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Abstract

We identify five positions on whether large lan-
guage models (LLMs) and chatbots can be said
to exhibit semantic understanding. These posi-
tions differ in whether they attribute semantics
to LLMs and/or chatbots trained on feedback,
what kind of semantics they attribute (inferen-
tial or referential), and in virtue of what they
attribute referential semantics (internal or exter-
nal causes). This allows for 24 = 16 logically
possible positions, only five of which have been
argued for. Based on a pairwise comparison of
these five positions, we conclude that the better
theory of semantics in large language models
is, in fact, a sixth combination: Both large lan-
guage models and chatbots have inferential and
referential semantics, grounded in both internal
and external causes.

1 Introduction

Large language models (LLMs) are, at heart,
trained to solve the so-called cloze task, introduced
by educational psychologist Wilson L. Taylor in
1953. Each instance of a cloze test is a piece of text
in which a word or subword token is omitted:

(1) Look in thy mirror and tell the face thou ____

Taylor would ask his students to guess the miss-
ing word and fill in the blank. LLMs are being
trained to do the same. Some have argued that be-
cause solving cloze tasks is the proper function of
LLMs, they cannot possibly acquire semantic un-
derstanding (Bender and Koller, 2020; Landgrebe
and Smith, 2021; Hicks et al., 2024) – by which
we shall mean the comprehension and, maybe, pro-
duction of texts in their linguistic context, but not
in their extralinguistic context. Why would anyone
think such a capacity is beyond reach for LLMs?
Because solving cloze tasks – what LLMs have
been trained to do – is essentially a memorization
task, the kind of thing that parrots can do without
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Figure 1: Five positions in the LLM Understanding
Debate

semantic understanding (Searle, 1980; Bender and
Koller, 2020; Bender et al., 2021).

However, human memory is limited. So is the
memory of LLMs. While some of us remember
their Shakespeare well enough to infer that the
missing word in (1) is viewest, others will not, and
most LLMs can only memorize a small fraction of
the training data (Lu et al., 2024). In other words,
while the proper function of LLMs is to solve cloze
tasks, they do not have enough memory to do so.
That means they have to adopt another strategy.
They have to find a way to guess what is omitted in
Shakespearean sonnets or physics textbooks. Such
guessing requires semantics.1

In order for our intuitions to not get in our way,
we should remind ourselves that committing to the
view that LLMs exhibit semantic understanding
does not mean you have to commit to the idea of
LLMs teaching themselves semantics. The random
initialization of an LLM opens up a space that is
astronomically big. All you have to commit to is
the idea that the space is big enough for there to
be semantic understanding in it, as well as to the
idea that an LLM will benefit from accidentally
stumbling upon such a capacity.

There are, as far as we can see, five standard

1Having semantics typically mean outputting words with
semantic content, having internal states with semantic con-
tent, or understanding words with semantic content. I assume
that generation and production turn on the same semantic ca-
pacities and will not bake in any assumptions about internal
states.
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positions on semantic understanding in LLMs in
the literature: (i) LLMs are all syntax, no semantics
(Searle, 1980; Bender and Koller, 2020; Landgrebe
and Smith, 2021); (ii) LLMs have inferential se-
mantics, but not referential semantics (Rapaport,
2002; Piantadosi and Hill, 2022; Baggio and Mur-
phy, 2024); (iii) LLMs have both inferential and
latent referential semantics by virtue of structural
similarity or world models (Søgaard, 2022, 2023;
Pavlick, 2023; Lyre, 2024); (iv) LLMs have both
inferential and referential semantics by virtue of
participation in communicative chains, but not by
virtue of having world models (Cappelen and De-
ver, 2021; Mandelkern and Linzen, 2023; Leder-
man and Mahowald, 2024; Koch, forthcoming);2

(v) LLMs have inferential semantics and may ac-
quire referential semantics through learning from
human feedback. Corollary: Only chatbots have
referential semantics (Butlin, 2021; Mollo and Mil-
lière, 2023). We will argue for a sixth position,
also listed in Figure 1. Here, Int-Referential refers
to the idea that LLMs have referential semantics
grounded in internal causes, i.e., world models;
Ext-Referential refers to the idea that LLMs have
referential semantics grounded in external causes
such as training data, developers and annotators,
model selection and evaluation, and human (re-
sponsive) agents), i.e., being part of the right com-
municative chains; Chat-Ext-Referential refers to
the idea that referential semantics is exclusively for
chatbots, because semantic understanding must be
grounded in human (responsive) agents).3 I present
the following arguments for our position:

Position 1 and 2 I will argue the P1-P2 distinc-
tion is less important than it seems. The distinction
between syntax and inferential semantics is sensi-
tive to how syntax is defined, and I suspect that
proponents of P1 and P2 are actually largely in
agreement. The only way to uphold a position in
which LLMs do not have inferential semantics, is
by positing that all their inferences were memo-
rized. This flies in the face of the ability of LLMs
to generalize to unseen data (Lotfi et al., 2024), as

2Lederman and Mahowald (2024) are arguably agnostic
about semantic understanding, but have an explicitly exter-
nalist story about semantic intelligibility by virtue of being
chained to training data: ‘LLMs can produce novel text which
is nevertheless derivatively meaningful, because they copy in-
dividual tokens from their [training data], and assemble them
in ways that are causally sensitive to the high-level feature of
intelligibility in their [training data].’

