
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 25530–25545
July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

Response Wide Shut? Surprising Observations in Basic
Vision Language Model Capabilities

Shivam Chandhok1,2 Wan-Cyuan Fan1,2 Vered Shwartz1,2,4
Vineeth N Balasubramanian3,5 Leonid Sigal1,2,4

1University of British Columbia 2Vector Institute for AI 3IIT Hyderabad
4CIFAR AI Chair 5Microsoft Research India

{chshivam, wancyuan, vshwartz, lsigal}@cs.ubc.ca vineeth.nb@microsoft.com

Abstract

Vision-language Models (VLMs) have
emerged as general-purpose tools for address-
ing a variety of complex computer vision
problems. Such models have been shown to be
highly capable, but, at the same time, lacking
some basic visual understanding skills. In this
paper, we set out to understand the limitations
of SoTA VLMs on fundamental visual tasks
by constructing a series of tests that probe
which components of design, specifically, may
be lacking. Importantly, we go significantly
beyond the current benchmarks, which simply
measure the final performance of VLM
response, by also comparing and contrasting it
to the performance of probes trained directly
on features obtained from the visual encoder,
intermediate vision-language projection and
LLM-decoder output. In doing so, we uncover
shortcomings in VLMs and make a number of
important observations about their capabilities,
robustness and how they process visual
information. We hope our insights will guide
progress in further improving VLMs.

1 Introduction

Recently, vision-language models (VLMs) have
emerged as general-purpose tools that can address
many complex language and vision tasks such as
comprehending charts and interpreting humor in
images and videos (Li et al., 2023b; Liu et al., 2023;
Li et al., 2024). However, there is also a growing
body of evidence that VLMs lack basic capabilities
that are considered necessary to solve simple high-
level tasks, such as the ability to understand simple
negations (Alhamoud et al., 2025) or recognize and
count objects (Kim and Ji, 2024; Peng et al., 2024;
Zhang et al., 2024; Paiss et al., 2023). These ob-
servations suggest that the mechanisms for solving
complex tasks in these models may be different
from those in humans, relying more on large-scale
matching and memory recall, as opposed to func-
tional and step-by-step reasoning.
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Figure 1: Overview of our VLM analysis. Going beyond
existing efforts that analyze VLMs as a whole, we study per-
formance of VLMs in terms of intermediate spaces that repre-
sent knowledge as it is processed through the VLM network.
Specifically, we consider three spaces in VLMs: visual, VL
projection and response space; to understand what aspects of
visual information are captured (not captured) and where.

Inspired by these contradictory observations,
we propose a systematic and nuanced analysis of
VLMs’ performance, focusing on core vision ca-
pabilities that we posit are required for high-level
visual reasoning tasks: (i) the ability to recognize
objects (coarse and fine-grained classification), (ii)
delineate instances of a given object type (counting)
and (iii) understand their spatial arrangement.

Previous work that pointed out deficiencies of
VLMs on the aforementioned tasks focused only
on the final VLM response (the default way to use
VLMs) (Peng et al., 2024; Paiss et al., 2023; Kim
and Ji, 2024; Kamath et al., 2023; Zhang et al.,
2024). While this allows a holistic measure of
performance, it does not provide any insights on
which components in VLM design maybe lacking
or could be improved. In this paper, we propose
to analyze VLMs’ performance in terms of inter-
mediate spaces that represent information as it is
processed through the VLM network (Figure 1).
Specifically, VLMs typically consist of a visual en-
coder, text decoder, and (optional) visual-language
(VL) projection or alignment mechanism. There-
fore, by analyzing the output of these different mod-
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Figure 2: Qualitative results supporting the findings of our analysis. We show prediction (correct vs incorrect) for three
spaces i.e visual, VL projection and response. We notice correct predictions in intermediate spaces and incorrect predictions in
response space for object recognition and counting task. Furthermore, we notice a reversal in trend for spatial understanding task,
where the response space has more correct predictions compared to intermediate spaces.

ules in their ability to perform visual tasks, we can
better understand which capabilities may be miss-
ing and where. Knowing which of the components
is at fault would give important insights into how
the performance can be improved and provide a
more targetted strategy for enhancing VLMs.

Our observations in this work point to the fact
that contrary to current understanding (Tong et al.,
2024), vision encoders are quite proficient at visual
tasks and that the VL projection preserves most
(if not all) information. We instead find a signif-
icant drop in performance in the VLM response
layer—the output of the language decoder, espe-
cially in tasks like fine-grained recognition and
object counting. Figure 2 shows samples of our
qualitative results that examine the predictions af-
ter each module: visual, VL proj. and response.
We see – as stated above – that the final response
layer seems to fall short in translating the strong
performance of visual and VL projection modules
across the recognition and object counting tasks. In
spatial understanding, however, our results reaffirm
the results in (Tong et al., 2024) that the visual and
VL proj. space shows weak performance, support-
ing the need for better visual encoders.

Beyond these, our studies reveal other interest-
ing observations, w.r.t how background, shape and
visual prompting information is processed through
spaces within a VLM. Overall, through our insights,

our work seeks to identify the key gaps in module
performance in VLMs vis-a-vis well-known vision
tasks and encourage future work to target efforts
on improving these gaps in the next generation of
vision-language models.

2 Related Work

Vision Language Models (VLMs). Existing ef-
forts on VLMs can be broadly categorized into
three groups based on their training objectives and
architectural design: (1) Contrastive multi-encoder
models such as CLIP (Radford et al., 2021) and
ALBEF (Li et al., 2021) consist of a separate en-
coder for each modality (i.e., image and text) and
use contrastive alignment between image and text
inputs for training. (2) Encoder-decoder generative
models such as BLIP-2 (Li et al., 2023a) employ an
encoder-decoder architecture to project images to
a low-dimensional representation and then use the
representation as context to the language decoder
to generate language descriptions or captions with
generative language modeling loss. (3) Instruction
fine-tuned models such as LLaVA-1.5 (Liu et al.,
2023), InstructBLIP (Dai et al., 2023) and LLaVA-
NEXT (Liu et al., 2024) are additionally fine-tuned
to follow human instructions and intent while an-
swering visual questions. Usually, these models
are fine-tuned with some form or variant of RLHF
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(Lambert et al., 2022), or direct preference opti-
mization (Rafailov et al., 2023), which allows them
to understand human question intent and answer
accordingly. In this paper, we analyze VLMs from
all three model groups.

Analyzing VLM Capabilities. Recent interests
in VLMs have motivated research that aims to
understand their visual capabilities. Han et al.
(2024) analyzed how VLMs generalize to distri-
bution shifts, and Udandarao et al. (2023) further
showed a strong correlation between the ability to
recognize the type of perturbation and the robust-
ness to it. Recently, Peng et al. (2024) evaluated
visual-linguistic concepts such as object size, posi-
tion, existence and count. Similarly, other efforts
(Kamath et al., 2023; Paiss et al., 2023; Yuksek-
gonul et al., 2022; Thrush et al., 2022) pointed
out deficiencies of VLMs on recognition, spatial,
counting etc. However, they only evaluate the fi-
nal response from the VLMs whereas we test the
performance of each component in the VLM indi-
vidually through our novel three sub-space analysis
design to pinpoint where the problem is coming
from. Related to our work, Zhang et al. (2024)
explores image classification in VLMs comparing
the performance of LLaVA with contrastive VLMs
like CLIP. They find that LLM decoder output (of
inference and probe) from LLaVA (Liu et al., 2023)
performs inferior to the performance of CLIP.

