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Abstract

Evaluating large language models (LLMs) is
a complex task. Pairwise ranking, where hu-
mans compare LLM outputs based on prede-
fined criteria, has become a leading approach.
By aggregating these comparisons through al-
gorithms such as Elo, rankings across multi-
ple LLMs can be derived. However, applying
ranking algorithms in LLM evaluation presents
several challenges. Traditional systems like
Elo, designed initially for structured compe-
titions such as chess, often produce inconsis-
tent and unstable rankings due to the dynamic
and context-dependent nature of LLM perfor-
mance. Despite the increasing reliance on these
methods, a systematic study of ranking algo-
rithms for LLM evaluation remains lacking.
This paper examines the effectiveness of var-
ious ranking systems for head-to-head LLM
comparisons. We define key principles for ro-
bust ranking, conduct extensive evaluations of
different ranking algorithms, and analyze their
stability, accuracy, and sensitivity to real-world
conditions. Our findings offer insights into the
limitations of existing approaches and provide
guidelines for selecting the most appropriate
ranking method based on evaluation objectives
and resource constraints.

1 Introduction

Rapid progress in large language models (LLMs)
has highlighted the critical need for LLM evalua-
tion methodologies, especially for complex gener-
ation tasks (Guo et al., 2023). Traditionally, NLP
evaluation has relied on benchmarks such as GLUE
(Wang et al., 2019), SuperGLUE (Wang et al.,
2020), and more recent LLM-focused benchmarks
like LM-Eval (Gao et al., 2023). However, a sig-
nificant limitation of these classical benchmarks is
their reliance on established ground truth, making
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Figure 1: Different ranking algorithms can produce different
rankings with the same human evaluation data, making it diffi-
cult to determine which algorithm is appropriate for various
use cases.

them unsuitable for evaluating more nuanced, di-
verse, and complex cases where such ground truth
is difficult to define or entirely unattainable (Chiang
et al., 2024). This problem is particularly evident
in complex tasks such as open-ended text genera-
tion, conversational dialogue, and creative writing,
where human judgment is paramount. Previous
work has shown that these benchmark evaluation
results do not correlate well with human LLM eval-
uations (Zheng et al., 2024; Irugalbandara et al.,
2023).

This shortcoming has led the NLP community to
adopt pairwise human evaluation methods (Dubois
et al., 2024; Zheng et al., 2024; Chiang et al., 2024).
A widely recognized example is Chatbot Arena
(Chiang et al., 2024), which directly compares mod-
els through "head-to-head combat," where users
vote between responses from two competing mod-
els. This method aligns with the Elo rating system
(Elo, 1978), initially developed to classify chess
players according to their historical competition re-
sults and relative strengths. Elo and other ranking
methods have gained popularity as structured meth-
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ods incorporating human feedback and preferences
to effectively rank models (Dettmers et al., 2024;
Wu and Aji, 2023; Chiang et al., 2023).

However, as our experiments later demonstrated,
Elo and other established ranking algorithms can
often produce inconsistent and sometimes unreli-
able results (Figure 1), generating conflicting ranks.
Thus, it is critical to understand how to select the
ranking algorithm appropriately. There has been
a lack of comprehensive studies across multiple
ranking algorithms applied to LLM evaluations.

• First, a general framework for such a study
has been lacking. It remains unclear which
key metrics should be used to evaluate ranking
algorithms and the factors that can affect the
accuracy of the ranking algorithm.

• There has been no comprehensive study com-
paring multiple ranking algorithms or offering
guidelines for selecting the most suitable in
the context of LLM evaluations. Although
prior work such as Boubdir et al. (2023) has
explored some challenges associated with us-
ing Elo for LLM ranking, its focus is limited
to Elo. In addition, our experiments show that
recommendations from previous work are not
always effective in practice.

Choosing the best model can significantly impact
the user experience of the application that incor-
porates it. This paper explores the critical issues
surrounding ranking LLMs in head-to-head human
evaluations. Our contributions are as follows.

• We first systemically outline a set of funda-
mental properties that ranking systems should
adhere to when evaluating LLMs.

• Second, we evaluate the performance of four
widely used ranking algorithms (Elo, Bradley-
Terry, Glicko, and Markov Chain) in two dif-
ferent evaluation scenarios (Arena Style vs.
Controlled Style), analyzing their ability to
maintain transitivity, ensure prediction accu-
racy, and remain stable across hyperparameter
variations.

• Third, we conduct an in-depth analysis of
these results, highlighting flaws in the cur-
rent application of these popular algorithms.
Despiteits wide use for LLM ranking, Elo re-
mains unstable even after extensive tuning is
applied.

• Lastly, we propose systematic guidelines for
selecting the most appropriate approach based
on the specific characteristics of the evaluation
task and the available resources.

To our knowledge, this paper represents the first
work that systematically addresses the complexi-
ties and intricacies of ranking LLMs across various
methodologies. We release all code, data, and mod-
els to facilitate reproducibility and further research
in this area.

2 Background

In this section, we formally define the task of
pairwise ranking and briefly describe the suite
of algorithms often used for aggregating rank-
ing from pair-wise comparison results. The first
three algorithms—Elo (Elo, 1978), Bradley-Terry
(Bradley and Terry, 1952), and Glicko (Glickman,
1999)—are well-established and widely used in
contexts such as sports competitions, while the
Markov chain, based on a random walker model,
is simpler in design and has demonstrated strong
performance in previous studies (Callaghan et al.,
2003, 2004).

