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Abstract

Large language models excel at problem-
solving but often struggle with complex rea-
soning and factual accuracy. While chain-
of-thought and retrieval-augmented generation
help break down problems and retrieve knowl-
edge, they still falter on challenging tasks like
competitive programming due to frequent rea-
soning errors and irrelevant retrieval. To ad-
dress this, we introduce Critic-guided planning
with Retrieval-augmentation, CR-Planner, a
novel framework that leverages fine-tuned critic
models to guide both reasoning and retrieval
processes through planning. CR-Planner iter-
atively selects and executes sub-goals, guided
by critic models. A sub-goal critic identifies
promising sub-goals from reasoning, query gen-
eration, and retrieval, while an execution critic
evaluates outputs of sub-goal executions. We
employ Monte Carlo Tree Search to collect data
for critic training, allowing systematic explo-
ration of action sequences and effective nav-
igation toward the final answer. We evaluate
CR-Planner on challenging domain-knowledge-
intensive and reasoning-heavy tasks, includ-
ing competitive programming, theorem-driven
math reasoning, and complex domain retrieval
problems. It significantly outperforms base-
lines, demonstrating effectiveness in both rea-
soning and retrieval. Our code is available at
https://github.com/xingxuanli/CR-Planner.

1 Introduction

State-of-the-art large language models (LLMs),
while demonstrating remarkable problem-solving
capabilities (OpenAl, 2023; Chen et al., 2024;
Zhang et al., 2025), still face two key chal-
lenges: reasoning for complex tasks (Huang et al.,
2024) and domain-specific knowledge (Zhao et al.,
2023a). Existing approaches (Yao et al., 2023b;
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Zhao et al., 2023b; Li et al.,, 2024) seek to
harness the strengths of both chain-of-thought
(CoT) reasoning (Wei et al., 2022) and retrieval-
augmented generation (RAG) (Lewis et al., 2020)
on knowledge-intensive complex reasoning prob-
lems. These methods can potentially apply RAG
at each reasoning step, enabling iterative retrieval
and reasoning. Insights from reasoning improve
retrieval relevance, while retrieved knowledge
enhances the factuality of subsequent reasoning.
Techniques like Self-RAG (Asai et al., 2024) and
its variants (Yan et al., 2024; Islam et al., 2024)
further refine this integration by fine-tuning LLMs
to decide when and how to retrieve, using special
reflection tokens.

While these methods show promise, they are
generally limited to simpler reasoning tasks, such
as answering two-hop questions like, “What year
was the Argentine actor who directed El Tio Dis-
parate born?” They often fail to address domain-
knowledge-intensive and reasoning-heavy prob-
lems, such as competitive programming problems
(Shi et al., 2024), which require advanced algo-
rithmic knowledge and strong reasoning capability.
Two key issues, illustrated in Figure 1 (a), con-
tribute to these failures. The first is reasoning
error: for instance, when solving “Given a string
s, find the length of the longest substring without
repeating characters in optimal time complexity,” a
CoT approach may incorrectly generate that “The
optimal time complexity is O(n?),” leading to cas-
cading errors and an incorrect final answer. The
second is retrieving error, where flawed reasoning
generates poor search queries or selects incorrect
retrieved documents, grounding subsequent reason-
ing on erroneous information.

To address these errors, we present critic-
guided planning with retrieval-augmentation (CR-
Planner), a framework designed to tackle reasoning-
heavy problems requiring extensive domain knowl-
edge. CR-Planner systematically plans both rea-

25589

Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 25589-25604

July 27 - August 1, 2025 ©2025 Association for Computational Linguistics


https://github.com/xingxuanli/CR-Planner

Question

(b) Critic-Guided Planning with Retrieval-Augmentation (CR-Planner)

Given a string s, find the length of the longest substring without
repeating characters in optimal time complexity.

(a) Chain of Thought & Retrieval-Augmented Generation
étep 1 (Reason): The optimal time complexity is O(n?) \

Step 2 (Retrieve): A similar task from the textbook solved in
0O(n?) complexity: Problem 2707: Extra characters in a string.
Given a string s and a dictionary of words, our goal is to break s
into non-overlapping substring, each of which should be present
in the dictionary. Any extra characters in s that do not belong to
any of the substrings should be minimized. We need to determine
the minimum number of extra characters left over when breaking
s optimally.

The problem can be solved in O(n?) as follows:

def (s: str, dictionary: set) -> int:
n = len(s)
dp = [float('inf')] * (n + 1)
dp[n] = ©

(.-

Step 3 (Reason): Here is how | plan to solve the task: Iterate
through string characters (outer loop); Start a new substring and
track unique characters using a set; Add characters until finding a
repeat; Update the max length if current is longer; Repeat for
each starting position.

Step 4 (Reason): Below is the code:
def (s: str) -> int:
n, maxLength = len(s), ©

for i in range(n):
charSet, currentLength = set(), @ def
for j in range(i, n):
if s[j] not in charSet:
charSet.add(s[j])
currentLength += 1 °
maxLength = max(maxLength, currentLength)
else:

Break
k return maxLength /

Step 1 (Sub-Goal Selection): g9(Reason)=11.2; g%(GenQuery)=2.7; g9(Retrieve)=-11.6.

Step 2 (Execution Selection): g°.,, ... (Rationale 1: The optimal time complexity is
0O(n?)=2.1; G°anonac(RatioNale 2: The optimal time complexity is O(n))=13.1;
9°%anonac(Rationale 3: The optimal time complexity is O(n*))=-4.6.

Step 3 (Sub-Goal Selection): g9(Reason)=0.7; g9(GenQuery)=10.9; g9(Retrieve)=-12.1.

Step 4 (Execution Selection): g°, . (Query 1: Given a string s, find the length of the
longest substring without repeating characters in optimal time complexity)=-5.6;
9°uery(Query 2: Sliding window technique string problems)=1.1; g°,,..,(Query 3: Max
length substring with unique characters with O(n) complexity)=13.4.

Step 5 (Sub-Goal Selection): g9(Reason)=-14.2; g9(GenQuery)=-6.8; g%(Retrieve)=10.1.

Step 6 (Execution Selection): g°
without repeating characters are ...)=0.2; g°,,.(Document 2: The complexity of this is
definitely O(n) since they are only moving forward together through the string ...)=0.1;
g°,0c(Document 3: The intuition behind the solution is to iteratively find the longest
substring without repeating characters by maintaining a sliding window approach...)=9.2.

Step 7 (Sub-Goal Selection): g9(Reason)=12.2; g9(GenQuery)=0.4; g¥(Retrieve)=-3.3.