In contrast, we go a step further and present an
in-depth analysis of VLM’s in three intermediate
feature spaces that represent the flow of informa-
tion through the networks allowing us to pinpoint
where the deficiencies are coming from. Further-
more, our comprehensive analysis covers a range
of diverse tasks in addition to classification, such
as counting, spatial orientation, model robustness,
prompting and background transformations. Addi-
tionally, a recent effort, EWS (Tong et al., 2024),
posit that deficiencies of the visual encoder affect
the VLM’s overall performance. Although this is
true for spatial tasks, we find that for most visual
tasks visual encoders are proficient/capture neces-
sary information, however, this information is lost
in the language decoder and does not translate to
an accurate final VLM response.

3 Experimental Setup

Motivated by the modular design of VLMs, where
individual components are often pre-trained sep-
arately and later put together for end-to-end fine-

tuning (Liu et al., 2023), we propose to investigate
VLMs by looking at their performance in terms of
intermediate feature spaces that represent informa-
tion as it is processed by the network (Fig. 1).

Specifically, VLMs typically comprise of a vi-
sual encoder, vision-language projection module
and language decoder (see Figure 1). This gives
rise to 3 different sub-spaces within a VLM: (1)
visual latent (output of visual encoder) space; (2)
vision-language shared latent (output of vision-
language projection) space, and (3) language re-
sponse space (output of language decoder). We con-
juncture that these spaces might capture different
aspects of visual information which cumulatively
help a VLM understand visual content. To this end,
we probe these different spaces and analyze their
visual capabilities to get a nuanced understanding
of what aspects of visual information are captured
within VLMs and where. Our design can help pin-
point where the visual knowledge may be lacking
or lost, informing future work on designing better
VLM architectures and training strategies.

3.1 Choice of VLMs

To comprehensively analyze the visual capabili-
ties of a diverse set of models, we choose repre-
sentative models from each category (described in
Section 2): CLIP (Radford et al., 2021), ALBEF
(Li et al., 2021) as contrastive multi-encoder mod-
els; CoCa (Yu et al., 2022) and BLIP-2 (Li et al.,
2023a) as encoder-decoder generative models; and
InstructBLIP (Dai et al., 2023), LLaVA v.1.5 (Liu
et al., 2023), and LLaVa-NEXT (Liu et al., 2024)
as instruction fine-tuned models. Our choice of
these models is also motivated by recent work on
VLM analysis (Tong et al., 2024; Han et al., 2024;
Udandarao et al., 2023). Given the popularity of
these models, they are often used as a starting point
for other more sophisticated VLMs. Hence, ana-
lyzing their shortcomings can have a broader im-
pact.1 Finally, our analysis requires access to the
intermediate feature representations, limiting us to
open-source models; preventing us from evaluating
industrial models such as GPT-4V and Gemini.

3.2 Choice of Visual Tasks and Benchmarks

Following prior work, we conjecture that in order
to understand the visual content of an image and ef-

1At the time of writing, LLaVA-NEXT is widely consid-
ered among SoTA (Liu et al., 2024) open-source models, and
the LLaVA-v1.5 model is widely used for downstream appli-
cations and fine-tuning VLMs for new tasks.
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fectively reason about it, a model must have funda-
mental capabilities such as the ability to recognize
objects (coarse and fine-grained categorization),
group similar object instances together (counting)
and understand the spatial relations between ob-
jects (Cho et al., 2023). Even though these capabil-
ities are not exhaustive, understanding these dimen-
sions is pivotal for visual reasoning (e.g., VQA) as
well as building higher-level representations and
abstractions like scene graphs (Xu et al., 2017).

We leverage existing benchmarks for these tasks:
PaintSkills (Cho et al., 2023) and Pascal VOC (Ev-
eringham et al., 2010) for coarse object recogni-
tion, Stanford Dogs (Khosla et al., 2011) and CUB
(Wah et al., 2011) for fine-grained recognition, and
PaintSkills (Cho et al., 2023) for counting (1–4)
and spatial reasoning (above, below, left, right).2.
We further elaborate on exact details about dataset
splits and classes in Appendix A.7

3.3 Task Design
We formulate the aforementioned tasks as classifi-
cation over a set of discrete choices (e.g., for clas-
sification – a set of coarse/fine object classes; for
counting – a set of counts; and spatial orientations –
a set of spatial arrangements, such as above, below,
left-of, right-of). We convert these classification
tasks to a question form to test visual understanding
capabilities of VLM models (as used by previous
work: Kim and Ji, 2024; Han et al., 2024) where the
VLM is prompted with a VQA query such as “What
is the central object in the image? Choices - dog,
cat, ...?”. We further elaborate on task prompts and
details of probing in Appendix A.2.

3.4 Evaluation Design
Visual and VL Projection Space. To evaluate
the visual and VL projection spaces, we probe
the frozen feature representations by training task-
specific linear probes. Following previous work
(Radford et al., 2021; Caron et al., 2021; El Banani
et al., 2024), we use the standard linear probing
strategy of a single layer (MLP) logistic regression
model. Specifically, we train a probe on an average
pooled features from output of vision encoder and
VL proj. for each image. The probes are trained on
training split and evaluated on val/test splits.

Response Space. We evaluate the response space
in two ways: (1) for fair comparison with the vi-
sual and VL projection, we similarly train a linear

2PaintSkills is a diagnostic dataset designed to measure
fundamental skills in foundational models.

probe on the output token representation from the
language decoder (Probe). Specifically, the output
of the language decoder for a given image is of the
form T × F , where T is the number of tokens and
F is the feature dimension of token embeddings,
which we average pool to produce F -dimensional
feature for each image. (2) we directly evaluate the
textual response of the VLM to a VQA query for a
given task such as “What is the central object in the
image? Choices - dog, cat, ...?” (Text). Note that
this is the default way to evaluate VLMs.3 (See
Appendix A.2 for of task prompts and evaluation)

Control Task for Probes. To verify that represen-
tation encodes properties useful for the task rather
than the linear probe learning the task from the
training data, we include a control task in which we
randomly shuffle the labels (Zhang and Bowman,
2018; Hewitt and Liang, 2019). Good performance
on the target task combined with bad performance
on the control tasks validates our linear probing
results can serve as proxy for information present
(See Appendix A.3 for the control task results).

