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Abstract

Multi-token prediction (MTP) is a recently pro-
posed pre-training objective for language mod-
els. Rather than predicting only the next to-
ken (NTP), MTP predicts the next k tokens at
each prediction step, using multiple prediction
heads. MTP has shown promise in improv-
ing downstream performance, inference speed,
and training efficiency, particularly for large
models. However, prior work has shown that
smaller language models (SLMs) struggle with
the MTP objective. To address this, we propose
a curriculum learning strategy for MTP train-
ing, exploring two variants: a forward curricu-
lum, which gradually increases the complexity
of the pre-training objective from NTP to MTP,
and a reverse curriculum, which does the op-
posite. Our experiments show that the forward
curriculum enables SLMs to better leverage the
MTP objective during pre-training, improving
downstream NTP performance and generative
output quality, while retaining the benefits of
self-speculative decoding. The reverse curricu-
lum achieves stronger NTP performance and
output quality, but fails to provide any self-
speculative decoding benefits.

1 Introduction

In recent years, large language models (LLMs)
have demonstrated remarkable capabilities in un-
derstanding and generating complex text, code, and
other modalities. These advances have been driven
primarily by improvements in model architectures,
training data quality and scale, and optimization
strategies, and yet the underlying objective for most
widely-adopted LLMs remains the next-token pre-
diction loss. Models such as GPT (Brown et al.,
2020; OpenAI et al., 2024), LLaMA (Touvron et al.,
2023a,b; Grattafiori et al., 2024), and Phi (Li et al.,
2023; Abdin et al., 2024) are conventionally trained
to predict a single token at each generation step, im-
plicitly treating language modeling as a sequence of
one-step-ahead predictions. While this formulation

is simple and effective, it may not fully leverage
the predictive capabilities of LLMs or reflect the
underlying structure of natural language.

Gloeckle et al. (2024) investigated the potential
of a multi-token prediction (MTP) objective for
LLMs. Instead of predicting just the next token
(NTP), their approach aims to produce multiple
subsequent tokens at each prediction step, with mul-
tiple output heads that are independent from each
other but share a common model backbone. They
found this approach to improve model’s down-
stream performance, inference speed, and training
sample efficiency without significantly increasing
training time. Recently, DeepSeek-AI adopted the
MTP training objective for their V3 model (Liu
et al., 2024a) that serves as a base model for the
reasoning R1 model (Guo et al., 2025).

So far, the previous work prioritized mid- and
large-sized models with at least 7B parameters,
since Gloeckle et al. (2024) observed that MTP
leads to more performance gains as the model size
increases. We hypothesize that smaller language
models (SLMs) enjoy less benefits from the MTP
objective during pre-training due to the fact that
they struggle to deal with morphological and se-
mantic dependencies between multiple tokens at
once from the get-go.
A curriculum-based approach to MTP. Inspired
by the work of Bengio et al. (2009), who were the
first to propose curriculum learning strategies in
the context of machine learning, we explore using
a pre-training curriculum to enable SLMs to better
leverage the benefits of the MTP objective. Since
the complexity of the MTP objective increases with
the amount of tokens considered, it is easy to con-
struct a curriculum by gradually changing the num-
ber of tokens considered in the objective.

Figure 1 illustrates our proposed curriculum vari-
ants. Under a forward curriculum, models are given
a simpler NTP task in the beginning of pre-training,
and as the training progresses, they are guided to-
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Figure 1: Visualization of the forward and reverse MTP curricula. When training a language model on a 3-token-
prediction task for n steps, the forward curriculum starts with a vanilla NTP task, adding an additional token to
the task every n

3 steps. The reverse curriculum does the opposite, starting with a full 3-token-prediction task, and
dropping a token from the task every n

3 steps.

wards a more complex MTP task. The task is ex-
panded by incrementally including one additional
token at uniform intervals throughout pre-training.
The reverse curriculum, on the other hand, starts
with a full MTP task, and incrementally removes
one token from the task also at uniform intervals.
The two opposing curricula are designed to clearly
determine whether MTP SLMs perform better with
an easy-to-hard or a hard-to-easy learning strategy.
Contributions. This work makes the following
contributions:

• We provide a comprehensive exploration of the
MTP objective’s potential when used to train
SLMs predominantly on natural language.

• We propose and evaluate the validity of novel
curriculum-based MTP training strategies.

• We showcase that curriculum-based (dynamic)
MTP pre-training strategies allow SLMs to learn
the MTP task better than static MTP baselines.

2 Preliminaries

In this section, we formalize the multi-token pre-
diction objective and describe the design of the
proposed curricula.

2.1 Multi-Token Prediction Objective
Traditional large language models are trained us-
ing the next-token prediction (NTP) objective,
where the model, given a context sequence x =
(x1, x2, . . . , xt), is tasked with predicting the next
token xt+1. This is accomplished by maximizing
the log-likelihood of the target token:

LNTP = −
T∑

t=1

logP (xt+1|x1, . . . , xt; θ),

where θ represents the model parameters.
In contrast, the multi-token prediction (MTP)

objective extends this task by requiring the
model to predict a sequence of k tokens y =
(xt+1, xt+2, . . . , xt+k) simultaneously. The MTP
loss is defined as:

LMTP = −
T∑

t=1

k∑

i=1

logP (xt+i|x1, . . . , xt; θ),

where P (xt+i|x1, . . . , xt; θ) is computed using
multiple output, or language modeling, heads con-
ditioned on the shared model backbone.

Predicting multiple tokens at each prediction
step allows for self-speculative decoding (Stern
et al., 2018) during inference without the need for
an auxiliary model. This can speed up the infer-
ence by up to k times by reducing the number of
forward passes needed to generate a sequence. In
addition, the MTP objective promotes the learning
of richer contextual dependencies, as the model
must optimize for multiple interrelated predictions
at each step.

2.2 Forward and Reverse Multi-Token
Curricula

The design of the curricula dynamically adjusts the
number of output, or language modeling, heads
k ∈ {1, 2, . . . , kmax}, k ∈ Z, which corre-
sponds to the number of tokens predicted by the
model at each prediction step. These adjustments
are based on the training epoch e, ensuring sys-
tematic changes every E/kmax epochs, where E
is the total number of training epochs. While it is
certainly possible to come up with a more adap-
tive curriculum that relies on the training dynamics,
we aim to isolate and demonstrate the core benefit
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of using a curriculum-based MTP objective over
a static one. Therefore in this paper we decide to
focus on a simple pre-defined curriculum design.

