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Abstract
Do language models (LMs) offer insights into
human language learning? A common argu-
ment against this idea is that because their ar-
chitecture and training paradigm are so vastly
different from humans, LMs can learn arbitrary
inputs as easily as natural languages. We test
this claim by training LMs to model impos-
sible and typologically unattested languages.
Unlike previous work, which has focused ex-
clusively on English, we conduct experiments
on 12 languages from 4 language families with
two newly constructed parallel corpora. Our
results show that while GPT-2 small can largely
distinguish attested languages from their impos-
sible counterparts, it does not achieve perfect
separation between all the attested languages
and all the impossible ones. We further test
whether GPT-2 small distinguishes typologi-
cally attested from unattested languages with
different NP orders by manipulating word or-
der based on Greenberg’s Universal 20. We
find that the model’s perplexity scores do not
distinguish attested vs. unattested word orders,
while its performance on the generalization test
does. These findings suggest that LMs exhibit
some human-like inductive biases, though these
biases are weaker than those found in human
learners.

1 Introduction

To what extent can language models (LMs) serve
as models of human language acquisition and pro-
cessing? Some, such as Piantadosi (2023), argue
that LMs can function as comprehensive linguistic
theories, challenging traditional symbolic gener-
ative approaches. However, critics maintain that
the success of LMs is largely irrelevant to human
cognition due to fundamental differences in archi-
tecture and learning mechanisms (Chomsky et al.,
2023; Fox and Katzir, 2024). Moreover, studies
have shown that LMs fail to acquire key aspects of
linguistic knowledge, suggesting that they are lim-
ited as models of human language (Fox and Katzir,

2024; Lan et al., 2024; Katzir, 2023; Dentella et al.,
2024). One central argument in this debate is that
LMs are highly flexible learners, capable of acquir-
ing linguistic patterns beyond those learnable by
humans, thus making the ability of LMs to learn
human languages uninformative for understanding
human language acquisition (Chomsky and Moro,
2022; Moro, 2023; Moro et al., 2023).

We present data favoring a more moderate
stance, in line with other recent contributions
(Futrell and Mahowald, 2025; Millière, 2024; Pa-
ter, 2019). Specifically, we present new empirical
evidence from the study of impossible languages
(Kallini et al., 2024) in a multilingual setting, sug-
gesting that LMs exhibit some learning biases that
align with certain aspects of human cognition. At
the same time, their learning behavior is not univer-
sally human-like, suggesting that they have simul-
taneous biases (or a lack thereof) that diverge from
human language processing.

We focus on LMs’ abilities to learn different
types of languages, both possible (attested or unat-
tested) and impossible (unattested by definition).
Specifically, for possible languages, we define at-
tested languages as the natural languages spoken
by humans (e.g., English, German, and Chinese);
unattested languages as languages constructed on
language universals and identified in typological
studies as never-occurring. We consider impossi-
ble languages as those that humans cannot acquire
and would never produce. Following Kallini et al.
(2024), we select impossible variants as uncontro-
versial examples of linguistic impossibility, such
as languages with shuffled or reversed word orders.
To explore unattested languages, we draw from
Greenberg’s Universal 20 (Greenberg et al., 1963),
which identifies unattested word order patterns in
noun phrases (e.g., adjective-number-determiner-
noun). While there is no direct evidence that such
languages are unlearnable, previous studies suggest
that typological feature frequencies correlate with
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learnability in human learners (Culbertson et al.,
2020; Gentner and Bowerman, 2009; Saffran et al.,
2008).

Regarding impossible language modeling,
Kallini et al. (2024) provided initial evidence that
GPT-2 small can distinguish between possible and
impossible variants of English, suggesting that
transformer models encode human-like linguistic
biases (Futrell and Mahowald, 2025). However,
their study was limited to English, leaving the
question of whether this finding generalizes across
languages unanswered. Furthermore, their focus
on impossible languages leaves the study of unat-
tested languages largely unexplored (although see
Xu et al. (2025) for recent work in this area).

This paper is organized around two main re-
search questions: (1) Does LMs’ learning behav-
ior distinguish between attested and impossible
languages? Specifically, (a) Within each attested
language, do LMs demonstrate better learning of an
attested language compared to its impossible vari-
ants? (b) Across different attested languages from
multiple language families, do LMs demonstrate
better learning of all attested languages compared
to all impossible languages? (2) Does LMs’ learn-
ing behavior distibguish between attested and
unattested languages? Specifically, does LMs’
ability to model unattested languages align with
human typological biases?

Our experiments on two parallel corpora show
that GPT-2 is better at language modeling attested
compared to impossible languages in most settings,
though this distinction weakens for certain locally
shuffled variants in some languages (1a). How-
ever, the models’ learning behavior does not dis-
tinguish attested from impossible languages across
languages (1b). It assigns lower perplexity to unat-
tested languages with preserved constituency and
fixed word order, yet performs better on typologi-
cally attested languages in the generalization test
(2). These findings suggest that LMs show certain
human-like learning biases (e.g., Culbertson et al.,
2020), though not full alignment.1

2 Related Work

2.1 Language Models & Cognitive Plausibility

Recent advances in deep learning have led to an
upsurge in cognitive modeling with artificial neu-
ral networks, especially for language (e.g., Wilcox

1Our code and data are available at https://github.
com/picol-georgetown/multilingual-LM.

et al., 2023; Borenstein et al., 2024; Kirov and Cot-
terell, 2018). However, linguists remain divided on
whether LMs can meaningfully inform linguistic
theories. On the one hand, LMs are limited: They
lack the capacity for (compositional) generaliza-
tion (Yao and Koller, 2022; Kim and Linzen, 2020)
and display biases inconsistent with human learn-
ing and processing of certain linguistic phenomena
(de Dios-Flores et al., 2023; Davis and van Schi-
jndel, 2020; Mitchell and Bowers, 2020). These
issues suggest that, beyond functioning as sophisti-
cated probability estimators, LMs have limited use
as cognitive models (Cuskley et al., 2024; Bolhuis
et al., 2024; Chomsky et al., 2023). Of particular
relevance to our study is the argument that LMs
can learn patterns that are difficult or even impossi-
ble for humans (Chomsky et al., 2023; Moro et al.,
2023). This suggests that LMs do not share the
cognitive constraints inherent to the human brain
and may therefore miss patterns to which humans
are naturally biased, rendering them uninformative
for understanding human cognition.