3Arguably, Ext-Referential and Cha-Ext-Referential are
mutually exclusive, making the set of valid positions 16-4=12.

well as the fact that memorization is a highly inef-
ficient strategy (Michaud et al., 2023), and LLMs
are generally too small to memorize all of their
training data (Lu et al., 2024). I therefore give pro-
ponents of P1 the benefit of doubt and assume that
despite of their fondness for slogans such as LLMs
are ‘syntax all the way down’ (Searle, 1980), or
‘LLMs lack semantic knowledge’4 or ‘semantic un-
derstanding’ (Titus, 2024), what they really mean
is (the more reasonable) P2.

Position 2 and 3 Reasons to prefer P3 over P2
turn on whether LLM representations facilitate
reference or alignment with other representations.
There are empirical facts – from unsupervised ma-
chine translation and unsupervised multimodal in-
ference – that seem to support the idea that LLM
representations do in fact facilitate such reference
or alignment (Li et al., 2023b; Lyre, 2024; Gurnee
and Tegmark, 2024; Baggio and Murphy, 2024; Jha
et al., 2025). Our argument is a modus tollens: If
LLMs only learned syntax or inferential semantics
(p1), they would not have made unsupervised bilin-
gual dictionary extraction possible (p1 → ¬q).5

Since they make such extraction possible (q), it fol-
lows that p1 is false. I discuss whether alignment
with other representations checks all the boxes of
the job description for referential semantics; to
keep everyone happy I distinguish between weak
and strong referential semantics and argue that we
at least have empirical support for LLMs exhibiting
weak referential semantics.6

Position 4 and 5 The distinction between LLMs
and chatbots – and the view that while LLMs do
not have referential semantics, chatbots do – is,
in my view, hard to defend. Specifically, Butlin
(2021) and Mollo and Millière (2023) are forced to
accept that two identical models A and B can be
such that A exhibits referential semantics, whereas
B does not. This happens if a pre-trained LLM (A)
is not updated during fine-tuning, say, because it
was already optimal. In light of how LLMs are con-
stantly copied, forked and backed up, this quickly
leads to absurd scenarios. Some copies will have
semantic understanding because of their copying
history; others will not because of theirs.

4https://tinyurl.com/3y6vyhej
5Or think of multi-modal/cross-model alignment, or results

that representations are structurally similar to knowledge bases
(Gammelgaard et al., 2023).

6Baggio and Murphy (2024) refer to weak referential se-
mantics as having aboutness.
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Position 3 and 4 If our arguments are on track,
we are left with two options, P3 and P4. There
are, it seems, good arguments for both. I will
discuss whether P4 is too permissive and consider
a possible reason to reject Kripkean externalism:
Pure externalism cannot account for the influence
of random initialization on LLMs. It is unclear
whether externalists have to account for this.

I will argue for a sixth position (Position 6), a hy-
brid position. Some concepts can be expressed
both in terms of internal representations (e.g.,
world models) and external factors (e.g., commu-
nicative chains). I will argue that the internal rep-
resentations emerge naturally from use.7 Some
concepts, e.g., color, are naturally fixed through
world models; others, e.g., proper names, more
naturally through communicative chains.

2 Five Positions

An LLM is, for our purposes, a neural network
fitted to predict text in context – typically the next
word given the preceding context, in which case
the LLM is called autoregressive. Such a neural
network is a complex mathematical function. If the
function is sufficiently expressive, it may memo-
rize the corpus; if not, it will have to compress the
information somehow, e.g., by modeling it. A chat-
bot is an autoregressive LLM specialized in (that
is, fine-tuned on) two-way dialogue, sometimes
also from high-level feedback from human users.
Chatbots are thus also complex mathematical func-
tions, but their coefficients may have been altered
a bit to make them more suitable conversation part-
ners or personal assistants. Syntax is patterns of
which word forms or morphemes follow which
word forms or morphemes in a language. As such,
LLMs are first and foremost trained to perform a
syntactic task. The question is whether semantics
falls out of that. Inferential semantics is the part
of semantics that concerns the relations between
snippets of text. When LLMs are evaluated on text-
only data, we are concerned with inferential seman-
tics. In contrast, referential semantics concerns
the reference-fixing relationship between words or
texts and (entities and events in) the world (or some
representation thereof). Referential semantics, in
other words, concerns the aboutness of language.

7This observation echoes the good regulator theorem (Co-
nant and Ashby, 1970), but in artificial intelligence, the idea
goes back to Elman (1990) and was recently explicated by Ha
and Schmidhuber (2018) and Gurnee and Tegmark (2024).

For a machine to understand a human language
it must possess concepts which are coreferential
with at least some commonly-used words in that
language (Butlin, 2021). We generally do not have
direct access to entities and events in the world, but
some representation thereof, i.e., the world für Uns.
I refer to referential semantics with respect to some
such representation as weak referential semantics –
whereas I refer to referential semantics with respect
to the world an Sich as strong referential semantics.

