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Abstract

This paper focuses on a new task of answer-
ing geographic reasoning questions based on
the given image (called GeoVQA). Unlike tra-
ditional VQA tasks, GeoVQA asks for details
about the image-related culture, landscape, etc.
This requires not only the identification of the
objects in the image, their properties and re-
lations, but also the understanding of the geo-
graphic knowledge of the objects, such as lo-
cation, transportation, landmark, cuisine, etc.
This background knowledge does not explic-
itly appear in the image, nor is there an extra-
textual description. Without this missing but
necessary knowledge, it is difficult for existing
matching-based methods to infer the correct
answer. To tackle these challenges, we pro-
pose a new geographic reasoning framework
for our task. We first analyze the image and
describe its fine-grained content by text and
keywords using a multi-modal retrieval aug-
mented technique, so as to deduce an answer in
a unified textual modality. Next, we retrieve the
crucial geographic commonsense knowledge.
To reduce the retrieval complexity, we design
a dynamic method that can adaptively collect
the relevant clues for each reasoning step. The
step in the incorrect direction will be pruned
according to some judgment criteria. The re-
maining steps can help us form a reasoning
chain to derive a correct answer. Moreover, we
create a large-scale dataset GVQA with 41,329
samples to conduct the evaluation. The results
demonstrate the effectiveness of our approach.

1 Introduction

The visual question answering (VQA) task is an im-
portant research topic in the field of CV and NLP.
It aims to answer the textual questions by referring
to the visual content in the given image. Tradi-
tional VQA work mainly studies the recognition of
objects, scenes, and actions in the image, such as
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Q: Will I see this activity if I travel here in 
July? Tell me about the local etiquette taboo.
A: The location of the image may be the 
southwestern coastal province of South Jeolla 
Province. This could be the scene of the 
Ganggangsullae dance. This activity is held 
every year in Lunar August 15th, so you can 
not see it in July. Etiquette taboos in Honam 
region, South Korea usually include avoiding 
sticking your chopsticks in the food.

   - Etiquette taboos in the southwestern 
coastal province of South Jeolla Province 
include: Avoid sticking your chopsticks in the 
food...

Descriptive Facts  
location     local etiquette taboo

Image-related Knowledge
Words: Korean folk dance...
T ext :  G anggangs u l l a e  h a s 
developed into a cultural symbol 
for Korea....

location: Honam region, South Korea

   Activity: 
Ganggangsullae dance

location: the southwestern 
coastal province of ...

The location shown 
in the image

Etiquette taboos 
of this location

The activity shown at this 
location in the image

Etiquette taboos: Avoid 
sticking the chopsticks...

Time: Lunar 
August 15th 

The time of  
the event 

Reasoning Chain

External KnowledgeInput Image and Question

<Hanbok, traditional costume of, Korea>
<Ganggangsullae, time, Lunar Aug. 15th>
<Ganggangsullae, birthplace ,   ...  >

 Structural Facts 

location
activity

...

 Geography Knowledge 

Figure 1: An example of the GeoVQA question.

“What is the blue object on the red chair?” These
object detection-based tasks have been well studied.
The answers can be found in the image by match-
ing. In addition to these questions, there are still
many complex ones that require deep reasoning
and have not been explored. As shown in Fig.(1),
the users ask whether they could see the activity
depicted in the image when they visit the site in
July. To get an accurate answer, we need to not only
identify the image objects, but also understand the
background context. For example, through the tra-
ditional clothes people wore, we can infer that the
event took place in Korea. This geographic context
helps us to better determine that the activity in the
image is Ganggangsullae rather than other dances.
However, this important context is not explicitly
depicted in the image, nor is it provided in the ques-
tion. Without this context, traditional methods are
hard to use to accurately infer the answer based on
the identified objects in the image. Such complex
reasoning questions are common in many scenar-
ios, and solving them can better support a wide
range of applications like education, transportation,
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tourism consulting, etc. They have great research
and commercial value, but big challenges. There
is a research gap in answering these geographic
reasoning questions. Thus, we formulate it as a
new task, called GeoVQA.

To tackle this task, traditional VQA methods
often first encode the image content and textual
questions by networks like BERT, ViT, etc. These
encodings are then combined and fed through the
workflow network to the decoder to get answers.
However, these methods only identify surface-level
image content but neglect the deeper contextual
background, resulting in weak reasoning capabili-
ties. They may be able to solve object recognition-
based questions, but difficult to answer GeoVQA
questions requiring complex multi-modal reason-
ing. Another solution is to convert multi-modal
inputs into text by techniques like image caption-
ing. In such a uniform modality, a text-based QA
model can be used to derive answers more easily.
Early QA methods rely on rules and templates that
are hand-crafted, with poor scalability. Subsequent
researches turn to neural networks, which are data-
driven and have better scalability. Training these
networks demands substantial data, which incurs
high costs in labeling. Most studies resort to large
language models (LLMs), which are good few-shot
learners. However, LLMs often have an inherent
hallucination that leads to misjudgment. To solve
these issues, the mainstream method proposes to
inject external knowledge to augment the reasoning
ability of the model. An intuitive approach is to ex-
tract all question-related knowledge clues at once
and use a graph network to encode them into the
QA model. However, the complex reasoning ques-
tions involve k-order clues. The number of clues
grows exponentially with the length of the reason-
ing chain, resulting in huge computational costs.
Not all clues are conducive to correct reasoning,
extraneous ones can introduce noise detrimental to
performance. These challenges make it hard for
current methods to tackle the GeoVQA task well.

Motivated by the above observations, we pro-
pose a new adaptive reasoning framework. It
can retrieve sufficient but nonexcessive geographic
knowledge related to the question step-by-step.
That can guide the model in a correct inference
direction, helping to form a reasoning chain to de-
duce the correct answer. In detail, we first ana-
lyze the image content and convert it into a text
description by using the multi-modal retrieval aug-
mentation technique. In this way, we can perform

reasoning conveniently in a unified text modality,
rather than crossing different modalities that would
suffer from the heterogeneous gap. Since complex
questions often involve external geographic knowl-
edge, we then adaptively retrieve it as supplemen-
tary clues and conduct multi-hop reasoning based
on it. The question often involves multiple rea-
soning steps, each of which has several directions,
leading to a large number of relevant knowledge
clues. To reduce the computational cost, we design
a dynamic retrieval framework, which can retrieve
clues tailored to just one step from an appropriate
source. Considering the clues may contain redun-
dancy and noise, we also design a multi-criteria
verifier to evaluate them, identify and prune the
noise that leads to the wrong inference direction.
Since we only need to retrieve relevant external
knowledge that fits the current step rather than the
full amount, and do not need to cover the knowl-
edge in the wrong direction, the computation can
be greatly reduced. We then perform one-step in-
ference to determine the next direction based on an
LLM-based model. In this way, the reasoning re-
sult of the current step serves as the context for the
next step. Finally, we can obtain a reasoning chain
to the answer. This chain can guide the model
to generate the right answer. The whole model
with a retriever and generator is jointly trained by
a reinforced framework. Due to the lack of avail-
able datasets to evaluate our task and approach,
we construct a large-scale dataset called GVQA.
We conduct extensive experiments on it and obtain
significant improvement over other baselines.

The main contributions of this paper include

• We propose a new task called GeoVQA. In
contrast to traditional simple matching-based
VQA, our task aims to answer complex geo-
graphic questions that involve reasoning with
multiple knowledge related to a given image.

• We develop a new framework that adaptively
retrieves relevant knowledge from multiple
sources to deduce the correct answer.

• We construct a large-scale evaluation dataset
for this task to facilitate research in this field.
Extensive experiments are conducted to exam-
ine the effectiveness of our approach fully.

2 Approach

This task aims to derive the accurate answer a to the
geography-related question q based on the given
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SPARQL
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- Mongolians do not like strangers to touch  
their hats.Never put water on a fire......

         Knowledge  Base
<wrestling, main event of, Naadam>
<Naadam, time, in July and August>

(b) Retrieval of Geographic 
Knowledge Clues

   Correlative           Uncorrelated                  

Relevance Verification 

Correctness Verification

      Correct                   Wrong 

Prune

PruneNext round ... Retrieved Clues 

Question Context 

...... ......