On the other hand, LMs have advanced
psycholinguistics by serving as highly accurate
probability estimators and have already been
used to test and refine theories such as Surprisal
Theory (Goodkind and Bicknell, 2018; Oh and
Schuler, 2023b,a; Kuribayashi et al., 2024),
Uniform Information Density (Meister et al., 2021;
Tsipidi et al., 2024), and other cognitive-linguistic
theories and psychometrics (Pearl and Mis, 2011;
Gibson et al., 2019; Kuribayashi et al., 2025).
More recently, Kallini et al. (2024); Xu et al.
(2025)’s experiments demonstrate that LMs can
distinguish between possible and (typologically)
impossible languages (Chomsky et al., 2023; Moro
et al., 2023) in studies focusing on English and
Japanese. These findings provide some empirical
counter-evidence to the above arguments.

2.2 Multilingual Language Modeling

Whether languages vary in complexity remains a
controversial topic, and linguists have taken dif-
ferent approaches to address this question (e.g.,
McWhorter, 2001, 2011; Newmeyer, 2021; Joseph
and Newmeyer, 2012). While most generative lin-
guists argue that Universal Grammar requires that
all languages be equally complex, others have chal-
lenged this notion (Gil, 2008).2

Initial computational attempts to examine lan-

2See Newmeyer (2021) for a more thorough discussion.
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guage complexity using LMs were limited to RNN-
based architectures (Cotterell et al., 2018; Mielke
et al., 2019; Johnson et al., 2021) and n-grams (Ko-
plenig and Wolfer, 2023). These studies suggest
that language complexity correlates with morpho-
logical richness and the size of speaker popula-
tions. More recently, Arnett and Bergen (2025)
investigated why morphologically rich languages
are harder to model. By testing monolingual LMs
trained on carefully curated comparative datasets
(Chang et al., 2024), they found that morphological
features alone could not predict language learnabil-
ity when training data size was controlled.

While valuable, previous studies often rely on
non-parallel corpora, introducing inconsistencies
across languages. Even with parallel corpora
(Mielke et al., 2019), studies are limited by small
datasets and outdated models. Our study addresses
these gaps using a larger parallel corpus and mod-
ern transformer architectures.

3 Data and Implementation Details

3.1 Parallel Data Construction: OPUS12 and
OPUS30

One challenge in multilingual comparisons
is that texts drawn from different sources in
different languages will have different amounts
of information. To control for this, we construct
two sentence-aligned multilingual parallel corpora
to ensure that all languages in our dataset match
in terms of content. This allows us to isolate the
effect of how formal properties of a language
might impact its learnability.

We name the two parallel corpora OPUS12 and
OPUS30, gathering aligned sentences from five
corpora available on OPUS (Tiedemann, 2012):
NLLB (Schwenk et al., 2021), TED2020 (Reimers
and Gurevych, 2020), the Bible (Christodouloupou-
los and Steedman, 2015), OpenSubtitles (Lison
and Tiedemann, 2016), and CCAligned (El-Kishky
et al., 2020). Since overlap among languages de-
creases as more languages are included, we decided
to select a minimum of 10M words in English as a
standard for our parallel corpora. 10M words also
correspond to the amount of input of children’s first
2 to 5 years of development (Warstadt et al., 2023).

OPUS12 is a 12-language multilingual sentence-
aligned corpus3. There are around 10M words
in the case of English. OPUS30 contains 30 lan-

3The languages and their typological information are listed
in Appendix C.

Data Source OPUS12 OPUS30

# Sent # Word # Sent # Word

NLLB 5K 0.1M 16 368
TED2020 164K 2.9M 11K 182K
Bible 40K 1M 14K 324K
OpenSubtitles 680K 4.5M 15K 60K
CCAligned 117K 1.6M 8K 111K
Overall 1M 10.1M 48K 0.7M

Table 1: Data sources of OPUS12 and OPUS30. The
word counts are based on the English data.

guages with a smaller data size: 48K sentences
with 0.7M words. While the two datasets share
overlapping languages, their sentences do not over-
lap, making OPUS30 a suitable test set for addi-
tional language modeling experiments.

After deduplicating and removing English sen-
tences from non-English data split using FastText
(Joulin et al., 2017), we report the statistics of our
corpora in Table 1.

3.2 Validation Experiment

To ensure the reliability of our findings presented
in the remainder of this paper, we replicate experi-
ments in Kallini et al. (2024) using a scaled-down
version of their original corpus (10M words). We
find a perfect rank correlation between our results
and theirs (Spearman’s ρ = 1, p < 0.001). More
information can be found in Appendix A.

3.3 Model Architecture & Training

In our experiments, following Kallini et al. (2024),
we trained standard GPT-2 small models for each
language and evaluated its performance based on
the geometric mean perplexity over a parallel test
split of 10K randomly sampled sentences. Due to
limited computational resources, we trained each
model using 3 random seeds instead of the 5 used in
the original study, reduced the maximum training
steps from 2000 to 1200 to avoid overfitting, and
adjusted the warmup steps proportionally to 120.4

3.4 Multilingual Tokenization

Given our multilingual experiments, tokenization
is crucial for fair comparison. To avoid bias toward
Latin-script languages, which are overrepresented
in our study, we opted against using a multilingual
tokenizer with a shared vocabulary.

4We did not experiment with alternative warmup steps, as
Kallini et al. (2024) demonstrated that changing the warmup
schedule does not affect the ranking of perplexities for impos-
sible LMs.
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Group Language Definition

Ours
SHUFFLE_LOCAL (W=2) The sentence is reordered with every two tokens reversed in order.
REVERSE_FULL Every word is reversed in order in a sentence.

K+

SHUFFLE_DETERMINISTIC (S=84) The sentence is deterministically shuffled by length with seed 84.
SHUFFLE_DETERMINISTIC (S=57) The sentence is deterministically shuffled by length with seed 57.
SHUFFLE_DETERMINISTIC (S=21) The sentence is deterministically shuffled by length with seed 21.
SHUFFLE_LOCAL (W=10) The sentence is deterministically shuffled in local window size being 10.
SHUFFLE_LOCAL (W=5) The sentence is deterministically shuffled in local window size being 5.
SHUFFLE_LOCAL (W=3) The sentence is deterministically shuffled in local window size being 3.
SHUFFLE_EVEN_ODD The sentence is reordered with even-indexed tokens first, then odd-indexed.

Table 2: Overview of impossible languages in our Experiment1 and Experiment2. K+ languages are borrowed from
Kallini et al. (2024) and the rest are new variants introduced in our experiments.

Previous monolingual experiments either set the
vocabulary size of tokenizers to be the same across
languages (Arnett and Bergen, 2025) or applied the
formula 0.4 × |V | (Koplenig et al., 2023; Mielke
et al., 2019), where |V | represents the number of
unique word types. We conducted a series of pi-
lot experiments on tokenization and found the lat-
ter approach unsuitable for our experimental de-
sign. Specifically, the large |V | in morphologically
rich languages makes it impractical to train a small
model with such a large vocabulary size. Details
can be found in Appendix B.