P1: All Syntax, No Semantics LLMs are trained
with a syntactic objective (or, at least, a syntacti-
cally defined objective), i.e., predicting the next
token, word, or sentence, or predicting a miss-
ing word mid-sentence. The end result is a com-
plex function with a predefined number of coeffi-
cients. Neither the coefficients or the neural layers
they form come equipped with semantic translation
functions. That P1 follows naturally from these
two facts, has been proposed by Searle (1980) in
his response to the Connectionist Reply to the Chi-
nese Room Argument, as well as by Bender and
Koller (2020) in their Octopus Argument .8

Consider the argument: The LLM A has a purely
syntactic objective. → The LLM A is syntax all
the way down. What exactly is meant by (pure)
syntax? Syntax concerns the distribution of forms.
Syntax governs how sequences of tokens are com-
posed. Regardless of our exact definition of syntax,
it is clear that we need to make a hidden premise
explicit for the above argument to go through.
Churchland and Churchland (1990) propose the
following premise will do the job:

‘Syntax by itself is neither constitutive of
nor sufficient for semantics.’

This premise, of course, is an empirical claim. It
may be true, it may be false. P1 therefore comes
down to whether something whose proper function
is syntax, can reliably induce semantics. Propo-
nents of P1 say no. Proponents of P2 say yes, but
only with respect to inferential semantics. P3 and
P4 say yes and include referential semantics, too.

P2: Inferential Semantics Only Inferential se-
mantics identifies the meaning of an expression
with its relationship to other expressions. Follow-
ing Marconi (1997), I will assume that seman-

8John Searle famously wrote that ‘no program, by itself, is
sufficient for intentionality’ (p. 424); Bender and Koller (Ben-
der and Koller, 2020) writes that ‘learning meaning requires
more than form’ (p. 5193).
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tics comes with inferential and referential prop-
erties. Piantadosi and Hill (2022) and Rapaport
(2002) adopt this view. Piantadosi and Hill (2022)
claim that LLMs induce inferential semantics, but
not referential semantics; 20 years earlier, Rapaport
(2002) said the same of NLP in general. Proponents
of Position 1 would, if hard pressed, probably also
subscribe to this view. Why? It is simply odd
to deny that LLMs induce inferential semantics.
These models exhibit human-level-and-beyond per-
formance on textual entailment, synonymy and hy-
ponymy detection, relation extraction, analogical
reasoning, etc. (Lewkowycz et al., 2022). They
clearly seem to acquire adequate inferential seman-
tics. Proponents of P1 would argue, however, that
this is all syntax and no (proper) semantics. For
P2, the question thus becomes: Are the inferential
capacities of LLMs best described as syntactic or
semantic? Note how this question is orthogonal
to the robustness of what is learned. LLMs may
learn spurious correlations or pick up on signals
that are causally relevant. However, both spurious
and relevant signals can be syntactic or semantic.
So how do we tell them apart?

Having inferential semantics amounts to having
a world model. By world model we mean some-
thing that can be represented as a graph over con-
cepts or proxies for concepts. On such an account,
a database such as WikiData or Princeton WordNet
can be a world model. The vector space induced
by a neural network can also be a world model.
In order for such a graph to be a world model, it
needs to be broad-coverage, and its relations have
to be somewhat interpretable. By broad-coverage,
we mean that a world model has to cover a size-
able chunk of our day-to-day concepts. There is no
principled cut-off, of course, but in the same way
we would not call a list of two word pairs [⟨ dog,
Hund⟩, ⟨ cat, Katze⟩] an English-German dictio-
nary; a world model must facilitate more than just
a few inferences. Note that it is the broad-coverage
requirement that guarantees that water clocks can-
not be said to understand time; or that the spindles
of Watt’s centrifugal governor do not understand
speed (Bechtel, 1998). By interpretable, I sim-
ply mean that some fraction of the relations map
onto recognizable conceptual dimensions, such as
temporal distance, spatial distance, IS-A relations,
metonymy, etc.

With the idea of world models in place, my intu-
ition should be clear enough. In order to know that
buying a car implies buying a vehicle, you need to

know that cars are vehicles. You need an ontology
to make non-trivial inferences. Proponents of P2
will emphasize how world models emerge from
training LLMs. The observation that world models
can do that, goes back to early work by Elman (El-
man, 1990), and the thesis has seen considerable
support over the last two decades (Mikolov et al.,
2013; Ha and Schmidhuber, 2018). For recent ar-
ticulations, see Vulić et al. (2020); Søgaard (2022);
Gurnee and Tegmark (2024); Huh et al. (2024).
Several proponents of P1 have claimed that LLMs
cannot induce world models (Bender and Koller,
2020; Landgrebe and Smith, 2021), but I suspect
that this is because they believe the world models
induced by LLMs and earlier work somehow do
not qualify as proper world models (whatever that
means).9

P3: Referential Semantics through Mapping
The convergence of world models facilitate align-
ment (Huh et al., 2024) across different languages
or different modalities, e.g.: a) LLMs exhibit very
similar geometries across languages (Vulić et al.,
2020); b) LLMs exhibit very similar geometries
across LLM architectures (Hartmann et al., 2018;
Jha et al., 2025); c) LLMs exhibit very similar ge-
ometries across modalities (Li et al., 2023b). If
the geometries are sufficiently similar, they can
be aligned by unsupervised means (Artetxe et al.,
2018a; Xu et al., 2018). This facilitates what I
call weak referential semantics. It is important to
understand what exactly is being posited to hold be-
tween LLM representations and external represen-
tations (from other LLMs, computer vision mod-
els, or cognitive data). Geometries are induced
by the word representations learned over time by
LLMs. Geometries can be similar in a first-order or
second-order sense. Similarly, representations can
be first-order or second-order isomorphic. First-
order similarity compares the pairwise represen-
tations: Does the representation for ‘dog’ share
any properties with [[dog ]]? P3 does not subscribe
to there being any such similarities between the
sign and the signified, only to second-order simi-
larities across how concepts are organized (Abdou
et al., 2021; Merullo et al., 2023a; Søgaard, 2023;
Li et al., 2023b). The vector representations do

9Proponents of P1 may, for example, ask that world models
are grounded in proper functions or are validated with peers.
Some teleo-semanticists and some Griceans would have it
this way. The question is what this extra baggage buys us,
and whether it tracks with our intuitions about what systems
exhibit understanding.
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not have interesting properties on their own, but
the geometries they induce do. These second-order
similarities are explained by the phenomenon often
noted by proponents of P2, i.e., that world mod-
els emerge from training LLMs. The extra claim
made by proponents of P3 is that this is, at least in
principle, sufficient to get referential semantics.

