Embedding-Converter: A Unified Framework for Cross-Model
Embedding Transformation

Jinsung Yoon, Sercan O. Arik
Google Cloud AI, CA, USA
{jinsungyoon, soarik}@google.com

Abstract

Embedding models play a crucial role in ma-
chine learning. However, the continuous de-
velopment of new models presents a major
challenge: migrating to a potentially supe-
rior model often requires the computation-
ally expensive process of re-embedding en-
tire datasets—without any guarantee of per-
formance improvement. This paper presents
Embedding-Converter, a novel framework for
efficiently transforming embeddings between
different models, thus avoiding costly ‘re-
embedding’. The proposed approach achieves
100 times faster and cheaper computations in
real-world applications. Experiments show
that Embedding-Converter not only stream-
lines transitions to new models, but can also
improve upon the source model’s performance,
approaching that of the target model. This fa-
cilitates efficient evaluation and broader adop-
tion of new embedding models by signifi-
cantly reducing the overhead of model switch-
ing. Furthermore, Embedding-Converter ad-
dresses latency limitations by enabling the
use of smaller models for online tasks while
still benefiting from the performance of larger
models offline. By promoting the release
of converters alongside new embedding mod-
els, Embedding-Converter fosters a more dy-
namic and accessible ecosystem for embed-
ding model development and deployment.

1 Introduction

Embeddings, numerical vector representations of
complex data like text and images, are fundamental
to modern machine learning. These representations
empower a wide range of applications, including
search, clustering to anomaly detection, classifica-
tion, and information retrieval (Wang et al., 2016;
Huang et al., 2020; Zhai et al., 2019). However,
the rapidly evolving landscape of embedding mod-
els, each with unique strengths and weaknesses
(Wang et al., 2022; Li et al., 2023; Lee et al., 2024a),

presents a significant challenge. Choosing the best
model for a given task often requires computation-
ally intensive and time-consuming evaluation, espe-
cially with massive datasets. For instance, selecting
the best model for a billion text passages necessi-
tates generating embeddings for all passages with
each candidate, a computationally-daunting task
(see Appendix A for details). This challenge is
exacerbated by the continuous introduction of new,
potentially superior models, creating the need for
repeated re-embedding without even guaranteed
improvements with the new models. Moreover, the
incompatibility between different embedding mod-
els, even within the same family (e.g., Google’s
Gecko (Lee et al., 2024b) or OpenAl’s embeddings
(Neelakantan et al., 2022)), requires complete re-
embedding when exploring new models or upgrad-
ing existing ones. This laborious process signifi-
cantly impedes efficient experimentation and the
adoption of state-of-the-art embedding techniques
in real-world applications.

This paper introduces Embedding-Converter, a
canonical framework designed to overcome the
above challenges by enabling seamless transitions
between embedding models. Acting as a univer-
sal translator for embedding spaces, Embedding-
Converter empowers embedding users to effort-
lessly explore new models, upgrade to newer ver-
sions, and even switch between entirely different
model families without the computational burden
of re-embedding data (see Fig. 1).

Building such a converter presents significant
challenges, including learning an efficient mapping
between potentially disparate high-dimensional
spaces using unlabeled text data (see Fig. 2(b)).
The model must balance sufficient capacity for ef-
fective transfer with the avoidance of overfitting,
and training requires carefully chosen loss func-
tions to ensure accurate conversion. This paper
details the novel methodological approaches used
to develop Embedding-Converter and demonstrates

25464

Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 25464-25482

July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

Document
embedding A

Documents

5

Embedding
model A @

Embedding
model B .

Downstream
task evaluation
(e.g., retrieval)

Document
embedding B

(a) Conventional evaluation framework

Document

Documents embedding A

=

Downstream
task evaluation
(e.g., retrieval)

Embedding

model A @

Embedding-
Converter
(Ato B)

Converted document
embedding B

(b) Proposed evaluation framework (Embedding-Converter)

Figure 1: Consider evaluating two embedding models, A and B, which could be different versions of the same
model family or entirely distinct models. (a) The conventional approach requires re-embedding the entire corpus
to evaluate model B, incurring substantial computational cost. (b) Embedding-Converter efficiently transforms
existing embeddings from model A to model B, drastically reducing this overhead.

its efficacy through extensive experiments across
diverse scenarios. Our evaluation includes intra-
model (between versions of the same model), inter-
model, and cross-dimensional conversions. Fur-
thermore, we assess Embedding-Converter’s per-
formance on various downstream embedding tasks
such as retrieval and semantic textual similarity.
The key contributions are summarized below:

We introduce Embedding-Converter, a unified
framework for cost-effective conversion between
embedding models.

It drastically reduces the computational overhead
of migrating between models, enabling faster
exploration and adoption of new techniques (over
100x reductions in computation cost and time).

* Our experiments consistently show Embedding-
Converter’s converted embeddings closely ap-
proximate the target and surpass source model
performance on various downstream tasks, main-
taining near-target model accuracy.

2 Related Work
2.1 Embedding models

Embedding models are essential for numerous ap-
plications, including information retrieval, search,
recommendations, clustering and data visualization.
The field is rapidly advancing, with continually-
improved models from OpenAl (Neelakantan et al.,
2022), Google (Lee et al., 2024b) and many other
companies. This is reflected in the competitive
MTEB leaderboard (Muennighoff et al., 2022),
where models like NV-Embed (Lee et al., 2024a),
SFR-Embedding (Rui Meng, 2024), and GTE-
Qwen (Li et al., 2023) frequently update to achieve

top rankings. Academia also contributes actively,
with models like General Text Embedding (GTE)
(Li et al., 2023) and Generalizable T5-based dense
Retrievers (GTR) (Ni et al., 2021), alongside multi-
modal embeddings like CLIP (Radford et al., 2021)
and CoCA (Yu et al., 2022). This rapid progress
and model diversity, however, create incompati-
bility issues, even between versions of the same
model. As the MTEB leaderboard demonstrates,
selecting the best model for a given task or dataset
often requires evaluating multiple models, a compu-
tationally expensive and time-consuming process,
especially with large datasets, due to the need for
repeated re-embedding. This paper addresses this
challenge by introducing Embedding-Converter, a
canonical framework for seamless transitions be-
tween embedding models without requiring com-
plete recomputation. Embedding-Converter is de-
signed to empower practitioners to easily evaluate
and migrate between models, promoting greater
flexibility and efficiency in developing and deploy-
ing embedding-based applications.