Given these considerations, we opted to use
pretrained tokenizers. The rationale behind this
choice is that when the tokenizer training data
is sufficiently large and diverse, the resulting
tokenization scheme should be equally good across
languages, as long as the tokenizer algorithm and
hyperparameters (e.g., vocabulary size, subword
strategy) remain the same.5 While it is difficult to
say how sufficiently large and diverse a tokenizer
training set should be for fair comparison, we
consider the size of the training data for GPT-2
(Radford et al., 2019) as a reference point, as
English was a high-resource language even in 2019
when the paper was published. We believe that this
data size is sufficient to minimize differences that
tokenization will make across languages.

One potential concern is that the BPE algorithm
might not be optimized for agglutinative languages
such as Turkish. However, much literature on
cross-linguistic LM comparison adopts BPE
tokenizers (e.g., Mielke et al., 2019; Arnett and

5Although tokenization quality, measured by metrics like
compression (Schmidt et al., 2024) and Rényi entropy (Zouhar
et al., 2023), has been linked to language modeling perfor-
mance (e.g., Liang et al., 2023; Goldman et al., 2024), recent
studies challenge this connection (Arnett and Bergen, 2025).

Bergen, 2025). As an additional check, we use
token counts per word (TCW; reported in Ap-
pendix E Table 5) to measure the morphological
complexity of a language and report the correlation
between TCW and our test-set perplexity. The
results show the correlation is not significant
(see Section5), suggesting that the morphological
complexity of a language does not substantially
impact its learnability in our experiments.

When selecting pretrained tokenizers, we use
monolingual BPE tokenizers,6 targeting a vocab-
ulary size of approximately 50k, with exceptions
for Romanian, Arabic, and Chinese due to limited
model availability. The training data for all other
languages is at least as large as the English corpus.
The tokenizer details can be found in Appendix D.

4 Experiment 1: Attested vs. Impossible
Languages (Intra-Language)

4.1 Impossible Languages

In this experiment, we use the deterministic shuf-
fled languages from Kallini et al. (2024) along with
two new variants (see Table 2). We include shuffled
languages because (1) Kallini et al. (2024) identify
them as the most impossible languages in their lan-
guage possibility ranking, and (2) their difficulty
is also indirectly supported by empirical studies
showing that both adults and children exhibit a reg-
ularization bias, which can be thought of as a bias
against shuffling (Newmeyer, 2005; Singleton and
Newport, 2004).

Since all languages are deterministically shuf-
fled, the original ones (i.e., attested ones) can be
recovered from their variants through another deter-
ministic function. If LMs function as non-human-

6However, for Chinese, we follow previous studies (Mielke
et al., 2019) and use the Chinese-BERT tokenizer.
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Figure 1: Attested individual Language vs. their corresponding counterparts with a 95% confidence interval over 3
random seeds tested on 10k sentences from OPUS30.

like pattern recognizers as Chomsky et al. (2023);
Moro et al. (2023) argue, they should be able to
learn these languages as well as attested ones.

4.2 Results & Discussion

The results of this experiment are presented in Fig-
ure 1. We note three high-level trends: First, in
all languages except Italian, at every checkpoint,
the attested language has a lower mean perplex-
ity than all its impossible variants. For Italian,
SHUFFLE_LOCAL (W=2) yields a slightly lower
perplexity than natural Italian, though the differ-
ence is not significant (Mann-Whitney U test: W
= 63, p = 0.353). Welch’s t-test with Bonferroni
correction across 12 checkpoints shows that for
all languages, SHUFFLE_CONTROL differs signif-
icantly from other perturbations early in training,
but this difference diminishes or becomes insignifi-
cant for some languages, especially French, Italian,
and Portuguese.7 Attested languages also show
smaller error bars, suggesting more stable learning.

Second, smaller shuffling windows consis-
7Details in Appendix G.

tently yield lower perplexity. Moreover, SHUF-
FLE_DETERMINISTIC languages result in higher
perplexity than SHUFFLE_LOCAL, likely because
they shuffle based on sequence length, which au-
toregressive models cannot directly access. Third,
as a sanity check, a Spearman’s rank correlation be-
tween OPUS30 English and Kallini et al. (2024)’s
results shows strong alignment (see Appendix A).

Based on these findings, we answer the first sub-
question: LMs can largely distinguish each attested
language from its impossible counterparts by their
learning trajectories.

5 Experiment 2: Attested vs. Impossible
Languages (Inter-Language)

In this experiment, we pool the results of all pos-
sible and impossible languages and investigate
whether there is a separation boundary between
them. If GPT-2 small can distinguish between pos-
sible and impossible languages, we expect its per-
plexity on the former to be lower than on the latter.

The results of different LMs are shown in Fig-
ure 2. The first thing to note is that not every lan-
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Figure 2: Attested natural languages vs. impossible
languages with a 95% confidence interval over 3 random
seeds. The x-axis represents the training steps, and the
y-axis shows the perplexity on the test split. All the
impossible languages are marked in light blue.

guage shows the same perplexity, with Arabic high-
est and Chinese the lowest.

We observe a moderate positive correlation be-
tween the average number of tokens per word
(TCW) and perplexity of each of the last check-
points in 11 languages (Chinese is excluded be-
cause the BERT tokenizer is a character-level to-
kenizer), as indicated by a Spearman’s rank test
(ρ = 0.564), but it is not significant (p = 0.076).
This finding aligns with the observation by Arnett
and Bergen (2025) that there is no significant dif-
ference in language modeling difficulty of aggluti-
native vs. fusional languages when the amount of
information is controlled.

Turning to our main research question, although
all the attested languages are distributed at the bot-
tom of the graph, we see that some impossible
languages fall between these attested languages.
For example, Russian, Turkish, and Arabic all
show higher perplexity than English perturbed with
SHUFFLE_LOCAL (W=3). To quantify the extent
GPT-2’s perplexity values can separate attested
from impossible languages, we train a linear SVM
classifier with the perplexity value across the three
random seeds of each checkpoint as features. The
classifier reaches 0.75 (sd = 0.08) macro F1 score
averaged over 10-folds cross-validation.

Based on this experiment, we answer the second
sub-question posed in our paper: Although LMs
tend to learn attested languages better than impos-
sible ones, their perplexity does not distinguish all
attested languages from all impossible languages.

6 Experiment 3: Attested vs. Unattested
Languages

In this experiment, we investigate how well LMs
can learn and generalize to unattested languages,
languages whose structure is conceivable accord-
ing to rules of grammar or morphology, but which
have not been found to exist. While unattested lan-
guages are not necessarily unlearnable (e.g., Tsim-
pli and Smith, 1995), prior research suggests a link
between typological feature frequency, cognitive
biases, and language learnability (e.g., Gentner and
Bowerman, 2009; Culbertson et al., 2012; Culbert-
son and Newport, 2015; Culbertson et al., 2020).