4 Analyzing the Skills of VLMs

4.1 Object Recognition

(Coarse-grained) object recognition. Table 1
presents the results of VLMs on coarse-grained
object recognition. The visual and VL projection
spaces for all VLMs perform well, resulting in ac-
curacy above 95%. However, there is some dip in
performance in the response space across models
(atleast 5% on average). Even though all models
show similar high performance in visual and VL
proj. space, BLIP family of models perform worse
in the response space compared to other models.
We attribute this gap to the fact that BLIP-2 wasn’t
instruction tuned which may prevent it from under-
standing the instructions in the query even when it
otherwise has access to the required information in
the visual and projection space. Evidence for this
can be seen by comparing BLIP-2 to its instruction-
tuned counterpart – InstructBLIP which results in a
substantial performance increase in response space.
However, InstructBLIP still does not reach the per-
formance of LLaVA-1.5 and LLaVA-NEXT on Pas-
cal VOC, which we attribute to stronger and better
instruction-tuning for the latter models. The better
performance of the linear prob (probe) compared

3CLIP, CoCa, and ALBEF don’t have a language decoder,
hence we only report the Probe for these models.
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VLM Method PaintSkills Pascal VOC Average

Visual VL Proj Response Visual VL Proj Response Visual VL Proj Response
probe probe probe text probe probe probe text probe probe probe text

CLIP (Radford et al., 2021) 99.2 - - 96.5 98.5 - - 95.6 98.9 - - 96.0
CoCa (Yu et al., 2022) 99.9 - - 94.0 97.6 - - 96.6 98.8 - - 95.3
ALBEF (Li et al., 2021) 99.7 - - 75.3 97.3 - - 86.0 98.5 - - 80.7
BLIP-2 (Li et al., 2023a) 7B 99.2 99.2 87.0 59.0 98.0 99.0 57.3 38.0 98.6 99.1 72.2 48.5
InstructBLIP (Dai et al., 2023) 7B 99.9 99.2 98.5 98.0 98.0 98.6 95.0 70.0 99.0 98.9 96.8 84.0
LLaVA-1.5 (Liu et al., 2023) 7B 99.2 99.2 94.4 97.0 96.8 95.8 91.1 90.2 98.0 97.5 92.8 93.6
LLaVA-NEXT (Liu et al., 2024) 7B 99.8 99.8 94.2 97.7 97.3 96.6 94.1 94.1 98.6 98.2 94.2 95.9

Table 1: Course-grained Recognition. Visual and VL proj. spaces for all VLMs perform well (accuracy above 95%). However,
there is a small dip in performance in the response space across models (atleast 5% on average).

VLM Method Stanford Dogs CUB Average

Visual VL Proj Response Visual VL Proj Response Visual VL Proj Response
probe probe probe text probe probe probe text probe probe probe text

CLIP (Radford et al., 2021) 94.0 - - 84.0 95.0 - - 71.0 94.5 - - 77.5
CoCa (Yu et al., 2022) 94.0 - - 87.0 94.0 - - 74.5 94.0 - - 80.8
ALBEF (Li et al., 2021) 83.0 - - 39.0 82.5 - - 16.7 82.8 - - 27.9
BLIP-2 (Li et al., 2023a) 7B 93.6 92.0 58.1 23.5 92.0 93.2 20.5 10.0 92.8 92.6 39.3 16.8
InstructBLIP (Dai et al., 2023) 7B 93.6 92.6 28.5 12.0 92.2 94.0 60.7 13.0 92.9 93.3 44.6 12.5
LLaVA-1.5 (Liu et al., 2023) 7B 91.9 88.7 25.9 19.9 92.2 87.3 34.1 34.6 92.1 88.0 30.0 27.3
LLaVA-NEXT (Liu et al., 2024) 7B 90.4 87.2 37.5 31.0 90.0 85.0 22.5 18.0 90.2 86.1 30.0 24.5

Table 2: Fine-grained Recognition. There is significant drop in performance in the response space for fine- vs. course-grained
recognition. In the visual and VL projection feature spaces the drop also exists, but is significantly less, comparatively speaking.

Figure 3: Effect of Scaling LLM Decoder on Response
space. Refer to Appendix A.1 for elaborate results

to (text) space on InstructBLIP also supports this
hypothesis; i.e., it is able to capture the answer, but
not verbalize it in (text).
(Fine-grained) object recognition. Table 2
presents the results of VLMs on fine-grained object
recognition. The decrease in performance in the
response space compared to the visual and VL pro-
jection spaces is drastic (atleast 45 % drop), across
both datasets. Our experiments point to problems
in the response space by showing that the visual and
VL projection probes perform very well, with most
models achieving an accuracy above 90% across
datasets. However, the knowledge does not trans-
late to the response space. These results shed light
on the findings in Kim and Ji (2024) that VLMs
are overall less capable in fine-grained recognition,
and contradict the conclusion of Tong et al. (2024)
that the deficiency is due to the visual encoder. Fur-
ther, we note that Kim and Ji (2024) show that
text-only language decoders are themselves good
at fine-grained object classification. Hence, we
conjecture that the drastic dip in performance is
not due to lack of knowledge in the language de-
coder; rather it is due to ineffective joint fine-tuning

VLM Method PASCAL VOC

Visual VL Proj Response
probe probe probe text

LLaVA-NEXT (Liu et al., 2024) 7B 97.3 96.6 94.1 94.1
LLaVA-NEXT (Liu et al., 2024) 13B 97.3 96.2 95.7 95.8
LLaVA-NEXT (Liu et al., 2024) 34B 97.4 96.5 97.0 97.0

VLM Method Stanford Dogs

Visual VL Proj Response
probe probe probe text

LLaVA-NEXT (Liu et al., 2024) 7B 90.4 87.2 37.5 31.0
LLaVA-NEXT (Liu et al., 2024) 13B 90.5 86.5 37.0 36.9
LLaVA-NEXT (Liu et al., 2024) 34B 91.0 86.9 51.3 49.4

Table 3: Effect of Scaling LLM Decoder. Results are shown
on three spaces for LLaVA-NEXT on coarse-grained (top) and
fine-grained (bottom) recognition task.

of the proj. layer and language decoder which is
responsible for aligning the vision and language
modalities.
Object recognition discussion and implications.
While the encoding of the fine-grained classes
could be seen as being preserved in the visual and
intermediate VL projection space, it is clear that
representations in that space do not align well with
those in the language decoder. We investigate this
further and find that the LLaVA 665k fine-tuning
data has only 0.17% of samples about fine-grained
dog breeds. Given our findings, we posit that the
data used for joint fine-tuning of VLMs’ projec-
tion with language decoder did not contain enough
samples (was not representative) of fine-grained
classes. Hence, incorporating fine-grained sam-
ples and improving joint fine-tuning of the VL proj.
and language decoder would yield improvements
in fine-grained recognition.
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VLM Method PaintSkills

Visual VL Proj Response
probe probe probe text

CLIP (Radford et al., 2021) 93.5 - - 49.0
CoCa (Yu et al., 2022) 91.7 - - 77.0
ALBEF (Li et al., 2021) 78.1 - - 40.0

BLIP-2 (Li et al., 2023a) 7B 96.6 95.3 26.0 25.0
InstructBLIP (Dai et al., 2023) 7B 96.6 95.6 82.0 82.0

LLaVA-1.5 (Liu et al., 2023) 7B 93.0 94.0 81.0 81.0
13B 93.1 94.0 73.0 73.8

LLaVA-NEXT (Liu et al., 2024) 7B 94.4 95.7 81.2 81.2

Table 4: Object Counting on PaintSkills. See text for de-
tailed analysis and discussion.