2.2 Vector space transformation

Converting embeddings between models can be
viewed as a vector space transformation prob-
lem, aiming to map vectors from one space to
another. While linear algebra offers various so-
lutions, including linear transformations (Marcus,
1971), change of basis (Shores et al., 2007), and
kernel methods (Treves, 2013), these often assume
undefined target spaces, unlike the pre-trained em-
bedding models we consider.

Cross-lingual embedding mapping, as explored
by Artetxe et al. (2017) and Conneau et al. (2017),
focuses on aligning word embedding spaces across
languages. While related, these methods primar-

25465

ily address word-level embeddings, limiting their
direct applicability to sentence or passage embed-
dings, that can capture richer semantic context.
Domain adaptation research, including works like
Wang et al. (2021), Schopf et al. (2023), and Yoon
et al. (2024), adapts embeddings between domains.
However, these approaches are often tailored to spe-
cific scenarios. In contrast, Embedding-Converter
offers a more versatile, general-purpose solution
for converting sentence embeddings between any
model, irrespective of domain or task, setting it
apart from previous work.

Although, the relevant computer vision research
explores model compatibility, the proposed meth-
ods differ significantly. Backward Compatible
Training (BCT) (Shen et al., 2020; Hu et al.,
2022) and Forward Compatible Training (FCT)
(Ramanujan et al., 2022) require modifying the
training process of new models or rely on unavail-
able "side information", respectively, which are
infeasible with fixed, pre-trained models. While
Jaeckle et al. (2023) addresses some limitations,
it mainly focuses on online backfilling with dif-
ferent data requirements and objectives. Further-
more, these methods primarily target images, while
Embedding-Converter demonstrates broader appli-
cability across various data modalities.

3 Methods: Embedding-Converter

This section details Embedding-Converter, our
framework for efficiently converting embeddings
between models. While demonstrated here for text
embeddings, the framework is versatile and appli-
cable to various data types, including images and
multimodal data. Critically, Embedding-Converter
operates with any embedding model, even those
accessible only through prediction APIs with undis-
closed internal workings. This broadens its appli-
cability significantly, as many embedding models
are exclusively available via prediction-only API
access.

3.1 Problem formulation

Our goal is to learn a transformation between two
high-dimensional embedding spaces. Specifically,
we aim to convert text embeddings generated by
a source model, f, to be consistent with a target
model, g. Given a text passage t € T (where T
is the set of all text passages), we seek a converter
function A such that h(f(t)) ~ g¢(t). This func-
tion maps embeddings from the source space R%

to the target space R%, where d 7 and d, are the
respective embedding dimensions.

Using a corpus of unlabeled text data, D =
{t1,t2,...,tn}, we learn the optimal converter h.
Crucially, this method doesn’t require labeled data
depicting inter-passage relationships. Any text
corpus (e.g., MSMarco (Bajaj et al., 2016) or
Wikipedia) can be used. The objective is to find the
h that maximizes the similarity (e.g., cosine similar-
ity) between the converted and target embeddings
for any text ¢.

The proposed converter h is a unified model
designed to handle any text ¢ € T, regardless of
dimensionality differences between the source and
target spaces. However, a distinct converter h is
learned for each source-target model pair. This
approach enables flexible use of various embedding
models by facilitating seamless transitions between
their respective spaces.

3.2 Loss functions

A simple approach to maximize similarity between
converted and target embeddings is to use a regres-
sion loss, minimizing the distance between embed-
ding vectors:

N
Lreg =D |Ih(f®) —g®)lli. (D
t=1

While we use mean absolute error here, other re-
gression losses (e.g., mean squared error) could
also be used. However, as our ablation study (Ta-
ble 6) shows, regression loss alone is insufficient.
Therefore, we introduce two additional loss func-
tions to preserve both global and local relationships
within the embedding spaces, improving conver-
sion fidelity.

The first, a global similarity loss (similar to Park
et al. (2019)), maintains overall embedding dis-
tances:

£gl0bal = Z |DiSt(h(f(tl)? h(f(tQ)))_

t1,to€D
Dist(g(t1), 9(t2))]- @)

This loss measures the difference in distances be-
tween randomly sampled text pairs in the converted
and target spaces, encouraging global structure
preservation. We use 1-cosine similarity as our
distance metric. The second loss component, a
local similarity loss, focuses on preserving neigh-

25466

scifact
arguana f s
nfcorpus ¢
scidocs

figa ":'.-:.’
treccovid :t'&'&‘ W
touche

quora
msmarco

scifact-gecko004 Fei.