2.1 Ranking
Let M be the set of models under evaluation where
M = {1, 2, · · · ,m}. For any pair i, j ∈ M , the
result Sij of a head-to-head match is defined as
Sij = 1 when i beats j and Sij = 0 when i loses
and Sij = 0.5 for ties.

If θi, θj represents the strength of i and j respec-
tively, then the probability that Sij = 1, written
as pij , for θi, θj is assumed to follow a probability
distribution F such that (David, 1988):

pij = F (θi − θj) (1)

2.2 Elo Rating system
The Elo rating system was first adopted by the
United States Chess Federation (USCF) in 1960 to
measure players’ strengths (Elo, 1978). For two
players i and j with relative strengths θi and θj , the
probability that i beats j, is calculated as follows:

pij =
1

1 + 10(θj−θi)/400
(2)

For any match between model i and j, θi (also
called the Elo score for i) is updated via the for-
mula:

θ′i = θi + k × (Sij − pij) (3)
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where k is a hyperparameter know as the k-
factor. The value of k determines the rate at which
the Elo score of a player changes based on the
outcome of the game.

2.3 Bradley-Terry Model

The Bradley-Terry model (Bradley and Terry, 1952)
was introduced in 1952 and assumes that F in equa-
tion 1 follows a logistic distribution where

pij =
eθi

eθi + eθj
(4)

The strengths θi for each model can be estimated
by solving the likelihood function L(θ) such that:

L(θ) =
∏

i<j

p
yij
ij p

yji
ji (5)

where yij is the number of times that model i
beats j and pij is the probability of i beating j.

2.4 Glicko Rating system

The Glicko rating system (Glickman, 1999) was in-
troduced in 1995 as an improvement to Elo. Glicko
extends Elo by introducing a secondary parameter
(σ) known as the rating deviation. This parameter
measures the reliability of a player’s rating score,
acting as a confidence interval for the player’s rank,
decreasing based on the number of games played,
regardless of wins or losses. This factor is impor-
tant given that two players can potentially have the
same score in a tournament despite a different num-
ber of previous matches. This situation is prevalent
in LLM evaluations, as new models are frequently
introduced and the number of games played be-
tween them vary significantly. In Appendix A.1 we
explore the details of the algorithm.

2.5 Markov Chain

The Markov Chain Model is a nonparametric rank-
ing algorithm adapted from Callaghan et al. (2003,
2004) and adapted into a Markov Chain Model
by (Kvam and Sokol, 2006) (see Appendix A.2
for details). The Markov chain employs a series
of random walkers traversing a graph, with each
node representing a player/model in the tournament
connected by an edge denoting a match between
two nodes. Each walker chooses an initial node i,
staying in the node or moving to an adjacent node
j according to a single condition p. In a random
match between i and j, the walker moves to the
winning node with a probability of p for p > 0.5,

a hyperparameter chosen in advance. Every time
a walker moves or stays on a node, it represents a
vote for that node, and the sum of all votes from ev-
ery walker represents the rank of that player/model.
In practice, the optimal value for p can vary depend-
ing on the tournament. In our experiments, we use
p = 0.8 as the default value similar to Callaghan
et al. (2003), which achieved stable results with p
ranging from p = 0.75 to p = 0.95.

3 Desirable Properties of Ranking System

The goal of a ranking system is to provide a struc-
tured approach to compare and order items based
on their performance or quality. In the context
of LLMs, an effective ranking system allows re-
searchers, practitioners, and end-users to identify
the most capable models for their specific needs. .
By simplifying decision-making and optimizing re-
source allocation, such a system highlights models
that are likely to deliver superior performance in the
real-world applications. However, implementing a
robust ranking system requires addressing several
key properties to ensure its validity and reliability.
In this section, we identify and discuss three es-
sential properties that a ranking system for LLMs
should adhere to: 1) Transitivity, 2) Prediction Ac-
curacy, and 3) Sensitivity to Hyperparameters and
Battle Conditions.

3.1 Transitivity

Transitivity is a fundamental property for a ranking
system to maintain consistency.

Definition 3.1. For any three models i, j, k ∈ M ;
their match-ups are transitive if pij > 0.5, pjk >
0.5 and pik > 0.5. If i, j, k are transitive, we say
that a ranking system preserves transitivity if it
ranks these models in order i, j, k. Transitivity en-
sures that the ranking is coherent and interpretable.