Step 8 (Execution Selection): g°.,, ... .(Rationale 1: The retrieved document is not
sufficient for problem solving. Therefore, a second-level retrieval is required ...)=0.1;
9°ranonacc(Rationale 2: Based on the optimal time complexity and retrieved document, here
is how I plan to solve the task ...)=15.2; g%, v (Rationale 3: Here is the code ...)=-11.1.

(More Steps ...)

Step n (Execution Selection): g°., ... .(Rationale 1: ...)=-5.3; g°.,.,va(Rationale 2:
...)=0.6; 9°:1ronac(RAtIONAlE 3: Here is the code:

n, charSet, left, maxLength = len(s), set(), 0, ©
for right in range(n):

while s[right] in charSet:

charSet.add(s[right])
maxLength = max(maxLength, right -
return maxLength )=10.1. )

soclDocument 1: The longest strings without substring

(s: str) -> int:

charSet.remove(s[left]) @
left += 1

left + 1)

Figure 1: Comparison between (a) chain-of-thought reasoning (Wei et al., 2022) with retrieval-augmented generation
(Lewis et al., 2020) and (b) critic-guided planning with retrieval-augmentation or CR-Planner (this work). g(-)
indicates the critic model (or value function) that assigns a reward (or value) to an action (see Equation 2). Texts in
(b) highlighted in green are actions selected at each step. For succinct presentation, only pivotal steps are shown in

the figure.

soning and retrieval processes with specially fine-
tuned critic models. An example of CR-Planner
in action is illustrated in Figure 1 (b). CR-Planner
begins with Sub-Goal Selection, where it selects
a sub-goal from three options: REASON (gener-
ating rationales), GENQUERY (generating search
queries), and RETRIEVE (retrieving documents),
based on reward scores estimated by a critic model,
the sub-goal critic. After choosing the sub-goal
of REASON in Step 1, CR-Planner proceeds to Ex-
ecution Selection, sampling candidate rationales
and using another critic model, the execution critic
to select the optimal rationale, which in this case
is “The optimal time complexity is O(n).” The
framework alternates between sub-goal and execu-
tion selection until the final answer is reached, with
each step guided by the appropriate critic model.
CR-Planner integrates a large general generator
model (e.g., GPT-4) with small critic models (e.g.,
Llama-3-8B) fine-tuned for domain-specific cri-
tiquing. When executing a sub-goal, the generator

model generates multiple candidates (e.g., ratio-
nales or search queries), and the execution critic
(specially trained for each candidate type) selects
the most promising option. This design leverages
the generation strengths of large LLMs while keep-
ing the critic models efficient and trainable with
domain-specific (critiquing) knowledge. To opti-
mize planning performance for sub-goal and exe-
cution selection in each domain, critic models are
trained separately using reasoning and retrieval tra-
jectories labeled with step-wise rewards. Given the
scarcity and cost of human-annotated data (Light-
man et al., 2024), we utilize Monte Carlo Tree
Search (MCTYS) (Browne et al., 2012) to simulate
trajectories, estimate long-term rewards, and prop-
agate them back through steps. This approach effi-
ciently trains the critic models to guide reasoning
and retrieval at each step.

In summary, our key contributions are: (1)
We introduce CR-Planner, a novel framework de-
signed to tackle domain-knowledge-intensive and
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reasoning-heavy problems by employing specially
fine-tuned critic models that guide both reasoning
and retrieval processes through planning; (2) We
propose using MCTS to effectively collect training
data for the critic models, enhancing their abil-
ity to estimate the long-term impact of an action.
(3) We perform experiments on challenging tasks
that require domain knowledge and complex rea-
soning, including competitive programming, math
reasoning, and complex retrieval. CR-Planner out-
performs the baseline by 10.06% on average.

2 Related Work

LLMs exhibit strong reasoning capabilities, show-
ing promising performance on most logical rea-
soning datasets (Liu et al., 2023; Qin et al.,
2023). However, they often struggle with com-
plex tasks that require structured thinking or plan-
ning (Huang and Chang, 2023), prompting re-
searchers to develop more sophisticated reason-
ing schemes. CoT (Wei et al., 2022) improves
reasoning by prompting LLMs to articulate step-
by-step processes. Tree-of-Thought (Yao et al.,
2023a) then generalizes further by breaking down a
CoT into coherent units of “thoughts”, enabling the
LLM to consider multiple reasoning paths and self-
evaluate. To further improve LLMs in planning-
based reasoning, process supervision has shown
promise. RAP (Lightman et al., 2024) uses a world
model to estimate future rewards of reasoning steps,
providing step-wise guidance for reasoning pro-
cesses. Jiao et al. (2024) learns planning-based
reasoning through direct preference optimization
(DPO) (Rafailov et al., 2023) on collected trajec-
tories, which are ranked according to synthesized
process rewards. As a result, tuned 7B models
can surpass GPT-3.5-Turbo. However, this method
requires training the base model, which limits its
applicability to larger, closed-source models. In
comparison, CR-Planner trains external critic mod-
els, offering flexibility for use with any base model.

Besides reasoning improvements, RAG effec-
tively reduces hallucinations (Huang et al., 2023)
by introducing external knowledge. Specifically,
the RAG process involves 3 sub-tasks: pre-retrieval
analysis, query generation, and document selection.
Currently, most methods attempt to optimize the
subtasks separately. Self-ask (Press et al., 2023)
optimizes pre-retrieval analysis by breaking down
the original problem into sub-problems. Chain-
of-Knowledge (Li et al., 2024) rewrites natural-

language questions to database queries for more
precise retrieval with structured knowledge. Re-
Plug (Shi et al., 2023) improves document selec-
tion with a fine-tuned retriever. As these methods
optimize sub-tasks locally, the single-task improve-
ments may not constitute the globally optimal so-
lution. In comparison, CR-Planner trains the critic
model by learning the rewards of each individual
action for overall performance.

3 Critic-Guided Planning with
Retrieval-Augmentation

We introduce the critic-guided planning with
retrieval-augmentation framework (CR-Planner) to
address challenging tasks that are both domain-
knowledge-intensive and reasoning-heavy. As
shown in Figure 2, CR-Planner operates with two
key components during inference: (1) Sub-Goal
Selection: Given the current state, it employs a sub-
goal critic model to determine the sub-goal among
REASON, GENQUERY, and RETRIEVE that leads
towards the desired answer. (2) Execution Selec-
tion: Upon selecting a sub-goal, CR-Planner un-
dertakes multiple possible executions to realize the
sub-goal (e.g., generating multiple search queries
for GENQUERY). Then, an execution critic model
specifically designed to assess the executions for
the sub-goal is employed to select the optimal exe-
cution among these candidates. In this process, a
general generator model collaborates with multi-
ple specialized critic models, leveraging the gen-
erator’s strengths for initial plan generation while
relying on the fine-tuned critics to guide optimal
routing. To ensure the training data for the critic
models is comprehensive and represents global re-
ward information, we employ MCTS to collect the
training data.