. o
SC|fact—convertgr'h:§:_;'
T

80 LT -'.:-s [

e A
QR ey A M
2q " .“=I- ‘-‘-l' . 'I:I el %
e scifact-gecko004 - }-:‘-‘_'b.f'f-:;:l"-r."-:q:éé‘_ e
x scifact-gecko003 60 ,“.'.c‘.".‘,.‘i:ﬁ.'ﬂ “ '-"" 8 ued
. el tepee syt b o o
(3 ° Y I"-‘-\':- 'ln.:' o3 "o "
=° .o, ° o 50 .' .‘."-'-' £ '.:1‘.‘-."- '."
Baryloy *o S L T
s
[..Oo. i --’:.-:\.- :"- -: ¢
:" -

EN 50 0 EN o —60

(a) Embeddings of 9 BEIR datasets

Figure 2:

-20

(b) Embeddings across 2 models

(c) Embeddings with converter

t-SNE visualization of embedding spaces across different corpora and models. (a) Embeddings of

9 diverse corpora from the BEIR datasets, highlighting the variability in embedding distributions across different
datasets. (b) Comparison of gecko003 and gecko004 embeddings for the SciFact dataset, showcasing how different
the embedding spaces between different model versions can be for the same dataset. (c) Embeddings of the
gecko004 model and embeddings converted from gecko0O03 using the Embedding-Converter. The high degree of
overlap indicates the successful alignment of embedding spaces achieved by the Embedding-Converter.

borhood relationships:

Elocal = Z Z

t1€D to€ NNy (t1)
Dist(g(t1), g(t2))|-

For each text ¢1, this loss considers its k nearest
neighbors ((N Ng(t1)), based on target embedding
similarities) and penalizes differences in relative
distances between these neighbors in the converted
and target spaces, thus preserving local neighbor-
hoods (% is set to 100 in our experiments). The
effect of these additional loss functions is evalu-
ated empirically (Table 6). Ultimately, Embedding-
Converter is jointly optimized using a weighted
combination of all three losses:

IDist(h(f(t1), h(f(t2)))—

3)

h* = arg mhin Lyreg + aLgiobal + BLiocal, (4)

where «, f > 0 are hyperparameters controlling
the relative importance of each component, tuned
using a validation set. All three losses are trained
in batches for computational efficiency.

3.3 Implementation details

Embedding-Converter can be implemented
with any architecture capable of mapping dy-
dimensional vectors to d,-dimensional vectors.
We primarily use a 4-layer perceptron with SELU
activations (Klambauer et al., 2017). In Section 5,
we show that a Transformer architecture (Vaswani,
2017) yields slightly lower performance. Model
selection and hyperparameter optimization are

driven by retrieval performance on a held-out vali-
dation set, aligning with the practical application
of converted embeddings in retrieval tasks. Further
hyperparameter and training details can be found
in Appendix B.

4 Experiments

This section evaluates Embedding-Converter’s per-
formance across various scenarios. We begin by
demonstrating its effectiveness in converting be-
tween different versions of the same model. We
then assess its ability to bridge the gap between
distinct model embedding spaces. While our pri-
mary focus is retrieval tasks, we also present results
on other embedding-dependent tasks, such as text
classification and semantic text similarity (STS)
(Yang et al., 2018), to illustrate broader applicabil-
ity. A detailed comparison of the computational
time and cost of traditional re-embedding versus
Embedding-Converter is provided in Appendix A.

4.1 Experimental settings

Embedding-Converter model is trained on a diverse
set of text passages and queries from 14 datasets in
the BEIR benchmark (Thakur et al., 2021). We use
half the corpus for datasets with under 1 million
passages, and 500,000 randomly sampled passages
(e.g., 10% of Fever, Climate-fever, and HotPotQA)
for larger datasets. To ensure sufficient query rep-
resentation, the entire MSMarco query set (500K
queries) is included in the training data. Conse-
quently, MSMarco is excluded from in-domain

25467

gecko003 — gecko004

| openai-3-small — gecko004

Dataset gecko003 | gecko004 | Embedding || openai-3-small | gecko004 | Embedding

(source) (target) -Converter (source) (target) -Converter
Arguana 0.5189 0.6070 0.6103 0.5530 0.6070 0.6049
Climate-fever 0.2540 0.3369 0.2959 0.2792 0.3369 0.2716
DBPedia 0.4128 0.4677 0.4322 0.4154 0.4677 0.4099
Fever 0.7431 0.8106 0.7786 0.7227 0.8106 0.7659
FiQA 0.4582 0.5481 0.5040 0.4048 0.5481 0.4393
HotpotQA 0.6248 0.6892 0.5923 0.6121 0.6892 0.6341
NFCorpus 0.3284 0.3503 0.3435 0.3314 0.3503 0.3479
NQ 0.5166 0.6058 0.5755 0.5254 0.6058 0.5653
Quora 0.8626 0.8621 0.8392 0.8881 0.8621 0.8346
SciDocs 0.1836 0.2041 0.1908 0.2092 0.2041 0.1995
SciFact 0.7221 0.7693 0.7601 0.7292 0.7693 0.7668
Trec-covid 0.7454 0.7840 0.8079 0.8285 0.7840 0.7983
Touche 0.2161 0.2565 0.2397 0.2723 0.2565 0.2706
Average | 05067 | 0.5609 | 0.5362 || 0.5209 | 05609 | 0.5314

Table 1: In-domain retrieval performance (in nDCG@ 10) of the Embedding-Converter on 13 BEIR datasets. Two
conversion scenarios are presented: (i) intra-model conversion between different versions of Google’s Gecko
model (gecko003 to gecko004), and (ii) inter-model conversion from OpenAl’s text-embedding-3-small model
to Google’s gecko004. Bold represents better performance than the source or target models.

evaluation to avoid bias.

We evaluate Embedding-Converter in two set-
tings: in-domain and out-of-domain. In-domain
performance is considered on the remaining 13
BEIR datasets using normalized Discounted Cu-
mulative Gain at rank 10 (nDCG@10) (Jarvelin
and Kekildinen, 2002). Out-of-domain gener-
alization is considered on 12 held-out datasets
from the CQADupStack benchmark (Hoogeveen
et al., 2015), again using nDCG@10. Beyond re-
trieval, we evaluate Embedding-Converter on other
embedding-dependent tasks, including text classi-
fication and STS, to demonstrate its broader appli-
cability and assess the generalizability and trans-
ferability of the converted embeddings. Dataset
details are in Appendix C.