Human evaluation data contains transitive and
intransitive relationships, whereas ranking algo-
rithms always produce perfectly transitive rankings.
Transitive and intransitive relationships are mutu-
ally exclusive; however, intransitive relationships
are inevitably lost, since ranking enforces transitiv-
ity. One of the key strengths of a ranking algorithm
lies in its ability to preserve as much of the original
transitive structure from human data as possible.
Failure to do so can lead to paradoxical rankings,
where the ordering of models becomes inconsistent,
ultimately diminishing trust in the rating system.
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3.2 Prediction Accuracy

Like transitivity, prediction accuracy is a critical
metric that assesses how well the ranking system
forecasts the results in head-to-head matches. It
measures the probability that the ranking system
correctly predicts the winner between any two
LLMs. High prediction accuracy indicates that
the ranking system is reliable and can be trusted to
make informed decisions about the superiority of
the model for a downstream task. For combat-style
evaluation in LLM, where assessment is based on
subjective human judgment, prediction accuracy
acts as an indicator of the ranking system’s ability
to align with human preferences. This alignment
is crucial for tasks like open-ended text generation
or conversational agents, where the model’s perfor-
mance is best judged by human preference. Thus,
the ranking system should reflect statistical supe-
riority and resonate with qualitative human evalu-
ations to truly enhance the utility and adoption of
LLM.

3.3 Sensitivity to Hyperparameters

Another critical aspect of evaluating ranking al-
gorithms is understanding their sensitivity to hy-
perparameters, which can significantly affect the
consistency and stability of rankings (Boubdir et al.,
2023). Ranking algorithms such as Elo have been
shown to produce drastically different rankings
based on the order in which matches are evaluated
and the number of permutations (Boubdir et al.,
2023). Since these hyperparameters can influence
the behavior and outcomes of the ranking system,
it is essential to choose the right settings to en-
sure reliable and consistent rankings. Sensitivity
to hyperparameters means that the ranking system
should respond to changes in these settings in a
predictable and manageable way. An overly sen-
sitive system might produce drastically different
rankings with minor parameter changes, leading to
instability and unreliability. In contrast, a system
with too little sensitivity might fail to capture es-
sential differences between models. In this work,
we consider the impact of two different classes of
hyperparameters/conditions: 1) Algorithmic Hyper-
parameters: parameters native to the ranking algo-
rithm itself and 2) Matchup Distribution: Arena
style vs. controlled style.

Algorithmic Hyperparameters such as k-factor
in Elo, p-value in Markov Chain, and σ in Glicko
can significantly affect the rankings produced by

Algorithm Arena (%) SLAM (%)

Elo 68.24 52.5
Markov 51.38 51.67
Glicko 56.54 53.33
Bradley-Terry 77.29 56.67

Table 1: Ranking Algorithm Performance on preserving tran-
sitivity on Chatbot Arena & SLAM Dataset.

these algorithms. Similarly, the distribution of
matchups between models can also influence the
rankings. In practice, certain models may partici-
pate in many more matchups than others, creating
an uneven distribution of data. This skews the rank-
ings because models with fewer matches do not
have sufficient data to be ranked reliably, while
those with more matchups dominate the rankings.
The ranking system chosen should be robust to
these variations and produce consistent and reli-
able rankings across different hyperparameters and
battle conditions.

4 Evaluating Ranking Algorithms

Building on the properties discussed in section 3,
this section outlines a series of experiments de-
signed to assess the quality of traditional ranking
systems and their use in LLM rankings. We inves-
tigate how each algorithm performs under different
conditions and evaluate their effectiveness in pro-
ducing stable and consistent rankings.

4.1 Datasets

To evaluate these ranking systems, we use two di-
verse human evaluation datasets representative of
two evaluation styles:

• Chatbot Arena (Chiang et al., 2024) is a dy-
namic platform where users evaluate two ran-
domly selected model outputs head-to-head.
As newer models are released, they are added
to the arena to battle the older models. This
data set consists of 57 models and a total
of 244,978 match-ups. The distribution of
matches varies wildly, with some models hav-
ing up to 30416 matches or as few as 954. As
such, we refer to this dataset as an Arena-Style
dataset.

• SLAM (Irugalbandara et al., 2023) consists
of pairwise match-ups between models evalu-
ated using the SLAM tool on domain-specific
task questions. Unlike Chatbot Arena, the
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SLAM platform is tightly controlled with a
fixed number of models and a similar number
of match-ups between models, thus making it
a controlled style dataset. The SLAM dataset
consists of 11 models with a total of 2858
match-ups, each model having at most 529
match-ups and at least 501. As such, we refer
to this dataset as a Controlled Style dataset.

These two diverse datasets enable us to assess
ranking algorithms under varying conditions, of-
fering a comprehensive view of their behavior. To
evaluate dataset consistency, we apply Kendall’s
test (Kendall and Smith, 1940) (see A.6 for de-
tails), which confirms that any inconsistencies in
the datasets are statistically insignificant.

4.2 Preserving Transitivity

Using the Chatbot Arena and SLAM datasets, we
evaluated the ability of each ranking algorithm to
preserve transitivity (see 3.1). We evaluated the
transitive performance of each ranking algorithm
by first calculating the number of triples within the
data set. Three models i, j, k are part of a triple
if i wins the majority of comparisons with j, and
j wins the majority of comparisons with k, and
transitivity is considered preserved if this order is
maintained in the final ranking. Table 1 shows the
performance of each ranking algorithm under the
arena and controlled style evaluation scenarios. We
observe that the Bradley-Terry model is the most
performant, preserving transitivity in 77.29% and
56.67% of the triples, respectively, compared to its
closest competitor, Elo, at 68.24% and 52.5%.