3.1 Problem Formulation

We define the associated planning environment of
CR-Planner as a Markov Decision Process (MDP)
represented by the tuple (S, As, P, R, T), where:

» S represents the state space. Specifically, the
state at timestamp ¢, denoted by the random vari-
able s;, comprises an action-observation trajec-
tory history (o, ag, ..., a;—1, o), where a;_1 is
the action taken at timestep ¢ — 1, and oy is the ob-
servation made after. Observation o can be REA-
SON, GENQUERY, or RETRIEVE in sub-goal se-
lection stage, and RATIONALE, QUERY, or DOC
in execution selection stage. Additionally, a state
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Question Legend
Root node S Simulation score /hSimulation @ Critic Model @ Generator
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Given a string s, find the length of the longest substring without
repeating characters in optimal time complexity.
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Figure 2: The retrieval-augmented and critic-guided planning (CR-Planner) framework. The figure illustrates
training data collection via MCTS, critic model training, and inference. For succinct presentation, SUBGOAL
observations (REASON, GENQUERY, and RETRIEVE) are shown as labeled rectangles and EXECUTION observations
(RATIONALE, QUERY, and DOC) as labeled circles. A state s; includes all preceding nodes (observations) and
arrows (actions) up to the last node.

is named after its last observation, e.g., RATIO- more straightforward and done via a rule-based

NALE state s; means o; is a RATIONALE. function f,¢(-), e.g., selecting reasoning action
» A, represents the actions available at each state. transits to a REASON state.

For example, the actions available at the sub-goal ¢ The reward function R (s, a) specifies the ex-

selection stage, i.e., at the Root state or after ob- pected reward received after taking an action ay

serving an outcome of an execution selection are: at state s;. In our context, fine-tuned critic mod-

reasoning, querying, and retrieving. The possible
actions available at the execution selection stage
arise from the sampling for the corresponding
sub-goal (i.e., temperature sampling for REA-
SON and GENQUERY, and top-k candidates for
RETRIEVE). For example, Steps 1 and 2 in Fig-
ure 1 (b) illustrate the REASON and RATIONALE
observations generated following the sub-goal
selection and execution selection stages, respec-
tively.

* The state transition P defines how the states
evolve after an action is taken. In our context,
state transitions are determined and handled by
different functions depending on the current state.
During the execution selection stage, a REASON
or GENQUERY state transits to the respective RA-
TIONALE or QUERY execution outcomes via the
distribution defined by a large general generator
model fgen(-). Similarly, a RETRIEVE state tran-
sits to a DOC state via a retriever fre(+). Dur-
ing the sub-goal selection stage, the transition is

els estimate the rewards and guide the decision-
making process by encouraging actions that con-
tribute the most towards solving the MDP. Details
of the critic models are provided in Section 3.2.

* Lastly, T" represents the maximum number of
steps that can occur within the MDP.

Solving the MDP requires generating an op-
timal plan in the form of a trajectory: 7x =
(80, @0,y -+vs St, Aty .oy ST—1,a7-1, ST) that maxi-
mizes the total expected rewards. !

3.2 Inference of CR-Planner

CR-Planner employs critic models at each time
step to guide the decision-making process. Specifi-
cally, at time step ¢, given the current state s;, the
critic model g assesses the available actions A,
and helps select an action a; that maximizes the
expected reward.

Details of state types and action spaces are in Appendix
E Table 9.
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Action selection using the critic models. At
timestamp ¢, the policy model 7 determines the
next action as:

a; = m(se) = arg arélii R(st,a). 1

The action space A, varies depending on s;. As
previously discussed in Section 3.1 and outlined in
Table 9, for a state in the sub-goal stage, the action
space leads to possible executions of that sub-goal,
while for a state in the execution stage, the action
space leads to the possible subsequent sub-goals.

R(s¢, a) is the expected reward when taking action
a in state s; and estimated by the critic models:

if s; = REASON state

if s; = GENQUERY state
if s; = RETRIEVE state
otherwise.

gEATIONALE(St7 a)a
gSUERY(St’ a)7
Iboc(st,a),
gg(sta a’)7

R(st,a) =

)
Specifically, distinct critic models are utilized for
different state types: ¢g9(-) is for determining the
next sub-goal at the current execution state (i.e.,
the inference Steps 1 in Figure 2), and ¢°(-) is
for evaluating different execution candidates at the
current sub-goal state (i.e., the inference Step 2 in
Figure 2). Additionally, according to the sub-goal
states, g°(-) has three variants gg yrionaLes 9OuEry>
and gp.. correspondingly evaluating rationales,
queries and the retrieved documents.
State transition with the selected action. Once

ay is determined and executed, the state is then
transited from s; to s¢11 = (8¢, at, 0¢41), where

fgen(sh at):
fretr(sh at)y
frule(sty at)7

if s; = RETRIEVE state
otherwise.

Ot4+1 —

(3)
As mentioned in Section 3.1, given the current
state s; and action a;, we employ three specific
functions to generate different types of outcomes.
The generator fze,(-) generates either a RATIO-
NALE or QUERY. The retriever fy s (-) outputs
a Doc. Last but not least, the rule-based func-
tion fy¢(+) outputs a SUBGOAL. The SUBGOAL
is a predefined natural language. For example, a
REASON thought is “The next step is to generate a
rationale”.

Termination conditions and the final answer.
This process continues until one of two conditions
is met. The process ends at step ¢ if the observation
o includes the complete answer. Otherwise, if ¢
equals 71" and o; does not contain the final answer,
an extra step occurs to force the model to conclude
the answer. In this case, a concluding answer is
generated using an LLM.

if s; = REASON or GENQUERY state

3.3 The Critic Models

The CR-Planner framework relies on critic models
to evaluate actions and guide sub-goal and execu-
tion selection. Accurate assessment of each ac-
tion’s contribution to the problem-solving process
is essential, making high-quality training data criti-
cal. To generate such data, we use MCTS, which
explores long-term impacts of actions while bal-
ancing exploration and exploitation. By simulating
diverse action-observation trajectories, MCTS cre-
ates a rich dataset, helping critic models distinguish
effective actions from suboptimal ones.