4.2 Conversion between different model
versions

To evaluate Embedding-Converter’s ability to
adapt to model updates, we use two versions of
Google’s Gecko text embedding model: gecko003
and gecko004'. We generate embeddings for
our training data using both models and trained
Embedding-Converter to map embeddings from
gecko003 to gecko004 spaces. For evaluation,
we converted the corpus embeddings of the 13
BEIR datasets and compared retrieval performance
(nDCG@10) across three embedding sets: (1) orig-

"https://cloud.google.com/vertex-ai/
generative-ai/docs/embeddings/
get-text-embeddings

inal gecko003 embeddings, (2) original gecko004
embeddings, and (3) gecko003 embeddings con-
verted to gecko004 space. Queries are consistently
encoded using the target model (gecko004) to iso-
late the impact of corpus embedding conversion
on retrieval effectiveness. For source/target model
evaluation, we use the source/target model for both
query and corpus embedding, respectively.

Table 1 shows Embedding-Converter’s effective-
ness. Converting from gecko003 to gecko004 sig-
nificantly improves performance compared to using
the original gecko003 embeddings. The converted
embeddings’ average performance falls between
the source and target models for most datasets,
and even approaches target model performance for
some (e.g., Arguana, NFCorpus, and SciFact). This
demonstrates Embedding-Converter’s ability to ef-
ficiently transfer an entire corpus to a new embed-
ding space with minimal performance loss. This
makes it feasible to leverage newer models with-
out the cost of re-embedding the entire corpus. As
shown in Appendix A, Embedding-Converter of-
fers significant cost and runtime savings (in the
order of 100x) in real-world scenarios, with sig-
nificant implications for maintaining and updating
large-scale retrieval systems.

4.3 Conversion across different model
families

To further demonstrate Embedding-Converter’s ver-
satility, we evaluate conversions between different
embedding models. Specifically, we convert em-

25468

https://cloud.google.com/vertex-ai/generative-ai/docs/embeddings/get-text-embeddings
https://cloud.google.com/vertex-ai/generative-ai/docs/embeddings/get-text-embeddings
https://cloud.google.com/vertex-ai/generative-ai/docs/embeddings/get-text-embeddings

gecko003 — gecko004

I openai-3-small — gecko004

Dataset gecko003 | gecko004 | Embedding || openai-3-small | gecko004 | Embedding

(source) (target) -Converter (source) (target) -Converter
Android 0.5258 0.5780 0.5687 0.5414 0.5780 0.5576
English 0.5019 0.5411 0.5163 0.5006 0.5411 0.5017
Gaming 0.6288 0.6720 0.6422 0.6125 0.6720 0.6287
Gis 0.3982 0.4503 0.4223 0.4055 0.4503 0.4178
Mathematica 0.2908 0.3621 0.3329 0.3053 0.3621 0.3265
Physics 0.4738 0.5291 0.4981 0.4615 0.5291 0.4832
Programmers 0.4455 0.5027 0.4766 0.4342 0.5027 0.4627
Stats 0.3531 0.4036 0.3715 0.3581 0.4036 0.3644
Tex 0.2958 0.3517 0.3201 0.2925 0.3517 0.3018
Unix 0.4362 0.4980 0.4622 0.4349 0.4980 0.4498
Webmasters 0.4297 0.4954 0.4698 0.4105 0.4954 0.4466
Wordpress 0.3453 0.3923 0.3701 0.3434 0.3923 0.3493
Average | 04271 | 04814 | 04542 | 0.4250 | 04814 | 0.4408

Table 2: Out-of-domain retrieval performance (nDCG@10) of the Embedding-Converter on 12 CQADupStack

datasets.

Two conversion scenarios are presented: (i) intra-model conversion between different versions of

Google’s Gecko model (gecko003 to gecko004), and (ii) inter-model conversion from OpenAl’s text-embedding-
3-small model to Google’s gecko004. Bold represents better performance than the source or target models.

beddings from OpenAl’s text-embedding-3-small
(openai-3-small)? to Google’s gecko004. This is
notable because these models have different em-
bedding dimensions: 1536 for openai-3-small and
768 for gecko004. Using the same setup as before,
a single Embedding-Converter was train to convert
all corpora across the 13 BEIR datasets.

Table 1 shows that even with inter-model con-
version and dimensionality reduction, Embedding-
Converter significantly mitigates retrieval perfor-
mance degradation. This has important practi-
cal implications, enabling efficient evaluation of
new models on existing corpora without costly
re-embedding. Specifically, Table 1(right) shows
that the target model outperforms the source on
9 datasets, while the source is better on 4. Tradi-
tionally, determining the better model would re-
quire computing embeddings with both. How-
ever, Embedding-Converter offers a compelling
alternative. By comparing performance with the
source model, we can effectively approximate
source/target comparisons without generating tar-
get embeddings. Our results confirm this — the
relative performance of source and target models
is accurately predicted by Embedding-Converter
on 11 of the 13 datasets. This capability further
highlights Embedding-Converter’s value proposi-
tion. By facilitating seamless transitions between
embedding spaces, it promotes flexibility, reduces
computational overhead in developing and deploy-

2https://platform.openai.com/docs/guides/
embeddings

ing embedding-based systems, and offers a valu-
able tool for preliminary model comparison.

4.4 Generalization to out-of-domain data

While the strong in-domain performance across
13 diverse datasets with a single Embedding-
Converter is encouraging, evaluating out-of-
domain generalization is crucial for practical use.
Out-of-domain performance, particularly on un-
seen tasks with substantially different data distri-
butions, is essential for assessing true generaliz-
ability. Correspondingly, we evaluate Embedding-
Converter on 12 held-out CQADupStack datasets.