Bradley-Terry uses Maximum Likelihood Esti-
mation to calculate each player’s strength based on
the outcome of all their matches concurrently. This
is in contrast to Elo, which updates each player’s
rating after each match sequentially and is there-
fore sensitive to the other in which matches are
evaluated. This gives Bradley-Terry the advantage
in preserving transitivity in larger datasets such as
Chatbot Arena.

Bradley-Terry consistently outperforms other algo-
rithms in preserving transitivity, achieving the highest
rankings across both datasets.

4.3 Prediction Accuracy

Next, we evaluate the ability of each ranking al-
gorithm to predict the outcome of unseen LLM
matches. We first partition each dataset into a 75/25
train/test split, running each ranking algorithm on

Algorithm Arena (F1) SLAM (F1)

Elo 0.90 0.87
Markov 0.77 0.88
Glicko 0.88 0.88
Bradley-Terry 0.82 0.87

Table 2: Ranking algorithm performance in prediction accu-
racy (F1 score) on Chatbot Arena & SLAM Dataset.

the training set to determine the final ranking and
strength of each model π. We then use each ranking
algorithm to predict the outcome of the matches
in the test set and calculate the F1 score as our
performance metric.

Performance on the Arena Dataset Due to its
uneven distribution of model match-ups, the Arena
data set presents an interesting challenge for rank-
ing algorithms to predict future outcomes. When
matches between models are unevenly distributed,
some algorithms struggle with prediction accuracy.
Our results show the Elo model to be the most ac-
curate, achieving an F1 score of 0.90 compared to
the F1 score of 0.88, 0.82, and 0.77 for the Glicko,
Bradley-Terry and Markov Chain models, respec-
tively (Table 2).

The impact of the match-up distribution on the
prediction accuracy is shown in the performance
of the Markov chain which is affected by the spar-
sity of certain model match-ups, leading to lower
prediction accuracy, as shown by the poor perfor-
mance on models such as deepseek-llm-67b-chat
and dolphin-2.2.1-mistral-7b in figure 4 of the ap-
pendix.

Another example of the impact of matchup distri-
bution is shown in the performance of the Bradley-
Terry model in the appendix figure 4. We observe
that the Bradley-Terry system suffers when dealing
with "powerful models," where there is a strong
imbalance between a model’s wins and losses. For
example, in the arena dataset, gpt-4-turbo had a
win/loss ratio of 12288/3979. This skew in model
wins/loss results in overestimation of the model’s
strength as shown by the low F1 score of 0.82
achieved by gpt-4-turbo using Bradley-Terry com-
pared to an F1 score of 0.95, 0.96 and 0.92 from
Elo, Glicko, and Markov Chain, respectively. This
is known as the ‘rare events’ problem in logistic
regression (King and Zeng, 2001). One method of
countering this is to use a weighted logistic regres-
sion(Chiang et al., 2024). However, we observe
that this has a negligible impact on the final result.
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Method Elo Markov Glicko Bradley-Terry Win-Rate

Elo Rating 1.00 0.89 0.93 0.95 0.91
Markov - 1.00 0.99 0.97 0.98
Glicko - - 1.00 0.99 0.99
Bradley-Terry - - - 1.00 0.98
Win-Rate - - - - 1.00

Table 3: Spearman’s correlation between ranking algorithms
on the SLAM dataset

Method Elo Markov Glicko Bradley-Terry Win-Rate

Elo Rating 1.00 0.74 0.86 0.94 0.93
Markov - 1.00 0.76 0.81 0.78
Glicko - - 1.00 0.81 0.89
Bradley-Terry - - - 1.00 0.91
Win-Rate - - - - 1.00

Table 4: Spearman’s correlation between ranking algorithms
on the Arena dataset

Furthermore, the bootstrap confidence interval used
by Chatbot Arena shows a narrow range of [-2.2,
2.3], suggesting a high confidence in the model
ranking. However, this interval does not guarantee
how well the model will perform against unseen
opponents.

Prediction accuracy on the SLAM dataset The
distribution of matches between models in the
SLAM dataset is tightly controlled so that every
reviewer evaluates an equal number of models, re-
sulting in a near uniform distribution of matches.
We observe near-identical performance for all mod-
els. This result is due to the balanced distribution
of match-ups in the dataset, where if a model has
the most wins in the competition, its performance
is directly reflected in its win rate. We further val-
idate this occurrence by ranking all the models in
SLAM by win rate and calculating the correlation
between each pair of ranking algorithms, as shown
in Tables 3 and 4. We observe a high correlation
between all methods and the win rate.

All algorithms perform similarly on the SLAM dataset,
but on Arena, Elo leads in accuracy, followed by Glicko.
Bradley-Terry, however, is negatively affected by the un-
even distribution of the Arena dataset.

4.4 Hyperparameter Sensitivity

To measure the sensitivity of the hyperparameters,
we calculate the F1 score of each ranking system as
described in Section 4.3, varying each hyperparam-
eter over a range of 100 values. Figure 2 showcases
the range of results produced by Elo, Markov and
Glicko across the two evaluation scenarios.