P4: Referential Semantics through Communica-
tive Chains If my name was James, it would
likely not be because I fit the description of a James,
but because I was once baptized and people around
me picked up on the name. Is semantic understand-
ing of a word in the same way a matter of being
in the right communicative chain rather than of
forming the right idea? While engineers have long
inspected the internal representations of LLMs in
search for world models, biases, or explanations
– several philosophers have – inspired by recent
trends in philosophy of mind (Burge, 1989; Stal-
naker, 1990) – voiced concern that this is perhaps
too limited a view, and that researchers ought to
consider instead more external factors (Sullivan,
2022; Cappelen and Dever, 2021; Butlin, 2021;
Mollo and Millière, 2023; Mandelkern and Linzen,
2023). These authors often refer to the so-called
Teleological Argument against similarity-based ac-
counts of semantic understanding; see §3.10

P5: Referential Semantics for Chatbots Only
LLMs generally do not interact with human end
users during training. They interact with develop-
ers and (very large volumes of) text. The devel-
opers implement learning architectures, set hyper-
parameters and evaluate the performance of LLMs
across benchmarks and performance metrics. The
text is predicted, sometimes memorized, some-
times compressed. Some philosophers have felt
that this was insufficient to get semantic under-
standing off ground (Butlin, 2021; Mollo and Mil-
lière, 2023; Baggio and Murphy, 2024). Chatbots
are different, though. They rely on LLMs, but have
been fine-tuned in a feedback loop with human
conversation agents. They are wheels in the causal
chains that fix reference on some accounts; or, in
Butlin’s words, they are involved in the ‘language-
mediated concept-sharing described by social ex-
ternalism about mental content’ (Butlin, 2021).

10See also Carnap (1967), §154.

3 Pairwise Comparisons

I consider on what grounds we would prefer one
position over another, taking stock of the evidence
that is currently available.

P1 and P2: A Continuum? What is the test that
discriminates between P1 and P2? What would
have to be true for P2 to hold, and not P1? Or
vice versa. Syntax and inferential semantics are
sometimes presented as distinct (Higginbotham,
1987), sometimes as forming a continuum (Rapa-
port, 1995). Syntactic categories are distillations of
semantic ones, and our inferences are biased by se-
lectional restrictions. The debate around semantic
understanding in LLMs has often focused on world
models. Is this a test for inferential semantics?

P1-P2 TEST An LLM A has inferential
semantics (falsifying P1) iff A has in-
duced a world model.

It is not trivial to decide whether an LLM has
induced a world model or not. An LLM that has
learned to distinguish verbs from nouns, may look
very much like a model that has learned to distin-
guish processes from things. Syntactic distinctions
– even phonetic ones – correlate with the distri-
bution of what is normally considered semantic
features, such as animacy or gender. The debate
between P1 and P2 may not reduce to a war of
words, but even then, it may not be easily settled.

P2 and P3: Evidence for Alignability I adopted
the distinction between inferential and referential
semantics to get us off ground. How important
referential semantics is, is an empirical question.
After all, ‘many terms that are meaningful to us
[. . . ] have no discernible referent at all’ (Piantadosi
and Hill, 2022). To the extent referential seman-
tics plays an important role, we must ask whether
LLMs can instantiate referential semantics. In
other words: Is the world knowledge induced by
LLMs sufficiently reliable that it can be used to
ground semantic understanding?

Several applications of LLMs suggest their
world models are reliable enough to facilitate
weakly supervised or unsupervised alignment, in-
cluding unsupervised machine translation (Artetxe
et al., 2018b; Vulić et al., 2020), vision-and-
language models (Li et al., 2023b), knowledge
graph embeddings (Christiansen et al., 2023), and
brain decoding (Mitchell et al., 2004; Li et al.,
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2023a). Common to all these studies is the ob-
servation that LLMs induce representations that
are structurally similar to independently obtained
representations of other languages, other modali-
ties, knowledge bases, or neural response measure-
ments; see Appendix A.1.