Table 2 shows the out-of-domain results. Even
under these challenging conditions, Embedding-
Converter consistently outperforms the source
model, both for intra-model (gecko003 to
gecko004) and inter-model (openai-3-small to
gecko004) conversions. While the performance gap
compared to the target model is larger than in the
in-domain setting, Embedding-Converter still pro-
vides a valuable estimate of potential performance
gains before re-embedding the entire corpus with
the new model—a computationally expensive pro-
cess. It offers a preliminary performance guarantee
for migrating to a new model, enabling informed
decisions about resource allocation. Notably, the
relative performance of the source and target mod-
els is perfectly predicted by Embedding-Converter
in this out-of-domain setting.

25469

https://platform.openai.com/docs/guides/embeddings
https://platform.openai.com/docs/guides/embeddings

gecko003 — gecko004 |

openai-3-small — gecko004

Task Dataset gecko003 | gecko004 | Embedding || openai-3-small | gecko004 | Embedding
(source) (target) -Converter (source) (target) -Converter
Toxic 0.9341 0.9446 0.9392 0.9380 0.9446 0.9410
Classification Tweet 0.7261 0.7535 0.7425 0.7476 0.7535 0.7434
\ Average \ 0.8301 \ 0.8491 \ 0.8409 H 0.8428 \ 0.8491 \ 0.8422
STS-13 0.7712 0.8047 0.7982 0.8425 0.8047 0.8317
STS STS-14 0.7119 0.7403 0.7359 0.8001 0.7403 0.7586
STS-22 0.7019 0.7246 0.7080 0.6716 0.7246 0.6863
| Average | 0.7283 | 0.7565 | 0.7474 || 0.7714 | 07565 | 0.7589

Table 3: Classification and STS performances of Embedding-Converter in two different settings: (i) within same
model lineup but different versions (gecko003 — gecko004), (ii) across different model lineup (openai-3-small —
gecko004) on 5 datasets. Bold represents better performance than the source or target models.

4.5 Evaluate on other tasks beyond retrieval

While our primary focus has been retrieval, text
embeddings are used in many applications. The
MTEB benchmark (Muennighoff et al., 2022),
with tasks like classification, clustering, rerank-
ing, and STS, highlights this versatility. To assess
Embedding-Converter’s broader applicability, we
evaluate it on text classification (Toxic Conversa-
tion (cjadams, 2019) and Tweet Sentiment Extrac-
tion (Maggie, 2020) datasets) and semantic text
similarity (STS-13 (Agirre et al., 2013), STS-14
(Bandhakavi et al., 2014), and STS-22 (Chen et al.,
2022) datasets).

Table 3 shows the results. For the gecko003 to
gecko004 conversion, the target model (gecko004)
consistently outperforms the source (gecko003),
and Embedding-Converter performs between the
two, demonstrating its ability to transfer relevant
embedding properties. For the openai-3-small to
gecko004 conversion, the target model is better in 3
of 5 cases, while the source is better in the other 2.
Importantly, Embedding-Converter correctly pre-
dicts the relative performance of the source and
target models in 4 of the 5 cases, further demon-
strating its utility for preliminary model compari-
son, even across different families.

Overall, these results suggest that the converted
embeddings capture the target model’s semantic
information, enabling their effective use in di-
verse downstream tasks beyond retrieval. This
generalization capability underscores Embedding-
Converter’s potential to facilitate efficient and flex-
ible embedding model deployment across a wide
range of applications, including unseen scenarios.

4.6 Leveraging for latency reduction

We’ve primarily focused on using Embedding-
Converter to transform corpus embeddings, which
is especially useful for large corpora. However,
it also offers advantages when query latency is
critical. Deploying large embedding models for
online query processing is often impractical due to
high latency. While corpus embeddings can be pre-
computed offline, query embeddings are generated
in real time, creating a bottleneck. Developers may
thus use smaller models for both queries and cor-
pora, even if larger models would improve corpus
representation and thus retrieval performance.

Conversion | Methods | In-domain | Out-domain
Source model 0.5067 0.4271
gecko003 Target model 0.5609 0.4814
— gecko004 | Corpus converter 0.5362 0.4542
Query converter 0.5263 0.4348
Source model 0.5209 0.4250
openai-3-small Target model 0.5609 0.4814
— gecko004 | Corpus converter 0.5314 0.4408
Query converter 0.5171 0.4342

Table 4: Embedding-Converter on query converting
scenarios with two different settings: (i) within same
model lineup but different versions (gecko003 —
gecko004), (ii) across different model lineup (openai-
3-small — gecko004). Bold represents better perfor-
mance than the source or target models.

Embedding-Converter offers a solution by de-
coupling corpus and query embedding models. We
can leverage larger models for corpus embeddings
while maintaining low query latency by using a
smaller model for initial query embedding gen-
eration and then converting these embeddings to
the larger corpus model’s space using Embedding-
Converter. Table 4 shows the results of applying
Embedding-Converter to queries instead of the cor-

25470

| gecko003 — gecko004 |

openai-3-small — gecko004

Settings | Methods | Global distance | Local distance || Global distance | Local distance
In-domain Source model 0.1053 0.0246 0.2346 0.1260
Converter 0.0393 0.0163 0.0191 0.0205
Out-domain Source model 0.0805 0.0217 0.1811 0.1291
Converter 0.0325 0.0176 0.0179 0.0195

Table 5: Comparison of global and local distance metrics (i.e., Eq. 2 and 3, lower the better for the Embedding-
Converter on 13 BEIR and 12 CQADupStack datasets. Two conversion scenarios are presented: (i) intra-model
conversion between different versions of Google’s Gecko model (gecko003 to gecko004), and (ii) inter-model con-
version from OpenAl’s text-embedding-3-small model to Google’s gecko004. Bold represents better performance.

pus. Query conversion achieves comparable per-
formance to corpus conversion in most cases (with
the exception of the in-domain conversion from
openai-3-small). This demonstrates the potential
of query conversion to improve retrieval perfor-
mance in latency-constrained environments. By
enabling the use of larger models for corpus embed-
dings without sacrificing query speed, Embedding-
Converter provides a valuable tool for optimizing
the accuracy-efficiency trade-off.