2.2.1 Forward Multi-Token Curriculum
The forward multi-token curriculum starts with the
simplest prediction task (k = 1) and progressively
increases the number of prediction heads. Formally,
the number of active output heads at training epoch
e can be defined as:

kcurrent(e) = min

(
kmax,

⌊
e

E/kmax

⌋
+ 1

)
.

This gradual increase in complexity ensures that
the model first learns fundamental token-by-token
predictions before transitioning to more complex
multi-token prediction tasks.

2.2.2 Reverse Multi-Token Curriculum
In contrast, the reverse multi-token curriculum
starts with the maximum number of prediction
heads (k = kmax) and gradually reduces the num-
ber of active heads over time. The number of active
prediction heads at training epoch e is defined as:

kcurrent(e) = max

(
1, kmax −

⌊
e

E/kmax

⌋)
.

This strategy relies on the insight reported by
Gloeckle et al. (2024), that pre-training with a
multi-token objective improves performance on
single-token downstream tasks. We hypothesize
that by gradually nudging the model towards NTP
during the pre-training stage, we will be able to
obtain a better main language modeling head.

3 Experiments

In this section, we aim to address the following 3
aspects of our proposed curricula:

• Main LM head performance. Since in both the
forward and reverse curricula the MTP objective
aligns with the NTP objective at some point dur-
ing pre-training, we examine how the resulting
models perform on standard NTP benchmarks
using a single (main) language modeling (LM)
head.

• Inference Speed. One of the main advantages
of the ability to output multiple tokens in one
prediction step is the fact that it can be used

to significantly speed-up the inference by per-
forming self-speculative decoding. Therefore
we measure whether the proposed curricula can
offer additional speed-ups during inference.

• Output Quality. Lastly, we evaluate generative
capabilities of the models trained under our pro-
posed curricula, i.e., the quality of the sequences
that they generate. In the end, this is the most im-
portant aspect of language models, and therefore
should be the main indicator of how useful the
proposed curricula are in the context of multi-
token prediction.

3.1 Experimental Setup

3.1.1 Models
We conduct our experiments using transformer-
based decoder-only LLMs, specifically the config-
uration used in the Llama model family (Touvron
et al., 2023b). Regarding the model size, token
types, and language modeling heads enabling the
MTP, we follow the insights provided by Gloeckle
et al. (2024) in order to achieve best possible per-
formance with minimal resource requirements.

We consider models of two sizes: 1.3B and 3B.
We train our models on both subword and byte to-
kens. Byte-level models operate directly on raw
bytes (e.g., UTF-8 encoded text), enabling them
to handle diverse character sets and misspellings
more robustly, while also reducing vocabulary size
and memory usage (Xue et al., 2022). The resulting
vocabulary sizes, or model output dimensionality,
for each type of models are 32,000 and 320 respec-
tively. In order to maintain relative similarity in
the amount of training steps that models undergo
during the pre-training stage, we limit the context
window size of subword-level models to 1024 and
that of byte-level models to 4096.

3.1.2 Prediction Heads
As for the definition of additional language model-
ing heads, we consider the following two setups in
our experiments:

• Linear Layers (LL): We add additional k −
1 output linear layers with hidden_size ×
vocab_size dimensions to a regular NTP archi-
tecture in case of a k-token prediction model.
This essentially translates to linear probing of
the model’s hidden states.

While this setup allows for predictions that can
be obtained in parallel, and thus not leading to
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any computational overheads with regards to out-
put latency, it introduces an additional memory
overhead. For subword-level models, this leads
to additional 65M parameters per head in case
of a 1.3B model, and additional 98M parameters
per head in case of a 3B model. For byte-level
models, this setup translates to only 0.6M and
1M additional trainable parameters per head re-
spectively.

• Transformer Layers (TL): We use l − k trans-
former layers as the model backbone and dedi-
cate k out of l layers to handling token prediction
in the latent space before passing them through
the shared output linear layer.

This setup not only does not introduce any addi-
tional trainable parameters, but also reduces the
parameter count of the shared backbone by 51M
(1.3B model) or 113M (3B model).

3.1.3 Dataset
We conduct our experiments on the MiniPile
dataset (Kaddour, 2023). It is a subset of The Pile
corpus (Gao et al., 2020)1 that consists of 1M doc-
uments in the training split and 10K documents in
the test split.

We train a dedicated BPE subword tokenizer
(Sennrich et al., 2016) with a vocabulary size of
32K on this dataset, which yields about 1.7B sub-
word tokens for training. The corresponding train-
ing byte count is around 5.9B.

An important note regarding the discussion of
our results is the fact that our models cannot be
directly compared to other publicly released LLMs,
given the size of the dataset. Our goal was not to
train competitive LLMs, but rather to evaluate the
viability of our proposed pre-training curricula.

In order to confirm that our results hold true
as the scale increases, we trained additional 1.3B
MTP models with 4 TL heads together with a base-
line 1.3B NTP model on 10B tokens of FineWeb-
Edu (Lozhkov et al., 2024). The performance of
these models is shown in Table 5 of the Appendix
B.

3.1.4 Training setup & Hyperparameters
We apply Best Fit Bin Packing (Albers et al., 2021)
to the train split of the MiniPile in order to prepare
model inputs for the pre-training stage. We then
train all of our models for 1 epoch. The training

1Available under MIT License

batch size is 1024. This setup allows us to iterate
quickly over various model configurations.

In all experiments we schedule the learning rates
with a linear warmup lasting 10% of total train-
ing steps and cosine decay (Loshchilov and Hutter,
2017) to 10% of the peak learning rate, which is
2e − 4 for all models. All experiments use the
AdamW optimizer (Loshchilov and Hutter, 2019)
with β1 = 0.9, β2 = 0.95 and decoupled L2

weight decay coefficient of 0.1. We also clip gra-
dients to a maximal Euclidean norm of 1.0 in all
experiments.

We plan to release the code used to train the
models under our proposed curricula in our Github
repository2.

3.2 Experiment 1: Main LM Head
Performance

3.2.1 Setup

In this experiment we evaluate the model’s NTP
performance on the test set of the MiniPile dataset
and on the OpenAI’s version of the LAMBADA
benchmark (Paperno et al., 2016). We report the
bits-per-byte metric instead of token perplexities,
to allow for a direct comparison between subword-
and byte-level models in our experiments. We use
EleutherAI’s evaluation harness (v0.4.3) (Gao et al.,
2024) to run our models on the benchmarks.

