FiLM Yes 0.85 0.76 0.38

Table 7: Comparison of models on the EASY part of the CrafText dataset: Achievements (one) involve solving
single atomic tasks, Achievements (combo) require completing multiple achievements together, and New objects
measure performance on unseen combinations of achievements.

BERT encoder, with right-padding and truncation
applied during tokenization.

Parameter Name Default Value

Language MLP Layers 5

Language MLP Units 1024
Batch Size 16
Batch Length 256
Train Ratio 32
GRU Recurrent Units 4096
Total Model Parameters 281M
Optimizer Adam
Learning Rate le-4
Epsilon le-8
Activation SiLU

Table 8: Dynalang Training Hyperparameters

M TRAINING: Easy-dataset experiments

We introduce three zero-shot baselines for our
Easy set, using popular LLMs to predict actions
based on instructions and structured descriptions
of the current agent observation, including ob-
jects and mobs coordinates. The models used are
Qwen/QWQ-32B (Qwen), DeepSeek-R1-Distill-
Qwen-32B (DeepSeek), and Mistral-Small-24B-
Instruct-2501 (MISTRAL).

We evaluate them alongside trainable baselines
(PPO-T, PPO-T+, Dynalang, FiLM) on two cate-
gories within the MEDIUM set: (1) Achievement
(one) — single-step goals (e.g., “Make a crafting
table”); (2) Achievement (combo) — multi-step
goals involving several achievements (e.g., “Make
a crafting table and craft a stone sword”).

We also report results on New objects, which
contains instructions requiring the agent to com-

Parameter Name Default Value
Number of Environments 1024

Total Training Timesteps 1 000,000,000
Learning Rate 0.0002
Steps per Environment 100

Update Epochs 4
Minibatches per Update 8

Discount Factor 0.99

GAE Lambda 0.8
Clipping Epsilon 0.2
Entropy Coefficient 0.01

Value Function Coefficient 0.5

Max Gradient Norm 1.0
Activation Function tanh
Anneal Learning Rate True

Layer Size 512
Optimistic Resets Enabled True
Optimistic Reset Ratio 16
Exploration Epochs 4
Instruction Encoder Model DistilBERT
Encoder Tokenizer Padding right
Encoder Tokenizer Truncation right

Table 9: PPO Training Hyperparameters

plete unseen combinations of achievements within
a single episode.

Zero-shot LLMs show basic environment un-
derstanding but struggle under dynamic condi-
tions.

In the zero-shot setting, language models achieve
a score of 0.21 on Achievements (one), suggesting
they capture some aspects of the environment’s
mechanics and object relationships. Their perfor-
mance on Achievements (combo) is lower (0.10),
indicating limited ability to handle composite in-
structions requiring long-horizon decision-making.
Overall performance remains low, emphasizing the
limitations of LLMs in decision-making under dy-
namic and partially observable conditions.

Generalization on unseen tasks.

The evaluation on New objects is the only part

26150



of the dataset where it is valid to compare trained
agents and language models, as both encounter
these combinations for the first time. Here, trained
agents such as PPO-T+ (0.43) and FiLM (0.38)
significantly outperform zero-shot models, whose
scores remain in the range 0.06—0.09. At the same
time, we observe that trained RL models experi-
ence a notable drop in performance compared to
the training set — almost a twofold decrease. In
contrast, LL.Ms, as expected, exhibit only minor
changes in performance.

Additionally, the performance of the evaluated
LLMs could be significantly enhanced with bet-
ter prompt tuning and a richer representation of
the agent’s input using environment state. Prior
work, such as Voyager (Wang et al., 2024), has
demonstrated how structured prompting can im-
prove LLM-based agents in game-like environ-
ments. However, our study does not aim to op-
timize LLM prompting for this domain but rather
to establish baseline zero-shot performance.

26151