5 Discussions

5.1 Ablation studies

This section examines the impact of different loss
functions and architectural choices on Embedding-
Converter’s performance. The model is trained
with a combination of regression (L,¢4), global
(Lgiobar)> and local (Liocq) loss functions. We
present ablation studies analyzing the effect of re-
moving each loss component. We also explore ar-
chitectural variations, comparing our default multi-
layer perceptron (MLP) to a Transformer architec-
ture. By systematically analyzing these modifica-
tions, we aim to identify the key factors contribut-
ing to Embedding-Converter’s performance and
understand their individual roles.

Table 6 summarizes our ablation study results,
highlighting key factors influencing Embedding-
Converter’s performance:

* Loss functions: Both global and local loss func-
tions are essential. Removing those degrades per-
formance, particularly distance metrics, demon-
strating their complementary roles.

* Architecture variations: The choice between
Transformer and MLP matters, indicating sensi-
tivity to architectural design, even with sufficient
model capacity and proper training.

. | Performances
Variants

Global Local Retrieval

distance | distance v

w/o Lgiobal & Liocal \ 0.0452 \ 0.0237 \ 0.5219

Transformer 0.0233 0.0211 0.5273

Small networks (1/5x) | 0.0203 0.0192 0.5263

Larger networks (5x) 0.0177 0.0164 0.5329

Only with MSMarco \ 0.0351 \ 0.0227 \ 0.5194

No variants \ 0.0177 \ 0.0163 \ 0.5369

Table 6: Ablation studies across different variants
of Embedding-Converter. Global distance, local dis-
tance, and Retrieval performances are evaluated on
out-domain retrieval tasks (with 12 CQADupStack
datasets) - converting from gecko0O03 to gecko004.

* Model size: Smaller models perform slightly
worse due to reduced capacity to capture com-
plex relationships in embedding spaces. Larger
models perform consistently with the original
Embedding-Converter.

* Data diversity: Diverse training data signifi-
cantly improves performance by enhancing gen-
eralization and coverage of the embedding space
(Fig. 2(a)). Relying solely on MSMarco is insuf-
ficient for broad coverage.

5.2 Further analyses of
Embedding-Converter performance

While evaluating Embedding-Converter on down-
stream tasks (Section 4) provides valuable insights,
a complete assessment requires analyzing its ability
to accurately align embedding spaces. We explore
this alignment using quantitative, distance-based
metrics, independent of specific downstream tasks.

We analyze both global and local distances
between corpus embeddings. Global distances
capture the overall structure and organization of
the embedding space, while local distances focus
on preserving relationships within local neighbor-

25471

hoods. Analyzing both provides a comprehensive
understanding of Embedding-Converter’s effective-
ness in accurately mapping embeddings between
models while preserving the inherent structure of
the embedding spaces.

Table 5 shows that Embedding-Converter effec-
tively aligns both global and local distances, pre-
serving meaningful positioning. This validates its
ability to capture and replicate the structural proper-
ties of the target embedding space, further demon-
strating its efficacy in cross-model mapping. Addi-
tional experiments, including reverse conversion,
handling mixed embeddings, bridging open-source
and black-box models, and multilingual embedding
models are presented in Appendix D.

6 Conclusions

This paper addresses the critical challenge of em-
bedding model incompatibility, a significant ob-
stacle for practitioners navigating model updates
and selection, and for the robustness of deployed
systems. We introduce Embedding-Converter, a
unified framework for efficiently translating be-
tween embedding models. Our design addresses
the unique challenges of learning efficient embed-
ding conversion through carefully chosen training
mechanisms, demonstrating that end-to-end perfor-
mance with converted embeddings can be largely
preserved in many scenarios. This empowers prac-
titioners with the flexibility to seamlessly transi-
tion between models, encouraging experimentation
and facilitating the adoption of improved versions.
Furthermore, Embedding-Converter can promote a
paradigm shift in model development by encourag-
ing the release of converters alongside new models,
enabling a more user-centric approach to model
migration. This fosters a more dynamic and user-
friendly ecosystem for embedding models, prior-
itizing innovation and user experience, and ulti-
mately contributing to a more robust and acces-
sible environment for developing and deploying
embedding-based applications.

7 Limitations and future works

While this paper demonstrates Embedding-
Converter’s ability to accurately convert embed-
dings across various models, we have not yet ex-
plored multimodal embeddings, leaving that for
future work. Furthermore, converted embedding
performance does not fully match that of the target
model, meaning re-embedding is still necessary to

achieve the full potential of a new model. However,
Embedding-Converter provides an estimate of po-
tential performance gains, allowing developers to
invest in re-embedding with greater confidence.

References

Eneko Agirre, Daniel Cer, Mona Diab, Aitor Gonzalez-
Agirre, and Weiwei Guo. 2013. *SEM 2013 shared
task: Semantic textual similarity. In Second Joint
Conference on Lexical and Computational Seman-
tics (*SEM), Volume 1: Proceedings of the Main
Conference and the Shared Task: Semantic Textual
Similarity, pages 32-43, Atlanta, Georgia, USA. As-
sociation for Computational Linguistics.

Mikel Artetxe, Gorka Labaka, and Eneko Agirre. 2017.
Learning bilingual word embeddings with (almost)
no bilingual data. In Proceedings of the 55th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 451-462.

Payal Bajaj, Daniel Campos, Nick Craswell, Li Deng,
Jianfeng Gao, Xiaodong Liu, Rangan Majumder,
Andrew McNamara, Bhaskar Mitra, Tri Nguyen,
et al. 2016. Ms marco: A human generated machine

reading comprehension dataset. arXiv preprint
arXiv:1611.09268.