We focus on Greenberg’s Universal 20 (Green-
berg et al., 1963), which suggests that certain
determiner-adjective-number-noun orders in an NP
are universally unattested. Culbertson and New-
port (2015, 2017); Culbertson et al. (2020) find that
harmonic NP orders (i.e., ones where the depen-
dents always all either precede or follow the head;
e.g., NUM-ADJ-NOUN and NOUN-ADJ-NUM) are
easier to learn than non-harmonic ones (e.g., NUM-
NOUN-ADJ or ADJ-NOUN-NUM) for humans. One
influential hypothesis, the Typological Prevalence
Hypothesis, proposes that more common typologi-
cal patterns are easier to learn (Gentner and Bow-
erman, 2009). Therefore, if LMs exhibit similar
biases as humans, a gradient of difficulty is ex-
pected in learning different NP orders, with some
unattested configurations posing greater challenges
than others.

Among the 24 theoretically possible orders of
adjectives, nouns, determiners, and numbers, we
select five combinations, covering cases classified
as FEW, MANY, and ZERO in Cinque (2005)’s typo-
logical analysis.8 In this experiment, we only per-
mute words within NPs. If the perplexity of these
permuted languages is similar to that of attested lan-
guages, it suggests two possible reasons: (1) LMs
can learn these unattested languages; (2) NPs may
be small (in terms of number of tokens) with re-
spect to the entire data size, and hence NP-internal
perturbation introduces less noise compared to the
entire data perturbation of the previous experiments.
To rule out the latter possibility, we also construct a
control condition in which words corresponding to
these POS categories are randomly shuffled within

8Although Cinque (2005) seeks to explain why ZERO lan-
guages really are “underivable” under the minimalist program
we refer to them as unattested to contrast them with the impos-
sible languages of the previous section, i.e., ones that involve
shuffling or reversed word order.
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Langs Attested Example

Typo. Theo.

PERTURB_NNDA NO NO She enjoyed books three the fantastically interesting a lot .
PERTURB_ANND NO NO She enjoyed fantastically interesting three books the a lot .
PERTURB_DANN FEW YES She enjoyed the fantastically interesting books three a lot .
DPERTURB_DNAN MANY YES She enjoyed the three fantastically interesting books a lot .
PERTURB_DNNA MANY YES She enjoyed the books three fantastically interesting a lot .
NP_RANDOM NO NO She enjoyed books fantastically three interesting the a lot .

Table 3: List of NP-perturbations with corresponding categories and examples. Typo refers to typologically-attested, while Theo
refers to theoretically-attested by Cinque (2005)’s analysis.
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Figure 3: Attested natural languages vs. their corresponding unattested languages with a 95% confidence interval
over 3 random seeds. The x-axis represents the training steps, and the y-axis shows the perplexity on the test split.
Different language types are distinguished using distinct color palettes.

NPs. This language serves as a baseline, indicat-
ing the extent to which NP-internal permutations
influence the learnability of a language.

Examples of perturbed NP word orders and their
typological information are listed in Table 3 and
their word orders are reported below:

• PERTURB_NNDA: NOUN>NUM>DET>ADJ.
• PERTURB_ANND: ADJ>NUM>NOUN>DET.
• PERTURB_DANN: DET>ADJ>NOUN>NUM.
• PERTURB_DNAN: DET>NUM>ADJ>NOUN,

typical of English and Chinese.
• PERTURB_DNNA: DET>NUM>NOUN>ADJ,

typical of Italian and Portuguese.
• NP_RANDOM: Random permutation of ADJ,

NOUN, NUM, and DET within NPs.

Since identifying NP structures requires a con-
stituency parser, we use Stanza (Qi et al., 2020)
to parse raw text. Stanza provides constituency
parsing for only Chinese, Portuguese, English, and
Italian, with acceptable accuracy (>0.85)9, so we
limit our analysis to these four languages. As dif-
ferent parsers are trained on distinct treebanks with
varying annotation guidelines, we select POS tags

9https://stanfordnlp.github.io/stanza/
constituency.html

based on each treebank’s guidelines. Details are
provided in Appendix F.

Studies such as Xu et al. (2025) suggest a dif-
ference between models’ perplexity and results of
targeted evaluations. Therefore, we additionally
conduct a targeted test to assess how well LMs
trained on different perturbed languages generalize.
Specifically, we propose ∆GenScore to quantify
their generalization ability, measured across a test
corpus of n sentences, and defined as:

∆GenScore = GenScore✓ − GenScore✗ (1)

GenScore✓ =
1

n

n∑

i=1

1
{
P✓(s✓,i) > P✓(s✗,i)

}

GenScore✗ =
1

n

n∑

i=1

1
{
P✗(s✗,i) > P✗(s✓,i)

}

where GenScore✓ refers to the generalization
score of a model trained on attested (natural) lan-
guages, while GenScore✗ refers to the generaliza-
tion score of a model trained on unattested (per-
turbed) languages. More specifically, for each
test case, we form a minimal pair consisting of
an original version s✓,i and its perturbed sentence
s✗,i. Let P✓ denote the probability assigned by
a model trained on attested languages and P✗ the
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Figure 4: Mean ∆ GenScore across four languages under five NP perturbations. Error bars indicate the 95% CI
computed over three random seeds. Positive ∆ GenScore indicates better generalization for models trained on
attested languages, while negative values indicate better generalization for models trained on unattested languages.

probability assigned by a model trained on unat-
tested languages. Then, GenScore✓ is the propor-
tion of cases where P✓(s✓,i) > P✓(s✗,i), while
GenScore✗ is the proportion where P✗(s✗,i) >
P✗(s✓,i). We extract attested sentences from the
same test set used for perplexity evaluation but in-
clude only those with at least one perturbed NP.
The minimal pair test is conducted using the last
checkpoint of each language model.

If a model assigns higher probability to natural
(i.e., attested) word orders regardless of its train-
ing data, then it would obtain a ∆GenScore of 1.
Likewise, if it assigns a higher probability to unat-
tested orders regardless of its training data, then it
would have a ∆GenScore of −1. A ∆GenScore of
0 indicates that the model always assigns higher
probabilities to sequences that match its training
data. Therefore, we interpret positive ∆GenScore
values as indicating better generalization for natural
word orderings, and negative scores as indicating
better generalization for perturbed orderings. We
use ∆GenScore to investigate models trained on
each of our natural languages, and compare them
to each of our possible NP perturbations.

6.1 Results

Perplexity Our results (Figure 3, bottom sub-
graph) show that shuffling POS tags within NPs
increases perplexity, often matching or exceeding
that of attested languages. This rules out the possi-
bility that limited perturbations do not affect model
training. Surprisingly, all five NP-perturbed lan-
guages exhibit lower perplexity than their attested
counterparts across all four languages, though the
differences are not significant for Italian, Chinese,
and Portuguese (by a Welch’s t-test with Bonfer-

roni correction).10 No significant difference is
observed between languages with attested (i.e.,
DANN, DNAN, and DNNA) and unattested NP or-
ders (i.e., NNDA and ANND) either, indicating a
lack of human alignment in language learning bias.