...

Commonsense Tree
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update over ?

Will I see this event if I travel here in July? Tell me about 
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Input Image: 
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Image-related Knowledge
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+
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Generation

Step2: Geographic Commonsense Retrieval and Multi-hop Reasoning
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Figure 2: An overview of our proposed framework.

image m. As shown in Fig.(2), our approach con-
sists of three steps. First, we analyze the image
content and its context. Next, we retrieve related
geographic background knowledge for reasoning
and form a reasoning chain to the answer. Finally,
we integrate this chain with the question to yield
the answer. Next, we elaborate on each component.

2.1 Image Content and Context Analysis

Since the answer is often hidden in the given im-
age, we first need to understand its content and
context. However, traditional work often focuses
on capturing the surface content of the image, such
as discovering the names, colors of objects, or sim-
ple scene descriptions based on the methods of
detection, captioning, LLMs, etc. That is hard to
tackle our task, whose answers involve the deep
semantics of images, such as geographical context
beyond the surface content. This knowledge is not
given in the questions or images. To address this
issue, we develop a multi-modal retrieval argumen-
tation technique that can capture this missing but
indispensable context of the images. In detail, we
search a list of similar images and metadata, in-
cluding image-related descriptions and keywords
from external sources on facts, events, participants,
locations, etc. We further perform cross-validation
and use a majority voting approach to reduce noise.
This verified knowledge is concatenated with the
question to form a contextual representation Q as
an input to the next module.

2.2 Knowledge Retrieval and Reasoning

Based on the questions, we reason over the im-
age’s descriptive content to get an answer. Since

reasoning for complex questions often involves a
large amount of geographic knowledge, we design
a dynamic retrieval-reasoning framework. It can
adaptively retrieve relevant knowledge from multi-
ple sources and prune the noise to form a reasoning
chain, so as to derive a correct answer accordingly.

Retrieval Queries Creation: Given that there
are many entities and relations involved in the ge-
ographic reasoning process, retrieving all external
knowledge at one time may be computationally
heavy and introduce noise. Thus, we propose to
decompose q ∈ Q into a series of one-hop sub-
questions x ∈ X using LLM like GPT-4o. Each
x involves some proprietary external knowledge
from a variety of sources. We then design a re-
trieval query Z∗ tailored to x. Inspired by Ma
et al. (2023), the query generator consists of two
steps. We first analyze the sub-question by pars-
ing and then yield a query to retrieve clues. The
quality of clues is verified as feedback to refine
the queries. The whole generator can be learned
by a reinforcement framework. To analyze the
sub-question, we use the Stanford CoreNLP with
Apache Solr to carry out part-of-speech (POS) tag-
ging for x and yield a dependency parse tree in
CoNLL-U format (Nivre et al., 2016). Referring
to the work of Hamzei et al. (2022), we define
seven categories based on the content of x, repre-
sented by the code names: N for ‘place name’, T
for ‘place type’, P for ‘properties’, A for ‘activ-
ities’, S for ‘situations’, Q for ‘qualities’ and R
for ‘spatial relations’. These categories are used
to help identify the type of sub-question x and the
aspects it involves. Based on these categories and
aspects, we first generate the corresponding logical
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statements composed of terms and functions for x.
For example, in place-related questions, the terms
are places, events, or their properties. Functions are
symbols that either declare terms or describe their
relations. Similarly, spatio-temporal relations, situ-
ation/activity relations, and qualities are defined as
functions. These logical statements represent the
basic meaning of the sub-question. We match the
entities in the logical statements with those in the
knowledge base through entity recognition and on-
tology mapping, and then generate standard queries
based on specific templates. Details are provided
in Appendix A.

In the reinforced framework, we initialize the
policy network with the pre-trained LLAMA3-8B,
denoted as πθ. We fine-tune it on warm-up data,
which consists of sub-questions, predefined tem-
plates and target queries. Each template contains
slots (strings beginning with an underscore), which
are replaced by the matched sentence constituents
identified in the sub-question parsing phase. The
ground truth comes from the “evidence” field in
our dataset. We match the knowledge retrieved
by the query against these ground-truth relations
based on multiple similarities, like exact matching,
semantic matching, and synonym terms matching.
To avoid accidental errors caused by using only a
single query, we yield multiple queries for each
x and the overall set of queries is denoted as Z .
Samples confirmed as correct after subsequent fil-
tering are added to the warm-up dataset, denoted
as Dw = {(x, z∗) | y = y∗}. Using the negative
log-likelihood loss as the training objective, for
each time step t at the token level, the formula is
expressed as Eq.(1), where T denotes the length of
z∗, z = {z1, z2, . . . , zT } represents the complete
query sequence generated according to the policy
network πθ, zt is the token yielded at the tth step.

Lwarm = −
∑

(x,z∗)∈Dw

T∑

t=1

log πθ(zt | z<t, x). (1)

Furthermore, we adopt a policy gradient approach
to optimize the policy network. We set the warmed
policy network to be the initial policy model π0.
We aim to maximize the expected reward J(θ)
across the distribution of generated queries. The
formula can be expressed as Eq.(2), where R(z, x)
is the reward to evaluate z.

J(θ) = Ez∼πθ(z|x) [R(z, x)] . (2)

We denote the state at tth step as st = (x, z<t)

and the action as at = zt. The policy πθ(at | st)
is the probability of generating the token at given
the state st. Lastly, the value function V θ(st) =
Ez>t∼πθ

[R(z, x) | st] denotes the expected cumu-
lative reward starting from the state st. We ap-
proximate the value function V θ(st) with a param-
eterized network Vϕ(st), where ϕ denotes the pa-
rameters of Vϕ(st) that follows the update rule of
ϕ← ϕ−β∇ϕLV (ϕ). The loss function for Vϕ(st)

is defined as Eq.(3), where Gt =
∑T

k=t γ
k−trk is

the cumulative discount return, γ is the discount
factor and β is the learning rate.

LV (ϕ) = Est

[
(Vϕ(st)−Gt)

2
]
. (3)

The advantage function Aθ(st, at) measures the
relative benefit of taking action at in the state st.
We utilize the Temporal-Difference (TD) residuals
and the Generalized Advantage Estimation (GAE)
to estimate it (Schulman et al., 2015), which are
defined as δt = rt + γVϕ(st+1) − Vϕ(st) and
AGAE

t =
∑T−t

l=0 (γλ)
lδt+l, respectively. rt is the

immediate reward at tth step and λ is the bias-
variance trade-off parameter. Therefore, the policy
gradient can be derived as Eq.(4).

∇θJ(θ) = Et

[
∇θ log πθ(at | st) ·AGAE

t

]
. (4)

To further optimize the strategy, we employ the
entropy regularization and proximal policy opti-
mization (PPO) algorithm, as Eq.(5), where r̂t(θ)
is the clipped ratio, α and ϵ are hyperparameters.
rt(θ) =

πθ(at|st)
πold(at|st) . Le(θ) = α

∑T
t=1H (πθ(· | st)

is the entropy regularization term.

Lθ = LCLIP(θ)− Le(θ),

r̂t(θ) = CLIP (rt(θ), 1− ϵ, 1 + ϵ) ,

LCLIP(θ) = −Et [min (rt(θ)At, r̂t(θ)At)] .

(5)

Finally, we formulate the loss function of the model
as Eq.(6), which is composed of the policy loss and
value loss, where λv is the value loss coefficient.

Ltotal = Lθ + λvLV (ϕ). (6)

Retrieval of Geographic Knowledge Clues:
Based on the created query, we then retrieve the
geographic knowledge involved in the questions
from some external sources. There are some pop-
ular ones, such as DBpedia and OpenStreetMap
(OSM) knowledge bases, etc. DBpedia provides a
broad coverage of geographic commonsense like
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capital cities and terrain types. OSM excels at of-
fering finer-grained knowledge of spatial geogra-
phy, including traffic directions and intricate ad-
ministrative boundaries. To facilitate access DBpe-
dia database, we utilize the tool of Virtuoso end-
point1 to retrieve in the form of SPARQL. Sim-
ilarly, we employ the tool Strabon endpoint to
visit OSM. Each retrieved data is represented as an
RDF triple kw = ⟨subject, predicate, object⟩, such
as ⟨wrestling,main event of,Naadam⟩, where the
subject and object may be phrases, and the pred-
icate captures a dependency relation. To expand
the coverage of our knowledge, we further adopt
the GPT-4o model to derive some relevant clues.
Details of this process are given in Appendix A.