Anil Bandhakavi, Nirmalie Wiratunga, Deepak P, and
Stewart Massie. 2014. Generating a word-emotion
lexicon from #emotional tweets. In Proceedings
of the Third Joint Conference on Lexical and Com-
putational Semantics (*SEM 2014), pages 12-21,
Dublin, Ireland. Association for Computational Lin-
guistics and Dublin City University.

Xi Chen, Ali Zeynali, Chico Camargo, Fabian Flock,
Devin Gaffney, Przemyslaw Grabowicz, Scott Hale,
David Jurgens, and Mattia Samory. 2022. SemEval-
2022 task 8: Multilingual news article similarity. In
Proceedings of the 16th International Workshop on
Semantic Evaluation (SemEval-2022), pages 1094—
1106, Seattle, United States. Association for Com-
putational Linguistics.

inversion Jeffrey Sorensen Lucas Dixon Lucy Vasser-
man nithum cjadams, Daniel Borkan. 2019. Jigsaw
unintended bias in toxicity classification.

Alexis Conneau, Guillaume Lample, Marc’ Aurelio
Ranzato, Ludovic Denoyer, and Hervé Jégou. 2017.
Word translation without parallel data. arXiv
preprint arXiv:1710.04087.

Doris Hoogeveen, Karin M Verspoor, and Timothy
Baldwin. 2015. Cqadupstack: A benchmark data
set for community question-answering research. In
Proceedings of the 20th Australasian document com-
puting symposium, pages 1-8.

Weihua Hu, Rajas Bansal, Kaidi Cao, Nikhil Rao,
Karthik Subbian, and Jure Leskovec. 2022. Learn-
ing backward compatible embeddings. In Pro-
ceedings of the 28th ACM SIGKDD Conference

25472

https://aclanthology.org/S13-1004
https://aclanthology.org/S13-1004
https://doi.org/10.3115/v1/S14-1002
https://doi.org/10.3115/v1/S14-1002
https://doi.org/10.18653/v1/2022.semeval-1.155
https://doi.org/10.18653/v1/2022.semeval-1.155
https://kaggle.com/competitions/jigsaw-unintended-bias-in-toxicity-classification
https://kaggle.com/competitions/jigsaw-unintended-bias-in-toxicity-classification

on Knowledge Discovery and Data Mining, pages
3018-3028.

Jui-Ting Huang, Ashish Sharma, Shuying Sun, Li Xia,
David Zhang, Philip Pronin, Janani Padmanab-
han, Giuseppe Ottaviano, and Linjun Yang. 2020.
Embedding-based retrieval in facebook search. In
Proceedings of the 26th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery & Data
Mining, pages 2553-2561.

Florian Jaeckle, Fartash Faghri, Ali Farhadi, Oncel
Tuzel, and Hadi Pouransari. 2023. Fastfill: Ef-
ficient compatible model update. arXiv preprint
arXiv:2303.04766.

Kalervo Jérvelin and Jaana Kekéldinen. 2002. Cu-
mulated gain-based evaluation of ir techniques.
ACM Transactions on Information Systems (TOIS),
20(4):422-446.

Giinter Klambauer, Thomas Unterthiner, Andreas
Mayr, and Sepp Hochreiter. 2017. Self-normalizing
neural networks. Advances in neural information
processing systems, 30.

Aditya Kusupati, Gantavya Bhatt, Aniket Rege,
Matthew Wallingford, Aditya Sinha, Vivek Ramanu-
jan, William Howard-Snyder, Kaifeng Chen, Sham
Kakade, Prateek Jain, et al. 2022. Matryoshka repre-
sentation learning. Advances in Neural Information
Processing Systems, 35:30233-30249.

Chankyu Lee, Rajarshi Roy, Mengyao Xu, Jonathan
Raiman, Mohammad Shoeybi, Bryan Catanzaro,
and Wei Ping. 2024a. Nv-embed: Improved tech-
niques for training llms as generalist embedding
models. arXiv preprint arXiv:2405.17428.

Jinhyuk Lee, Feiyang Chen, Sahil Dua, Daniel
Cer, Madhuri Shanbhogue, Iftekhar Naim, Gus-
tavo Hernandez Abrego, Zhe Li, Kaifeng Chen, Hen-
rique Schechter Vera, et al. 2025. Gemini em-
bedding: Generalizable embeddings from gemini.
arXiv preprint arXiv:2503.07891.

Jinhyuk Lee, Zhuyun Dai, Xiaoqi Ren, Blair
Chen, Daniel Cer, Jeremy R Cole, Kai Hui,
Michael Boratko, Rajvi Kapadia, Wen Ding, et al.
2024b. Gecko: Versatile text embeddings dis-
tilled from large language models. arXiv preprint
arXiv:2403.20327.

Zehan Li, Xin Zhang, Yanzhao Zhang, Dingkun Long,
Pengjun Xie, and Meishan Zhang. 2023. To-
wards general text embeddings with multi-stage con-
trastive learning. arXiv preprint arXiv:2308.03281.

Wei Chen Maggie, Phil Culliton. 2020. Tweet senti-
ment extraction.

Marvin Marcus. 1971. Linear transformations on ma-
trices. J. Res. Nat. Bur. Standards Sect. B, 75:107—
113.

Niklas Muennighoff, Nouamane Tazi, Loic Magne, and
Nils Reimers. 2022. Mteb: Massive text embedding
benchmark. arXiv preprint arXiv:2210.07316.

Arvind Neelakantan, Tao Xu, Raul Puri, Alec Radford,
Jesse Michael Han, Jerry Tworek, Qiming Yuan,
Nikolas Tezak, Jong Wook Kim, Chris Hallacy, et al.
2022. Text and code embeddings by contrastive pre-
training. arXiv preprint arXiv:2201.10005.