Since we are training our models on a sig-
nificantly limited amount of data compared to
what LLMs are usually trained on, we believe
that widely used knowledge-based tasks like e.g.
MMLU (Hendrycks et al., 2021) would not be par-
ticularly meaningful to analyze their performance,
as they training dataset does not cover an extended
amount of factual knowledge. Thus we opt to focus
on the BLiMP benchmark (Warstadt et al., 2020),
since it allows for a fairer evaluation of the linguis-
tic capabilities of our models.

Nevertheless, we also include the evaluation on
the easy set of the ARC challenge (ARC-E) (Clark
et al., 2018) and on the OpenBookQA (OBQA)
benchmark (Mihaylov et al., 2018) for the sake of
a more comprehensive evaluation, as they focus
on commonsense knowledge and reasoning, rather
than area-specific knowledge. However we would
like to note that these benchmarks do not provide an
assessment of the underlying predictive capabilities
associated with predicting multiple next tokens.

2https://github.com/aynetdia/mtp_curriculum
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1.3B 3B
Tokens Heads Curriculum MiniPile LAMBADA BLiMP ARC-E OBQA MiniPile LAMBADA BLiMP ARC-E OBQA

BPB ↓ BPB ↓ Acc. ↑ Acc. ↑ Acc. ↑ BPB ↓ BPB ↓ Acc. ↑ Acc. ↑ Acc. ↑

Subword

1 LL - 1.08 1.34 71.80 34.60 25.80 1.03 1.17 74.93 34.60 24.80

2 LL
- 1.12 1.44 70.27 31.99 23.80 1.06 1.27 72.09 36.36 24.60

Forward +0.15% +0.37% +0.75% +8.29% +7.56% +0.46% +0.01% +2.16% -2.66% +3.25%
Reverse -2.19% -5.79% +1.69% +1.84% +5.04% -1.78% -4.91% +3.60% -0.23% -1.62%

2 TL
- 1.11 1.41 71.04 34.09 26.20 1.05 1.24 73.32 36.15 25.00

Forward +0.49% +1.82% -0.45% +3.09% -4.58% +0.88% +0.26% -0.08% -1.98% -1.60%
Reverse -1.98% -4.19% +0.88% +2.10% 0.00% -1.75% -3.75% +0.83% -3.03% +0.80%

4 LL
- 1.19 1.61 67.48 34.22 24.40 1.12 1.44 72.20 36.45 25.00

Forward -2.46% -3.54% +3.07% +3.81% +4.92% -1.76% -4.85% +0.22% -2.89% +1.60%
Reverse -5.99% -13.32% +3.35% +1.97% 0.00% -5.19% -12.88% +2.08% -3.00% -4.00%

4 TL
- 1.18 1.57 67.07 33.96 23.40 1.11 1.38 71.34 36.41 23.20

Forward -2.39% -4.37% +2.16% +0.87% 0.00% -1.42% -4.46% +0.77% -3.01% +9.48%
Reverse -5.52% -9.85% +4.58% +0.74% +1.71% -4.84% -9.61% +2.63% +1.62% -4.31%

Byte

1 LL - 1.14 1.06 66.97 29.97 24.00 1.07 1.00 71.20 29.92 26.40

4 LL
- 1.16 1.09 69.13 29.42 30.40 1.08 1.00 71.42 29.97 30.60

Forward +3.16% +2.82% -2.76% -1.43% -6.58% +2.62% +3.12% -1.40% 0.00% +1.96%
Reverse -3.44% -3.95% +1.77% -0.72% +6.58% -2.43% -4.45% +1.46% +7.30% +1.31%

8 LL
- 1.23 1.19 68.16 28.79 34.40 1.13 1.07 69.60 29.71 30.40

Forward +0.81% 0.00% -4.41% -1.17% -19.77% +0.79% +1.28% +0.83% +2.27% -7.24%
Reverse -6.98% -9.26% +1.75% -1.02% -11.63% -5.30% -7.35% +3.46% +3.26% -5.92%

Table 1: Performance of MTP models on NTP tasks using only their main LM heads. Percentage values indicate
relative improvements or degradations in benchmark scores compared to the respective static MTP baselines
trained without a curriculum. 1 LL head models refer to standard NTP models. The same table with absolute scores
is provided in Appendix B.

3.2.2 Results
The performances3 of all models on the NTP tasks
using only the main language modeling heads are
listed in Table 1. We make the following observa-
tions:
Byte-level dynamic MTP models outperform
subword-level ones. Despite starting from or con-
verging to the NTP task during the pre-training, our
proposed MTP curricula do not lead to performance
improvements over the NTP baseline when applied
to subword-level models of both sizes. However
they lead to a noticeable improvement over the
models trained with a static MTP objective, e.g.
when they have 4 output heads, no matter if they
are in the form of linear layers or transformer lay-
ers. Byte-level Reverse Curriculum MTP models,
on the other hand, are able to score on par with or
even outperform both static MTP and NTP models
in non-knowledge-based benchmarks.

This difference between subword- and byte-level
models can be explained by the fact that smaller
LLMs are constrained by how much future token
information they can retain and leverage at each

3We also include a detailed breakdown of how our mod-
els perform on each linguistic phenomenon considered in the
BLiMP benchmark individually in Tables 6 and 7 of Appendix
B. This offers additional insight into the impact of various
MTP objectives on how the models learn the underlying lan-
guage dynamics.

prediction step due to their parameter count. And
given that subword tokens carry more semantic
and morphological information than a single byte,
modeling multiple bytes at once is much easier
than multiple subword tokens. We argue that the
Reverse Curriculum MTP objective leads to richer
hidden state representations by making the model
predict multiple future bytes at once. This, in turn,
improves performance on the NTP task, especially
compared to subword-level SLMs, when the model
is trained to look ahead up to 4 future tokens during
pre-training.