Collecting data via MCTS. As shown in Figure
2, MCTS consists of the four key steps: (1) Selec-
tion. Starting from the root state sg, the algorithm
selects child node (with observation) recursively
based on the Upper Confidence Bound (UCB1) that
balances exploration and exploitation. The UCB1

Inny
n;
v; 1s the cumulative rewards of o;, n; is the number
of times o; has been visited, and n, denotes the
number of visits to the parent thought of o;. This
process continues until it reaches a node that is not
fully expanded or a terminal node. (2) Expansion.
If the selected o; is not terminal and has unexplored
child nodes, MCTS expands the tree by adding one
or more of these unexplored child nodes. This rep-
resents exploring new actions available from the
current action space Ag,. (3) Simulation. From
the newly added observation, MCTS simulates a
playthrough to a terminal state by employing a gen-
erative model fgen () to generate the final answer
based on existing observations. This simulation es-
timates the potential outcome from the observation.
(4) Backpropagation. The result of the simula-
tion is then propagated back up the tree. Each
node along the path to the root updates its statistics,
including visit counts and total reward, which in-
forms future selection decisions by reflecting the
observed outcomes. For each data point in the train-
ing dataset, we run MCTS for NV steps and collect
pairwise data from the final state for each observa-
tion type. In particular, a chosen observation o; is
the one with the highest score, while a rejected ob-
servation o/, is one of the observations sharing the
same parent node but a lower score. For critic
model g§ vrionarp (), We collect DRATIONALE
{(OFATIONALE, 0i, O;) }’ Where OZRATIONALE rep_
resents previous RATIONALEs along the trajec-
tory before the current RATIONALE o;. It is

value for o; is computed as % +c where
1
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crucial to evaluate o; considering all prior ratio-
nales. The critic model g§ gy (+) uses DAERY =
{(oRATIONALE [, 01)...}, where oRATIONALE jg one
immediately preceding RATIONALE of QUERY o;.

For the critic model ¢§,.(), we have DP°¢ =
RATIONALE QUERY RATIONALE
{(o; » 04 i
are the immediately preceding RA-
TIONALE and QUERY of DOC o;. Lastly, the
SUBGOAL critic model g9(-) uses DSVBGOAL —
{(0, 0i,0})...}, where O; represents all previous
observations of any type along the trajectory.

,04,05)...}, where o

Training. For each of the collected training
datasets described above, we train a dedicated critic
model as shown in Figure 2. Following Burges et al.
(2005) and Ouyang et al. (2022), we employ pair-
wise ranking loss to optimize the parameters.

4 Experiments

4.1 Setup

Models. GPT-4 (gpt-40-2024-05-13) is uti-
lized as the black-box LLM for generation during
both inference and training data collection. We fine-
tune Skywork-Reward-Llama-3.1-8B (Skywork,
2024) with LoRA (Hu et al., 2021) as critic models,
leveraging its capability to score complex scenarios
like mathematics and coding. 2

Baselines. We compare CR-Planner with both
commonly used baselines and state-of-the-art meth-
ods to offer a comprehensive evaluation: (1) Stan-
dard prompting (Standard) (Ouyang et al., 2022),
which directly generates the answer. (2) Chain-of-
Thought (CoT) (Wei et al., 2022), which gener-
ates multiple rationales before the final answer to
enhance the models’ reasoning ability. (3) Reflex-
ion (Shinn et al., 2023), a framework uses linguis-
tic feedback to further improve models’ reason-
ing. (4) Standard retrieval-augmented genera-
tion (RAG) (Lewis et al., 2020), which retrieves
relevant knowledge based on the problem itself and
then lets the model to generate the final answer us-
ing both the problem and the retrieved knowledge.
(5) Chain-of-Knoweldge (CoK) (Li et al., 2024),
a state-of-the-art CoT-based framework designed
to enhance prediction accuracy by retrieving and
post-editing rationale at each step. All methods are
zero-shot by default unless otherwise specified. >

Details are in Appendix A.1.

3We exclude Self-RAG as a baseline because it requires
training the base model, which is not feasible in our setup.
This further highlights the flexibility of CR-Planner.

Method Bronze Silver Gold Platinum Overall
Standard 18.70 6.00 3.17 0.00 10.10
CoT 2195 8.00 4.76 0.00 12.38
RAG 17.07 4.00 1.59 0.00 8.47
CoK 1545 5.00 1.59 0.00 8.14
CR-Planner 26.02 10.00 14.29 14.29 17.59
Reflexion 23.58 9.00 4.76 0.00 13.36
Retrieval+Reflexion™ - - - 18.05
CR-Planner+Reflexion 34.15 16.00 14.29 14.29 22.80

Table 1: Pass@]1 performances on USACO. The Re-
trieval+Reflection™ result is from Shi et al. (2024).

4.2 Competitive Programming

USACO benchmark. Computing Olympiads re-
quire advanced algorithmic reasoning, problem-
solving skills, and efficient code generation, often
supplemented by retrieving knowledge from text-
books or similar problems. Following the baseline
methods outlined in the USACO benchmark (Shi
et al., 2024), we use both textbooks and a problem
bank as external knowledge sources. +

Results and observations. (1) CR-Planner out-
performs all baselines consistently. Table 1
presents the results for USACO using various
methods. CR-Planner significantly outperforms
all baseline methods, achieving a 7.49% improve-
ment in overall performance compared to standard
prompting. This highlights the effectiveness of
CR-Planner. (2) Reasoning-driven methods offer
limited improvements. We observe that reasoning-
driven methods like CoT and Reflexion do im-
prove the performances of the standard prompting
method on bronze, silver, and gold problems, reaf-
firming that intermediate rationales and critique-
based reasoning aid in solving reasoning tasks (Wei
et al., 2022; Shinn et al., 2023). However, the im-
provements are trivial, and these methods fail to
improve performance on platinum-level problems.
We attribute this to the model’s limited knowledge
of the tasks or the generation of faulty rationales
and critiques. (3) Faulty retrieval hinders per-
formance. We observe that both standard RAG
and CoK perform worse than the standard prompt-
ing method, consistent with the findings of Yao
et al. (2023b) and Shi et al. (2024). This decline
in performance can be attributed to the quality of
retrieval. As demonstrated in Figure 1, if the re-
trieved example is irrelevant to the original prob-
lem, it may mislead the model into generating an

*Details of USACO benchmark and external knowledge
are in Appendix B.1.
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Method ~ TheoremQA-Math StackBio  StackEcon Method USACO
Standard 39.81
‘E);r P Method nDCG@10 nDCG@10 Claude-3.5 912
Reflexion 40.29 BM25 19.20 14.90 CR-Planner w/ Claude-3.5  13.68
RAG 44.17 CoT 21.06 16.33
CoK 45.15 CoK 20.82 17.45 Llama-3.1 7.49
CR-Planner 53.40 CR-Planner 29.51 22.80 CR-Planner w/ Llama-3.1 10.10

Table 2: Results (accuracy) on

TheoremQA-Math. main retrieval.

incorrect answer. Additionally, we notice that CoK
performs worse than RAG due to its reliance on
multiple retrievals at individual steps, increasing
the likelihood of misleading information being in-
troduced and leading to a faulty final answer. (4)
CR-Planner improves harder problems. CR-
Planner notably boosts the performances on gold-
and platinum-level problems. As aforementioned,
while CoT offers minor improvements, it falls short
on more difficult problems, and retrieval can hinder
performance due to irrelevant knowledge. In con-
trast, CR-Planner employs critic models to guide
both the reasoning and retrieval through the pro-
cess, leading to non-trivial improvements at the
two highest levels of programming problems. (5)
CR-Planner is orthogonal with other methods.
Reflexion executes the initially generated code and
uses the execution results of a few test cases as
linguistic feedback to revise the code. CR-Planner
works orthogonal with such methods, leading to
a significant improvement of 9.44%, further high-
lighting the effectiveness of critic-guided planning
with retrieval-augmentation.