VLM Method PaintSkills

Visual VL Proj Response
probe probe probe text

CLIP (Radford et al., 2021) 47.5 - - 31.0
CoCa (Yu et al., 2022) 48.0 - - 27.3
ALBEF (Li et al., 2021) 47.0 - - 28.0

BLIP-2 (Li et al., 2023a) 7B 50.4 50.0 27.7 25.0
InstructBLIP (Dai et al., 2023) 7B 50.4 57.0 27.7 26.8

LLaVA-1.5 (Liu et al., 2023) 7B 50.2 51.0 61.0 63.0
13B 50.5 49.0 72.6 74.0

LLaVA-NEXT (Liu et al., 2024) 7B 49.8 49.8 37.6 37.6

Table 5: Spatial Understanding on PaintSkills. See text for
detailed analysis and discussion.

Impact of model size. An important question to
ask is if the drop in performance in the response
space is due to the size of the language decoder.
Figure 3, Table 3 and AppendixA.1 show the ef-
fect of scaling the language decoder on accuracy.
We observe that a bigger LM decoder does gen-
erally improve the performance of response space
to some extent, including improvements in the VL
proj. space. However, the best response accuracy
still remains atleast 35% lower than the correspond-
ing visual and VL proj. space performance for
fine-grained object recognition.

4.2 Counting and Spatial Understanding
Next, we consider object counting and spatial ar-
rangement understanding more difficult than object
recognition, which is a prerequisite for both. Fol-
lowing Cho et al. (2023), we use the PaintSkills
diagnostic evaluation dataset for both tasks, as it
allows us to control object placement and arrange-
ment. Specifically, we use images with 1–4 in-
stances for the counting and 4 orientations (left,
right, above, below) for spatial arrangement task.
The chance performance on both tasks is 25%.
Object counting. The results reported in Ta-
ble 4 illustrate trends similar to those observed for
fine-grained recognition, albeit less pronounced.
Mainly, the performance of the visual and VL pro-
jection probes is high (>90%), with the VL pro-

Dataset/Task Performance

LLaVA-1.5 (blind) Vicuna LLM Chance
response(text) response(text)

PASCAL (Coarse-Cls.) 90.2 8.7 6.6
CUB (Fine-Cls.) 34.6 7.7 6.6
Dogs (Fine-Cls.) 19.9 11.6 6.6
PaintSkills (Spatial) 63.0 25.6 25.0

Table 6: Impact of language priors. We compare perfor-
mance of LLaVA-1.5 (VLM) with (blind) LLM to isolate role
of language priors

jection representations marginally trailing visual,
while performance in the response space is consid-
erably poorer (a drop of at least 14%).

Spatial understanding. Table 5 shows the trend
observed thus far reverses on spatial understanding:
the performance of visual latent representation is
the worst; it increases a little for the VL projec-
tion space (for InstructBLIP and LLaVA-1.5), and
increases further in the response space (for LLaVA-
1.5). We hypothesize that the superior performance
of the response space compared to visual space
is due to the small number of samples pertaining
to spatial arrangement in the training dataset for
the visual encoder. LAION-2B used by OpenCLIP
contains only 0.2% of spatial samples (Kamath
et al., 2023). In contrast, to ~35% in LLaVA-665k
used by LLaVA-1.5 to fine-tune response space.
Additionally, lower performance of LLaVA-NEXT
response compared to LLaVA-1.5, could be due to
relative drop of relevant data from 35% in LLaVA-
665k to ~26% in data used by LLaVA-NEXT.

Based on these results, we make a few impor-
tant deductions. First, the spatial understanding
capabilities of VLMs are clearly inferior, with the
visual encoder (i.e., CLIP) being responsible for
the loss of information. Second, it appears that for
some VLMs (e.g., LLaVA-1.5) the response space
makes up for some loss of performance thanks to
the relevance of training data. These findings are
in line with previous work showing that the per-
formance of VLM on spatial understanding and
counting (Kamath et al., 2023; Paiss et al., 2023)
highly depend on the number of samples which are
representative of these tasks in fine-tuning data.
Impact of language priors. Prior work has shown
that language priors can influence the responses
generated by VLMs (Goyal et al., 2017; Lin et al.,
2024; Wu et al., 2025). For example, VLMs may
learn from their language priors that the most likely
spatial arrangement of a man and a chair is that the
man is on the chair. These models are often able to
solve VQA tasks “blindly” – i.e., without an image
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Figure 4: Consolidation of performance for instruction-
tuned models from the BLIP family and the LLaVA family.
Legend: Visual space, Text space, Response space.

encoder (Lin et al., 2024), or when the objects of
interest are masked (Wu et al., 2025) – based on
language priors. To reduce such confounding ef-
fects, our setup and datasets are carefully selected
to minimize the influence of language priors. In
particular, datasets like PaintSkills are synthetically
constructed with uniformly distributed object place-
ments, avoiding spurious correlations between lan-
guage and visual content. Finally, we also present
results from a “blind” language-only LLM base-
line, further isolating the role of language priors in
VLM performance. Specifically, we compare the
text-only responses from instruction-tuned blind
LLM (Vicuna) with those of LLaVA-1.5, enabling
a clearer assessment of how much the VLM’s per-
formance depends on true visual reasoning versus
language biases (Table 6). The low accuracy of the
(blind) Vicuna LLM indicates the contribution of
the language prior is relatively insignificant. These
findings are consistent with prior work showing
that language priors in generative VLMs – simi-
lar to those used in our setup – are generally not
strong enough to have substantial positive impact
on performance of visual tasks (Wu et al., 2025).

4.3 Summary of Insights on VLM Skills
The summary of all experiments in this section is
compactly illustrated for two of the models (In-
structBLIP and LLaVA-NEXT) in Figure 4.

1 VLMs, overall, are much less capable of recog-
nizing fine-grained categories which is largely
attributable to response from language decoder.
Knowledge from visual and VL proj. spaces
does not translate to the VLM final response
due to ineffective joint fine-tuning stage of the
proj. and language decoder.

2 Scaling the language decoder does not solve the
aforementioned problem and the drop in perfor-
mance in the response space remains significant.

3 The substantial drop in response space perfor-
mance on counting is attributable to the limita-

Visual VL Proj Response
VLM Method Data probe probe probe text

BLIP-2 Orig 98.0 99.0 57.6 38.0
Corrupt 95.2-2.8 95.4-3.6 57.5-0.1 38.2+0.2

InstructBLIP Orig 98.0 98.6 95.0 70.0
Corrupt 95.3-2.7 95.9-2.7 90.5-4.5 69.5-0.5

LLaVA-1.5 Orig 96.8 95.8 91.0 90.2
Corrupt 90.8-6.0 89.3-6.5 87.7-3.3 87.4 -2.8

LLaVA-NEXT Orig 97.3 96.6 94.1 94.1
Corrupt 89.7-7.6 88.2-8.4 87.3-6.8 87.3-6.8

Table 7: Robustness to Visual Corruptions. Robustness
experiment on the Pascal VOC dataset.

tions of the language decoder; similar to obser-
vation 1 above.

4 We observe a significant lack of ability of vision
encoders to capture arrangement information,
which results in a reduced performance overall
for spatial understanding tasks.

5 Analyzing the Robustness of VLMs

Here we explore another dimension of visual under-
standing in VLMs: robustness to (1) visual corrup-
tions (§5.1), and (2) background changes (§5.2).