Clues Verification and Reasoning: Consider-
ing the clues retrieved may be irrelevant to the
current reasoning step, this noise can mislead the
inference direction or increase the computational
cost. To facilitate reasoning, we verify these clues
and use them as rewards in the reinforced learn-
ing process to reversely optimize the query gen-
erator. That is, we create queries for each sub-
question of a certain reasoning step, so as to re-
trieve relevant clues. We then verify them, so as
to filter out noise and use this feedback to guide
the direction of the next reasoning step. To do
it, we define the observation space O for storing
the correct clues and the decision space D for de-
ciding whether the current clue is pruned or not.
At the tth reasoning step, the model receives k
answers yt = {y1t , . . . , ykt } to the sub-question x
based on the k queries. It then makes a decision
dt ∈ {IsCorrelative, IsAccept} ⊂ D according to
a discriminative strategy. If D returns ‘IsAccept’
tag, O records the pairs ot = (xit, y

i
t) ∈ O, which

are used to guide the next decision dt+1. To ver-
ify the clues, we design a multi-criteria pruning
mechanism from both relevance and correctness
perspectives. (1) Relevance: We evaluate each clue
obtained from different sources. We employ seman-
tic similarity to examine the triple-clues retrieved
from the geographic knowledge bases. For passage-
clues acquired from LLM like GPT-4o, we explore
a BERT-BM25 hybrid method (Zhang et al., 2023),
where the BM25 score sbm25 is computed using
the natural language form of clues, sbert denotes
the score for calculating semantic similarity based
on BERT embedding. The final relevance score is
calculated as a weighted sum of these two scores,

1https://dbpedia.org/sparql

as defined in Eq.(7), where α̃ is the relevance score
weight. If Sre does not exceed a predetermined
threshold ϵ̃, the clue will be pruned.

Sre =
α̃

1 + e−sbm25
+ (1− α̃)sbert. (7)

(2) Correctness: We use ot−1 in the previous round
as a prefix and input it into the LLM (e.g. GPT-
4o) with the clues in the current round. The LLM
provides a score Sac for the clue based on our well-
designed prompt. Clues that meet the relevance
and accuracy thresholds are assigned a positive
‘IsAccept’ tag. We take weighted of the relevance
and accuracy scores linearly as the reward func-
tion. To avoid bias, we standardize the scores by
z-score and optimize the RL algorithm with soft
Q-learning (Guo et al., 2021). We sample a set
of queries from the current batch to calculate the
mean and standard deviation, use a sliding window
to record the most recent K rewards, and calculate
the total mean and standard deviation. The specific
formulas are as Eq.(8) and Eq.(9), where B is the
current set of corresponding computations, ϵ̂ is set
to ensure numerical stability of the normalization
process, ncl is the number of clues retrieved for
query z, ω is the weight parameter used to balance
the relevance score and accuracy score, z′ denotes
the queries other than z in the current batch.

R(z, x) =
1

ncl

ncl∑

i=1

(
ωS

(i)
re + (1− ω)S

(i)
ac

)
, (8)

Z −R(z, x) =
R(z, x)−meanR∈BR(z′, x)

stdevR∈BR(z′, x)
+ ϵ̂.

(9)
The reward score is then fed back into the query-
reinforced learning module. We iterate through
this reasoning process until all sub-questions are
resolved. Following this step-by-step reasoning
process, we can construct a commonsense reason-
ing tree, with the question context Q as the root
node, the observed pairs in O as leaf nodes, and
their relations as edges. We then apply a depth-first
method to collect pairs with the highest scores at
each step, forming the reasoning chain set E.

2.3 Answer Generation
Since the reasoning chain can indicate the answer,
we combine it with the question to the decoder.
That can capture asked points in the question as
well as the reasoning logic in the chain to help gen-
erate a correct answer. Concretely, we integrate
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the sub-question-clue pairs in the chain with the
relevant parts in the image context Q. For each
oi, we calculate the correlation between Q and xi.
The relevance attention weights are calculated as
Eq.(10), where Ebert(·) stands for BERT embed-
dings. d is the dimension of the embeddings. N is
the number of split sub-questions.

w
(i,j)
re =

exp

(
Ebert(Q)·Ebert(o

j
i )

⊤
√
d

)

N∑
i′=1

k∑
m=1

exp
(
Ebert(Q)·Ebert(o

m
i′ )

⊤
√
d

) . (10)

All the Ebert(oi) are weighted by attention scores
w

(i)
re then summed and concatenated with Ebert(Q).

As shown in Eq.(11), the vector representation of
the answer fan is obtained via a linear transforma-
tion W . Finally, we employ a transformer-based
decoder to generate the answer.

fan =


Ebert(Q) ∥

N∑

i=1

k∑

j=1

w
(i,j)
re · Ebert(o

j
i )


W.

(11)

3 Experiments

We extensively evaluated the effectiveness of our
method with quantitative and qualitative analysis.

3.1 Dataset Construction

Existing geographic-related datasets, such as
Geospatial Gold Standard dataset (Punjani et al.,
2018) and GeoAnQu (Xu et al., 2020), are mostly
used for text-based QA instead of VQA tasks.
Current VQA datasets, such as OK-VQA (Marino
et al., 2019), A-OKVQA (Schwenk et al., 2022)
and FVQA (Wang et al., 2017) are mainly used
to evaluate VQA task based on image recognition,
InfoSeek (Chen et al., 2023) is a VQA dataset tai-
lored for information-seeking questions that cannot
be answered with only commonsense knowledge,
they do not involve enough inference of geograph-
ical knowledge, so they are not suitable for our
GeoVQA task. To address this issue, we constructed
a large-scale dataset named GVQA. In detail, we ex-
tracted a total of 29,871 images and created several
multi-hop QA pairs for each image, with corre-
sponding reasoning evidence included in each pair.
The dataset includes 41,329 QA pairs. Each ques-
tion requires k-hop geographic reasoning, where
k is 2 to 4 for most samples. To avoid bias, we
partitioned our dataset into train, validation, test

sets in an 8:1:1 ratio. The set size was given in
Tab.(1).

Table 1: Categorical statistics of dataset GVQA.

Classification 2-hop 3-hop 4-hop Factual Flexible

Train 9986 13228 10073 19972 13315
Val 1162 1629 1084 2325 1550
Test 1250 1718 1199 2500 1667

It is not trivial to create a dataset with complex
reasoning questions. The questions have to be an-
swerable and follow a suitable reasoning logic. To
address this issue, we first collected a series of
images depicting landmarks and cultural events
from around the world. The collected domains
and regions were balanced and representative. We
then identified images’ concepts corresponding to
those in DBpedia and geographic databases. We se-
lected semantically meaningful concepts randomly
to formulate a candidate question tailored to the
geographic domain, each requiring a single reason-
ing step. We employed an LLM like GPT-4o to
answer these candidate questions. Since complex
questions were often associated with entities or an-
swers mentioned in simple questions, we randomly
extracted entities from the candidate question and
its answer as seeds. Based on them, we then gen-
erated a larger question with more reasoning hops.
Each generated sub-question, along with its corre-
sponding evidence, was stored as a pair. After 2 to
3 rounds, we can form a complete multi-hop ques-
tion, where the sub-questions and supporting evi-
dence at each step constitute the intermediate rea-
soning process. This question format offers many
advantages: the questions include clear interme-
diate steps, making them easy to decompose into
sub-questions to verify. In addition, the question
was complex, reducing the likelihood of randomly
guessing an answer. The dataset was manually ver-
ified at the end to ensure rationality. Regarding
the security of data, we verified the copyright and
license of the images in the dataset. During usage,
we adhered to the requirements of these licenses
and performed desensitization to ensure no privacy
violations. We followed the licenses and did not
use it for commercial purposes.