Generalization Test The results from this experi-
ment are visualized in Figure 4 and present a mixed
picture. Two observations emerge. First, models
trained on NNDA and ANND, the two typologi-
cally absent orderings, consistently yield positive
∆GenScore across all languages. This indicates
poorer generalization of models trained on unat-
tested patterns than models on attested ones listed
in Table 3. Second, ∆GenScore remains positive
for all five NP perturbations in English and Chinese
but shows mixed results for Italian and Portuguese.
Since English and Chinese predominantly follow
the DNAN order and Italian and Portuguese follow
DNNA, this suggests models trained on DNAN or-
ders generalize more consistently. This finding,
if confirmed, supports Culbertson and Newport
(2015)’s report of human biases toward harmonic
languages. However, for stronger conclusions, fur-
ther investigation with more typologically diverse
languages and NP perturbations is needed.

Summary Experiment 3 shows that while LMs
do not reflect a gradient of difficulty measured by
perplexity in learning different NP orders based on
typological prevalence, they may exhibit human-
aligned generalization patterns for typologically
unattested languages in the generalization test. The
differences between perplexity and targeted evalu-
ation results are consistent with Xu et al. (2025)’s
findings, which show similar discrepancies.

10For English, there is no significant difference between
SHUFFLE_CONTROL and DNAN, the dominant NP order in
English.
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6.2 Discussion of Perplexity Results

Why doesn’t LM perplexity distinguish between
attested and unattested languages? We propose
two key factors that influence LM learning out-
comes: randomness and constituency structure. By
randomness, we refer to whether the perturbation
function produces a perturbed text that can be de-
terministically recovered to its original form. By
constituency structure, we mean whether the phrase
structures of the original language are preserved in
the perturbed version.

Regarding randomness, as LMs are simply dis-
tributions over strings (Borenstein et al., 2024),
introducing randomness increases unpredictabil-
ity of the text, thus increasing the entropy of the
sequence. This explains why NP-perturbed unat-
tested languages show lower perplexity than at-
tested languages and NP_RANDOM variants. The
reasoning is that our perturbation procedure en-
forces a strict ordering procedure, which may be
(sometimes) violated in the original attested lan-
guage. For example, although English is a DNAN
language, certain constructions such as the DANN

(DET-ADJ-NUM-NOUN; e.g., a beautiful five days)
does not follow the dominant pattern. Once POS
tag orders are normalized within NPs, the resulting
constructions become more predictable. Therefore,
all normalized NPs, including our unattested NPs,
may have lower overall entropy, which could ex-
plain why they are easier to learn. In fact, the nor-
malized DNAN, which has the same typical word
order as English, shows lower perplexity than the
original, unnormalized English; and the same ap-
plies to our other languages in this experiment.

Regarding constituency structure, we hypothe-
size that disrupting constituency weakens local de-
pendency relations within phrase structures. This
explains why in experiments 1 and 2, all LMs’ per-
plexities for impossible languages are higher than
for NP-perturbed languages, despite maintaining a
deterministic order (Figure 3). Similarly, this may
also explain the higher perplexity of count-based
grammars in Kallini et al. (2024), where the authors
insert a morphological marker a certain number of
words or tokens after a host word. The count-based
insertion may disrupt phrase structure integrity.11

In sum, this discussion points to a potential con-
found in our experiments: although the texts are
parallel in content, languages with normalized NP
structures may have lower entropy. In this case,

11We do not replicate these count-based experiments.

even if LMs learn all languages equally well, lower
entropy would naturally lead to lower perplexity.
Future work could control for entropy across NP-
perturbed languages to test whether perplexity dif-
ferences persist.

7 Discussion & Conclusion

In this paper, we extend Kallini et al. (2024) to
a broader multilingual context using two new
parallel corpora. Our findings complement their
work, suggesting that models have a preference
for human-like languages, although the preference
is somewhat gradient and depends on the testing
setup. First, while GPT-2 small assigns lower
perplexity to attested languages compared to their
impossible variants, the difference is sometimes not
significant, especially later in training. Second, the
model does not fully separate all attested from all
unattested or impossible languages, but it does gen-
erally learn attested languages better, achieving a
separability of 0.75 between the two classes based
on perplexity. In the NP word order experiments,
some unattested languages exhibit lower perplexity
than their attested counterparts, despite having
orderings that violate Greenberg’s Universal 20.
However, when assessed using targeted evaluation
methods, a more promising pattern emerges:
GPT-2 seems to favor typologically attested, as
opposed to unattested NP variants, and shows
some preference for harmonic word orderings.

What to make of these results in the context of
our original question–whether LMs can serve as
cognitive models? While our results show that
GPT-2 does not behave as we might expect from
a fully human-like learner, they also demonstrate
that it has a soft preference for attested over impos-
sible languages. Skeptics have previously linked
LMs to a bad theory of physics in which “any-
thing goes.”12 In line with Kallini et al. (2024), our
results demonstrate that these models do not instan-
tiate an “anything goes” hypothesis. Rather, their
incremental data-processing architectures represent
a useful starting point for studying human language
processing and learning. Refining models to better
align with humans is possible and will likely lead to
lasting insights about human cognitive architecture.

12Chomsky, quoted from an email to Gary Marcus: “You
can’t go to a physics conference and say: I’ve got a great
theory. It accounts for everything and is so simple it can
be captured in two words: ‘Anything goes.’ All known and
unknown laws of nature are accommodated, no failures. Of
course, everything impossible is accommodated also.”
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8 Limitations

We acknowledge that our experiments rely on GPT-
2 Small, which may not generalize to larger models.
This choice was made for two reasons: (1) running
experiments across multiple languages is computa-
tionally expensive; (2) we aimed for comparability
with Kallini et al. (2024). Future work could ex-
plore whether our findings hold for larger models
or similarly sized models with different architec-
tures. Additionally, the dataset used for training
the language model is relatively small. This is a
deliberate trade-off between data size and linguis-
tic diversity. While a larger dataset might yield
more robust results, our approach ensures broader
typological coverage. In our experiments on unat-
tested languages, we generated synthetic data by
perturbing languages based on Universal 20. How-
ever, linguistic correlations extend beyond word
order universals. For instance, Greenbergian cor-
relations (Dryer, 1992) suggest that verb-object
order often correlates with other features such as
adposition-noun phrase order and determiner-noun
phrase order. Future work will explore more nu-
anced perturbations to better capture such cross-
linguistic dependencies. Lastly, the data we use
has not been manually checked yet. It is possible
that our parallel corpora include noise that might
influence the learning results.