5.1 Visual Corruptions

VLMs are fairly robust to many common corrup-
tions, presumably due to the prevalence of these
effects in the large-scale training data (Udandarao
et al., 2023; Han et al., 2024). We thus focus on a
diverse set of corruptions by which they are more
affected. Specifically, we include noise (Gaus-
sian, uniform, shot, and impulse), blurs (motion,
defocus) and weather changes (snow) following
Michaelis et al. (2019). We use methodology in
Hendrycks and Dietterich (2019) and Michaelis
et al. (2019), and add corruptions to Pascal VOC.

Robustness Across Spaces. Table 7 shows results
for robustness across spaces. Here we report the
average performance across corruptions (Avg. Cor-
rupt), the original performance without corruptions
(Orig) and their difference (in red). Detailed per-
corruption breakdown is in Appendix A.4.

We observe that despite its deficiencies (see §4),
the response space is the most robust among the
three spaces we consider. Interestingly, in line
with our findings that visual information does not
transfer well to the response space, we see that the
effects of the corruptions did not translate to the re-
sponse space as well, making it appear as the most
robust space. Furthermore, we observe that the in-
termediate VL projection latent space is less robust
than the visual and response space, especially for
LLaVA-1.5 and LLaVA-NEXT—pointing to defi-
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Transformation LLaVA-NEXT (Liu et al., 2024) LLaVA-1.5 (Liu et al., 2023) InstructBLIP (Dai et al., 2023)

Visual VL Proj Response Visual VL Proj Response Visual VL Proj Response
probe probe probe text probe probe probe text probe probe probe text

(1) Original 77.5 74.5 67.9 67.5 76.9 74.9 68.7 68.1 77.5 78.5 62.7 60.0

(2) Black BG 88.3+10.8 87.0+12.5 73.2+5.3 72.5+5.0 87.6+10.7 87.1+12.2 73.6+4.9 72.5+4.4 90.5+13.0 90.7+12.2 71.4+8.7 61.0+1.0
(3) White BG 88.2+10.7 86.7+12.2 73.0+5.1 72.3+4.8 88.7+11.8 87.3+12.4 74.2+5.5 73.0+4.9 90.4+12.9 89.2+10.7 70.6+7.9 56.1-3.9
(4) Silhouette + Orig BG 63.7-13.8 59.7-14.8 44.4-23.5 41.1-26.4 60.0-16.9 57.8-17.1 45.7-23.0 42.1-26.0 69.3-8.2 69.4-9.1 39.8-22.9 41.7-18.3
(5) Silhouette + White BG 47.9-29.6 44.7-29.8 22.1-45.8 20.3-47.2 44.3-32.6 42.8-32.1 23.3-45.4 21.4-46.7 51.2-26.3 46.9-31.6 24.5-38.2 19.4-40.6

(6) Blur Reverse 87.8+10.3 87.5+13.0 72.7+4.8 74.2+6.7 86.9+10.0 85.3+10.4 75.9+7.2 75.0+6.9 90.9+13.4 92.0+13.5 75.8+13.1 64.2+4.2
(7) Red Circle + Orig BG 81.8+4.3 78.1+3.6 71.1+3.2 70.7+3.2 80.3+3.4 77.3+2.4 72.9+4.2 72.1+4.0 82.4+4.9 85.0+6.5 69.5+6.8 64.8+4.8
(8) Red Circle + White BG 86.5+9.0 85.5+11.0 72.2+4.3 71.5+4.0 86.5+9.6 85.5+10.6 73.0+4.3 72.0+3.9 89.0+11.5 88.2+9.7 71.5+8.8 62.1+2.1

(10) Edge 62.0-15.5 60.1-14.4 53.1-14.8 52.4-15.1 61.3-15.6 58.8-16.1 54.2-14.5 53.2-14.9 70.0-7.5 68.4-10.1 53.5-9.2 50.1-9.9
(11) Patch Shuffle 73.5-4.0 70.1-4.4 65.1-2.8 65.2-2.3 72.5-4.4 70.4-4.5 67.2-1.5 66.5-1.6 75.8-1.7 75.1-3.4 54.0-8.7 53.0-7.0

Table 8: Background Transformation Experiments. Owing to limited space, we present results on a subset of models.

ciency in the VL projection. Compared to LLaVA
family, the VL proj. is more robust for the BLIP
family, which use a Q-former and cross-attention
for mapping visual information to language modal-
ity, making VL proj. more stable than LLaVA
which simply uses single layer MLP.

5.2 Background Transformations

Here, we explore how VLMs process foreground
vs. background information. Additionally, inspired
by recent work that applies background transforma-
tions through visual prompting to enhance VLM
performance (Yang et al., 2023; Shtedritski et al.,
2023), we explore how these techniques impact
intermediate spaces. While prior work only focus
on CLIP-like contrastive models, we explore how
VLMs like LLaVA, InstructBLIP process back-
ground and visual prompting information through
intermediate spaces. The sample constructed stim-
uli are illustrated in Figure 5. We use COCO (Malik
et al., 2024) and provide details of how we applied
the transformations in Appendix A.5. The results of
this experiment are summarized in Table 8. Overall,
we observe that for most visual prompting transfor-
mations, the gains are higher in the visual and text
space and relatively diminish in the response space.
Targeted efforts to reduce information loss in the
response space should increase the VLM response
further for visual prompting.

Role of background context in VLMs. In order
to understand the role of background, we consider
two cases where - 1) background is removed 2)
object is masked. We notice that clean (black &
white) backgrounds (row 2 & 3 in Table 8) improve
performance considerably in the visual and VL
proj spaces (∼11-12%) and relatively less in the
response space (∼4-5%), pointing to loss of infor-
mation as discussed earlier. This is likely because
removing the background removes any distractors

Original White BG Silhouette Silhouette

+ Orig. BG + White BG

Blur Reverse Red Circle Edge Map Patch Shuffle

Figure 5: Background Transformations. Samples illustrat-
ing image transformations that we consider in our analysis of
performance in visual, text and response spaces of VLMs.

(e.g., objects in the background), helping the VLMs
focus on the object of interest. In the absence of a
clear foreground (object is masked with a silhou-
ette; rows 4 & 5), we notice having background
context (row 4) plays an important role and im-
proves performance for all three spaces compared
to row 5 (no background). Overall, this points to
the fact that removing background helps when ob-
ject details are clear but when objects are masked,
VLMs can find hints in the background to help
with object recognition . This hypothesis is also
confirmed by blurring which we discuss next.

Visual prompting. We now consider a reverse blur
transformation where the background is blurred
w.r.t the object (Yang et al., 2023). Blurring the
background seems to be “the best of both worlds”,
helping VLMs focus on the object while still pre-
serving some background context—leading to the
best performance overall (row 6). Furthermore,
even though the performance improvement is simi-
lar to the black & white backgrounds for the visual
and text spaces (∼11-12%), the increase in per-
formance from blurring is higher for the response
space (∼7-8%), pointing to the fact that some vi-
sual prompting techniques make up for the loss of
information in response space and enhance perfor-
mance more. Finally, we also experimented with
adding a red circle to the object of interest (Sht-
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edritski et al., 2023), with (row 7) and without
background (row 8). The gains from the red circle
in both cases are relatively smaller for all spaces.
Role of Shape. To investigate whether VLMs rely
on the shape of object for recognition, we apply
the edge maps and patch shuffle image transfor-
mations following(Mummadi et al., 2021; Geirhos
et al., 2018). Edge maps (row 10) retains the object
shape while removing other details such as texture,
color and background, while patch shuffle (row 11)
distorts the shape of the object. We observe a dras-
tic drop in performance in the case of edge maps
compared to a smaller drop for patch shuffle, sug-
gesting that shape plays a relatively less important
role in VLMs’ object recognition. Finally, we note
that for patch shuffle, the performance drop for the
visual and text spaces is large while the response
space is relatively more stable to such changes in
high-performing VLMs (LLaVA, LLAVA-NEXT).