3.2 Experimental Settings
We utilized four evaluation metrics that were popu-
lar on the generation task, including ROUGE (Chin-
Yew, 2004), METEOR (Banerjee and Lavie, 2004),
BERTScore (Zhang et al., 2019) and F1-score.
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Table 2: Performance comparison. The best results are represented in bold. The second-best results are underlined.

Method ROUGE−2 ROUGE−4 ROUGE−L METEOR BERTScore F1

CogVLM 21.8±0.2 12.5±0.3 26.8±0.2 24.9±0.3 78.2±0.2 71.2±0.1

InstructBLIP 23.0±0.2 13.2±0.2 28.1±0.3 23.3±0.2 73.9±0.3 72.5±0.1

CiVQA 8.30±0.4 4.6±0.6 13.7±0.4 11.1±0.2 67.0±0.3 62.9±0.2

LAMOC 10.1±0.4 5.6±0.4 15.0±0.3 13.8±0.2 60.3±0.2 53.9±0.2

IRCoT 15.0±0.1 9.3±0.2 22.9±0.2 20.3±0.3 61.8±0.2 61.8±0.2

HT 14.2±0.3 8.0±0.4 20.4±0.4 19.0±0.5 75.6±0.3 63.4±0.3

FLARE 15.9±0.2 10.7±0.4 23.6±0.3 20.2±0.4 72.7±0.3 64.9±0.2

LATS 17.7±0.3 11.2±0.2 24.8±0.2 23.4±0.4 71.4±0.2 65.0±0.2

MORE 18.2±0.4 10.9±0.3 25.4±0.3 24.2±0.5 70.1±0.3 63.6±0.3

GPT-4o 20.4±0.2 10.7±0.3 25.0±0.1 20.8±0.4 73.2±0.2 68.1±0.2

Ours 28.8±0.3 16.1±0.2 33.2±0.2 30.4±0.4 85.6±0.3 78.9±0.2

They can measure the quality of answers from
the perspectives of keyword matching and seman-
tic consistency. For the ROUGE metric, we used
ROUGE−N to measure the recall based on N-
gram overlap, ROUGE−L to evaluate matching
based on the Longest Common Subsequence (LCS).
We repeated running 5 times and reported the aver-
age performance to reduce bias. Our experiments
were conducted using PyTorch (Paszke et al., 2019)
and were run on four NVIDIA Tesla V100 GPUs.
Further implementation details and the selection of
hyperparameters were provided in Appendix C.

3.3 Comparisons Against State-of-the-Arts

We compared our method against ten baselines, in-
cluding: (1) CogVLM (Wang et al., 2023b) and
InstructBLIP (Dai et al., 2023), typical models
leveraging the powerful reasoning capabilities of
LLMs for downstream applications such as VQA;
(2) CiVQA (Özdemir and Akagündüz, 2024) and
LAMOC (Du et al., 2023), caption-based mod-
els that deduced the answers based on the im-
age description; (3) IRCoT (Trivedi et al., 2023)
and FLARE (Jiang et al., 2023), chain-of-thought-
based models that derived answers by iterative in-
ference; (4) Hypergraph Transformer (HT) (Heo
et al., 2022), a graph network-based model which
had good performance on multi-hop VQA; (5)
LATS (Zhou et al., 2023) and MORE (Cui et al.,
2024), innovative models that employed tree struc-
tures for reasoning; (6) GPT-4o (Achiam et al.,
2023), a strong multi-modal LLM tool.

As shown in Tab.(2), our model obtained the
best performance. It was superior to the LLMs
baselines. We inferred that while the generic large
models have good matching ability, they were still
poor at reasoning about knowledge in a certain do-
main. For other methods, our model significantly
surpassed the baselines of CiVQA and LAMOC

in terms of ROUGE. This improvement would be
due to our usage of RAG for image analysis. That
provided more accurate descriptions than caption-
based approaches, and avoided reasoning on incor-
rect premises. In addition, our method improved
the METEOR metric by approximately 11.4% over
HT. That indicated, compared to graph networks,
our iterative retrieval approach could reduce noise
to produce more suitable clues. In contrast to
methods relying solely on linear reasoning (i.e.,
IRCoT and FLARE) or tree-based reasoning (i.e.,
LATS and MORE), our approach employed a multi-
criteria strategy to prune the irrelevant clues. That
gives the model better reasoning capabilities, and
helps to avoid the wrong inference direction.

3.4 Ablation Studies

To better gain insight into the relative contribu-
tions of key components in our approach, we con-
ducted ablation studies on six aspects, including
(1) reinforcement learning, where the feedback on
evidence quality was removed from influencing
subsequent generated queries; (2) adaptive pruning,
set the next round to proceed in all reasoning direc-
tions from the previous round; (3) multiple knowl-
edge source retrieval, substituted it with separate
retrieval from only the knowledge base or LLM;
(4) multi-factor validation, replaced with only uti-
lizing LLM validation; (5) iterative retrieval, re-
placed by one-time retrieval; and (6) image context
analysis, substituted with a caption-based meth-
ods to describe the image. As shown in Tab.(3),
the ablation on all evaluated components led to a
significant performance drop. We found that with-
out adaptive pruning and multi-factor validation,
the computational cost was greatly increased and
the reasoning accuracy was reduced. Moreover,
conducting one-time retrieval resulted in perfor-
mance degradation in terms of ROUGE metric by
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more than 4.88%. That indicated the dynamic re-
trieval technique could provide more relevant ex-
ternal knowledge than one-time retrieval. When
we changed the image analysis module, the per-
formance declined. We inferred that the retrieval-
based approach was more effective than the caption-
based approach in understanding the image content,
which could provide better semantic contexts for
reasoning. Furthermore, we evaluated the perfor-
mance impact of using different LLMs as the pol-
icy network. As shown in Tab.(4), the LLMs of
LLAMA3-8B achieved an optimal balance between
computational cost and prediction performance.

Table 3: Ablation studies with the metric of drop rates,
where R−N refers to the ROUGE−N metric, R−L refers
to the ROUGE−L metric, M refers to the METEOR
metric, and B refers to the BERTScore metric.

Method R−2 R−4 R−L M B F1

w/o Reinforce Learning ↓ 5.42 ↓ 5.47 ↓ 4.49 ↓ 5.98 ↓ 3.92 ↓ 4.84
w/o Image Retrieval ↓ 5.19 ↓ 5.08 ↓ 4.83 ↓ 5.59 ↓ 3.53 ↓ 4.30
w/o Adaptive Pruning ↓ 6.81 ↓ 7.97 ↓ 5.35 ↓ 7.03 ↓ 4.28 ↓ 4.90
w/o LLM Retrieval ↓ 4.27 ↓ 5.88 ↓ 4.51 ↓ 5.20 ↓ 3.42 ↓ 3.69
w/o KnowledgeBase Retrieval ↓ 5.33 ↓ 6.40 ↓ 4.20 ↓ 4.83 ↓ 3.63 ↓ 3.82
w/o Muti-factor Validation ↓ 5.68 ↓ 6.15 ↓ 5.11 ↓ 6.57 ↓ 4.19 ↓ 4.63
w/o Iterative Retrieval ↓ 6.22 ↓ 7.17 ↓ 4.88 ↓ 6.49 ↓ 3.89 ↓ 4.57

Table 4: Comparisons on the evaluated LLMs.

Method R−2 R−4 R−L M B F1

LLAMA3-8B 28.8 16.1 33.2 30.4 85.6 78.9
OPT-6.7B 25.3 14.8 31.4 28.8 84.5 77.2
T5-3B 24.4 13.9 30.2 28.1 84.0 76.3
BLOOM-3B 21.6 12.5 27.5 26.9 83.4 75.1
GPT-2 XL 17.7 10.7 25.3 23.1 81.9 72.6

3.5 Evaluations on the Trade-off Parameter
Moreover, we evaluated the trade-off parameters in
our model by univariate analysis. For each parame-
ter, we tuned it in intervals of 0.2 over the range [0,
1]. When adjusting one parameter, the others were
fixed at their optimal values determined from the
previous univariate analysis. Afterward, we plotted
the performance curves in Fig.(3). We observed
that the best result was achieved when the value
loss coefficient λv and reward weighting factor ω
were 0.5, with the relevance score weight α̃ = 0.3.
That indicated the balanced strategy in terms of
strategy loss and value loss, clue relevance, and
accuracy could achieve better performance.