Performance is similar for LL and TL heads.
As for the performance difference between MTP
models with multiple linear layers and transformer
layers as language modeling heads, it is rather
small, or sometimes even negligible, across both
model sizes and both dynamic and static MTP ob-
jectives. And that is despite the fact that performing
NTP with only the first LM heads results in Trans-
former Layer models "losing" parameters during
inference. The effective parameter delta between a
Transformer Layer MTP model with only the first
LM head engaged and the corresponding Linear
Layer model is around 210M per head in case of
3B model.
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Figure 2: Inference speed-ups achieved by MTP models in relation to the NTP baseline. We measure the speed-ups
in terms of the amount of forward passes required to generate a sequence using self-speculative decoding formulation
proposed by Stern et al. (2018)

3.3 Experiment 2: Inference speed

3.3.1 Setup
We implement greedy blockwise speculative de-
coding (Stern et al., 2018) and measure decoding
speeds on completing inputs from a the MiniPile
test split. We sample 512 documents, take the first
256 subword or 512 byte tokens as inputs and gen-
erate completions of the same length. All comple-
tions are generated with batch size 8. We measure
the speedups in terms of the amount of forward
passes relative to the NTP baseline.

3.3.2 Results
Figure 2 showcases the maximum inference speed-
ups that can be achieved by our MTP models, i.e.
speed-ups when using all of the trained LM heads.
Since self-speculative decoding requires at least
two forward passes to predict and verify k > 1 to-
kens, 2-token subword models were excluded from
this figure, as they do not allow for any inference
speed-ups over a regular NTP setup.

While the static MTP objective results in the
largest inference speed-ups across both model
types, sizes, and LM head types, the Forward Cur-
riculum comes as a very close second. Reverse
Curriculum, on the other hand, basically converges
towards NTP inference speeds regardless of the LM
head type used with subword-level models, and of-
fers only modest speed-ups in case of byte-level
models.

Figure 3 provides a per head breakdown of the

Figure 3: Breakdown of the per-head acceptance rate
of tokens drafted via self-speculative decoding for 3B
subword models. The y-axis indicates a head’s share of
tokens accepted by the model in total.

self-speculative performance for every curriculum
based on 3B models with 4 LM heads. Once again,
there is a small difference in the acceptance rate of
the tokens drafted by the additional heads between
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1.3B 3B
Tokens Heads Curriculum BLEU ↑ ROUGE-L ↑ SemScore ↑ TTR ↑ G-Eval ↑ BLEU ↑ ROUGE-L ↑ SemScore ↑ TTR ↑ G-Eval ↑

Subword

1 LL - 4.66 14.84 44.48 14.94 1.72 5.15 15.76 45.88 15.75 1.79

2 LL
- 4.31 14.83 42.05 13.78 1.72 4.82 15.50 45.15 14.92 1.78

Forward -2.70% -0.06% +0.13% -0.34% +1.17% +4.10% +2.01% +0.47% +3.65% -0.72%
Reverse +7.21% +0.46% +3.01% +7.46% +1.42% +1.25% +1.35% +1.24% +8.78% +0.58%

2 TL
- 4.31 14.64 42.01 13.70 1.71 5.08 15.65 45.35 15.60 1.79

Forward +0.94% +1.29% -0.99% +3.18% +0.50% -7.44% -3.97% -2.00% -10.34% -3.41%
Reverse +4.72% +2.81% +1.76% +1.68% -2.44% +3.88% +1.29% -0.74% -3.06% +1.40%

4 LL
- 3.96 13.85 39.01 14.58 1.68 4.42 14.54 42.21 15.64 1.76

Forward +4.05% +3.63% +2.23% -1.22% +0.25% +4.45% +2.95% +2.62% +1.19% +0.63%
Reverse +15.80% +7.50% +8.77% +9.26% +2.00% +13.04% +6.46% +5.34% +0.03% +1.98%

4 TL
- 4.24 14.11 39.02 14.39 1.69 4.78 14.87 43.17 15.78 1.78

Forward -8.87% -0.14% +3.07% +1.19% -0.21% -3.83% +1.16% +1.44% +2.91% +0.14%
Reverse +6.34% +5.50% +8.51% +4.11% +1.37% +1.11% +7.57% +5.32% -0.79% +1.74%

Byte

1 LL - 4.98 15.08 43.34 21.50 1.76 5.89 16.57 44.64 23.43 1.90

4 LL
- 4.89 14.77 41.11 29.02 1.83 6.29 16.70 44.73 30.60 1.97

Forward +3.79% +0.81% +0.53% -1.99% +1.63% -6.98% -4.82% -5.88% -4.87% -2.37%
Reverse +0.03% +5.88% +0.92% +9.45% +1.68% -5.51% -3.21% -0.12% +4.51% -0.41%

8 LL
- 4.77 14.94 39.91 35.49 1.86 5.41 15.78 41.79 41.70 1.93

Forward +2.80% -0.48% -5.20% -0.51% -2.91% +4.65% +1.21% +0.59% -12.72% +0.14%
Reverse +1.38% +1.88% +2.37% -8.44% +1.03% +11.97% +2.96% +4.20% -18.31% +2.53%

Table 2: Evaluation of model outputs on the MiniPile test set. Percentage values indicate relative improvements or
degradations in evaluation metrics compared to the respective static MTP baselines trained without a curriculum. 1
LL models correspond to regular NTP models and their scores provided for reference. The same table with absolute
scores is provided in Appendix B.

models trained with No and Forward curricula re-
gardless of the head type, while almost no tokens
drafted by additional heads trained under the Re-
verse Curriculum were accepted.

3.4 Experiment 3: Output Quality

3.4.1 Setup
We take the outputs generated by the models when
performing Experiment 2 and compare them with
"gold" completions of the same length from the
MiniPile test set. We rely on BLEU (Papineni
et al., 2002), ROUGE-L (Lin, 2004) and SemScore
(Aynetdinov and Akbik, 2024) metrics to deter-
mine how closely the model completions match
the ground truth from the MiniPile test set. We
also calculate the Type-Token Ratio (TTR) metric,
which is a measure of lexical diversity. It is defined
as the ratio of unique words to the total number of
words in a text.

We use the NLTK’s (v.3.8.2) (Bird and Loper,
2004) implementation of the BLEU score, as well
as the RegExp tokenizer to tokenize the generated
and gold sequences for BLEU, ROUGE-L and TTR.
We provide the regular expression used to tokenize
the text sequences in Appendix A. For SemScore
we use the all-mpnet-base-v2 model (Reimers
and Gurevych, 2019). As for the ROUGE-L, we
use Google’s implementation of it.