9 Ethics Statement

We use publicly available datasets, ensuring that
no private or personally identifiable information is
included. Our dataset selection prioritizes linguis-
tic diversity while maintaining data transparency.
Regarding computational resources, we use GPT-2
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experiment on each language took around 10-12
hours.
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A Experiment Results of Replicating
Kallini et al. (2024)

We implement the training and evaluation follow-
ing the same experiment setting from Kallini et al.
(2024), only on a 10M word subset of their original
data. The result is shown in Figure 5. Unlike in
Kallini et al. (2024), however, we do observe that
test-set perplexity does increase towards the end
of training, indicating that models are overfitting
on our smaller datasets. We note that we do not
observe this overfitting behavior in the experiments
presented in the main text, where the heldout per-
plexity continues to decrease (or plateau) through-
out training.

We calculate Spearman’s rank correlation be-
tween our results for the *shuffled languages and
those of Kallini et al. (2024) at every 200-step inter-
val from 400 to 1,200. The Spearman’s ρ is consis-
tently 1 (p < 0.001), indicating perfect agreement
between the rankings, showing that 10M words are
sufficient enough to replicate the language mod-
eling experiments for which Kallini et al. (2024)
originally used 100M words.

In experiment 1, we also conducted a Spear-
man’s Ranking Correlation test between the re-
sults on OPUS30 English and those from Kallini
et al. (2024)’s experiments. We grouped the SHUF-
FLE_DETERMINISTIC languages together and ob-
served that the ranking of our English impossi-
ble variants aligns perfectly with that reported by
Kallini et al. (2024) (ρ = 1, p = 0.0027).

B Tokenization Pilot Experiments and
Results

In our experiments, where we trained tokenizers
for each language using 10M words (around 60MB
data), testing vocabulary sizes ranging from 30K
to 80K in increments of 10K, we observed two key
findings: (1) Tokenizers trained with around 60MB
data resulted in unstable language modeling out-
comes, and (2) different languages require distinct
optimal vocabulary sizes: morphologically richer
languages tend to have a larger vocabulary size. We
also observed that even when trained on the cor-
pus with matching content, not all languages are
equally learnable in terms of their perplexity. These
results are shown in Figure 6. Additionally, agglu-
tinative languages like Turkish, with their large
number of unique tokens, made large vocabulary
sizes impractical. For instance, Turkish has three
times the number of unique words as English (467K
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Figure 5: Replication of (Kallini et al., 2024) with 10M words from BabyLM Challenge dataset (strict-small track)
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Figure 6: Perplexity results on the development set (10K sentences) for five languages (EN, TR, RO, DE, RU),
trained on a 10M-sentence training set across different vocabulary sizes. Error bars represent the first and last
quartiles (25% and 75%) of the results. A plot for the optimized vocabulary size (labeled ‘BEST’) is also included,
showing high variance for TR and RU even with optimized vocabulary size.

Language Treebank POS-tags

DET NUM ADJ NOUN

English Penn Treebank
(Marcus et al.,
1993)

DT, PRP$, PDT, POS QP, $, CD RB, ADJP, JJR, JJS,
JJ

NN, NNS, NNP,
NNPS

Italian VIT(Delmonte
et al., 2007)

DET NUM, SQ ADJ, SA NOUN, PRON,
PROPN, SYM, X

Chinese CTB 3.0(Xue et al.,
2005)

DT, M, CLP, DP CD, OD, QP JJ, ADJP, DNP, DEC,
DEG

NN, NP, NR, NT,
PRP, PN, FW

Portuguese Cintil (Barreto et al.,
2006)

DET, D, DEM, POSS,
POSS’

QNT, QNT’, NUM,
PERCENTP, PER-
CENTP’, CARD,
CARD’

ADJ, AP N’, NOUN, PRON

Table 4: POS-tag categories across languages

vs. 140K), and applying 0.4× |V | would result in
a vocabulary size of 186K, which is too large for
efficient language model training with the limited
data available and a small model.

C Details of OPUS12 and OPUS30

The typological features of languages used in the
two corpora are reported in Table 6. The licens-
ing terms vary depending on their original sources,
listed below.
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LANGS AR TR RU PL DE IT
TCW 2.19 2.05 2.05 1.98 1.65 1.40

LANGS PT NL RO EN FR
TCW 1.68 1.51 1.81 1.45 1.67

Table 5: TCW per language by each of their pretrained
tokenizer

• NLLB: ODC-By

• TED2020: CC BY–NC–ND 4.0 International;
for details, see the official website.

• Bible: CC0 1.0

• OpenSubtitles: GNU General Public License
v3.0

• MultiCCAligned: unknown; see the official
website.

D Tokenizers

Table 7 shows the details of the tokenizers we use
in the experiments. When the training data for a
tokenizer is unspecified, we assume it matches the
training data used for the corresponding pretrained
model.

E TCW & CTC

The TCW is reported in Table 5. We use it to
measure the morphological richness of a language.

F POS tags of each treebank

Different constituency parsers are trained with dif-
ferent treebanks. We select POS-tags that are rel-
evant to the four word classes. The detailed POS-
tags for each language can be found in Table 4.

G Statistical test between impossible
languages

We conducted Welch’s paired t-test comparing dif-
ferent perturbations with shuffle_control across 12
checkpoints. The results are ordered alphabetically.

We find that for Dutch, Russian, and Turkish, the
difference between SHUFFLE_CONTROL and other
perturbations is always significant; by contrast, for
languages including Arabic, Chinese, English, Ger-
man, and Romanian, the difference becomes less
significant or insignificant in the locally shuffled
variants.

1https://huggingface.co/aubmindlab/
aragpt2-base

2https://huggingface.co/ytu-ce-cosmos/
turkish-gpt2

3https://huggingface.co/ai-forever/
rugpt3large_based_on_gpt2

4https://huggingface.co/flax-community/
papuGaPT2

5https://huggingface.co/malteos/
gpt2-xl-wechsel-german

6https://huggingface.co/iGeniusAI/
Italia-9B-Instruct-v0.1

7https://huggingface.co/NOVA-vision-language/
GlorIA-1.3B

8https://huggingface.co/yhavinga/
gpt-neo-125M-dutch

9https://huggingface.co/dumitrescustefan/
gpt-neo-romanian-780m

10https://huggingface.co/openai-community/gpt2
11https://huggingface.co/lightonai/pagnol-xl
12https://huggingface.co/google-bert/

bert-base-chinese
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Language Family Word Order Morphology