3.6 Human Evaluations and Analysis
To fully evaluate answers, we conducted human
evaluations. We recruited 10 participants with flu-
ent English reading ability, and randomly sampled
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Figure 3: Evaluations of the trade-off parameters.

500 cases from the test results. We asked partici-
pants to rate the answers on a scale of 1-10 (with 10
being the best). Each sample was rated by at least 3
participants. The scoring indicators are ‘Grammat-
ical Correctness’, ‘Language Fluency’, ‘Answer
Relevance’ and ‘Factual Accuracy’. As shown in
Tab.(5), we compared our model with the best base-
line. The results show that our model outperforms
the best baselines, indicating that the generated
answers have good naturalness and accuracy.

Table 5: Results of human evaluation. The best results
are represented in bold, the second-best is in underlined.

Model Grammatical Correctness Language Fluency

CogVLM 7.20 7.79
InstructBLIP 7.25 7.53

Ours 7.81 8.56

Model Answer Relevance Factual Accuracy

CogVLM 6.04 6.85
InstructBLIP 6.33 7.06

Ours 7.49 8.11

3.7 Case Studies and Discussions
Furthermore, we conducted case studies to ana-
lyze the pros and cons of our model. As shown in
Fig.(4), our model covered almost all key points. In
contrast, CogVLM, GPT-4o, and IRCoT introduced
reasoning biases due to incorrect or ambiguous lo-
cation inference. CiVQA and LAMOC tended to
introduce noise from irrelevant elements in the im-
age, harming performance. InstructBLIP, MORE,
and LATS obtained some information about the an-
swers but selected the wrong cities. FLARE and
HT mistakenly interpreted the area of the cities as
the drainage area of the rivers. These results further
indicated the effectiveness of our model. By ana-
lyzing our bad cases, mistakes mainly came from
grammatical errors, such as word form and tenses.
For instance, the word “bridge” in the predicted an-
swer “two bridge” should be rectified to “bridges”,
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Cogvlm: The rivers in the region shown in the image may include the Beijing-Hangzhou Grand Canal, 
Taihu Lake, Qiantang River, Yangtze River, and Huangpu River. Among them, the largest is the 
Yangtze River. The Yangtze River flows through several cities, including Chongqing, Wuhan, Yibin, 
Nanjing, and Shanghai etc. Among these cities, Chongqing has the largest area.
InstructBLIP: The image shows a street with traditional Chinese architectural style, which is likely to 
be Pingjiang Road in Suzhou, Jiangsu Province. The largest river in Suzhou is the Beijing-
Hangzhou Grand Canal, which flows through major cities including Beijing, Tianjin, Huai'an, 
Yangzhou, Zhenjiang, Changzhou, Wuxi, Suzhou, Jiaxing, and Hangzhou. Among these cities, 
Hangzhou in Zhejiang Province has the largest area, at approximately 16,596 km2.
CiVQA: The image shows a district with traditional Chinese architectural style, decorated with red 
lanterns and plaques on the streets. Among these areas, Jiangsu Province has the largest area.
LAMOC: The image shows a bustling area with traditional Chinese architecture. Buildings are adorned 
with signs such as “Dequan Tower” and “Tianfang Tea House,” and decorated with many red lanterns. 
Dequan Scenic Area is located in Jingxi City, Guangxi Province, which has an area of 3,322 km2.
IRCoT: The largest river in the city shown in the image is the Yangtze River. Among the cities 
through which the Yangtze River flows, Chongqing has the largest area, which is 82,400 km2.
HT: The image may show the Jiangnan region of China. The largest river in the Jiangnan region is 
the Yangtze River, which has a drainage area of 1.8 million km2.
FLARE: The image may show the area of Anhui Province or Zhejiang Province. The largest river in 
these two provinces is the Qiantang River, and the largest area is 55,558 km2.
LATS: The traditional Jiangnan wooden structures in the image may belong to some historical blocks 
along the Grand Canal in Yangzhou. The Grand Canal stretches from Beijing to Hangzhou. Beijing 
covers an area of 16,410.54 km2, while Hangzhou has an area of 16,596 km2. Therefore, Hangzhou has 
the larger area.
MORE: The architectural style in the image is typical of the traditional Jiangnan water towns and may 
belong to some ancient buildings around West Lake in Hangzhou. The largest river in Hangzhou is the 
Qiantang River, which flows through Hangzhou, Quzhou, Jinhua, and Shaoxing. Among these cities, 
Hangzhou has the largest area, at about 16,596 km2.
GPT-4o: The image may show historical and cultural blocks such as the Confucius Temple in Nanjing, 
Jiangsu Province, or Pingjiang Road / Shantang Street in Suzhou. If the landmark is in Nanjing, the 
largest river in Nanjing is the Yangtze River. If the landmark is in Suzhou, the main rivers in Suzhou 
include the Beijing-Hangzhou Grand Canal and the Taihu Lake basin, but the largest is still the Yangtze 
River. Among the cities through which the Yangtze River flows, Chongqing has the largest area.

Question：Which city has the largest area among those through which the 
biggest river of the city with the landmark in the image flows?

Evidence：[Tunxi Old Street, Huangshan, China], (Huangshan, largest river, Xin'an River), (Xin'an 
River, flow through, Huangshan), (Xin'an River, flow through, Hangzhou), (Huangshan, area, 9,807 
km2), (Hangzhou, area, 16,596 km2)

Answer：The image shows Tunxi Old Street, which is located in 
Huangshan City, Anhui Province, China. The largest river in Huangshan 
City is the Xin'an River, which flows through both Huangshan City and 
Hangzhou City. Huangshan City has an area of 9,807 square kilometers, 
while Hangzhou City has an area of 16,596 square kilometers. Therefore, 
the largest city is Hangzhou.

Hangzhou area: 16,596 square kilometers

Huangshan area: 9,807 square kilometers

     flow through:
 Huangshan  and Hangzhou 

  largest river：
Xin'an River

location：
Huangshan City

Reasoning Path：

Figure 4: Case study.

the word “is” in sentence “The building is built in
1900.” should be rectified to “was”. These chal-
lenges would be studied in future work.

4 Related Work

The task of geographic question answering has a
wide range of applications. They can assist students
in learning geography, be integrated into naviga-
tion systems to provide traffic guidance or help
travelers explore attractions and local cultures (Mai
et al., 2021). Early researches primarily focus on
answering text-based geographic questions (Chen,
2014). They often first determine the question type,
and then acquire predefined templates tailored to
this type to extract answers from the geographic
information systems(GIS) (Punjani et al., 2018).
Later, Xu et al. (2020) and Contractor et al. (2021)
introduced geo-analytic QA. It combined multi-
ple knowledge sources to conduct spatial reason-
ing (Scheider et al., 2021) and was used to solve
questions in applications such as education and
tourism. Differently, we focus on GeoQA task
rather than text QA, which requires conducting
the cross-modality reasoning over the textual ques-
tions and visual image. Our work also relates to the

retrieval augmentation technique that can support
various tasks (Chen et al., 2017). For this technique,
some studies (Yu et al., 2023) propose to optimize
the retrieval queries (Jiang et al., 2023), with rein-
forcement learning (Deng et al., 2022) emerging
as a trend in this area (Ma et al., 2023). Other
studies (Xu et al., 2023) concentrate on filtering
the retrieved clues (Zhao et al., 2023) to provide
more accurate information, thereby enhancing the
model’s reasoning capabilities (Asai et al., 2023).

Other studies are also related to our research,
such as knowledge-based multi-hop reasoning and
multimodal reasoning, which can tackle some com-
plex reasoning questions. To capture multi-modal
context, traditional methods either converted in-
puts into uniform modality by caption-based meth-
ods (Özdemir and Akagündüz, 2024), or inte-
grated multi-modal features (Hu et al., 2023) for
fusion. To support multi-hop reasoning, they often
used graph network (Sun et al., 2021) or hyper-
graph (Heo et al., 2022) methods, but that would
face challenges in determining the number of nodes
and incur high computational costs when dealing
with open-domain QA (Wang et al., 2023a). Some
work resort to large language models (LLMs) (Peng
et al., 2023) with chain-of-through (CoT). CoT can
generate intermediate reasoning steps to infer an-
swer (Caffagni et al., 2024). Furthermore, some
research (Zhou et al., 2023) employed a tree struc-
ture for reasoning (Yao et al., 2024), which can
exclude incorrect inference directions and prevent
the propagation of irrelevant clues.