Now wait a minute. We already know – from
the evidence for P2 – that LLMs encode world
knowledge, so what’s new here? What’s new is
the existence and quality of easy-to-learn linear
mappings between the vector of LLMs and pos-
sible referent spaces, e.g., image representations
or neural response measurements. If these map-
pings are sufficiently accurate, they allow for high-
quality decoding. That is, they allow for semantic
understanding. Since Newman (1928) and Car-
nap (1967), philosophers have routinely argued
that structural similarities, even isomorphisms, are
insufficient for semantic understanding. Their ar-
guments revolve around the alleged triviality of iso-
morphisms, the asymmetry of meaning-grounding
representations, as well as the role played by adap-
tivity in biological systems. Some of these argu-
ments are more challenging than others,11 but I
will briefly address the role played by adaptivity or
proper function. Shea (2018), for example, talks
about whether a structural correspondence is ‘used
by the system’ (p. 119) or not. An exploitable
structural correspondence is a correspondence be-
tween two relations A (on representations) and B
(on real-world entities) such that a system S is sys-
tematically sensitive to A, and B is of significance
to S. Clearly, an LLM (S) is sensitive to relations
(A) between representations. An LLM is system-
atically sensitive to A and relies on it for infer-
ence (Garneau et al., 2021; Merullo et al., 2023b),
and its success turns on its ability to make infer-
ences about B. Structural correspondences between
LLMs and perceptual or cognitive spaces are, on
Shea’s definition, exploitable. Exploitable struc-
tural correspondences need to satisfy one more
condition to be sufficient for semantic understand-
ing: The structural correspondences need to play an
unmediated role in explaining the system’s perfor-
mance. This is an empirical question about LLMs,

11P3 proponents can refute Newman’s objection, since iso-
morphisms between the representations of LLMs and what
they refer to, are non-trivial, because the metric (cosine dis-
tance) is fixed. Moreover, world models in LLMs are ho-
momorphisms at best, so they do not inherit the problems of
isomorphisms discussed elsewhere in the literature. Newman’s
objection generally does not apply to world models, since, by
definition, they are graphs over interpretable relations.

and one that, fortunately, already has been inves-
tigated. Several studies have shown that the more
structurally similar LLMs are to each other across
languages, or to knowledge bases, the better they
perform on downstream tasks (Vulić et al., 2020;
Garneau et al., 2021; Merullo et al., 2023b). To
Shea, such ‘unmediated explanatory structural cor-
respondence is a sufficient condition for having
content’ (exhibiting semantic understanding). Shea
(2018) discusses how the unmediated explanatory
functions form a proper subset of the exploitable
ones; exploitability is too loose a criterion and in-
stead proposes that ‘unmediated explanatory‘ struc-
tural similarity can facilitate referential semantics.
Unmediated explanatory functions include, but are
not limited to, proper functions. One challenge for
Shea, pointed out by Egan (2020), is that the def-
inition of what is unmediated explanatory, seems
pragmatic, appealing to Occam-like simplicity. For
Egan, it is hard to see how pragmatic considerations
can play a content-determining role in a naturalistic
theory of representation. Egan therefore finds the
set of unmediated explanatory functions too per-
missive, preferring instead proper functions. On his
view, there are too many objective correlations that
might be appealed to in framing causal-explanatory
generalizations of A’s performing the task function.
We derive the following empirical test:

P2-P3 TEST A has referential semantics
(falsifying P2) if A has induced a world
model that is sufficiently rich to align the
two, by virtue of unmediated explanatory
or proper functions.

Saying LLMs can establish reference through struc-
tural similarity by virtue of proper functions, im-
plies two things (Rubner, 2022), namely, that
LLMs can establish reference by structural sim-
ilarity that is a result of the function of LLMs, not
a mere accident; and LLMs can malfunction with
severe performance costs, when structural similar-
ity is disturbed. Cosine distances in LLM vector
spaces are directly used by LLMs to draw infer-
ences. Not just nearest neighbor inferences, but
also to draw analogies. Such inferences have been
demonstrated multiple times (Merullo et al., 2023b;
Wijesiriwardene et al., 2023, 2024). Merullo et al.
(2023b) showed that LLMs use simple vector arith-
metic in order to encode abstract relations. That
is, they use vector offset to make inferences, es-
pecially in out-of-distribution contexts. What this
means, is that LLMs make active use of their vector
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spaces, and the properties that make these vector
spaces (nearest neighbor) graph isomorphic to per-
ceptual and physical spaces. Well, but the proper
function of LLMs is to predict the next word, no?
In a sense, yes. But the representations induced are
a direct result of this objective,12 and their structure
serves next-word prediction directly. Finally, struc-
tural similarity with the physical-social does indeed
seem to track performance (Vulić et al., 2020; Gar-
neau et al., 2021; Merullo et al., 2023b).

P4 and P5: Privileged Chatbots? The Teleo-
logical Argument has led many philosophers to
explore the Kripkean idea that LLM understanding
can be grounded in participation in communicative
chains (Cappelen and Dever, 2021; Butlin, 2021;
Mollo and Millière, 2023; Mandelkern and Linzen,
2023). Some of these philosophers (Butlin, 2021;
Mollo and Millière, 2023) have come to the con-
clusion that only chatbots can be said to instanti-
ate understanding on such grounds. Butlin (2021)
gives chatbots special status: ‘this mechanism will
work for chatbots, because they will rely very heav-
ily on what their interlocutors say to learn about
what is going on in particular parts of the world.’
The human feedback in conversation (participation
in communicative chains) grounds understanding.
Butlin’s argument for attributing understanding to
chatbots is that chatbots satisfy three criteria of
understanding. The first criterion is ‘deference to
experts’. If a chatbot learns that experts do not
take certain entities to fall under a concept, it must
be disposed to stop representing those entities as
falling under that concept. The second criterion
is ‘apparent de jure coreference’, which falls out
of linguistic generalization; the third criterion is
covariation. However, LLMs also seem to satisfy
all three criteria. When experts are generalized to
include authors, LLMs are also trained to ‘stop rep-
resenting [inappropriate] entities as falling under
[a] concept’, derive de jure coreference by gen-
eralization and compositionality, and learn from
correlational information.