Elo k-factor The k factor in Elo dictates the ex-
tent to which the score of a player is influenced by

the outcome of an individual match. For example,
with large k values, highly ranked players can incur
a significant penalty when losing to a player with a
lower ranking, while defeating such a player only
results in a slight increase in score. The evaluation
of the performance of the model (depicted in Fig-
ure 2) at varying levels of hyperparameter k shows
marked sensitivity, which emphasizes the need for
meticulous tuning. Elo shows the largest variation
across both datasets, and is less stable, particularly
for the smaller SLAM dataset. Through our tun-
ing of this parameter, we determined that the ideal
k factor for Elo is less than the standard 32 com-
monly used in previous research (Dettmers et al.,
2024; Wu and Aji, 2023; Chiang et al., 2023). This
reduced convergence rate can be attributed to the
complexities of human preferences as opposed to
the typical assessment of real-world games, which
rely on the differing abilities of opposing teams.

Markov Chain: p Score The p score in the
Markov Chain determines the extent to which the
overall ranking is influenced by each model’s win
rate, with values closer to 1 indicating greater in-
fluence compared to those closer to 0.5. We ob-
serve that Markov shows stable performance on the
controlled SLAM datasets, performing as well as
Glicko (Figure 2), however, the algorithm struggles
on the large ARENA dataset due to its over reliance
on win-rates for calculating ranks. When optimiz-
ing the value of this parameter, we find that the
optimal p value for the Markov chain on the SLAM
dataset is larger than the Arena dataset, indicating
that the model’s strength is greatly influenced by
its overall win rate.

Glicko: Rating deviation For Glicko, the rank-
ing deviation (σ) is a measure of consistency or
variability in a player’s performance over time and
determines how flexible a player’s rating can be. If
σ is initially set too high, the system will interpret
the early game results as more variable or uncertain.
This leads to larger rating adjustments, making the
player’s rating fluctuate more. In contrast, setting
σ too low initially restricts the system from adjust-
ing the rating freely. As a result, players, espe-
cially newcomers, may take much longer to reach
a rating that accurately reflects their true skill level.
This is particularly impactful in fast-changing or
skill-evolving games, where a low initial variabil-
ity setting could lead to underestimation of skill.
We observe that Glicko’s prediction performance
is consistent across both datasets, showing that its
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Figure 2: Distribution of F1 scores for the SLAM (top) and ARENA (bottom) datasets, showing the performance of Elo, Markov,
and Glicko algorithms across a subset of models with 100 different hyperparameter settings. The results highlight the volatility
of Elo, demonstrating its high sensitivity to hyperparameter changes compared to the more stable performance of Markov and
Glicko.

performance is less impacted by changes in its hy-
perparameters compared to Elo and Markov Chain.
We theorize that this is due to the large number
of games played for each model in both scenarios,
allowing the system to adjust the rating deviation
dynamically.

Elo shows high sensitivity to hyperparameter whereas
Glicko demonstrates greater stability and accuracy which
suggests that Glicko is a more reliable alternative for LLM
evaluation.

5 Recommended Best Practices

In sections 3 and 4, we outlined the desired prop-
erties of ranking systems and presented experi-
ments assessing the performance of these systems
in achieving these criteria. Based on these observa-
tions, this section puts these results into perspective
and provides practical recommendations for select-

ing the most appropriate ranking algorithm. We
outline which algorithms perform best under spe-
cific circumstances, offering guidance on their op-
timal use depending on the structure of the dataset,
the matchup distribution, and the model evaluation
goals. These recommendations, summarized in
Table 5, aim to improve the reliability and applica-
bility of classification systems in real-world LLM
evaluations.

5.1 Challenges with Elo
An important result in this paper is that Elo, even
with > 1,000 permutations, struggles to achieve
stable rankings A.5. This indicates that Elo’s de-
pendency on permutations for ranking stabiliza-
tion is inadequate, challenging previous studies
(Boubdir et al., 2023). Combined with the high
sensitivity to hyperparameters and the average per-
formance in preserving transitivity. We do not
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Criteria Elo Markov Glicko Bradley-Terry
Transitivity Moderate performance on smaller

datasets, better than average per-
formance on larger datasets.

Preserves transitivity but sensitive
to sparse and uneven matchups.

Good transitivity preservation in
both types of datasets.

Generally good at maintaining
transitivity, in smaller controlled
and larger uncontrolled datasets.

Hyperparameter Sensitivity Highly sensitive to K-factor and
permutation count; performance
fluctuates with changes.

Sensitive to the p-value, with rank-
ings varying significantly based
on its setting.

Incorporates rating deviation,
making it less sensitive than Elo,
but hyperparameter tuning is still
necessary.

Does not use any hyperparame-
ters.

Prediction Accuracy Moderate prediction accuracy but
inconsistent with small sample
sizes or highly uneven matches.

Moderate prediction accuracy but
highly dependent on matchup dis-
tribution.

High prediction accuracy due to
consideration of the uncertainty in
the ratings (rating deviation).

Higher prediction accuracy in con-
trolled datasets but suffers in un-
even matchups.

Recommended Use Cases Not recommended for small, un-
evenly distributed datasets; may
perform better in larger datasets
with consistent matchups.

Applicable where dataset size is
small and even, but sensitive to
distribution; effective if properly
tuned in moderately structured en-
vironments.

Best suited for large, unevenly
distributed datasets. Able to
manage uncertainty and prevent
low matchup models from being
ranked too high.

Ideal for small, unevenly dis-
tributed datasets. Also effec-
tive for large, evenly distributed
datasets where interpretability and
scalability are valued.