In addition to the aforementioned "traditional"
metrics, we also perform an LLM-based (LLM-

as-a-judge) evaluation of generated outputs. We
will refer to the resulting metric as G-Eval, as we
rely on Liu et al. (2023) for the prompt design and
probability-weighted final score calculation. Our
evaluation prompt can be found in Appendix A. We
define a 5-point rating scale with 1 being the worst
score, and 5 being the best loosely based on Wang
et al. (2023). The model of our choice for the role
of an evaluator is OpenAI’s gpt-3.5-turbo-0125
due to its cost efficiency.

3.4.2 Results
The results of evaluation are listed in Table 2. We
also include the results for NTP models for refer-
ence. We make the following observations:
Proposed curricula outperform static MTP base-
lines. In almost all of the model configurations
both of our proposed curricula lead to better re-
sults than the static MTP approach on at least 2
metrics. The only model configurations in which
No Curriculum models achieve better results are a
byte-level 3B model with 4 linear layer heads and
a subword-level 3B model with 2 transformer layer
heads.

Even though the Reverse Curriculum often show-
cases greater quality of improvements than For-
ward Curriculum over No curriculum, we have
already shown previously that the Reverse Cur-
riculum yields models that are closer in nature to
NTP models, both in terms of the performance
of the main LM head, as well as the lack of
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self-speculative decoding speed-ups. Therefore
it would be more appropriate to compare Reverse
Curriculum MTP models with NTP models, rather
than No Curriculum MTP models. In this regard,
the Reverse Curriculum models are not able to gen-
erate outputs that are qualitatively better than NTP
models.

When comparing No Curriculum models only
against the Forward Curriculum MTP models, the
latter still come out on top on at least two met-
rics, but with two additional exceptions: byte-level
model with 1.3B parameters and 8 Linear Layer
heads, as well as a subword-level model with 1.3B
parameters and 2 Linear Layer heads. Neverthe-
less, in 8 out of 12 different configurations in total
Forward Curriculum MTP generate qualitatively
better sequences with almost the same speed-ups
via self-speculative decoding as MTP models with
No Curriculum.
TL heads outperform LL. Additional model pa-
rameters that are introduced by using auxiliary lin-
ear layers as LM heads do not reliably translate to
better generated sequences of better quality. Even
the subword-level 3B models with 4 LM heads
showcase better output quality with Transformer
Layer LM Heads, rather than Linear Layers.

This further reinforces the idea that MTP is not
simply a matter of the parameter count. Linear
Layers on their own might be too simplistic as LM
heads to enable better MTP.
Byte-level MTP models outperform subword
models across all metrics. In Experiment 1 we
already argued that by modeling multiple bytes at
once, byte-level MTP models arrive at hidden rep-
resentations that can handle more complex patterns,
compared to their NTP counterparts. The output
quality evaluation of 3B byte-level models further
reinforces this point, and interestingly enough the
MTP models generate significantly more lexically
diverse outputs, as indicated by the TTR metric.

In addition, byte-level models beat subword-
level models across all metrics and model configu-
rations. This also holds true not only when compar-
ing byte-level MTP models against subword-level
MTP counterparts, but also when comparing both
static and dynamic MTP models against the sub-
word NTP baseline.

4 Related Work

Curriculum learning. After Bengio et al. (2009)
first proposed to apply a curriculum learning strat-

egy in the context of machine learning, it has been
successfully applied on a number of tasks in var-
ious machine learning domains including natural
language processing, computer vision and speech
recognition (Soviany et al., 2022). In the context of
language modeling, they have been shown to pro-
vide benefits both when pre-training encoder-only
models (Xu et al., 2020; Nagatsuka et al., 2021;
Ranaldi et al., 2023), as well as instruction-tuning
large decoder-only models (Mukherjee et al., 2023;
Lee et al., 2024).

The use of curriculum learning approaches was
not reported in pre-training any publicly available
decoder-only foundation models trained on vast
amounts of text data, although recently Feng et al.
(2024) showed that using a two-stage curriculum
based on text quality can lead better training out-
comes. Meanwhile curriculum learning approaches
have been very popular in data-constrained pre-
training setups (Warstadt et al., 2023; Hu et al.,
2024). While the curricula that focus on order-
ing the data based on various difficulty metrics
were not found to be consistently better than non-
curriculum baselines, an approach by Salhan et al.
(2024) that involves a curriculum for pre-training
objectives was able to reliably outperform non-
curriculum baselines in a data-constrained setup.
Multi-token prediction. ProphetNet (Qi et al.,
2020) was the first large-scale transformer-based
language model that was able to predict multiple n-
grams in one prediction step. However, their model
relies on n-stream self-attention mechanism that
involves more computational overhead compared
to regular transformers.

Pal et al. (2023) showed that hidden states of
next-token prediction models are able to encode
more than a single token ahead by probing pre-
trained transformers, and that it’s possible to pre-
dict those to a certain extent.

Gloeckle et al. (2024) improved upon the previ-
ous work by proposing slight architectural tweaks,
such as using full transformer layers as language
modeling heads, to account for the multi-token pre-
diction task that resulted in a more computationally
efficient, compute-matched with NTP models, and
effective method for multi-token prediction.
Self-speculative decoding. Stern et al. (2018)
were the first to suggest a speculative decoding
scheme for faster inference. Since then, a number
self-speculative decoding methods were introduced.
Some of these methods rely on the early-exit mech-
anism (Elhoushi et al., 2024; Liu et al., 2024b), oth-
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ers on skipping intermediate layers (Zhang et al.,
2024a; Xia et al., 2024), and some on architectural
transformations (Zhang et al., 2024b). Medusa (Cai
et al., 2024) has gained the most prominence due
to its simplicity and ability to relatively easily and
cost-efficiently enable self-speculative decoding
for LLMs that were pre-trained using the regular
NTP objective.

5 Conclusion

This paper introduces a novel curriculum-based
training strategy to the multi-token prediction task.
We conducted extensive experiments to determine
their validity against both the regular NTP, as well
as the static MTP training objectives. Our exper-
iments demonstrated that the Forward MTP Cur-
riculum offers the best trade-offs between the main
LM head performance, inference speed, as well
as the final output quality, when compared against
both the static MTP and Reverse MTP Curriculum
approaches. As a result, it allows SLMs to better
leverage the MTP objective during pre-training.