OPUS12
English Indo-European (Germanic) SVO Analytic
German Indo-European (Germanic) No dominant Fusional
Russian Indo-European (Slavonic) SVO Fusional
Romanian Indo-European (Romance) SVO Fusional
Turkish Turkic (Altaic) SOV Agglutinative
Dutch Indo-European (Germanic) No dominant Fusional
Polish Indo-European (Slavonic) SVO Fusional
Portuguese Indo-European (Romance) SVO Fusional
Italian Indo-European (Romance) SVO Fusional
French Indo-European (Romance) SVO Fusional
Chinese Sino-Tibetan SVO Analytic
Arabic Afro-Asiatic (Semitic) VSO Root-based (nonconcatenative)

OPUS30
Spanish Indo-European (Romance) SVO Fusional
Czech Indo-European (Slavonic) SVO Fusional
Bulgarian Indo-European (Slavonic) SVO Fusional
Slovak Indo-European (Slavonic) SVO Fusional
Serbian Indo-European (Slavonic) SVO Fusional
Croatian Indo-European (Slavonic) SVO Fusional
Ukrainian Indo-European (Slavonic) SVO Fusional
Danish Indo-European (Germanic) SVO Fusional
Swedish Indo-European (Germanic) SVO Fusional
Greek Indo-European (Hellenic) No dominant Fusional
Persian Indo-European (Indo-Iranian) SVO Fusional
Lithuanian Indo-European (Baltic) SVO Fusional
Vietnamese Austroasiatic SVO Analytic
Hebrew Afro-Asiatic (Semitic) VSO Root-based (nonconcatenative)
Hungarian Uralic SVO Agglutinative
Indonesian Austronesian SVO Analytic
Japanese Japonic SOV Agglutinative
Korean Koreanic SOV Agglutinative

Table 6: Typological features of the OPUS12 and OPUS30 corpora, with OPUS30 including 18 additional languages
beyond those in OPUS12.

Language |Vocab| |Training| Reference Domain

Arabic1 64,000 77GB Antoun et al. (2021) Web Crawl, Wikipedia, News
Turkish2 50,257 100GB Kesgin et al. (2024) Web Crawl, books, news, others
Russian3 50,257 450GB Zmitrovich et al. (2024) Wikipedia, books, news, books, Web Crawl, Subtitles
Polish4 50,257 47GB Wojczulis and Kłeczek (2021) Web Crawl
German5 50,304 156GB Ostendorff (2023) Web Crawl
Italian6 50,176 Trillions toks iGeniusAI (2024) public sources, synthetic data, and domain-specific content
Portugese7 50,258 35B tokens Lopes et al. (2024) Web Crawl, News, Subtitles, EuroParl
Dutch8 50,257 151GB Havinga (2023) Web Crawl
Romanian9 64,000 40GB Dumitrescu (2024) Web Crawl, Opus, Wikipedia
English10 50,257 40GB Radford et al. (2019) Web Crawl
French11 50,262 130GB Launay et al. (2022) Web Crawl
Chinese12 21,128 300GB Devlin et al. (2019) Wikipedia

Table 7: Tokenizers, vocabulary sizes, training data sizes, references, pretrained model name, and training data
domains for each language tested in our experiments.
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Perturbation | Step 100 200 300 400 500 600 700 800 900 1000 1100 1200

perturb_reverse_full_word <0.001 <0.001 0.0036 0.0484 <0.001 0.0283 0.0781 0.5293 1 0.8811 1 1
shuffle_deterministic21 1 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
shuffle_deterministic57 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
shuffle_deterministic84 0.7871 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
shuffle_even_odd <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

shuffle_local10 0.4242 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
shuffle_local2 1 <0.001 <0.001 <0.001 <0.001 0.7469 1 1 1 1 1 1
shuffle_local3 1 <0.001 <0.001 <0.001 <0.001 0.0075 0.0062 0.1182 1 1 1 1
shuffle_local5 0.4024 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.3782 0.3208 1 1

Table 8: Welch’s t-test comparing each perturbation with shuffle_control across 12 checkpoints for Arabic, with
Bonferroni adjustment.

Perturbation | Step 100 200 300 400 500 600 700 800 900 1000 1100 1200

perturb_reverse_full_word <0.001 <0.001 <0.001 1 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
shuffle_deterministic21 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
shuffle_deterministic57 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
shuffle_deterministic84 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
shuffle_even_odd <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

shuffle_local10 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
shuffle_local2 <0.001 <0.001 <0.001 <0.001 <0.001 0.0142 1 1 1 1 1 1
shuffle_local3 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.0012 0.0014 0.0063 0.135
shuffle_local5 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 1 1 0.6033 0.0391 0.0016

Table 9: Welch’s t-test comparing each perturbation with shuffle_control across 12 checkpoints for Chinese, with
Bonferroni adjustment.

Perturbation | Step 100 200 300 400 500 600 700 800 900 1000 1100 1200

perturb_reverse_full_word <0.001 <0.001 0.0012 0.1697 0.0396 0.0137 0.003 <0.001 <0.001 <0.001 <0.001 <0.001
shuffle_deterministic21 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
shuffle_deterministic57 1 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
shuffle_deterministic84 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
shuffle_even_odd <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

shuffle_local10 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
shuffle_local2 <0.001 <0.001 1 <0.001 0.0354 0.0277 0.0051 0.0059 0.0158 <0.001 0.0043 <0.001
shuffle_local3 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.002 0.0296 0.0111
shuffle_local5 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.0018 <0.001 0.0049 0.0026

Table 10: Welch’s t-test comparing each perturbation with shuffle_control across 12 checkpoints for Dutch, with
Bonferroni adjustment.

Perturbation | Step 100 200 300 400 500 600 700 800 900 1000 1100 1200

perturb_reverse_full_word <0.001 <0.001 0.0188 0.0016 0.0025 0.0751 0.0028 0.684 0.938 1 0.8737 1
shuffle_deterministic21 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
shuffle_deterministic57 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
shuffle_deterministic84 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
shuffle_even_odd <0.001 <0.001 <0.001 0.0078 <0.001 <0.001 0.0022 0.4015 0.0068 0.0013 0.0235 0.0812
shuffle_local10 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
shuffle_local2 0.0458 <0.001 <0.001 0.0055 0.0251 1 1 1 1 1 1 1
shuffle_local3 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.0269 0.0878
shuffle_local5 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.0167 0.1072

Table 11: Welch’s t-test comparing each perturbation with shuffle_control across 12 checkpoints for English, with
Bonferroni adjustment.