Table 5: Consideration for Ranking Algorithm Selection based on Desired Ranking Properties

recommend ELO as an algorithm to rank LLM
performance.

Best Practice 1. Elo’s high sensitivity to changes in
its K factor and instability (even with large permuta-
tions) make it unsuitable for efficient ranking of LLM
performance in pairwise evaluation (Sections 4.4 and
A.5).

5.2 Choose Bradley-Terry for Small
Controlled Datasets

In section 4.3, we demonstrate that ranking algo-
rithms exhibit varied performance based on bat-
tle conditions. When matches are evenly dis-
tributed, the ranking algorithms produce similar
results. However, a heavily skewed distribution can
negatively impact some methods such as Elo and
Bradley-Terry. In this scenario, where matchups
are balanced and the number of matches is small,
objective findings show that Bradley-Terry is best
due to its ability to preserve transitivity while also
maintaining comparable prediction accuracy.

Best Practice 2. Bradley-Terry’s simplicity and lack of
hyperparameters make it ideal for controlled evaluation
settings, although its reliance on sufficient matchup data
limits its effectiveness in unevenly distributed scenarios.

5.3 Choose Glicko for large uneven datasets

For larger datasets, especially those with uneven
matchup distributions, the Bradley-Terry model en-
counters difficulties due to the rare event problem.
This problem occurs when new models with high
win rates, participate in fewer matchups than well-
established models. As a result, these new models
can be ranked disproportionately higher based on
limited data, leading to biased rankings. In this sce-
nario, the Glicko system provides a superior solu-
tion. Glicko utilizes a rating deviation parameter to
account for uncertainty in a model’s ranking due to
limited matchups. This allows the system to adjust
the rankings more conservatively for models with

fewer comparisons, preventing them from being
ranked too high based only on a few matches. As
data sets become larger and more uneven, Glicko’s
ability to incorporate rating deviation ensures that
the rankings accurately reflect the true performance
throughout the dataset, even when new models ap-
pear with limited match histories. This flexibility
makes Glicko particularly effective for large-scale
LLM assessments where uneven matchup distribu-
tions are prevalent.

Best Practice 3. Glicko is effective for large data sets
with uneven matches due to its rating deviation param-
eter, which manages uncertainty and prevents models
with few matches from being overrated.

5.4 Bradley-Terry for other Dataset Types

For small, uneven datasets, Bradley-Terry’s sim-
plicity and ability to model pairwise comparisons
make it a robust choice, even when the data dis-
tribution is skewed. It does not require parameter
estimation, which allows it to handle small datasets
efficiently without the need for complex adjust-
ments or hyperparameter tuning, making it ideal
for situations where uneven distributions might oth-
erwise require additional preprocessing.

In the case of large, evenly distributed datasets,
Bradley-Terry is effective because of its scalability
and ease of interpretation. For large data sets where
the distribution of results is balanced, Bradley-
Terry’s ability to produce clear, interpretable rank-
ings without adding excessive computational over-
head is a significant advantage. Although more
complex models such as Glicko can offer finer
granularity in large, uneven data cases, Bradley-
Terry’s efficiency and interpretability make it a vi-
able alternative when computational simplicity and
transparency are prioritized.
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Best Practice 4. Bradley-Terry’s scalability and inter-
pretability make it a viable choice for large, evenly dis-
tributed datasets, offering clear rankings with minimal
computational overhead.

6 Related Work

Pairwise ranking has recently emerged as a popu-
lar method for evaluating LLMs, as it allows for
direct comparisons between models and provides
a more nuanced assessment of their performance
than traditional metrics (Chiang et al., 2024). This
evaluation involves presenting human judges with
pairs of model outputs and asking them to select the
better one. The outcomes of these pairwise compar-
isons are then aggregated into final rankings using
ranking algorithms such as Elo (Elo, 1978). De-
spite their widespread use, there has been limited
research on the applicability of these ranking algo-
rithms to LLM evaluation. Works such as (Boubdir
et al., 2023) have critically analyzed the compati-
bility of Elo with LLM evaluations by examining
how well it adheres to reliability and transitivity.
However, Elo is not the only ranking algorithm
used in LLM evaluation. There exists a number of
other algorithms that have been proposed to rank in
different contexts, such as the Bradley-Terry model
(Bradley and Terry, 1952) and Glicko (Glickman
and Jones, 1999), which have been shown to out-
perform Elo in certain scenarios, but their perfor-
mance in the context of LLM evaluation has not
been systematically evaluated. However, several
factors affect the performance of these algorithms,
such as the distribution of the data, the number of
models that are compared, and the number of pair-
wise comparisons. As such, there is a need for a
systematic comparison of ranking algorithms in the
context of LLM evaluation to identify the most suit-
able algorithm for different scenarios which this
paper aims to address.

7 Conclusion

In this paper, we explore the application of sev-
eral ranking algorithms in the context of evaluating
LLMs. Through our experiments and analysis, we
identify significant limitations in the ability of these
algorithms to maintain stable and accurate ranking
across varying dataset types and distribution pat-
terns. To combat these challenges, we introduce a
set of guidelines for selecting the most appropriate
ranking system based on the specific characteristics
of the evaluation task and available resources. We

believe that our findings and recommendations will
be valuable to researchers and practitioners work-
ing in the field of LLM evaluation, and we hope
that our work will inspire further research in this
area.