5 Conclusion

This paper has proposed a new task called GeoVQA.
It aimed to answer geographic reasoning questions
based on the given image. We proposed a new ap-
proach with three steps. We first fully analyzed
the image content and context based on the multi-
modal retrieval augmentation technique. We then
deduced from this content and context with respect
to the question. To reduce noise, we broke down a
complex reasoning process into multiple steps. We
adaptively collected the necessary commonsense
clues from external knowledge for each step and
filtered the noise to derive a reasoning chain. Based
on the chain, we decoded the correct answer. More-
over, we created a large-scale dataset GVQA, and
conducted extensive evaluations on it. The results
showed the effectiveness of our model.
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Limitations

The GeoVQA task is challenging. It requires not
only understanding the geographic context within
the image and utilizing multiple knowledge clues
for inference, but also generating a fluent and accu-
rate answer. For this task, we proposed an effective
framework that adaptively generates answers, but
there remains room for further improvement. By
analyzing the bad cases in our experimental results,
we found that the model could accurately generate
the key segments of the answer, while the sections
beyond them occasionally exhibit flaws, such as
incorrect tense, word forms, or redundancy. For
example, when users ask, “Starting in March, what
climate conditions will Tokyo experience over the
next month”, the answer should use the future tense.
Sometimes it also had mistakes like incorrect use
of adverb forms. One way to tackle this problem is
to apply a grammar corrector in the post-processing
stage to refine the answers more precisely, and we
will tackle these issues in future work.

Ethics Statement

The technique presented in this paper can be ap-
plied to provide guidance for questions in travel
and navigation domains, thereby facilitating users’
lives. Unlike existing methods, our model enhances
the accuracy of answers by breaking down complex
reasoning processes into multiple steps. That can
progressively collect necessary commonsense clues
from external knowledge, and eliminate erroneous
inference directions. Excluding misuse scenarios,
this technology has minimal or no ethical issues.
However, as a question-answering technique, the
answers it provides could be misused. For instance,
malicious users might exploit the technique to ob-
tain real-time location information or travel plans
from users for tracking or planning criminal activi-
ties. This issue can be mitigated by reminding users

to conceal necessary privacy information when pos-
ing questions.
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A Details of Our Approach

A.1 Implementation Details
For the image analysis module with the multimodal
retrieval enhancement, we extracted a short sum-
mary of each image page and three image-related

keywords, such as facts, events, participants, loca-
tions, etc. In the dynamic iterative retrieval infer-
ence module, we set γ = 0.98 and use the Adam
optimizer with βpolicy = 2e−5, βvalue = 1e−4. For
the hyperparameters in policy optimization, we set
the entropy regularization coefficient α = 0.05 and
the PPO clipping coefficient ϵ = 0.2. The Bias-
variance trade-off parameter λ in GAE is set to
0.95. The loss weight λv of the value function is
set to 0.5. To better filter the relevant clues, we set
the α̃ of the balance to 0.3. The threshold ϵ̃ is set to
0.95. Reward weighting factor ω = 0.5. In order to
leverage LLM to better retrieve external knowledge,
we first decomposed the question step by step into
sub-questions that are easier to retrieve and reason
about. Meanwhile, we designed useful prompts to
ensure the retrieved clues could meet the following
criteria: (1) Only contain the clues that are directly
relevant to the question, without adding irrelevant
information. (2) Accurate information is provided.
(3) Responses should be expressed in a concise,
clear, and understandable manner that highlights
the main message. The GPT-4o-based prompts are
shown in Fig.(5) and Fig.(6), respectively.

prompt = """
You are an intelligent assistant capable of breaking down complex questions 
into simple, logically coherent sub-questions. Please follow these guidelines:
1. Each sub-question should require only one step of reasoning.
2. Each sub-question should depend on the previous question and its 
potential answer, ensuring there is clear logical progression between them. 
You can simulate the answers to each sub-question to ensure they are 
logically consistent and help lead to the final answer.
3. Ensure all necessary information is included while keeping the language 
concise and accurate.
4. List the sub-questions in numbered order without additional introductory 
phrases.
5. Verify the feasibility of each sub-question, ensuring that each one can be 
independently answered and supports the reasoning for subsequent sub-
questions.

Question: {question}
Answer:
"""

Figure 5: Prompt for the question decomposition.

To verify clues, we designed a prompt based
on GPT-4o by considering five aspects: validity,
accuracy, completeness, logical clarity, and objec-
tivity. The clues with scores above the threshold
of 8 were viewed as good. The specific evaluation
criteria and related scores were shown in Fig.(7).
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prompt = """ You are an intelligent assistant with access to a wide range of 
knowledge. Based on external information: {retrieved clues} and the 
question: {question}, integrate these external information to form a clear, 
concise and accurate response.
Answer: 
"""

response = openai.ChatCompletion.create(
model="gpt-4o", 
messages=[
    {"role": "system", "content": "You are a knowledgeable assistant."},
    {"role": "user", "content": prompt.format(retrieved_clues=clues, 

question=question)}
],
max_tokens=500, 
temperature=0.4, 

)

Figure 6: Prompt for the question context retrieval.

prompt = """
You are an intelligent assistant specialized in fact-checking and validating information. 
Your task is to assess the correctness and reliability of the following knowledge clue based 
on the given question.

**Question:** {question}
**Knowledge Clue:** {knowledge_clue}

**Instructions:**
1. **Effectiveness:** Determine if the knowledge clue directly answers the question 
without evading or misinterpreting the question.
2. **Accuracy:** Verify the factual correctness of the information provided in the 
knowledge clue.
3. **Completeness:** Assess whether the knowledge clue provides a comprehensive 
answer or if it lacks essential details.
4. **Clarity:** Ensure the knowledge clue is clearly written and logically structured.
5. **Objectivity:** Check that the information is presented objectively without undue bias.

**Scoring Criteria (1-10):**
- **1-2:** The knowledge clue is mostly incorrect, irrelevant, and lacks clarity.
- **3-4:** The knowledge clue has significant inaccuracies or is only partially relevant.
- **5-6:** The knowledge clue is somewhat relevant and mostly accurate but lacks 
completeness or clarity.
- **7-8:** The knowledge clue is relevant, accurate, and mostly complete with minor 
omissions.
- **9-10:** The knowledge clue is highly relevant, completely accurate, thorough, and 
clearly presented.

**Response Format:**
- **Score:** [1-10]
"""
response = openai.ChatCompletion.create(
        model="gpt-4o",
        messages=[
            {"role": "system", "content": "You are a fact-checking assistant."},
            {"role": "user", "content": validation_prompt.format(question=question, 
knowledge_clue=knowledge_clue)}
        ],
        max_tokens=400,
        temperature=0.3,
    )

Figure 7: Prompt for clue verification.

A.2 Details of Query Templates

Following previous work of Hamzei et al. (2022),
GeoSPARQL queries consist of several components,
including prefixes, ASK/SELECT statements, and
the WHERE clause. The prefixes utilize a prede-
fined set of prefixes that define the namespaces
for accessing the knowledge base, ontology, and
implementation functions. The ASK/SELECT state-
ments determine the query output, and the WHERE
clause captures the conditions specified in the
query. In detail, the conversion of logical state-
ments into GeoSPARQL queries involves three se-
quential steps: (1) The overall query structure (e.g.,

Table 6: Categories of the question components.

Code Name Explanation Example

N place name a direct reference to a geographic place. New York

T place type a generic reference to a category of
a taxonomy that captures places with
similar functional, spatial, and physical
properties.

mountain

P properties describe diverse characteristics of
places and a place may be described by
a set of criteria imposed on these prop-
erties.

population

A activities afforded by places, and places may be
queried for their affordances.

[a place] to buy hardware

S situations another way to describe places by ref-
erence to what is available or can be
experienced there, instead of what one
can do there.