5.3 Summary of Insights on Image
Transformations

1 VLM’s response space is most robust to corrup-
tions, but posit this is largely due to deficiencies
of information flow (see §4). VL projection
space is least robust compared to other spaces,
pointing to potential vulnerabilities.

2 VLMs rely on both object information and back-
ground context to recognize objects and perform
best when both are well-preserved.

4 Visual prompting techniques improve perfor-
mance dramatically for visual and VL projection
spaces but the improvements are comparatively
diminished for response space; showing another
limitation of miss-alignment of information.

5 We observe that VLMs, contrary to humans, rely
on texture over shape information for their de-
cision making. This is an important deficiency
that may impact their generalization abilities.
Inducing reliance on shape is of importance.

6 Conclusion

In this paper, we set out to understand the lim-
itations of prominent VLMs on fundamental vi-
sual tasks. We go significantly beyond the current
benchmarks, which simply measure final perfor-
mance, and construct a series of tests that probe
which specific components of VLM design may
be lacking. Our analysis design reveals that for
most visual tasks (except spatial understanding),
the knowledge can be seen as being preserved in the

visual and intermediate VL projection space, how-
ever, it does not translate to the final VLM response
space (especially for tasks like fine-grained recog-
nition, object counting, visual prompting). Overall,
through our insights, we hope to encourage tar-
geted efforts on reducing info. loss and translating
knowledge to an accurate final VLM response.
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Limitations and Ethical Considerations

We study capabilities of well-known VLMs to bet-
ter understand their design on basic visual tasks
such as visual recognition, object counting and
spatial skills. Extensions to more advanced capa-
bilities such as segmentation and visual reasoning
would be interesting directions of future work. In
any such analysis of existing models, one limitation
is that it is challenging to calibrate for training data
and augmentation techniques used in the various
VLM models. We have put in our best efforts to
objectively analyze all aspects of the experiments
that could be under our control, however.

Societal Impact. VLMs themselves can, and al-
ready do, have a significant societal impact. Bi-
ases and inaccuracies in these models can have
profound impacts on a broad spectrum of applica-
tion domains. Our approach, which attempts to
understand capabilities of such models and their
shortcomings, can serve to mitigate some of these
concerns by attributing the different modules in
existing VLMs to specific capabilities. This may
enable the possibility of carefully editing models to
remove such biases and inaccuracies. We believe
that our efforts of understanding the capabilities of
these models at a module granularity is a first step
to resolve the inaccurate or inappropriate behavior
of such models in different applications.

4https://vectorinstitute.ai/#partners
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A Appendix

In this supplementary section, we discuss the fol-
lowing details, which could not be included in the
main paper owing to space constraints:

• Performance of VLM response on scaling
LLM Decoder for coarse and fine-grained
recognition (in continuation to Figure 3 of
main manuscript)

• Implementation details regarding task
prompts and probe design (in continuation to
Section 3 of main manuscript)

• Implementation details of different back-
ground transformations we consider (in con-
tinuation to Section 5.2 of main manuscript)

• Details of VLM model variants that were used
for our analysis (in continuation to Section 3
of main manuscript)

• More details about the data and classes we
use for our experiments (in continuation to
Section 3 of main manuscript)

A.1 Scaling LLM Decoder

In this section, we elaborate on the results show-
ing effect of scaling language decoder of compet-
itive instruction-tuned VLMs (i.e., InstructBLIP,
LLaVA, LLaVA-NEXT) on visual, text and re-
sponse space (in continuation to the Figure 3 bar
plot of main manuscript). Table 9 shows the results
for PASCAL VOC (coarse-grained) and Stanford
Dogs (fine-grained) datasets as well as the average
performance to help observe overall trends. On
average, we notice that a bigger LM decoder (i.e
13B vs 7B model variant) does improve perfor-
mance to some extent, including in the alignment
space, for most cases but major trends discussed for
coarse/fine object recognition remain same. Fur-
thermore, we notice that the improvements on
increasing decoder size are relatively larger for
weaker instruction-tuned models like InstructBLIP
but gradually saturate for models like LLaVA-1.5
and LLaVA-NEXT which have stronger instruction
tuning and better overall in terms of performance.

A.2 Task Prompts and Evaluation of
Response

In this section, we discuss the details of our task
prompts and design of our trainable probes and

inference mechanism we use to analyse the knowl-
edge in three spaces of a VLM. As discussed in
main manuscript Section 3, we consider different
categories of VLM models (i.e., Contrastive Multi-
Encoder models (like, CLIP), Encoder-Decoder
Generative models (like, BLIP2) and instruction-
tuned models (like, LLaVA, InstructBLIP) which
demand the use of different strategies to best evalu-
ate their capabilities on visual understanding tasks,
which we discuss below.

• CLIP, CoCa and ALBEF: Given these are
multimodal contrastive models with a sepa-
rate encoder for visual and text modalities,
we evaluate the response space performance
using standard zero-shot inference procedure
with the help of cosine similarity in the shared
embedding space. Specifically, we use similar-
ity visual features (from visual encoder) and
text prompt features (from text encoder) for
inference and choose the class prompt with
the maximum similarity as the predicted an-
swer. We use the default prompts used for
CLIP such as [A photo of a cat, A photo

of a dog. . . ..] for object recognition task,
[There is one cat, There are two cats, There

are three cats ..] for object counting task
and [Dog is to left of cat, Dog is to the

right of cat, Dog is below cat . . . ] for
spatial orientation understanding tasks.

• LLaVA-1.5, LLaVA-NEXT, BLIP2 and In-
structBLIP For VLMs which generate tex-
tual response, we used the standard procedure
as followed in previous work (Kim and Ji,
2024; Han et al., 2024), where a given visual
task, we prompt the model with a question and
choices for the task, and ask it to select (gener-
ate) the right answer from the choices. For the
task prompts, we follow the prompts similar
to those used in previous work by (Han et al.,
2024). For example, to evaluate object recog-
nition for LLaVA model, we use the prompt
What is the central object in the image out

of the following list of choices? Make sure

to answer in one word. Choices: [cat, dog,

frog ...]. Note that LLaVA-1.5 and LLaVA-
NEXT are specifically instruction-tuned to
understand if the user wants it to answer in
one word which is why we incorporate the
phrase “Make sure to answer in one word".
For BLIP2 and InstructBLIP model we use the
same prompt i.e., What is the central object
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VLM Method PASCAL VOC Dogs Average

Visual VL proj Res.(probe) Res.(text) Visual VL proj Res.(probe) Res.(text) Visual VL proj Res.(probe) Res.(text)