The idea that only chatbots have referential se-
mantics, also quickly leads to absurd conclusions.
To see this, remember how chatbots are fine-tuned
LLMs. Consider the scenario in which the original
LLM works really well on dialogue, and no updates

12LLMs induce world models because they do not have
enough memory to memorize their training data. If your only
job in life is to memorize data, but you do not have enough
memory to do so, you need to become good at guessing. That’s
what a world model is for.

are made to its parameters during the fine-tuning
stage. Call the original LLM A and the fine-tuned
(but fully identical) chatbot B. Butlin now claims
that B understands language, but A does not. This
is in spite of the fact that they are fully identical, pa-
rameter to parameter, connections to connections.
Imagine next that someone puts A and B on Github,
HuggingFace or another website for LLM sharing.
Copies of A and B are soon abundant, but only
some (namely the copies of B) can be said to un-
derstand language. Other researchers now make
copies of the copies, some of which understand
language, some of which do not. Even if all these
models are identical (to the decimal), only some
of them understand language. This, to me, seems
absurd. The P4-P5 test would be:

P4-P5 TEST Only chatbots have exter-
nalist referential semantics (falsifying
P4) iff there exist an LLM that is not
a chatbot and has referential semantics
by virtue of external factors.

but as our thought experiment shows, such a test
becomes circular: On P5, an LLM is or is not a
chatbot by virtue of the same external factors in
virtue of which it would have referential semantics.

P3 and P4: Too Permissive? Too Inexpressive?
Cappelen and Dever (2021) call for an external-
ist account of reference, yet do not discuss LLMs
explicitly. They list possible external factors con-
tributing meaning to a risk estimation model: (i) a
generic initial neural net is given samples from a
large pool of training cases; (ii) each training case
has been hand-coded (‘high risk’ versus ‘low risk’),
for example by the programmers; (iii) the AI’s out-
put for the training case is then compared to the
hand coding using some scoring function evaluat-
ing how well the AI classified the training case;
(iv) that score is then used to update the weightings
of the node connections in the neural net. Exter-
nal factors generally come in four flavors: training
data, developers and annotators, model selection
and evaluation, and human agents. In LLMs, there
are no human agents to learn from; in chatbots,
there are. Human agents are not a necessary con-
dition for understanding on P4, however. If being
part of a casual chain of training with supervision
from a programmer or an author is sufficient to
understand the meaning of the labels provided by
those, irrespectively of what is learned, we are left
with a very permissive criterion for machine un-
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derstanding: Basically, any LLM trained in this
way for a sufficient amount of time can be said to
understand language. Many things can go wrong
when training an LLM. Hyper-parameters can be
set poorly, training may suffer from vanishing gra-
dients, the model may get stuck in a poor local
optimum, and some architectures may suffer mode
collapse. None of this seems to depend on how
much they were part of the relevant causal chain
during training. Or consider two LLMs A and B
trained on exactly the same data, but initialized dif-
ferently. Both A and B will be able to predict that
the next word in ‘Benny slams the ____’ is ‘door’,
but whereas A (correctly) relies on the association
between slam and door, B (wrongly) relies on an
association between Benny and door. If this was
the only door-slamming example in the training
data, we would have no (externalist) reason to say
that A understands language better than B, even
if this intuitively seems to be the case. If being
causally connected to text is sufficient for under-
standing, any LLM can be said to understand. This
would also hold for an LLM that has only learned
to memorize the training data, without any form of
generalization, or a model that has learned nothing
but the fact that dots are often followed by capital
letters. Such a notion of understanding does not
track our intuitions about understanding systems.

A related argument against P4 externalism is that
being causally connected to external factors, may
exert very limited influence. Much of the training
data has little influence on the final model, and
many properties of the developers and the eval-
uation methods may have little to no impact ei-
ther. Will P4 externalism nevertheless force us to
keep all this information around because it grounds
semantic understanding? Consider the following
thought experiment to see what is at stake here: A
copy A’ of an LLM A is value-aligned (fine-tuned)
by one provider to be non-sexist, while another
copy of A called A” is value-aligned by another
provider to be socialist. For various reasons, the
two value-aligned modifications of A – A’ and A”
– turn out to be identical. Would identical output
from the two models now mean different things?

Proponents of P4-5 may brush this off as a case
of external factors not exerting causal influence on
A’. This, however, leads to apparent absurdity. If A’
does not exhibit semantic understanding, because
the external factors exerted insufficient influence on
A’, it means there are models A’ and A” that differ
in infinitely small ways (say in one parameter out

of a billion, and only on the 100th decimal) such
that A” has semantic understanding, but A’ does
not.

We turn to a third challenge to P4 externalism:
LLMs – like other neural networks – are pseudo-
randomly initialized (Aggarwal, 2018), and learn-
ing amounts to using data to identify a local op-
timum relative to the network’s pseudo-randomly
chosen initial state. LLMs are not guaranteed to
converge to a global optimum. In the absence of
strong convergence guarantees, a network’s final
state thus depends on its initial state. If a system’s
state depends on pseudo-random initialization, it
is under-determined by external factors. I call this
argument the Initialization Argument and discuss
it in more detail in the Appendix A.2.

Whether co-occurrence statistics is sufficient
to reliably induce the privileged status of deictic
expressions, say, is an open, empirical question.
Given the jury is still out, it seems that P6 has
an upper hand over P3 in leaving the door open
for external factors exerting influence on semantic
understanding in LLMs.