We have also shown that Reverse MTP Curricu-
lum models outperform static MTP models on NTP
benchmarks. In addition, Reverse MTP Curricu-
lum models generate sequences of better quality
than NTP models in case of both subword- and
byte-level models. Unfortunately, they are not able
to offer any meaningful inference speed-ups via
self-speculative decoding, while coming short on
NTP tasks in comparison to models trained using
solely the NTP objective.

In the future we are interested in investigating
the potential benefits of the MTP objective for non-
transformer architectures.

Limitations

One limitation of our proposed curricula is the fact
that they are pre-defined in advance. The decision
to progressively add or remove a token to or from
an m-token task every m

n steps when training for n
steps is somewhat arbitrary, since it does not rely
on any metrics about the the models themselves
or the training loss. This may lead to a situation
that perhaps some LM heads require more steps to
be fully "saturated", while others require less, and
not accounting for this results in under- or overfit-
ted LM heads. Since the goal of this paper was
to establish that curriculum-based MTP training
fundamentally benefits small language models over
a static MTP objective in principle, we leave ex-

ploring the potentially very large space of possible
schedules for future work.

In addition, we acknowledge the fact that the lan-
guage models considered in our experiments were
trained on a dataset that is significantly smaller in
size than datasets on which other contemporary
LLMs are trained. We do not exclude the possi-
bility that, when trained for a prolonged time and
on significantly more data, the evaluation results
of our proposed curricula may differ from the re-
sults reported in our paper in one way or another.
However given the consistency in the results across
various model configurations in all of our experi-
ments, we argue that the training dataset size used
to determine the validity of our proposed curricula
does not undermine the reliability of our conclu-
sions.
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A Additional Evaluation Details

A.1 NLTK RegExp Tokenizer Rule
Below we provide the regular expression rule as-
signed to a Python variable that we used for the
NLTK’s RegExp tokenizer. This tokenizer was
used to tokenize the sequences generated by the
models we have trained in order to calculate the out-
put quality metrics in Section 3.4, namely BLEU,
ROUGE-L and TTR.

pattern = r'''
# strings
"(?:[^"\\]|\\.)*" |
'(?:[^'\\]|\\.)*' |
# numeric literals
\d+(?:\.\d+)? |
# words/unicode identifiers
[\w_]+ |
# punctuation, brackets, etc.
[!@#\$%\^&\*\(\)\-=\+\\|\[\]\{\};:'",.<>/?`~]+
'''

A.2 G-Eval Prompt
You will be given a sequence triplet consisting of:

1. An input sequence (text or code) that serves
as the starting point.

2. An output sequence written as a continuation
of the input.

3. A target sequence that represents the expected
continuation of the input sequence.

Your task is to rate the written output sequence on
one metric.
Please make sure you read and understand these
instructions carefully. Keep this document open
while reviewing, and refer to it as needed.

Evaluation Criteria:

Overall Quality (1-5) - how well does the output
sequence continue the input sequence and align
with the target sequence?

- A score of 5 means that the output sequence is
excellent. It provides a seamless continuation
of the input sequence, closely aligns with the
target sequence, and avoids any repetitions,
irrelevant passages, or major errors.

- A score of 4 means that the output sequence
is good. It continues the input sequence well
and mostly aligns with the target sequence,
but may include minor errors or imperfections,
such as slight incoherence or small structural
issues.

- A score of 3 means that the output sequence is
acceptable. It maintains some relevance to the
input sequence and partial alignment with the
target sequence, but contains noticeable flaws,
such as incoherence, repetitions, or deviations
that reduce its quality.

- A score of 2 means that the output sequence is
poor. It struggles to continue the input se-
quence coherently or deviates significantly
from the target sequence, with major errors,
irrelevant sections, or repeated patterns.

- A score of 1 means that the output sequence is
invalid. It fails to continue the input sequence
meaningfully, shows no alignment with the
target sequence, or is completely incoherent.

Evaluation Steps:

1. Carefully read the input, output, and target
sequences.

2. Compare the output sequence to both the input
sequence (continuity) and the target sequence
(alignment).

3. Rate the output on a scale of 1-5 for Quality,
according to the criteria above.

### Input Sequence:
{Input Sequence}
### Output Sequence:
{Output Sequence}
### Target Sequence:
{Target Sequence}

Evaluation Form (scores ONLY):
- Quality:

B Additional Results

B.1 Result tables with absolute values
Tables 3 and 4 report the absolute scores that corre-
spond to those reported in Tables 1 and 2.

B.2 MTP models trained on 10B tokens
Table 5 lists the evaluation results of 1.3B models
trained on 10B subword tokens of FineWeb-Edu.
The MTP models with 4 TL layers showcase a per-
formance that is consistent with 4 TL MTP models
trained on MiniPile. As the scale increases, the
dynamic MTP objective continues to result in per-
formance improvements over the static one.

Granted, the NTP objective still leads to a best
performing model, however we believe that as the

25585



1.3B 3B
Tokens Heads Curriculum MiniPile LAMBADA BLiMP ARC-E OBQA MiniPile LAMBADA BLiMP ARC-E OBQA

BPB ↓ BPB ↓ Acc. ↑ Acc. ↑ Acc. ↑ BPB ↓ BPB ↓ Acc. ↑ Acc. ↑ Acc. ↑

Subword

1 LL - 1.08 1.34 71.80 34.60 25.80 1.03 1.17 74.93 34.60 24.80

2 LL
- 1.12 1.44 70.27 31.99 23.80 1.06 1.27 72.09 36.36 24.60

Forward 1.12 1.45 70.79 34.64 25.60 1.06 1.27 73.65 35.40 25.40
Reverse 1.09 1.36 71.45 32.58 25.00 1.04 1.20 74.69 36.28 24.20

2 TL
- 1.11 1.41 71.04 34.09 26.20 1.05 1.24 73.32 36.15 25.00

Forward 1.12 1.43 70.72 35.14 25.00 1.06 1.24 73.26 35.44 24.60
Reverse 1.09 1.35 71.66 34.81 26.20 1.03 1.19 73.93 35.06 25.20

4 LL
- 1.19 1.61 67.48 34.22 24.40 1.12 1.44 72.20 36.45 25.00

Forward 1.16 1.55 69.55 35.52 25.60 1.10 1.37 72.35 35.40 25.40
Reverse 1.12 1.43 69.74 34.89 24.40 1.06 1.26 73.70 35.35 24.00