InstructBLIP (Dai et al., 2023) 7B 98.0 98.6 95.0 70.0 93.6 92.6 28.5 12.0 95.8 95.6 61.8 41.0
InstructBLIP (Dai et al., 2023) 13B 98.0 98.6 96.5 66.0 93.6 92.8 46.2 26.8 95.8 95.7 71.4 46.4
LLaVA-1.5 (Liu et al., 2023) 7B 96.8 95.8 91.1 90.2 91.9 88.7 25.9 19.9 94.4 92.3 58.5 55.1
LLaVA-1.5 (Liu et al., 2023) 13B 97.0 96.6 95.1 93.2 91.9 90.0 37.3 30.6 94.5 93.3 66.2 61.9
LLaVA-NEXT (Liu et al., 2024) 7B 97.3 96.6 94.1 94.1 90.4 87.2 37.5 31.0 93.9 91.9 65.8 62.6
LLaVA-NEXT (Liu et al., 2024) 13B 97.3 96.2 95.7 95.8 90.0 86.5 37.0 36.9 93.7 91.4 66.4 66.4

Table 9: Effect of Scaling LLM Decoder on three spaces for PASCAL (coarse-grained) and Stanford Dogs (fine-grained)
recognition

Transformation LLaVA-NEXT (Liu et al., 2024) LLaVA-1.5 (Liu et al., 2023) InstructBLIP (Dai et al., 2023)

Visual VL proj Resp. (probe) Resp.(text) Visual VL proj Resp. (probe) Resp.(text) Visual VL proj Resp. (probe) Resp.(text)

Snow 94.0 93.3 92.8 92.9 95.6 94.5 92.0 91.6 96.7 97.1 92.7 70.5
Uniform noise 90.0 88.0 87.2 87.2 90.5 88.2 87.5 87.0 94.7 95.5 88.5 69.5
Gaussian Noise 85.5 84.3 82.7 83.0 88.0 86.0 85.0 85.0 94.3 95.2 89.3 68.0
Shot Noise 89.0 86.4 85.7 85.8 89.5 88.5 86.5 86.3 95.7 96.1 92.5 69.0
Impulse Noise 87.5 85.5 84.8 85.0 87.8 87.0 85.5 85.5 95.1 95.8 90.5 68.0
Motion blur 92.2 92.0 90.5 90.5 93.2 91.9 90.0 90.0 95.6 95.8 89.5 70.5
Defocus blur 89.5 88.0 86.7 86.8 91.0 89.2 87.0 86.4 95.2 95.8 89.6 71.0
Average Corrupt. 89.7 88.2 87.2 87.3 90.8 89.3 87.7 87.4 95.3 95.9 90.5 69.5
Original 97.3 96.6 94.1 94.1 96.8 95.8 91.0 90.2 98.0 98.6 95.0 70.0

Table 10: Visual Corruptions- Results for individual corruptions for VLMs in continuation to Table 7 from main manuscript.

Transformation BLIP-2 (Li et al., 2023a)

Visual Text Resp. (probe) Resp. (text)

Snow 96.2 96.8 65 40.0
Uniform noise 94.7 94.7 55.0 34.5
Gaussian noise 93.9 94.4 54.0 38.6
Shot noise 95.7 96.1 54.0 38.5
Impulse noise 95.0 94.7 54.5 37.5
Motion blur 95.8 96.0 55.0 38.4
Defocus blur 95.2 95.4 65.5 39.9
Average Corrupt. 95.2 95.4 57.5 38.2
Original 98.0 99.0 57.6 38.0

Table 11: Visual Corruptions- Results for individual cor-
ruptions for VLMs in continuation to Table 7 from main
manuscript.

in the image out of the following list of

choices? Choices: cat, dog, frog ... without
the phrase “Make sure to answer in one word"
since these models do not understand answer-
ing in one word and have continuous outputs.
We found that adding the phrase reduced per-
formance by distracting these VLMs model,
thus we remove it as we want to fairly and best
evaluate the response space capabilities of all
VLMs. We follow a similar strategy for count-
ing and spatial orientation tasks where we ask
How many dogs are there in the image? Choices:

1,2,3,4 and What is the spatial location of

dog relative to cat? Choices: left, right,

above, below and expect it to answer with the
total number of objects or the spatial orienta-
tion between objects.

Evaluation of textual VLM response - As
detailed in the main manuscript, to facilitate
fair comparison with visual and text feature
probes and comprehensive evaluation of re-
sponse space, we use 2 strategies - 1) train-

ing linear probe atop of output response to-
kens from the language decoder (we refer
to this LM Dec.) and 2) evaluating the tex-
tual response of the VLM for a given task
using matching between the textual VLM re-
sponse and the ground truth class label (we
refer to this Resp.). We discuss the latter
Resp. strategy here and discuss the former LM
Dec. strategy in next Section A.3 (probe de-
sign).Specifically, in order to evaluate whether
the VLM answered with the correct class from
the choices, we use matching between the tex-
tual VLM response and the ground truth class
label similar to previous work on evaluating
VLMs (Kim and Ji, 2024), where we check
which classname in the choices matches the
best with the VLM output with the help of
regex based matching and fuzzy matching to
make sure we match the output to the correct
classname irrespective of punctuation, capital-
ization or style of output (one word vs long/-
continuous output).

A.3 Control Task for Probes
When probing is used as a mechanism to test spe-
cific properties encoded by representations, it is
essential to make sure that success on the prob-
ing task implies the representation encodes the
properties useful for the task rather than they were
learned by the probe itself. We follow previous
work and report the performance on a control task
in which the gold labels have been randomly shuf-
fled (Zhang and Bowman, 2018; Hewitt and Liang,
2019). We expect a good probe to have low ac-
curacy on the control task. Table 12 shows that
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VLM Method Control Task Performance

Visual Text Resp. (Probe)

Classification (coarse-grained) 10.4 10.6 15.5
Classification (fine-grained) 4.7 6.1 4.9
Spatial 25.4 23.6 22.5
Counting 23.8 25.7 9.0

Table 12: Control Task for Probes: We show performance
for control task for Coarse-grained classification (PASCAL),
Fine-Grained (Stanford Dogs), Counting and Spatial Tasks
(PaintSkills). The performance is low for all three spaces
supporting the validity of our probing mechanism

the performance of all three spaces of the state-of-
the-art LLaVA-NEXT model on the control task
for all tasks (coarse- and fine- grained classifica-
tion, counting, and spatial arrangement) is poor;
supporting the validity of our probing mechanism.

Given that we treat each visual task as classifica-
tion and the datasets we use for visual tasks have
ground-truth labels for each image (i.e., object class
labels, spatial orientation labels and object count-
ing labels), we use simple accuracy (on validation
set) as the metric for evaluation on object recog-
nition, spatial understanding, and object counting
tasks; following previous work (Cho et al., 2023).
Given our linear probes are lightweight we use 1
A100 GPU for all our experiments.