4.3 Theorem-Driven Math Problems

TheoremQA-Maths. Theorem-driven  math
problems require both complex reasoning and
knowledge of math theorems. To evaluate
CR-Planner, we use TheoremQA-Math (Su et al.,
2024), a dataset of 206 solvable problems that
emphasize reasoning and theorem application,
making it highly relevant to this study. Following
the BRIGHT benchmark (Su et al., 2024), we
employ a collection of processed documents
sourced from high-quality STEM datasets as
external knowledge sources.

Results and observation. Similar to competi-
tive programming, as shown in Table 2, we ob-
serve a notable performance improvement from
CR-Planner, with 13.59% on TheoremQA-Math

SDetails of TheoremQA-Maths benchmark and external
knowledge are in Appendix B.2.

Table 3: Results on complex do-

Table 4: CR-Planner with various
base models.

compared to standard prompting method. This fur-
ther demonstrates the effectiveness of CR-Planner
in tasks requiring knowledge retrieval and com-
plex reasoning. Interestingly, Reflexion exhibits
inferior performance compared to CoT, which we
attribute to Reflexion’s tendency to potentially re-
vise initially correct answers into incorrect ones.
Furthermore, in contrast to their behavior in the
USACO benchmark, retrieval methods, such as
standard RAG and CoK, do enhance performance
in this task. We attribute this to the shorter con-
text of the retrieved documents in the math domain.
With shorter retrieved documents, the base model
is easier to determine which information to incor-
porate. Nevertheless, CR-Planner maximizes the
benefits of both retrieval and reasoning, leading to
the best performance improvement.

4.4 Reasoning-Heavy Domain Retrieval

StackBio and StackEcon. To evaluate reasoning-
heavy domain retrieval, we use the StackBio and
StackEcon datasets from the BRIGHT benchmark
(Su et al., 2024), which include 103 biology and
103 economics questions sourced from StackEx-
change. External sources can include any accessi-
ble web content. ©

Results and observations. As shown in Table 3,
CR-Planner consistently improves over the stan-
dard BM25 method by 10.31% and 7.9% on
StackBio and StackEcon, respectively. CoK im-
proves the standard BM25 method, which indicates
that reasoning before retrieval is crucial in such
reasoning-heavy domain retrieval tasks. However,
CoK does not consistently enhance performance;
for instance, it performs worse than CoT on Stack-
Bio. We attribute this to the potential noise in-
troduced by multiple suboptimal retrieval results.
These observations further highlight the effective-
ness of the critic models in RC-Planner.

®Details of StackBio and StackEcon benchmark and exter-
nal knowledge are in Appendix B.2.
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Figure 3: Performances of different critic models.

5 Analysis

5.1 Domain-Specific Critic Models

Critic models are crucial in CR-Planner, guiding
sub-goal and execution selection during inference.
Previous works often use proprietary LLMs as crit-
ics (e.g., GPT-4), leveraging in-context learning
to evaluate actions (Gou et al., 2024; Zhao et al.,
2024). This sub-section compares CR-Planner’s
performance with fine-tuned models versus GPT-4
(gpt-40-2024-05-13) as critics on USACO and
StackBio datasets, with results in Figure 3. While
GPT-4 improves over the baseline, CR-Planner
performs better with fine-tuned critics, particu-
larly in domain-specific tasks like StackBio. This
highlights the importance of domain-specific fine-
tuning and validates CR-Planner’s choice of fine-
tuned critic models.

5.2 Flexibility of Critic Models on Various
Base Models

Unlike methods like Self-RAG (Asai et al.,
2024), CR-Planner does not require fine-tuning
the base model, making it adaptable to both
open- and closed-source models. This subsec-
tion highlights the effectiveness of the critic
models on another closed-source model, Claude-
3.5 (claude-3-5-sonnet), and an open-source
model, Llama-3.1 (Llama-3.1-70B-Instruct).
As shown in Table 4, CR-Planner improves Claude-
3.5 by 4.56% and Llama-3.1 by 2.61%, though
these gains are smaller than the 7.49% boost with
GPT-4. This is likely because the critic models
were trained on GPT-4 data, making them better
suited for it during inference. Nonetheless, the
plug-and-play design of CR-Planner’s critic mod-
els offers a promising way to distill capabilities
from powerful LLMs to smaller models, enabling
them to benefit from high-quality guidance without
generating robust MCTS trajectories themselves.

Method TheoremQA-Math

Standard 3143
Llama-3.1-Fine-tuned 34.10
CR-Planner 38.62

Table 5: Fine-tuning critic models vs. base model.

Method USACO
Standard 10.10
CR-Planner w/o Retrieval 14.33
CR-Planner 17.59

Table 6: CR-Planner with and without retrieval.

5.3 Fine-tuning Critic Models vs. Base Model

The training of CR-Planner’s critic models involves
conducting MCTS to gather reasoning and retrieval
trajectories for constructing reward datasets. This
process may introduce additional computational
overhead compared to in-context learning baselines.
To enable a more comprehensive comparison, we
present results of fine-tuning the base model with
the same MCTS-collected data using LoRA. How-
ever, due to cost constraints and the inability to fine-
tune closed-source LLMs, we cannot include these
results in the main experiments. In this subsection,
we use Llama-3.1 (L1ama-3.1-70B-Instruct) as
the base model. As shown in Table 5, fine-tuning
Llama-3.1 enhances performance over standard
prompting, though it does not surpass CR-Planner.
Additionally, CR-Planner requires less computa-
tion compared to fine-tuning the entire base model.

5.4 Retrieve or Not to Retrieve

Tackling complex domain-specific tasks such as
competitive programming requires extensive rea-
soning as well as advanced algorithmic knowledge,
which base models may not inherently possess. In
this subsection, we examine the importance of ac-
curately retrieving external knowledge to assist in
solving competitive programming problems. We in-
struct the model to concentrate solely on reasoning,
employing the reasoning critic model g3 . , ¢, tO se-
lect a rationale for each reasoning step. As shown
in Table 6, the performance without retrieval is
lower. However, as discussed in Section 4.2 and by
Shi et al. (2024), inaccurate retrieval could impair
performance. This emphasizes the critical role of
accurate retrieval and the overall effectiveness of
CR-Planner.
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Method USACO
Standard 10.10
Vanilla MCTS 12.42
CR-Planner 17.59

Table 7: CR-Planner vs. vanilla MCTS.