4 TL
- 1.18 1.57 67.07 33.96 23.40 1.11 1.38 71.34 36.41 23.20

Forward 1.16 1.50 68.52 34.26 23.40 1.09 1.32 71.89 35.31 25.40
Reverse 1.12 1.42 70.14 34.22 23.80 1.06 1.25 73.21 36.99 22.20

Byte

1 LL - 1.14 1.06 66.97 29.97 24.00 1.07 1.00 71.20 29.92 26.40

4 LL
- 1.16 1.09 69.13 29.42 30.40 1.08 1.00 71.42 29.97 30.60

Forward 1.20 1.13 67.22 29.00 28.40 1.11 1.03 70.43 29.97 31.20
Reverse 1.12 1.05 70.36 29.21 32.20 1.06 0.96 72.47 32.15 31.00

8 LL
- 1.23 1.19 68.16 28.79 34.40 1.13 1.07 69.60 29.71 30.40

Forward 1.24 1.19 65.15 28.45 27.60 1.14 1.08 70.18 30.39 28.20
Reverse 1.15 1.08 69.35 28.49 30.40 1.07 0.99 72.01 30.68 28.60

Table 3: Performance of MTP models using only their main LM heads on NTP tasks. Best NTP performance across
all model configurations are highlighted.

1.3B 3B
Tokens Heads Curriculum BLEU ↑ ROUGE-L ↑ SemScore ↑ TTR ↑ G-Eval ↑ BLEU ↑ ROUGE-L ↑ SemScore ↑ TTR ↑ G-Eval ↑

Subword

1 LL - 4.66 14.84 44.48 14.94 1.71 5.15 15.76 45.88 15.75 1.79

2 LL
- 4.31 14.83 42.05 13.78 1.72 4.82 15.50 45.15 14.92 1.78

Forward 4.20 14.82 42.11 13.74 1.74 5.02 15.81 45.36 15.47 1.77
Reverse 4.62 14.90 43.32 14.81 1.75 4.88 15.71 45.71 16.23 1.79

2 TL
- 4.31 14.64 42.01 13.70 1.71 5.08 15.65 45.35 15.60 1.79

Forward 4.35 14.83 41.59 14.14 1.72 4.70 15.03 44.44 13.98 1.72
Reverse 4.52 15.05 42.75 13.93 1.67 5.28 15.85 45.01 15.12 1.81

4 LL
- 3.96 13.85 39.01 14.58 1.68 4.42 14.54 42.21 15.64 1.76

Forward 4.12 14.36 39.88 14.40 1.69 4.61 14.97 43.31 15.83 1.77
Reverse 4.59 14.89 42.42 15.92 1.72 4.99 15.48 44.46 15.65 1.80

4 TL
- 4.24 14.11 39.02 14.39 1.69 4.78 14.87 43.17 15.78 1.78

Forward 3.86 14.09 40.21 14.56 1.68 4.59 15.04 43.79 16.23 1.78
Reverse 4.51 14.88 42.34 14.98 1.71 4.83 15.99 45.47 15.65 1.81

Byte

1 LL - 4.98 15.08 43.34 21.50 1.76 5.89 16.57 44.64 23.43 1.90

4 LL
- 4.89 14.77 41.11 29.02 1.83 6.29 16.70 44.73 30.60 1.97

Forward 5.08 14.89 41.32 28.44 1.86 5.85 15.90 42.10 29.11 1.92
Reverse 4.89 15.64 41.48 31.76 1.86 5.94 16.17 44.68 31.98 1.96

8 LL
- 4.77 14.94 39.91 35.49 1.86 5.41 15.78 41.79 41.70 1.93

Forward 4.90 14.87 37.83 35.31 1.81 5.66 15.98 42.04 36.40 1.94
Reverse 4.83 15.22 40.85 32.50 1.88 6.06 16.25 43.54 34.07 1.98

Table 4: Evaluation of the outputs generated by the models based on the MiniPile test set inputs. Highlighted are
scores that are improvements over the corresponding static MTP baselines trained without a curriculum for each
respective model configuration.
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Main LM Head Output Quality
Tokens Heads Curriculum MiniPile LAMBADA BLiMP ARC-E OBQA

BLEU ↑ ROUGE-L ↑ SemScore ↑ TTR ↑ G-Eval ↑
PPL ↓ PPL ↓ Acc. ↑ Acc. ↑ Acc. ↑

Subword
1 LL No 47 74 78.74 54.63 30.40 2.02 15.39 52.40 13.18 1.52

4 TL
No 57 100 75.96 55.22 27.40 1.97 14.80 51.69 16.11 1.54

Forward 57 101 76.56 54.30 28.40 2.00 15.08 52.71 15.48 1.56
Reverse 50 75 77.55 55.60 30.40 2.19 14.91 52.77 16.25 1.56

Table 5: Evaluation results of 1.3B models trained on 10B tokens of FineWeb-Edu.

model size increases, the static MTP objective
should start outperforming the NTP objective, as
shown by Gloeckle et al. (2024). And given our
observations, the dynamic MTP objective should
result in even better performing scaled models.

We recognize that 10B tokens is still a very mod-
est token budget for moder LLM pre-training. Nev-
ertheless, we hope that our results will serve as a
useful starting point for future work in a scaled
setup.

B.3 BLiMP breakdown

Tables 6 and 7 break down the performance of
the models on the BLiMP benchmark from Table
1. We show the performance on each linguistic
phenomenon considered in the benchmark. Please
refer to Warstadt et al. (2020) for the precise defini-
tion of each phenomenon and additional details on
how to interpret them. Below we discuss the results
of one of the particularly interesting and illustrative
English phenomenon pair.

The category of tasks in BLiMP that fall under
the Binding category deals with structural relation-
ships between a pronoun and its antecedent. Often
they are further apart from each other within a sen-
tence, making them a good match for MTP models.
Meanwhile, the Subject-Verb Agreement (SVA)
phenomenon can be characterized as the agreement
between subjects and verbs in number. Usually
they are close to each other in a sentence, i.e. SVA
often deals with relationships between adjacent to-
kens, which NTP models should excel at.