[a place] to see birds

Q qualities quality of an activity, a situation, or a
property of place that narrows down the
search domain for identifying relevant
places.

the most populated city,
the old building, the best
cafe

R spatial relations describe how places are located in rel-
ative space and include a diverse set of
topological, directional, and metric re-
lations.

inside, north of, within
200 meters

ASK/SELECT query) is determined based on the ex-
tracted intent. In the case of a SELECT query, the
intent specifies which variables to retrieve; (2) The
WHERE clause is dynamically generated through
logical connections; and (3) Ordering and aggre-
gation (ORDER BY and GROUP BY clauses) are
generated for queries that require them. Given
the Question 2 in Appendix Fig.(9) as an example,
Fig.(8) is the predefined rule templates for generat-
ing queries, and Fig.(9) shows an example of the
target query.

Place definition template using name

   VALUES  ?<PI>   {<URIS>}.
    ?<PI>   geosparql : hasGeometry  ?<PI>G .
   <PI>G   geosparql : asWKT   ?<PI>GEOM .

Place definition template using type
   ?<PI>   rdf : type   ?<PI>TYPE;
           geosparql : hasGeometry   ?<PI>G .
   ?<PI>G   geosparql : asWKT   ?<PI>GEOM .
   VALUES  ?<PI>TYPE   {<URIS>} .

Attribute relation template

   VALUES  ?<ATTRIBUTE>   {<URIS>} .
   ?<PI>  ?<ATTRIBUTE>  ?<PROPERTY> .

Distance relation template

   FILTER(geof : distance(?<PI1>GEOM, ?<PI2>GEOM, <UNIT>) < <DISTANCE>)  .

Aggregation template

   GROUP BY <VARIABLE>
   HAVING (COUNT(﹡)  >  <LIMIT>)

Sorting template

   ORDER BY <ASC/DESC>  (<VARIABLES>)  LIMIT  <LIMIT> .

Figure 8: Predefined templates for queries.

A.3 Details of the Warm-up Dataset

Since the data in OSM cannot be directly used
for retrieval, we use its interlinked Geospatial
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Gold Standard dataset2 to assist in constructing
our warm-up dataset. It can interlink classes with
the same or very similar labels in DBpedia and
OSM, extract valid information from OSM in RDF
format, and then construct GeoSPARQL queries for
each geographic question. Considering the amount
of data contained in the Geospatial Gold Standard
dataset may be insufficient, it may not meet the
requirements of our task. We use it as the warm-up
dataset for initial training. Later, the valid results
after verification will be added to enlarge it. The
specific standard query samples in the warm-up
dataset are shown in Fig.(9).

SELECT DISTINCT ?pub 
WHERE {
    ?pub a osm:Pub ;
         geo:hasGeometry ?pubGeo .
    ?pubGeo geo:asWKT ?pubWKT .

    ?dublin osm:has_name ?l2 ;
            geo:hasGeometry ?dublinGeo .
    ?dublinGeo geo:asWKT ?dublinWKT .

    ?guiness osm:has_name ?l ;
             geo:hasGeometry ?guinessGeo .
    ?guinessGeo geo:asWKT ?guinessWKT .

    FILTER(STR(?l2) = "Dublin") .
    FILTER(STR(?l) = "Guinness Brewery") .
    FILTER(geof:distance(?guinessWKT, ?pubWKT, uom:metre) < 1000) .
    FILTER(geof:sfContains(?dublinWKT, ?pubWKT)) .
}

Question1：Which pubs in Dublin are near Guinness Brewery?

ASK {
    ?s2 linkedeodata:has_name "University of Westminster"^^xsd:string .
    ?s2 rdf:type osm:University .
    ?s2 geo:hasGeometry ?geo2 .
    ?geo2 geo:asWKT ?w2 .

    ?s3 geo:hasGeometry ?geo3 .
    ?s3 linkedeodata:has_name ?name .
    ?geo3 geo:asWKT ?w3 .
    ?s3 rdf:type osm:Church .

    FILTER(geof:distance(?w3, ?w2, uom:metre) < 2000)
}

Question2：Is there a church at most 2km from the University of    
Westminster?

Figure 9: Standard query samples of warm-up dataset.

B Details of Our GVQA Dataset

We constructed a large-scale dataset GVQA tailored
for our task. We extracted a total of 29,871 images
from multiple search engines, which were publicly
available on the Web. Then we provided several
geographic QA pairs with corresponding reasoning
evidence for each image. The content involves geo-
graphic knowledge related to landmarks and human
activities, such as location, climate characteristics,
terrain, national culture, customs, etc. These sam-

2https://geoqa.di.uoa.gr/

ples all need to understand the geographic back-
ground of the image to reason, and cannot be sim-
ply solved by identification and matching alone.
Some of these can be answered by extracting in-
formation from the corresponding knowledge base,
other examples require a deeper understanding to
deduce abstractive answers.

C Settings of All Evaluated Methods

We outlined the parameter settings for the methods
utilized in our evaluations.

Settings of Our Model: Our experiments were
conducted using PyTorch (Paszke et al., 2019) and
were run on four NVIDIA Tesla V100 GPUs. We
leveraged the BERT-base model to initialize the
word embeddings and employed the transformer-
based GPT-2 medium as the decoder. We generated
3 queries for each sub-question, and each query
retained 3 clues threads after filtering. Accordingly,
set the sliding window size K = 500. We used
a linear learning rate scheduler with 3,000 warm-
up steps. Gradients were clipped if their norm
exceeded 1.0, and the weight decay for all bias-free
parameters was set to 0.0001. We trained for up
to 6,000 steps, and validated every 200 steps, with
early stopping after one round of no improvement
in validation loss. It takes about 11 hours to train
the model and 6 minutes to test 1,000 samples in
the test set.

Settings of CogVLM: The model was trained
for a total of 6000 steps. The batch size was set
to 32 per GPU and the number of gradient accu-
mulation steps was set to 8. The input resolution
was set to 384×384, and dropout was applied with
a probability of 0.1. The model parameters were
optimized using AdamW with a learning rate of
1e−5, β1 = 0.9, β2 = 0.95, ε = 1 × 10−8, and a
weight decay of 0.1.

Settings of InstructBLIP: We froze the image
encoder and the large language model on the back-
end, only updating the Q-Former module that con-
nected images to text. The vocabulary size was
set to 30,522 and the hidden size was set to 768.
The Transformer encoder consisted of 12 hidden
layers and 12 attention heads, with an intermediate
layer size of 3,072. The hidden activation func-
tion was gelu, and both the hidden and attention
dropout probabilities were set to 0.1. The maxi-
mum number of position embeddings was 512, and
the initializer range was 0.02. The layer normal-
ization epsilon was set to 1e−12, and the padding
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token ID was 0. The position embedding type was
chosen as absolute, while a cross-attention fre-
quency of 2 was employed, and the encoder hidden
size was 1,408. The image resolution remained at
384×384.

Settings of CiVQA: The maximum number of
generated tokens was set to 5, and the temperature
parameter was set to 0.2.

Settings of LAMOC: The officially released
BLIP captioning checkpoint3 was used for model
initialization. Both captioning adaptation and re-
inforcement learning were conducted with the fol-
lowing hyperparameters: the learning rate was set
to 2× 10−6, and warmup was performed for 600
steps. A weight decay of 0.05 was applied, and
the batch size was set to 8. The balance factor α
was configured to 0.9. Model training lasted for 10
epochs.

Settings of IRCoT: Training used a batch size of
8 per GPU with AdamW optimization at a learning
rate of 2 × 10−6, warm-up steps of 600, and a
weight decay of 0.05. Mixed precision (FP16) was
applied, gradient clipping was set to [−5, 5], and
inference employed a beam size of 6.

Settings of FLARE: The training configuration
entails a batch size of 16, a learning rate of 1e−5,
a beam size of 5, a maximum sequence length of
512, and an image resolution of 384 for ten epochs.

Settings of Hypergraph Transformer: The
model was trained using stochastic gradient de-
scent (SGD) as the optimizer, with a batch size of
64. The word embedding dimension was set to 128.
The learning rate was fixed at 0.0001, with gradient
clipping applied at a threshold of 10. A dropout
rate of 0.05 was used to prevent overfitting.