The question is what factors semantic under-
standing turns on. If the set of appropriate fac-
tors are exclusively internal, e.g,. grammars, world
models, projections, this would suggest P3 is on
the right track; if the factors are mostly external, P3
is not. P6 is the more plausible position if we find
both sets of factors contribute. We suggested above
that this is likely to be the case, and we therefore
feel we have good reason to take P6 seriously.

P3-P4 TEST A has referential semantics
by virtue of external factors only (falsi-
fying P3) if A has referential semantics,
but no explanatory world model.

What it means to have an explanatory world
model can be defined more rigorously; see the
idea of unmediated exploitable structural corre-
spondence in Shea (2018) for one such attempt.
One common alternative is to rely on proper func-
tions (Egan, 2020), but this is complicated by the
ambiguity of that concept.13

13The proper function of humans is taken to be set of adap-
tive traits passed on by our genome (Griffiths, 1993; Matthew-
son, 2020). The proper function of artefacts is what they
were designed for (Preston, 1998). This creates an ambiguity
around LLMs, which are trained with a specific objective func-
tion (next token prediction), but are also selected (in a more
evolutionary sense) because they have certain capabilities.
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4 Conclusion

We identified positions on LLMs and semantics:
P1–P5. We claimed there are reasons to prefer P2
over P1 (world knowledge in LLMs); and reasons
to prefer P3 over P2 (non-trivial structural similar-
ities with referent spaces). We showed P5 to be
inconsistent, and that there are some, though not
strong, reasons to prefer P4 over P3. Finally, we in-
troduced a sixth, more agnostic position, P6, which
permits referential semantics by virtue of both in-
ternal and external factors. We did not discuss all
(10) combinations of positions, e.g., P2-P4.14

Limitations

The paper has surveyed positions at the interface of
language modeling and philosophy of mind. The
relevant publications are scattered across technical
and non-technical venues, and we may of course
have missed important ones. It was not our inten-
tion to cover all publications, but most, if not all,
positions. Our discussion is grounded in a relatively
uncontroversial theory of linguistic semantics, but
of course, alternatives exist.
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A Appendix

A.1 Converging Representations
Unsupervised machine translation is a type of ma-
chine translation that does not rely on human trans-
lations to train translation models. Instead, they
rely on unsupervised alignment of representations
from neural LLMs, which provides a basis for then
learning a translation model from monolingual cor-
pora in the source and target languages, letting
translation models in opposite directions bootstrap
each other.

Unsupervised alignment was preceded by
weakly supervised alignment. The idea that given
just a small number of translation pairs, say the
numbers from 1–50 or just a few dozen loan words,
was sufficient to obtain alignments from which you
could learn bilingual dictionaries or word-by-word
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translation models (later to be improved by boot-
strapping). How would this be possible? The short
answer is: If the geometries of the word embedding
spaces were sufficiently similar. If the geometries
were perfectly isomorphic, for example, it would re-
quire only a small set of translation pairs to induce
a perfect alignment, just like in point set registra-
tion in computer vision.

The move from weak supervision to no super-
vision was first made possible by generative ad-
versarial networks (Goodfellow et al., 2014). The
basic idea behind generative adversarial networks
is to train two neural networks: a generator and a
discriminator. The generator is trained to create
so-called fake synthetic samples that are as similar
as possible to real (actual) samples from a given
dataset, while the discriminator is trained to dis-
tinguish between real and fake samples. The two
networks are trained together in a process known
as adversarial training, where they compete against
each other to improve their performance.

The two-player training algorithm of generative
adversarial networks works as follows: (i) Initial-
ize the generator and discriminator networks with
random weights. (ii) Train the discriminator on a
batch of real samples from the dataset and a batch
of fake samples generated by the generator. The
discriminator is trained to output a high probability
for real samples and a low probability for fake sam-
ples. (iii) Train the generator to fool the discrimi-
nator by generating samples that the discriminator
classifies as real. The generator is trained to min-
imize the discriminator’s output on the generated
samples. (iv) Repeat steps 2 and 3 for a number
of epochs, gradually increasing the complexity of
the generated samples as the generator learns to
produce more realistic outputs. The training pro-
cess continues until the discriminator can no longer
distinguish between real and fake samples, and the
generator produces samples that are indistinguish-
able from real samples. At this point, the generative
adversarial network has learned to generate realis-
tic samples that capture the statistical structure of
the dataset.

Li et al. (2023b) reused techniques for unsuper-
vised machine translation to investigate whether
unsupervised cross-modal alignment from vision
to text is possible. The two sets of models rely
on very different neural architectures, disjoint data,
and orthogonal task definitions, but nevertheless
exhibited structural similarity enabling robust align-
ment with very little supervision.

Knowledge graph embeddings are numerical rep-
resentations of entities and relationships in a knowl-
edge graph. A knowledge graph is a structured rep-
resentation of knowledge that captures information
about entities (such as people, places, and things)
and their relationships. Knowledge graph embed-
dings aim to encode the information contained in
a knowledge graph into low-dimensional contin-
uous vectors or embeddings. These embeddings
capture the semantic meaning and contextual re-
lationships between entities and relationships in
the graph and can be directly compared to repre-
sentations in LLMs. Recent work (Christiansen
et al., 2023) has shown LLMs also converge to-
ward high levels of structural similarity with such
representations.