L
&~ o o

Accuracy
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1 2 3 4 5
Sampling Number

Figure 4: Performances of various execution sampling.

5.5 Vanilla MCTS

In this subsection, we evaluate the performance of
directly applying MCTS during inference. Since
scoring necessitates an answer, we experiment with
the USACO benchmark, using test cases to score
the simulation results. As shown in Table 7, MCTS
performs worse than CR-Planner. This is likely
because execution sampling for a single data point
can overfit to local optima based on the test cases,
potentially leading to suboptimal performance on
hidden test cases. In contrast, CR-Planner benefits
from leveraging learned patterns from the training
data, resulting in improved outcomes.

5.6 Execution Sampling

Throughout both training and inference of CR-
Planner, executing sub-goals involves sampling
several candidates. Increasing the number of candi-
dates can improve the likelihood of selecting a bet-
ter option. In this subsection, we study how vary-
ing the number of candidates sampled for sub-goal
execution during inference impacts performance.
Due to cost concerns, we do not conduct ablation
studies for the training phase. As shown in Figure
4, the improvements on USACO are substantial
when increasing from one to two, but converge
around three. This limitation likely stems from the

Method Bronze Silver Gold Platinum Overall
Standard 18.70 6.00 3.17 0.00 10.10
Single Unified 21.14 8.00 4.76 4.76 12.38
Task-Specific  26.02 10.00 14.29 14.29 17.59

Table 8: Single Unified vs. Task-Specific Critics.

generator model’s reasoning capabilities and the
retriever’s accuracy. Without fine-tuning both gen-
erator and retriever models, further performance
gains are difficult to achieve. Therefore, to bal-
ance performance and cost, we select three as the
sampling number for the main experiments.

5.7 Single Unified vs. Task-Specific Critics

While training a unified critic is possible,
we find that smaller reward models, such as
Skywork-Reward-L1lama-3.1-8B used in our ex-
periments, struggle to generalize across all critic
tasks effectively. As shown in Table 8, a single uni-
fied critic underperforms compared to task-specific
critics.

6 Conclusions

In this paper, we present critic-guided plan-
ning with retrieval-augmentation (CR-Planner), a
novel framework for handling domain-knowledge-
specific and reasoning-heavy tasks by leveraging
fine-tuned critic models to guide both the reason-
ing and retrieval processes. We further employ
the Monte Carlo Tree Search for systematic data
collection to enhance the training of the critic mod-
els. Our approach, validated across challenging do-
mains like competitive programming, math reason-
ing, and complex domain retrieval tasks, has shown
substantial performance improvements over exist-
ing methods. By combining the strengths of large
generalist models with domain-specific fine-tuned
critics, CR-Planner offers a flexible and scalable
solution for solving problems that require both in-
tricate reasoning and accurate knowledge retrieval.

Limitations

A limitation of CR-Planner is that both its training
and inference processes involve sampling multiple
candidates when executing sub-goals. While in-
creasing the number of candidates can enhance the
chances of selecting a better option, the framework
itself does not enhance the capabilities of the base
model. Consequently, for particularly challenging
problems, it is likely that none of the sampled can-
didates will be correct, which limits overall perfor-
mance. Additionally, running MCTS for data col-
lection is computationally expensive. Developing
more efficient methods for MCTS data collection
is a potential direction for future research.
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A Experiment Details

A.1 Models

In our experiments, we employ GPT-4
(gpt-40-2024-05-13) as the black-box LLM for
generation during both inference and training
data collection. Since CR-Planner requires the
sampling of diverse RATIONALE and QUERY, we
set the decoding temperature to 0.7. To ensure
training and inference efficiency, we limit the
sampling to three instances. For the critic models,
we fine-tune Skywork-Reward-Llama-3.1-8B
(Skywork, 2024) with LoRA (Hu et al., 2021),
which was trained as a sequence classifier with the
Skywork Reward Data Collection and excels at
scoring in complex scenarios, such as mathematics
and coding. The first logit value of the model
output is used as the reward score of our critic
models.

B Benchmark Details

B.1 Competitive Programming

USACO benchmark. USACO problems are cat-
egorized into four difficulty levels (i.e., 123 bronze,
100 silver, 63 gold, and 21 platinum problems) and
test various core skills, including complete search,
binary search, and segment tree implementation.
Typically, solving a USACO problem involves sev-
eral steps: restating the problem in simple terms
since many are framed within real-world contexts;
retrieving relevant knowledge from textbooks or
similar problems from a problem bank; concep-
tualizing the solution in plain English; drafting a
pseudocode solution; and finally, producing the
complete Python solution with comments. This
multi-step process highlights the benchmark’s suit-
ability for evaluating complex reasoning and re-
trieval. This dataset is under the CC 4.0 license
which is free to share and adapt.

External knowledge. Following the baseline
methods outlined in the USACO benchmark (Shi
et al., 2024), we use both textbooks and a problem
bank as external knowledge sources. The textbooks
consist of 30 human-written chapters covering algo-
rithmic concepts tailored specifically for the USA
Computing Olympiad. The problem bank includes
all other USACO problems except for the one cur-
rently being solved. Following Shi et al. (2024),
we employ both textbooks and the problem bank as
external sources for all methods. Additionally, we
employ a BM25 retriever to execute the retrieval

process, obtaining relevant information from exter-
nal knowledge sources.

B.2 Theorem-Driven Math Problems

TheoremQA-Maths. When tackling a new
theorem-driven math problem, people often refer-
ence solved problems with similar reasoning logic.
However, finding such problems can be challenging
because even if two problems share similar reason-
ing logic, they might appear very different on the
surface. Moreover, in theorem-driven math prob-
lems, the reasoning process is critical. A single
flawed step in the logic can lead to wrong sub-
sequent rationales and finally an incorrect final
answer. In this task, we use the rewritten Math
set from TheoremQA (Chen et al., 2023), named
TheoremQA-Math, as introduced in the BRIGHT
dataset (Su et al., 2024). TheoremQA-Math con-
sists of 206 solvable questions that have been im-
proved for fluency and coherence, with all ques-
tions requiring the application of math theorems
(e.g., the binomial theorems). To solve a prob-
lem in the TheoremQA-Math dataset, the process
typically involves the following steps: understand-
ing and restating the problem in simple terms; re-
trieving relevant knowledge from solved problems;
conceptualizing the solution in plain English; and
finally, generating the solution. Solving problems
from TheoremQA-Math requires both complex rea-
soning and knowledge of Math theorems, making
it pertinent to this paper. This dataset is under the
MIT license which is free to share and adapt.