The results show that even though the MTP mod-
els should be better suited to deal with the Binding
phenomenon, the complexity of the MTP objective
hinders the performance of 1.3B models with re-
spect to this phenomenon. Only 3B MTP models
are able to outperform their NTP counterparts, if
trained with a dynamic MTP objective. Given the
performance gains observed by 3B models with 4
LL or 2 TL heads, the performance degradation of
1.3B models in the Binding category can perhaps
be explained by the limited capacity of the model

due to its parameter count.
The performance gap on the SVA phenomenon,

on the other hand, is more expected, as NTP models
do not have to account for multiple future tokens
at once in its internal representations. Notably,
the performance drop is especially noticeable in
case of 4-token prediction models. Notably, the
dynamic MTP objective significantly alleviates the
performance drop in the SVA category, especially
when it comes to 3B models.

To conclude, these results make it evident that
the proposed dynamic MTP objective offers some
noticeable performance improvements in some cat-
egories of the English grammatical phenomena, de-
spite the fact that MTP models on average perform
worse than NTP models on the BLiMP benchmark,
as shown in Tables 1 or 3 of the paper.
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Anaphor Argument Binding Control/ Ellipsis Filler Irregular Island NPI Quantifiers Subject-Verb
Tokens Heads Curriculum Agreement Structure Raising Gap Forms Effects Licensing Agreement

Subword

1 LL - 90.8 73.44 78.37 70.94 73.7 71.33 92.3 50.28 60.87 67.35 78.13

2 LL
- 88.2 73.14 76.57 70.42 75.45 69.73 86.9 48.72 61.11 62.35 76.98

Forward 88.35 72.91 76.87 69.54 74.8 69.27 93.15 53.59 61.21 54.52 78.37
Reverse 87.8 74.51 77.35 71.06 75.6 70.06 87.15 49.57 63.21 64.65 78.6

2 TL
- 89.75 72.59 76.95 68.34 71.95 69.94 91.65 50.55 62.69 67.35 77.42

Forward 90.95 72.82 77.67 68.78 72.8 68.83 90.9 49.84 59.66 63.95 77.7
Reverse 86.0 73.48 78.32 69.36 72.45 70.07 92.25 50.4 61.01 73.05 78.12

4 LL
- 84.15 70.22 76.2 66.96 72.95 68.03 88.1 53.01 48.43 56.88 71.18

Forward 88.1 71.43 77.37 68.26 70.65 69.49 91.45 51.64 57.06 56.12 76.82
Reverse 85.95 73.19 77.78 68.38 73.7 68.4 89.25 52.21 55.17 62.05 74.15

4 TL
- 90.5 69.19 75.82 67.02 71.4 68.67 83.4 48.59 52.73 57.73 70.33

Forward 86.7 71.39 77.7 68.66 69.3 70.19 86.45 46.4 56.81 52.62 76.1
Reverse 86.8 72.47 76.68 70.4 73.0 69.19 86.75 50.61 60.29 64.53 75.67

Byte

1 LL - 77.05 71.8 75.27 67.64 72.9 67.81 87.7 45.53 40.89 64.2 77.92

4 LL
- 72.5 73.78 76.77 67.82 75.7 67.0 85.45 47.09 50.26 66.8 82.45

Forward 71.65 71.12 75.0 64.54 71.5 67.0 82.35 44.61 57.39 57.38 75.12
Reverse 72.75 73.78 75.03 67.98 74.55 69.94 87.3 47.7 57.03 65.83 84.18

8 LL
- 69.15 72.04 75.7 65.78 74.9 67.9 88.25 46.32 54.96 68.2 76.4

Forward 64.75 68.79 76.53 65.72 72.7 66.01 82.55 42.61 45.39 67.1 71.25
Reverse 75.9 74.6 76.2 66.86 71.8 69.9 88.4 48.24 49.06 69.8 77.88

Table 6: Detailed performance of 1.3B models on the BLiMP benchmark. These results correspond to the aggregated
results reported in Table 1

Anaphor Argument Binding Control/ Ellipsis Filler Irregular Island NPI Quantifiers Subject-Verb
Tokens Heads Curriculum Agreement Structure Raising Gap Forms Effects Licensing Agreement

Subword

1 LL - 92.8 76.88 78.82 70.62 78.45 72.59 90.65 55.24 64.96 74.03 83.6

2 LL
- 91.4 74.43 78.63 71.84 75.0 71.47 92.0 54.4 48.01 72.88 81.4

Forward 90.65 75.57 78.62 71.4 77.15 72.4 90.5 54.3 64.56 64.05 82.2
Reverse 92.55 75.58 79.48 71.78 77.15 72.21 91.5 55.97 63.79 75.72 82.92

2 TL
- 89.7 75.56 78.85 70.06 76.3 72.04 91.6 57.3 62.37 69.1 77.73

Forward 89.3 74.9 78.47 71.14 75.35 71.07 85.1 50.8 65.49 73.6 80.2
Reverse 89.8 76.08 80.02 72.22 76.7 72.2 88.3 57.25 65.13 66.92 80.53

4 LL
- 92.1 72.17 78.0 69.0 73.45 70.19 90.15 52.35 70.87 68.08 73.18

Forward 89.65 73.96 78.63 70.32 72.75 71.26 89.15 54.11 61.94 63.6 78.78
Reverse 91.7 75.66 79.4 70.6 76.2 71.61 91.0 54.05 69.7 70.03 76.7

4 TL
- 89.9 72.99 78.37 70.34 72.05 70.27 91.55 52.21 59.81 72.28 75.55

Forward 90.75 73.42 77.95 70.12 75.2 70.73 87.15 49.51 64.71 67.8 78.45
Reverse 91.65 75.0 78.28 71.24 77.2 70.36 90.65 54.76 64.81 70.78 76.88

Byte

1 LL - 76.75 74.49 76.88 67.14 74.55 70.43 91.6 55.34 50.36 65.17 84.33

4 LL
- 77.5 74.83 77.0 69.66 76.55 68.76 82.1 51.98 59.54 68.08 82.2

Forward 78.8 74.84 75.98 67.98 77.25 69.26 91.05 50.78 54.03 63.05 82.7
Reverse 87.7 76.14 77.47 70.44 74.7 71.01 90.25 50.94 58.07 67.92 84.5

8 LL
- 81.6 74.7 74.08 67.98 75.2 68.27 84.25 48.49 52.16 69.85 80.83

Forward 78.9 74.02 75.72 67.96 76.45 68.07 87.35 52.41 56.76 62.45 79.97
Reverse 79.2 75.19 75.87 70.28 77.2 71.26 85.8 51.81 60.41 71.8 81.82

Table 7: Detailed performance of 3B models on the BLiMP benchmark. These results correspond to the aggregated
results reported in Table 1
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