8 Limitations

While our study comprehensively explores the rank-
ing of Large Language Models (LLMs) through
head-to-head combat, several limitations warrant
discussion.

Scalability Constraints One significant limita-
tion arises from the scalability constraints inherent
in pairwise evaluations. As the number of LLMs
in the ecosystem expands, the number of required
comparisons grows quadratically. This introduces
computational challenges and resource constraints
that may limit the feasibility of exhaustive head-
to-head evaluations, particularly for larger sets of
models.

Human Feedback Variability Another concern
is the variability in human feedback, on which our
rankings are heavily based. Human judgments can
be subjective and influenced by numerous factors,
including the individual’s background, expertise,
and contextual understanding. This variability can
introduce noise into the ranking system, affecting
the evaluations’ stability and reliability.
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A Appendix

A.1 Glicko Algorithm Details

For model i ∈ M , the rating and the rating deviation are updated as:

θ′i = θi +
q

1
σ2
i
+ 1

d2

J∑

j=1

g(σj)(Sij − pij) (6)

σ′
i =

(
1

σ2
i

+
1

d2

)−1

(7)

where q = log(10)/400, J is the set of opponents for i and g(σ) = 1/
√
1 + 3q2σ2/π2.

Given the rating θi and θj of model i and j, the expected outcome pij is calculated as1:

pij =
1

1 + 10−g(σj)(θi−θj)/400
(8)

d2 =


q2

J∑

j=1

g(σj)
2pij(1− pij)




−1

(9)

where d2 is the scaling factor for the system’s certainty.

A.2 Markov Chain Details

The Markov Chain Model was originally developed as a random walker model Callaghan et al. (2003,
2004) where ranks were calculated by solving a series of differential equations. This method was adapted
into a Markov Chain Model by (Kvam and Sokol, 2006). When expressed as a Markov chain, the elements
Tij of the transition matrix T are the probabilities that a walker moves from model i to j in a single time
step, with the initial values computed as follows:

tij =
1

Ni
[wij(1− p) + lijp] , ∀j ̸= i (10)

tij =
1

Ni
[Wip+ Li(1− p)] (11)

where Wi, Li are the number of matches won by model i and wij , lij are the number of games won by
model i against model j.

The steady-state probability vector π = [θi] represents the final ranking of each team i ∈ M such that
πT = π and

∑m
i=1 θi = 1.

A.3 F1 scores per model

In this paper, F1 scores are used as an evaluation metric to assess the consistency and predictive perfor-
mance of the ranking algorithms. The F1 score is calculated based on the precision and recall of the
correctly predicted pairwise outcomes compared to the observed outcomes in the dataset. In the following,
we detail the methodology for computing the F1 scores:

Let the data set consist of m pairwise matches between models. For each pair (i, j), pij is the probability
that the model i beats j in a random match. If model i plays Mi matches then Ei, the expected number of
games won by model i is Ei = ⌊Mipij⌋ and the actual number of games won is given by Ai.

The Precision and Recall are calculated as:

precision =
|Ei ∩Ai|

|Ei|
, recall =

|Ei ∩Ai|
|Ai|

1For σ = 0, pij defaults to the classic Elo rating system.
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The F1 score is calculated as the harmonic mean of precision and recall:

F1 Score = 2 · Precision · Recall
Precision + Recall

.

The total F1 score for a ranking algorithm is computed by averaging the F1 scores for all pairwise
matches (i, j):

F1 ScoreOverall =
1

|M |
∑

(i,j)∈M
F1 Score(i,j),

where M is the set of all pairwise matches.
Figures 3 and 4 show the F1 scores for both the SLAM and Arena datasets, and also their overall F1

score.
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Figure 3: F1 scores for all models in the SLAM dataset.

0 0.2 0.4 0.6 0.8
F1 Score

deepseek-llm-67b-chat

llama-13b

chatglm2-6b

dolphin-2.2.1-mistral-7b

dolly-v2-12b

fastchat-t5-3b

chatglm3-6b

mpt-7b-chat

gpt4all-13b-snoozy

RWKV-4-Raven-14B

bard-jan-24-gemini-pro

gpt-3.5-turbo-0613

yi-34b-chat

mixtral-8x7b-instruct-v0.1

gpt-4-0314

llama-2-70b-chat

gpt-3.5-turbo-0314

mistral-medium

gpt-4-0613

gpt-4-turbo

0.900.73

0.76

0.80

0.81

0.83

0.84

0.82

0.85

0.84

0.87

0.92

0.95

0.92

0.94

0.94

0.95

0.94

0.95

0.96

0.95

Elo

0 0.2 0.4 0.6 0.8
F1 Score

0.880.72

0.76

0.79

0.79

0.81

0.81

0.83

0.84

0.84

0.84

0.92

0.93

0.93

0.93

0.93

0.93

0.93

0.94

0.94

0.96

Glicko

0 0.2 0.4 0.6 0.8
F1 Score

0.770.32

0.82

0.74

0.36

0.82

0.79

0.78

0.76

0.64

0.86

0.52

0.85

0.71

0.88

0.89

0.89

0.78

0.84

0.90

0.92

Markov

0 0.2 0.4 0.6 0.8
F1 Score

0.820.68

0.62

0.62

0.78

0.67

0.69

0.66

0.74

0.74

0.78

0.83

0.89

0.90

0.88

0.83

0.93

0.80

0.89

0.89

0.82

Bradley-Terry

Figure 4: F1 scores of the top ten (10) highest and lowest ranked models using the Elo rating system on the Chatbot
Arena dataset. In general, Elo provides the best prediction accuracy by achieving an F1 score of 0.90.