A.4 Visual Corruption Results

In the main manuscript, we reported only the av-
erage performance across all corruptions (i.e Cor-
rupt.) Table 7 and compared it to the original per-
formance (without corruptions) i.e Orig, owing to
space constraints. Here, we provide the tables of
performances for each corruptions (Table 10 and
Table 11)

A.5 Implementation: Background
Transforms

In this section, we discuss the implementation of
background transforms used in Sec.5.2. Specif-
ically, we refer to recent work on background
transformation (Malik et al., 2024) which pro-
vides COCO images and corresponding masks for
foreground objects extracted using FastSAM. The
presence of foreground object masks for each im-
age helps us separate the object foreground and
background and apply simple transformation tech-
niques to get the white background, black background

changes and silhouettes. For reverse blur, we fol-
low (Yang et al., 2023) and blur the background
with the help of gaussian filter. To generate edge

images which retain global object shapes and re-

move texture related information, we use the tech-
nique previously used by (Mummadi et al., 2021)
to get edge maps with the help of RCF (Liu et al.,
2019) based edge detection. For the red circle

transformation, we simply us contour detection for
the object of interest and draw the minimum en-
closing circle using OpenCV library. Finally, for
patch shuffle, we use pytorch transformations to
divide image into 4x4 grid and shuffle the patches.

A.6 Experimental Setup Details
Choice of VLM variants. Here, we elaborate on
the details of specific model variants we use for our
analysis.

- CLIP (Radford et al., 2021). Contrastive
Language-Image Pre-Training (CLIP) con-
sists of separate image and language en-
coders trained jointly using a contrastive ob-
jective that aligns the two latent representa-
tions. From the perspective of analysis in this
paper, CLIP has the visual latent which can be
linear probed and the response space perfor-
mance can be obtained by image-text similar-
ity based matching in the latent space; it does
not have an projection/alignment (text space).

For the experiments in this paper we use a
variant with ViT-L-14-336 backbone as vi-
sual encoder. Our choice is motivated by the
fact that this variant is similar to the encoders
of other VLMs we consider for our analysis
(in terms of architecture and parameter size)
and hence allows for fair comparison.

- CoCa (Yu et al., 2022).- Contrastive Caption-
ers are Image-Text Foundation Models (CoCa)
uses contrastive loss (similar to CLIP) jointly
in combination with a captioning (generative)
loss making it a hybrid contrastive + encoder-
decoder generative model. It has visual la-
tent and the response space performance can
be obtained by image-text similarity based
matching in the latent space similar to CLIP.

For the experiments in this paper we use a
variant with ViT-L-14 backbone as visual en-
coder sinces it is similar to the encoders of
other VLMs we consider for our analysis (in
terms of architecture and parameter size) and
hence allows for fair comparison.

- ALBEF (Li et al., 2021).- ALign BEfore Fuse
first encodes the image and text independently
and adds an additional multimodal encoder
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to fuse the image features with the text fea-
tures through cross- modal attention. It uses a
combination of image-text contrastive (ITC),
image-text matching (ITM) and masked lan-
guage modeling (MLM) losses.

For the experiments in this paper we, we use
the standard LAVIS library implementation
and evaluate the albef-feature-extractor
(base) model variant. We use the same infer-
ence procedure as used for CLIP and CoCa
models where we probe the visual latent fea-
tures and response space performance can
be obtained by image-text similarity based
matching.

- BLIP 2 (Li et al., 2023a) and InstructBLIP
(Dai et al., 2023). Bootstrapping Language-
Image Pre-training (BLIP) is a popular VLM
model that leverages pre-trained image en-
coder (CLIP) and a LLM decoder (e.g., OPT,
FlanT5) and learn to align the image repre-
sentation to the expected input of the LLM
decoder. The alignment mechanism takes
the form of a small transformer-based neu-
ral network (Q-former) that is trained with
a variety of losses. While standrad BLIP2
model keeps the image encoder and language
decoder frozen, the instruction fine-tuned In-
structBLIP model variant uses high quality
image-language pairs to instruction fine-tune
the performance of the full architecture.

For our analysis we use variants of BLIP2
and InstructBLIP that are closest in size to
other VLM models we consider. For BLIP,
this means VIT-G-14 as the visual encoder
and OPT as the language decoder. For Instruct-
BLIP, we use the model with VIT-G-14 as the
visual encoder and Vicuna as the language
decoder.

- LLaVA and LLaVA-NEXT (Liu et al.,
2023). Large Language and Vision Assis-
tant (LLaVA) is a popular and one of the
most competitive VLM model for general-
purpose visual and language understanding.
It uses language-only GPT-4 to generate mul-
timodal language-image instruction-following
data and implements carefully designed train-
ing procedures and architectural choices that
results in impressive multimodal chat abilities.
In our analysis, we use the LLaVA-1.5 and
LLaVA-NEXT model variants which shows ex-

cellent instruction following and multimodal
chat capabilities across different VLM bench-
marks. The variant we consider uses CLIP
ViT-L-14 backbone as visual encoder (same
as the CLIP model above) and Vicuna as
LLM decoder. LLaVA-NeXT has improved
reasoning, OCR, and world knowledge com-
pared to LLaVA-1.5, thanks to better instruc-
tion tuning on high quality user instruct data.
It achieves the best performance among open-
source LMMs; exceeds Gemini Pro and out-
performs Qwen-VL [1] on several bench-
marks (Liu et al., 2024).

A.7 Dataset Statistics and Class Details
In this section, we elaborate on the details of object
classes and dataset statistics we use for the differ-
ent tasks we consider in our paper. Note that as
discussed before, we train our probes on the train-
ing data and test it on the val/test split following
standard protocol.

Specifically, for coarse-grained recognition
we consider the the PASCAL VOC with object
classes [’aeroplane’, ’bicycle’, ’bird’, ’boat’,

’bottle’, ’bus’, ’car’, ’cat’, ’chair’, ’cow’,

’diningtable’, ’dog’, ’horse’, ’motorbike’,

’person’]and,
PaintSkills dataset with object classes [’person’,

’airplane’, ’bicycle’, ’dog’, ’boat’, ’car’,

’fire hydrant’, ’stop sign’, ’umbrella’, ’bench’,

’suitcase’, ’traffic light’, ’bird’, ’bear’,

’potted plant’].
For fine-grained recognition we consider the
CUB data with classes [’black footed albatross’,

’laysan albatross’, ’sooty albatross’, ’groove

billed ani’, ’crested auklet’, ’least auklet’,

’parakeet auklet’, ’rhinoceros auklet’, ’brewer

blackbird’, ’red winged blackbird’, ’rusty

blackbird’, ’yellow headed blackbird’, ’bobolink’,

’indigo bunting’, ’lazuli bunting’] and
Stanford Dogs dataset with object
classes[’chihuahua’, ’japanese spaniel’, ’maltese

dog’, ’pekinese’, ’shih-tzu’, ’blenheim spaniel’,

’papillon’, ’toy terrier’, ’rhodesian ridgeback’,

’afghan hound’, ’basset’, ’beagle’, ’bloodhound’,

’bluetick’, ’black-and-tan coonhound’]

As mentioned previously, for counting and spa-
tial recognition task we use object counts [1,2,3,4]

and spatial relations [left,right,above,below]

We follow standard splits of PaintSkills dataset
(Cho et al., 2023) with 23,250/21,600/13,500 and
2,325/2,160/2,700 scenes for train and test splits
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of object recognition/object counting/spatial rela-
tion understanding skills, respectively. For Pas-
cal VOC/Stanford Dogs/CUB datasets we have
2100/1500/500 and 2100/1300/400 for train and
test splits, respectively, with the aforementioned
object classes.
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