Similar experiments can be done for neural re-
sponse measurements and LLM representations.
Brain decoding refers to attempts to do this in
the direction from brain scans to LLMs. Sev-
eral studies have been presented in support of the
idea that linear mappings enable brain decoding
(Karamolegkou et al., 2023). While previous stud-
ies are somewhat compromised by poor perfor-
mance metrics, the evidence accumulated across
studies in recent years suggest non-trivial similari-
ties between activation patterns and LLM represen-
tations.

The picture that emerges is this: LLMs converge
– as they grow bigger and better – toward repre-
sentations that can relatively easily be aligned with
representations found elsewhere: in LLMs for other
languages, in computer vision models, in knowl-
edge graphs, and in neural response measurements.
Now what do the representations of all these sys-
tems have in common? They are representations of
the world for us (Huh et al., 2024).

A.2 The Initialization Argument

Let us first try to flesh out the Initialization Ar-
gument a bit. The first premise, which we take
for granted, is that random initialization is part of
training an LLM (or, more generally, a deep neural
network). This is simply common practice (Aggar-
wal, 2018). The second premise is that the random
initialization is not completely determined by exter-
nal factors. This follows directly from the fact that
the parameters are determined in an internal pro-
cess from a pseudo-random number that depends
(in unpredictable ways) on a single, manually spec-
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ified seed value.15 The third premise is that the
random initialization has impact on the network’s
final state. This premise is not immediately obvi-
ous, and we return to it in a bit. We then take it that
it holds in general that if A is part of a process B (I
call this proposition ϕ1), and A is not completely
determined by a set of factors F (proposition ϕ2),
then B is not completely determined by a set of fac-
tors F (proposition ψ). This follows from the fact
that the property of being ‘in part determined by’ is
inherited by processes from their subprocesses. In
sum, the three premises are: (1) Training an LLM
begins with random initialization. (2) Random ini-
tialization is under-determined by external factors.
(3) Random initialization has causal influence on
the final model state. Here’s an auxiliary premise
we take for granted: If A is part of a process B (ϕ1),
and A is not completely determined by a set of
factors F (ϕ2), then B is not completely determined
by a set of factors F (ψ). The first premise means
we can replace A with random initialization and
B with the process of training an LLM. The first
conjunct ϕ1 is now our first premise. The second
and third premises mean we can replace F with
external factors, to obtain ϕ2, saying that random
initialization is not determined by external factors.
Our principle now tells us: ϕ1∧ϕ2 → ψ, it now fol-
lows that the training of an LLM is not completely
determined by external factors. This shows that if
the three premises (1–3) are true, a purely external-
ist account of LLMs will not provide a complete
and adequate description.

One may respond that while the training of an
LLM may not be completely determined by exter-
nal factors, maybe its final state is. In other words,
one may question our third premise. This premise
is not a priori true. If the initialization is immate-
rial, and the convergence guarantees of the training
procedure meant we always would end up with the
same network, regardless of how it was initialized,
this would, for now, vindicate a pure externalist ac-
count. Unfortunately (for such an account), LLM
training is very sensitive to such initialization. The
reason for this is that the local optimization algo-
rithms used to train LLMs in complex manifolds,
only guarantee convergence to local optima, not

15A die-hard externalist could argue that both the random
number generator and the manually defined seed number are
part of the relevant causal claim. If this is a bullet external-
ists are willing to bite, the Initilization Argument fails as an
argument against externalism. It is unclear, however, what
explanatory roles causal chains that include pseudo-random
generators, can play.

global ones. If all you know is how to climb to
the nearest mountain top, it matters a great deal for
where you end up, where in the Himalayas you are
dropped off. In the same way, the final state of an
LLM depends very much on how it is initialized.
A better response, perhaps, is that the final states,
while different across different initializations, need
not be relevantly different. There is some work
suggesting that models trained with different ran-
dom seeds very often end up learning structurally
similar representations of the data (Hartmann et al.,
2018). The externalist could cite such results and
argue that to the extent reference is fixed by second-
order similarities, models over different seeds are
not relevantly different. Ironically, the externalist
is vindicated by internalist tools. The sensitivity to
random initialization does have (other) profound
effects, however. K and Søgaard (2021), for ex-
ample, report that the sensitivity of leave-one-out
and influence function estimates of training data in-
fluence on LLMs is extremely sensitive to random
initialization. Specifically, the (average) Pearson
correlation across the influence estimates of two
randomly initialized models, trained in exactly the
same way, is very small (2–4%).

Could externalists not argue – in response to the
Initialization Argument – that random influence is
random, and therefore beyond the reach of both
internalists and externalists? Such a response, how-
ever, would be missing the point. For the externalist
who wants to explain how a speaker fixes the refer-
ence of ‘Bertrand Russell’, or whether an artificial
intelligence system relies on a spurious correlation
or not, the random influence is invisible. The ran-
dom influence is internal or leaves only an internal
footprint. For the internalist, examining the inter-
nal representations of the speaker or system, the
random influence is directly accessible.16

16Other problems with externalist accounts of LLM under-
standing include tokenization. The challenge with tokeniza-
tion, previously discussed in Baggio and Murphy (2024), is
that it does not necessarily track the things that have causal
histories in language: Tokens, they say, do not necessarily
correspond to the kinds of expressions or parts of expressions
that can have causal histories, such as characters, morphemes,
and ‘words’ [. . . ] (p. 4).
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