A.3.1 Experimental Setup
To evaluate the predictive accuracy of the ranking algorithms, each data set was split into a 75% training
set and a 25% test set.

A.3.2 Procedure
The ranking algorithms were applied to the training set to compute model rankings based on pairwise
matchups. Using these rankings, the algorithms predicted the outcomes of matchups in the test set,
expressed as the number of games each model was expected to win. These predictions were compared
with the actual results of the match and the precision, recall and F1 scores were calculated for each match.
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The F1 scores, aggregated across all matches in the test set, quantified the alignment between the predicted
and observed results, providing a measure of the ability of each algorithm to generalize to unseen data.

A.4 Elo’s rank at k = 3 vs k = 5

To analyze the sensitivity of Elo rankings to hyperparameter settings, we conducted experiments using
two versions of Elo, with K = 3 and K = 5, on the SLAM dataset.

A.4.1 Experimental Setup
For each K-factor, we evaluated Elo rankings under varying numbers of permutations: 1, 10, 100, and
1000. Permutations involve randomizing the order of matchups, a strategy commonly employed to reduce
the effect of matchup order on final rankings and improve stability.

A.4.2 Procedure
For each K factor (K = 3 and K = 5), Elo rankings were calculated using the raw SLAM matchup data
without permutations. Matchup orders were permuted 1, 10, 100, and 1000 times for each factor K, with
Elo rankings recalculated after each set of permutations. Our findings (shown in figure 5), show volatility
of Elo’s ranking for each of the k value.
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Figure 5: Elo produces different ranks based on the value of the hyperparameter k. Increasing the number of permutation can
lead of more stable ratings, however, model ranks may still be unstable as is the case with orca-min_3b and neural-chat_7b.

A.5 Elo’s Instability at higher permutation
To analyze the performance of Elo at higher permutations, we conducted two separate experiments on the
SLAM dataset.

A.5.1 Experimental Setup
For a single K factor of 25, we evaluated Elo rankings by performing two separate evaluations of each
10, 000 permutation using the strategy of the previous section.

A.5.2 Procedure
We observed the ranks produced by each experiment, showing that even with a large permutation, ELO
can produce two different ranks for the same two models6.

A.6 Evaluating the consistency of crowd-workers evaluators
In this section, we recommend a method to evaluate the consistency of crowd-worker evaluations based
on the Analytic hierarchy process (AHP) practices. We begin by formally defining cycles in a pairwise
ranking dataset.

Definition A.1. For models i1, i2, · · · ik ∈ M , if pi1i2 > 0.5, pi2i3 > 0.5, · · · , piki1 > 0.5, then their
games is said to be cyclic. A cycle of length three is called a Rock, Paper, Scissors (RPS) cycle.
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Figure 6: Two separate ranks produced by ELO for permutations of 10,000 each.

For any three models i, j, and k, it is expected that if a reviewer prefers i over j and j over k, they
prefer i over k (transitivity). However, this may not always be due to personal preference, evaluation
error, or evaluator negligence. If the transitive property does not hold, we say that the three models are
intransitive and the evaluation is inconsistent.

Measuring the consistency of pairwise ranking falls under the domain of AHP. According to AHP
theory, if the number of RPS cycles remains small, it reflects the complexity of the ranking problem rather
than the judges’ complacency. However, a high number of cycles represents a low quality of judgments.

According to (Kendall and Smith, 1940), the expected number of RPS cycles for a pairwise comparison
dataset of m items follow a χ2 distribution, and if the actual number of RPS cycles is significantly less
than the expected number, we can be reasonably confident that the dataset is consistent.

The number of RPS cycles can be calculated by first generating the win rate matrix P as defined in
section 4.2. This is followed by the adjacency matrix A, where aij = 1 if pij > 0.5 and 0 otherwise.
Finally, the total number of RPS cycles is calculated as ρ = 1/3

∑M
i=1 a

∗
i,i, where a∗ii are diagonals of

A3(Sanjaya et al., 2022).
The χ2 statistic is calculated as:

χ2 =
8

k − 4

{
1

4

(
k

3

)
− d− 1

3
+ ρ

}
(12)

v =
k(k − 1)(k − 2)

(k − 4)2
(13)

where v is the degrees of freedom.
The RPS count and χ2 statistic for both the SLAM and Arena datasets are shown in table 6. At a

p-value close to 0, we can be confident that inconsistencies are not due to the quality of the judges.

Table 6: Non-Transitivity statistic for the two datasets that were used. The p-value is calculated based on the χ2

estimated via Kendal’s Chi-squared approximation to the circular triad distribution.

Dataset RPS Count χ2 p-value
SLAM 19 45.06 0.001
Arena 393 1107.25 0.000
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