External knowledge. Following the BRIGHT
benchmark (Su et al., 2024), we employ a collec-
tion of processed documents sourced from high-
quality STEM datasets, including GSM8K (Cobbe
et al., 2021), GSM8K-RFT (Yuan et al., 2023),
MATH (Hendrycks et al., 2021), AQuA-RAT (Ling
et al., 2017), TheoremQA (Chen et al., 2023) and
CAMEL-MATH (Li et al., 2023). To ensure effi-
cient retrieval during both the training data collec-
tion and inference stages, we opt for the term-based
retrieval method BM25, similar to what is used in
competitive programming.

B.3 Reasoning-Heavy Domain Retrieval

StackBio and StackEcon. Complex domain
queries often demand in-depth reasoning to identify
relevant documents that go beyond simple surface-
level matching. To evaluate models’ ability in
reasoning-heavy domain retrieval, we use biology-
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and economics-related queries from the BRIGHT
benchmark (Su et al., 2024), specifically Stack-
Bio and StackEcon. Both StackBio and StackE-
con contain 103 questions sourced from StackEx-
change, with the gold labels being the documents
cited in the answers. As the evaluation metric is
nDCG @10, which requires the top 10 documents,
we set the number of retrieved documents to 10
when PC-Planner performs the final retrieval. This
dataset is under the CC 4.0 license which is free to
share and adapt.

External knowledge. In line with the BRIGHT
benchmark (Su et al., 2024), external sources can
include any accessible web content such as arti-
cles, tutorials, news, blogs, and reports. Since this
information has already been gathered and incor-
porated into the benchmark, we employ BM25 for
document retrieval to ensure efficiency.

C Prompts Used in Different Methods

C.1 RC-Planner (Competitive Programming)
C.1.1 Instruction

Reason through the problem and think step by step.
Specifically:
1. Restate the problem in plain English.
2. Conceptualize a solution first in plain English.
3. Write a pseudocode solution
4. Output the Python 3 solution to the problem.
Make sure to wrap your code in “‘python and
”* Markdown delimiters, and include exactly one
block of code with the entire solution.
No outside libraries are allowed.

[BEGIN PROBLEM]

[END PROBLEM]
C.1.2 SubGoal Selection

To proceed, below are the available actions:
[REASON] - Provide a reasoning step.
[GENQUERY] - Generate a query to retrieve

information from external knowledge sources.
[RETRIEVE] - Retrieve documents using the

query.
The next step is [].

C.1.3 Execution Selection - Rationale
Sampling

Reason through the problem and think step by step.

Specifically:

1. Restate the problem in plain English.

2. Conceptualize a solution first in plain English.

3. Write a pseudocode solution
4. Output the Python 3 solution to the problem.
Make sure to wrap your code in “‘python and
”” Markdown delimiters, and include exactly one
block of code with the entire solution.
No outside libraries are allowed.

[BEGIN PROBLEM]

[END PROBLEM]

Generate one next reasoning step (e.g., [BEGIN
REASON] Restate the problem: ... [END REA-
SONY)). It starts with [BEGIN REASON] and ends
with [END REASON]. Do not include the subse-
quent reasoning steps.

C.1.4 Execution Selection - Query Sampling

To verify or solve the reasoning step, I need
additional information from external knowledge
sources (e.g., textbook). And I need to generate
a query to get that information. The query needs
to be conceptual but relevant to the reasoning step.
The query should not contain any specific num-
bers or entities of the reasoning step. The query
starts with [BEGIN QUERY] and ends with [END
QUERY]. Stop the generation when the query is
completed.
[BEGIN REASON]

[END REASON]

C.1.5 Force Termination

Based on the above rationales and information,
generate python code directly to solve the prob-
lem. Make sure to wrap your code in “‘python and
> Markdown delimiters, and include exactly one
block of code with the entire solution. No outside
libraries are allowed.

C2 CoT

Reason through the problem and think step by step.
Specifically:
1. Restate the problem in plain English.
2. Conceptualize a solution first in plain English.
3. Write a pseudocode solution
4. Output the Python 3 solution to the problem.
Make sure to wrap your code in “‘python and
> Markdown delimiters, and include exactly one
block of code with the entire solution.
No outside libraries are allowed.

[BEGIN PROBLEM]

[END PROBLEM]

25601



C.3 Chain-of-Knowledge

C.3.1 Reasoning Generation

Reason through the problem and think step by step.
Specifically:
1. Restate the problem in plain English.
2. Conceptualize a solution first in plain English.
3. Write a pseudocode solution
4. Output the Python 3 solution to the problem.
Make sure to wrap your code in “‘python and
> Markdown delimiters, and include exactly one
block of code with the entire solution.
No outside libraries are allowed.

[BEGIN PROBLEM]

[END PROBLEM]

C.3.2 Rationale Correction

The given sentence may have errors, please correct

them based on the given external knowledge.
Sentence: [Rationale]

Knowledge: [Knowledge]

Edited sentence:

C.3.3 Next Rationale Generation

Reason through the problem and think step by step.
Specifically:
1. Restate the problem in plain English.
2. Conceptualize a solution first in plain English.
3. Write a pseudocode solution
4. Output the Python 3 solution to the problem.
Make sure to wrap your code in “‘python and
”* Markdown delimiters, and include exactly one
block of code with the entire solution.
No outside libraries are allowed.

[BEGIN PROBLEM]

[END PROBLEM]
[START PRECEDING RATIONALES]

[END PRECEDING RATIONALES]

C.4 Reflexion
C4.1 Actor

You are a Python writing assistant. You will be
given your previous implementation of a function,
a series of unit tests results, and your self-reflection
on your previous implementation. Apply the nec-
essary changes below by responding only with the
improved body of the function. Do not include
the signature in your response. The first line of
your response should have 4 spaces of indentation

so that it fits syntactically with the user provided
signature.

Reflexion Actor generations follow the form:

[Instruction]

[Function implementation]

[Unit test feedback]

[Self-reflection]

[Instruction for next function implementation]

C.4.2 Self-Reflection

You are a Python writing assistant. You will be
given your previous implementation of a function,
a series of unit tests results, and your self-reflection
on your previous implementation. Apply the nec-
essary changes below by responding only with the
improved body of the function. Do not include
the signature in your response. The first line of
your response should have 4 spaces of indentation
so that it fits syntactically with the user provided
signature.

Reflexion Self-Reflection generations follow the
form:

[Instruction]

[Function implementation]

[Unit test feedback]

D A Running Example

Below is a running example of CR-Planner. Se-
lected action for each step is highlighted in 'green :

Problem: Given a string s, find the length of the
longest substring without repeating characters in
optimal time complexity.