Perturbation | Step 100 200 300 400 500 600 700 800 900 1000 1100 1200

perturb_reverse_full_word <0.001 0.0284 1 0.008 1 1 1 1 1 1 1 1
shuffle_deterministic21 <0.001 <0.001 <0.001 <0.001 <0.001 0.0046 0.6694 1 1 1 1 1
shuffle_deterministic57 1 <0.001 <0.001 <0.001 <0.001 0.0066 0.6324 1 1 1 1 1
shuffle_deterministic84 <0.001 0.0203 <0.001 <0.001 <0.001 <0.001 0.0402 1 1 1 1 1
shuffle_even_odd <0.001 <0.001 1 <0.001 1 1 1 1 1 1 1 1

shuffle_local10 <0.001 <0.001 0.3162 <0.001 1 1 1 1 1 1 1 1
shuffle_local2 <0.001 <0.001 1 1 1 1 1 1 1 1 1 1
shuffle_local3 <0.001 <0.001 1 0.5046 1 1 1 1 1 1 1 1
shuffle_local5 <0.001 <0.001 1 0.0257 1 1 1 1 1 1 1 1

Table 12: Welch’s t-test comparing each perturbation with shuffle_control across 12 checkpoints for French, with
Bonferroni adjustment.
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Perturbation | Step 100 200 300 400 500 600 700 800 900 1000 1100 1200

perturb_reverse_full_word <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
shuffle_deterministic21 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
shuffle_deterministic57 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
shuffle_deterministic84 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
shuffle_even_odd <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

shuffle_local10 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
shuffle_local2 <0.001 <0.001 <0.001 <0.001 0.034 0.0974 0.4926 0.4579 1 0.2287 1 0.4976
shuffle_local3 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.0035 0.0185 0.011 0.0675 0.14 0.2177
shuffle_local5 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.001 <0.001 <0.001 <0.001 0.0017

Table 13: Welch’s t-test comparing each perturbation with shuffle_control across 12 checkpoints for German, with
Bonferroni adjustment.

Perturbation | Step 100 200 300 400 500 600 700 800 900 1000 1100 1200

perturb_reverse_full_word <0.001 1 1 1 1 1 1 1 1 1 1 1
shuffle_deterministic21 <0.001 <0.001 1 0.5567 1 1 1 1 1 1 1 1
shuffle_deterministic57 0.002 0.0107 0.8726 0.3123 1 1 1 1 1 1 1 1
shuffle_deterministic84 <0.001 <0.001 0.0112 0.0013 0.002 1 1 1 0.8841 1 1 1
shuffle_even_odd <0.001 <0.001 0.1087 0.3001 0.1957 1 1 1 1 1 1 1

shuffle_local_word3 <0.001 0.0846 1 1 1 1 1 1 1 1 1 1
shuffle_local10 0.0098 <0.001 <0.001 0.4004 1 1 1 1 1 1 1 1
shuffle_local2 <0.001 1 1 0.3393 0.0606 0.1196 0.1088 0.1105 0.1625 0.1634 0.2567 0.2097
shuffle_local3 1 1 1 1 1 1 1 1 1 1 1 1
shuffle_local5 1 1 1 1 1 1 1 1 1 1 1 1

Table 14: Welch’s t-test comparing each perturbation with shuffle_control across 12 checkpoints for Italian, with
Bonferroni adjustment.

Perturbation | Step 100 200 300 400 500 600 700 800 900 1000 1100 1200

perturb_reverse_full_word <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
shuffle_deterministic21 0.0018 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
shuffle_deterministic57 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
shuffle_deterministic84 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
shuffle_even_odd 0.0049 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

shuffle_local10 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
shuffle_local2 0.0288 <0.001 <0.001 <0.001 <0.001 0.0166 0.0577 0.1104 0.0993 0.0446 0.0521 0.0508
shuffle_local3 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
shuffle_local5 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

Table 15: Welch’s t-test comparing each perturbation with shuffle_control across 12 checkpoints for Polish, with
Bonferroni adjustment.

Perturbation | Step 100 200 300 400 500 600 700 800 900 1000 1100 1200

perturb_reverse_full_word <0.001 <0.001 <0.001 <0.001 <0.001 0.0056 0.0028 0.0659 0.1986 1 1 1
shuffle_deterministic21 1 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.0358 0.0039 0.0778
shuffle_deterministic57 1 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 1 0.4359 1
shuffle_deterministic84 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.006 0.0012 0.0137
shuffle_even_odd 1 <0.001 <0.001 0.0569 <0.001 0.3289 1 1 1 1 1 1

shuffle_local10 1 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.1379 1 1 1 1
shuffle_local2 1 1 <0.001 1 0.1401 1 1 1 1 1 1 1
shuffle_local3 0.8382 <0.001 <0.001 0.0189 <0.001 1 1 1 1 1 1 1
shuffle_local5 1 <0.001 <0.001 0.6868 <0.001 1 1 1 1 1 1 1

Table 16: Welch’s t-test comparing each perturbation with shuffle_control across 12 checkpoints for Portuguese,
with Bonferroni adjustment.

Perturbation | Step 100 200 300 400 500 600 700 800 900 1000 1100 1200

perturb_reverse_full_word <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 1 <0.001 <0.001 0.0693 0.0291 0.0033
shuffle_deterministic21 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.6784 <0.001 <0.001 <0.001 <0.001 <0.001
shuffle_deterministic57 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 1 <0.001 <0.001 <0.001 <0.001 <0.001
shuffle_deterministic84 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.1518 <0.001 <0.001 <0.001 <0.001 <0.001
shuffle_even_odd <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 1 <0.001 <0.001 0.0059 0.011 0.1607

shuffle_local10 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 1 <0.001 <0.001 <0.001 <0.001 <0.001
shuffle_local2 <0.001 <0.001 <0.001 <0.001 <0.001 0.0311 1 0.1407 0.123 0.0092 0.0079 0.0246
shuffle_local3 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 1 <0.001 <0.001 <0.001 <0.001 0.0292
shuffle_local5 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 1 <0.001 <0.001 0.0014 <0.001 0.2879

Table 17: Welch’s t-test comparing each perturbation with shuffle_control across 12 checkpoints for Romanian,
with Bonferroni adjustment.
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Perturbation | Step 100 200 300 400 500 600 700 800 900 1000 1100 1200

perturb_reverse_full_word <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
shuffle_deterministic21 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
shuffle_deterministic57 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
shuffle_deterministic84 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
shuffle_even_odd <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

shuffle_local10 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
shuffle_local2 <0.001 <0.001 <0.001 1 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
shuffle_local3 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
shuffle_local5 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

Table 18: Welch’s t-test comparing each perturbation with shuffle_control across 12 checkpoints for Russian, with
Bonferroni adjustment.

Perturbation | Step 100 200 300 400 500 600 700 800 900 1000 1100 1200

perturb_reverse_full_word <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
shuffle_deterministic21 0.0551 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
shuffle_deterministic57 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
shuffle_deterministic84 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
shuffle_even_odd <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

shuffle_local10 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
shuffle_local2 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.0036 <0.001 0.002 0.0107 0.0403
shuffle_local3 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
shuffle_local5 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
shuffle_nondeterministic <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

Table 19: Welch’s t-test comparing each perturbation with shuffle_control across 12 checkpoints for Turkish, with
Bonferroni adjustment.
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