Settings of LATS: We used Adam as the opti-
mizer and the global batch size was set to 16. We
used a learning rate of 1e−5 and utilized a cosine
annealing learning strategy with an initial learning
rate 1e−5 and a final learning rate of 0 after 150
epochs. The maximum sequence length was set to
512.

Settings of MORE: The model was trained us-
ing the AdamW optimizer with β1 = 0.9, β2 =
0.999, and a weight decay of 0.05. The batch size
was selected from {64, 128}. Training was con-
ducted for at most 20,000 steps, including a 1%
warm-up period. For retrieval augmentation, an
additional T = 2000 steps were used with query

3https://storage.googleapis.com/
sfr-vision-language-research/BLIP/models/model_
large_caption.pth

dropout, and the noisy retrieval augmentation input
ratio p̂ was set to 0.3. The learning rates for the task
prompt and retrieval augmentation prompt were se-
lected from {1e−4, 5e−4, 1e−3} and {1e−5, 3e−5},
respectively. During decoding, a beam search with
a size of 5 was employed.
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Prompt for answering the first step questions
"role": "system", "content": "You are a expert in geography knowledgeable."
"role": "user", "content": f"Provide the answer to the following question based on the information about 
{landmark_name} located in {location}: {Question1}. Be concise and direct. Provide only the answer, and keep it as 
concise as possible without additional sentences."

Prompt for asking the second step questions
"role": "system",
         "content": (
            "You are an assistant that helps generate a second subquestion (Q2) based on a given initial subquestion (Q1) and 
its answer (A1). "
            "Your goal is to create Q2 such that it:\n"
            "1. Derives logically from the given Q1 and A1.\n"
            "2. Maintains logical progression: Q2 should be a natural follow-up to Q1.\n"
            "3. Involves only one step of reasoning, without requiring multiple inference steps.\n"
            "4. Uses concise language, focusing on essential logical aspects from Q1 and A1.\n"
            "5. Avoids repeating unnecessary known details or re-stating trivial facts.\n"
            "6. Q2 should not introduce unrelated information.\n"
            "\nIn other words, given Q1 and its answer A1, use the key entity or main concept from A1 to form a second 
question (Q2) that logically follows Q1 and A1, but does not repeat already established facts.\n"
    )

"role": "user",
         "content": (
            "Q1: '{Q1}'\n"
            "A1: '{A1}'\n\n"
            "Now, based on Q1 and A1, please generate a concise Q2. "
            "Make sure Q2 logically follows from A1, focuses on a key entity or concept mentioned, and requires only one 
reasoning step."
    )

Prompt for answering the second step questions
"role": "system", "content": "You are a helpful geography assistant who creates follow-up questions based on the 
provided question and answer."
"role": "user", "content": f"Given the known information about {landmark_name} located in {location}, and the current 
reasoning chain question '{Q1}' and its answer '{A1}', answer the question '{Q2}' : Be concise and direct. Provide only 
the answer, and keep it as concise as possible without additional sentences."

Prompt for integrating multi-hop questions
"role": "system",
            "content": (
                "You are an assistant specialized in generating multi-hop questions for question-answering datasets. "
                "Given two subproblems, Q1 and Q2, your task is to seamlessly combine them into a single, coherent multi-hop 
question. "
                "Ensure that the combined question does not mention any specific landmark names, cities, or locations. "
                "Avoid making any assumptions beyond the provided subproblems. "
                "The generated multi-hop question should be purely interrogative, concise, logically structured, and focused on 
reasoning.\n\n"
                "Guidelines:\n"
                "1. Do not include any specific landmark names or location details that are not present in Q1 or Q2.\n"
                "2. Maintain the logical flow between the subquestions without introducing external information.\n"
                "3. Ensure clarity and conciseness in the phrasing of the multi-hop question.\n"
                "4. The question should naturally integrate the information from both subproblems.\n\n"
                "Examples for reference:\n"
                "Example 1:\n"
                "Q1: 'Is the type of trees in this area coniferous or broad-leaved?'\n"
                "Q2: 'What are some common examples of broad-leaved trees found in this area?'\n"
                "Combined Multi-hop Question: Are the trees in this area coniferous or broad-leaved? What are the trees in this 
area that belong to this type?\n\n"
                "Example 2:\n"
                "Q1: 'What types of public transportation are available in this city?'\n"
                "Q2: 'How extensive is the bus network in Ringsjön, Sweden, in terms of coverage and frequency of service?'\n"
                "Combined Multi-hop Question: What public transport options are available in the city, and what is the

Figure 10: Prompt designed for GVQA datasets. We show a sample prompt for generating 3-hop questions. For
generating 4-hop questions, we need to set the inference steps of the sub-questions to 2 in the template for yielding
the questions in the second step.
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Prompt for integrating multi-hop questions
coverage and service frequency of this public transport?\n\n"
                "Example 3:\n"
                "Q1: 'What is the local time zone?'\n"
                "Q2: 'What are the typical differences in hours between Japan Standard Time and Coordinated Universal Time 
(UTC)?'\n"
                "Combined Multi-hop Question: What's the local time zone? What is the difference between this time zone and 
Coordinated Universal Time (UTC)?\n"
            )

"role": "user",
            "content": (
                "Now combine these subproblems: Q1: '{Q1}', Q2: '{Q2}' to generate a multi-hop question. "
                "Ensure that the entire content of the first question is preserved. For the subsequent questions, omit any 
information not covered in the first question and integrate them into a coherent multi-hop question. "
                "Note:\n"
                "1. Do not mention any specific landmark names or locations.\n"
                "2. Do not make any assumptions beyond the provided subproblems.\n"
                "3. The language should be concise, clear, and easy to understand."
            )

"role": "system",
            "content": (
                "You are an assistant specialized in generating comprehensive answers and relevant evidence for multi-hop 
questions in a question-answering dataset. "
                "Given two subproblems, Q1 and Q2, along with their respective answers, A1 and A2, your task is to:\n"
                "1. Generate a clear and concise answer to the combined multi-hop question.\n"
                "2. Provide a list of evidence tuples derived from the subproblems and their answers.\n\n"
                "Guidelines:\n"
                "1. The answer should integrate information from both A1 and A2 to comprehensively address the multi-hop 
question.\n"
                "2. The evidence should be a list of tuples in the format (Entity, Aspect, Detail), where 'Entity' can be any 
relevant subject from the answers.\n"
                "3. Ensure that all evidence is solely based on the provided subanswers without introducing any new or 
assumed information.\n"
                "4. Focus on logical relationships that support the reasoning in the answer.\n"
                "5. Maintain clarity and conciseness in both the answer and the evidence.\n\n"
                "Example:\n"
                "Q1: 'Is this a man-made landscape or a natural landscape?'\n"
                "A1: The Twelve Apostles in Victoria, Australia, is a natural landscape.\n"
                "Q2: 'Can I see polar bears here?'\n"
                "A2: Polar bears are native to the Arctic region, in the Northern Hemisphere, and not found in Australia.\n"
                "Multi-hop Question: 'Is this a man-made landscape or a natural landscape, and can I see polar bears here?'\n"
                "Answer: The Twelve Apostles is a natural landscape, not man-made. Polar bears are native to the Arctic and 
not found in Australia, so you cannot see them here.\n"
                "Evidence: (The Twelve Apostles, Landscape Type, Natural), (Polar Bears, Native Location, Arctic Region), 
(Australia, Hemisphere, Southern Hemisphere)."
            )

"role": "user",
            "content": (
                f"Given the following subproblems and subanswers:\n\n"
                f"Q1: '{Q1}'\n"
                f"A1: '{A1}'\n\n"
                f"Q2: '{Q2}'\n"
                f"A2: '{A2}'\n\n"
                "Generate a comprehensive answer to the multi-hop question and provide relevant evidence.\n"
                "The evidence should be in the format (Entity, Aspect, Detail), where 'Entity' can be any relevant subject from 
the answers.\n"
                "Ensure that the answer is clear, concise, and integrates information from both subanswers.\n"
                "Focus on the logical relationships that support the reasoning in the answer."
            )

Prompt for answering multi-hop questions and providing evidence

Figure 11: Prompt designed for GVQA datasets.
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