Instruction: Reason through the problem and
think step by step. Specifically:

1. Restate the problem in plain English.

2. Conceptualize a solution first in plain English.
3. Write a pseudocode solution

4. Output the Python 3 solution to the problem.
Make sure to wrap your code in “‘python and
> Markdown delimiters, and include exactly one
block of code with the entire solution.

No outside libraries are allowed.

Step 1 (Sub-Goal Selection): REASON : The
next step is to generate a rationale; GENQUERY:
The next step is to generate a query; RETRIEVE:
The next step is to retrieve a document.

Step 2 (Execution Selection): RATIONALE
1: The optimal time complexity is O(n?);

RATIONALE 2 : The optimal time complexity is
O(n); RATIONALE 3: The optimal time complex-
ity is O(n?).
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Step 3 (Sub-Goal Selection): REASON: The
next step is to generate a rationale; GENQUERY :
The next step is to generate a query; RETRIEVE:
The next step is to retrieve a document.

Step 4 (Execution Selection): QUERY 1: Given
a string s, find the length of the longest substring
without repeating characters in optimal time com-
plexity; QUERY 2: Sliding window technique
string problems; QUERY 3 : Max length substring
with unique characters with O(n) complexity.

Step 5 (Sub-Goal Selection): REASON: The
next step is to generate a rationale; GENQUERY:
The next step is to generate a query; RETRIEVE :
The next step is to retrieve a document.

Step 6 (Execution Selection): DocC 1: Given
a string s, find the length of the longest substring
without repeating characters. Examples: Input:
“ABCBC” Output: 3 Explanation: The longest sub-
string without repeating characters is “ABC” Input:
“AAA” Output: 1 Explanation: The longest sub-
string without repeating characters is “A” Input:
“GEEKSFORGEEKS” Output: 7 Explanation: The
longest substrings without repeating characters are
“EKSFORG” and “KSFORGE” with lengths of 7;
Doc 2: To deal with time complexity problems,
it always helps to scale the problem up and think
of a massive case. If your string was thousands of
characters long, we still only have one start pointer
and one end pointer. The key thing is that both the
pointers will only ever move forward (along the
string). Therefore, the complexity of this is def-
initely O(n) since they are only moving forward
together through the string - so the time this pro-
cess would take is proportional to the length of the
string (the time it takes to get to the end); DOC 3 :
The intuition behind the solution is to iteratively
find the longest substring without repeating char-
acters by maintaining a sliding window approach.
We use two pointers (left and right) to represent
the boundaries of the current substring. As we iter-
ate through the string, we update the pointers and
adjust the window to accommodate new unique
characters and eliminate repeating characters.

Step 7 (Sub-Goal Selection): REASON : The
next step is to generate a rationale; GENQUERY:
The next step is to generate a query; RETRIEVE:
The next step is to retrieve a document.

Step 8 (Execution Selection): RATIONALE 1:
The retrieved document is not sufficient for solving
the problem. Therefore, a second-level retrieval
is required; RATIONALE 2 : To solve the prob-
lem efficiently, use a sliding window technique: 1.

Initialize a Window: Start with a window at the be-
ginning of the string, which represents the current
substring without repeating characters. 2. Expand
the Window: Move through the string one character
at a time, adding each character to a data structure
(like a set or dictionary) that keeps track of charac-
ters in the current window. 3. Check for Repeats: If
you encounter a character that is already in the data
structure, it means there’s a repetition within the
current window. 4. Adjust the Window: Move the
start of the window forward, removing characters
until the repeated character is excluded from the
window. This ensures the window contains only
unique characters. 5. Update Maximum Length:
Keep track of the maximum size of the window
throughout the process. This represents the length
of the longest substring without repeating charac-
ters. 6. Continue Until End of String: Repeat the
expand and adjust steps until you have traversed
the entire string. This approach ensures that you
examine each character at most twice (once when
added and once when removed), resulting in opti-
mal linear time complexity; RATIONALE 3: Here
is the code:

def length_of_longest_substring(s):

char_index = {}

max_length = @

start = 0

for idx, char in enumerate(s):

if char in char_index:
start = char_index[char]
char_index[char] = idx
current_length = idx - start
if current_length > max_length:
max_length = current_length

return max_length

Step 9 (Sub-Goal Selection): REASON : The
next step is to generate a rationale; GENQUERY:
The next step is to generate a query; RETRIEVE:
The next step is to retrieve a document.

Step 10 (Execution Selection): RATIONALE 1:
Here’s a step-by-step plan: Initialize Pointers: Start
with two pointers, left and right, both at the begin-
ning of the string. These pointers define the current
window of unique characters. Create a Charac-
ter Map: Use a hash map (or an array if dealing
with a limited character set like ASCII) to keep
track of characters and their latest indices in the
string. Iterate Through the String: Move the right
pointer through the string one character at a time.
a. Check for Repeats: For each character s[right],
check if it exists in the character map and if its last
recorded index is on or after the left pointer. This

25603



Current State s; Action Space As,

Next State s¢41

REASON temperature sampling RATIONALE
GENQUERY temperature sampling QUERY
RETRIEVE top-k candidates Doc
RATIONALE  reasoning, querying, retrieving REASON/ GENQUERY / RETRIEVE
QUERY reasoning, querying, retrieving REASON / GENQUERY / RETRIEVE
Doc reasoning, querying, retrieving REASON / GENQUERY / RETRIEVE

Table 9: Details of state types and action spaces.

indicates a repeating character within the current
window. b. Adjust the Left Pointer: If a repeat is
found, move the left pointer to one position after
the last occurrence of the current character. This
effectively skips the repeated character and short-
ens the window from the left side. c. Update the
Character Map: Record or update the index of the
current character s[right] in the character map with
the current right index. d. Calculate the Maximum
Length: Compute the length of the current window
as current_length = right - left + 1. Update a vari-
able max_length if current_length is greater than
the previously recorded maximum. Continue Until
End of String: Repeat step 3 until the right pointer
reaches the end of the string. Return the Result:
After the loop ends, max_length will contain the
length of the longest substring without repeating
characters; RATIONALE 2 : Here is the code:

def length_of_longest_substring(s):

char_index = {}

max_length = @

start = 0

for idx, char in enumerate(s):

if char in char_index and
char_index[char] >= start:

start = char_index[char] + 1
char_index[char] = idx
max_length = max(max_length, idx

- start + 1)

return max_length

RATIONALE 3: Here is the code:

def length_of_longest_substring(s):
char_set = set()
left = 0
max_length = @

for right in range(len(s)):
if s[right] in char_set:
char_set.clear ()
left = right + 1
char_set.add(s[right])
max_length = max(max_length,
right - left + 1)

return max_length

E CR-Planner State Types and Action
Spaces

We provide detailed information on state types and
action spaces for CR-Planner in Table 9.
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