Jianmo Ni, Chen Qu, Jing Lu, Zhuyun Dai, Gus-
tavo Hernandez Abrego, Ji Ma, Vincent Y Zhao,
Yi Luan, Keith B Hall, Ming-Wei Chang, et al.
2021. Large dual encoders are generalizable retriev-
ers. arXiv preprint arXiv:2112.07899.

Wonpyo Park, Dongju Kim, Yan Lu, and Minsu Cho.
2019. Relational knowledge distillation. In Pro-
ceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pages 3967-3976.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish
Sastry, Amanda Askell, Pamela Mishkin, Jack Clark,
et al. 2021. Learning transferable visual models
from natural language supervision. In International
conference on machine learning, pages 8§748-8763.
PMLR.

Vivek Ramanujan, Pavan Kumar Anasosalu Vasu, Ali
Farhadi, Oncel Tuzel, and Hadi Pouransari. 2022.
Forward compatible training for large-scale em-
bedding retrieval systems. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 19386—19395.

Shafiq Rayhan Joty Caiming Xiong Yingbo Zhou
Semih Yavuz Rui Meng, Ye Liu. 2024. Sfr-
embedding-mistral:enhance text retrieval with trans-
fer learning. Salesforce Al Research Blog.

Tim Schopf, Dennis N Schneider, and Florian
Matthes. 2023. Efficient domain adaptation of sen-
tence embeddings using adapters. arXiv preprint
arXiv:2307.03104.

Yantao Shen, Yuanjun Xiong, Wei Xia, and Stefano
Soatto. 2020. Towards backward-compatible repre-
sentation learning. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recog-
nition, pages 6368—6377.

Thomas S Shores et al. 2007. Applied linear algebra
and matrix analysis, volume 2541. Springer.

Nandan Thakur, Nils Reimers, Andreas Riicklé, Ab-
hishek Srivastava, and Iryna Gurevych. 2021. Beir:
A heterogenous benchmark for zero-shot evaluation
of information retrieval models. arXiv preprint
arXiv:2104.08663.

Francois Treves. 2013. Topological vector spaces, dis-
tributions and kernels. Courier Corporation.

A Vaswani. 2017. Attention is all you need. Advances
in Neural Information Processing Systems.

25473

https://kaggle.com/competitions/tweet-sentiment-extraction
https://kaggle.com/competitions/tweet-sentiment-extraction
https://blog.salesforceairesearch.com/sfr-embedded-mistral/
https://blog.salesforceairesearch.com/sfr-embedded-mistral/
https://blog.salesforceairesearch.com/sfr-embedded-mistral/

Kexin Wang, Nandan Thakur, Nils Reimers, and Iryna
Gurevych. 2021. Gpl: Generative pseudo label-
ing for unsupervised domain adaptation of dense re-
trieval.

Liang Wang, Nan Yang, Xiaolong Huang, Binxing
Jiao, Linjun Yang, Daxin Jiang, Rangan Majumder,
and Furu Wei. 2022. Text embeddings by weakly-
supervised contrastive pre-training. arXiv preprint
arXiv:2212.03533.

Suhang Wang, Jiliang Tang, Charu Aggarwal, and
Huan Liu. 2016. Linked document embedding for
classification. In Proceedings of the 25th ACM in-
ternational on conference on information and knowl-
edge management, pages 115—-124.

Yinfei Yang, Steve Yuan, Daniel Cer, Sheng-yi Kong,
Noah Constant, Petr Pilar, Heming Ge, Yun-Hsuan
Sung, Brian Strope, and Ray Kurzweil. 2018. Learn-
ing semantic textual similarity from conversations.
arXiv preprint arXiv:1804.07754.

Jinsung Yoon, Yanfei Chen, Sercan Arik, and Tomas
Pfister. 2024. Search-adaptor: Embedding cus-
tomization for information retrieval. In Proceedings
of the 62nd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 12230-12247.

Jiahui Yu, Zirui Wang, Vijay Vasudevan, Legg Ye-
ung, Mojtaba Seyedhosseini, and Yonghui Wu. 2022.
Coca: Contrastive captioners are image-text founda-
tion models. arXiv preprint arXiv:2205.01917.

Andrew Zhai, Hao-Yu Wu, Eric Tzeng, Dong Huk Park,
and Charles Rosenberg. 2019. Learning a unified
embedding for visual search at pinterest. In Pro-
ceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery & Data Min-
ing, pages 2412-2420.

Xinyu Zhang, Nandan Thakur, Odunayo Ogundepo,
Ehsan Kamalloo, David Alfonso-Hermelo, Xi-
aoguang Li, Qun Liu, Mehdi Rezagholizadeh, and
Jimmy Lin. 2023. Miracl: A multilingual retrieval
dataset covering 18 diverse languages. Transactions
of the Association for Computational Linguistics,
11:1114-1131.

25474

https://arxiv.org/abs/2112.07577
https://arxiv.org/abs/2112.07577
https://arxiv.org/abs/2112.07577

A Computational complexity

We analyze the computational cost and processing time of Embedding-Converter across various scenarios
to quantify its benefits. Assuming a document length of 256 tokens (on average), we used three embedding
models with different pricing and request-per-minute (RPM) limits. This analysis provides a concrete
comparison of Embedding-Converter’s efficiency gains against traditional corpus re-embedding.

* Openai-3-large: Price: $0.065 / 1M tokens *> & RPM: IM tokens * (with free tier)
¢ Openai-3-small: Price: $0.010/ 1M tokens & RPM: 1M tokens (with free tier)
* Google’s Gecko004: Price: $0.00002 / 1K characters > & RPM: 7500 inputs ¢

| | Computational cost | Computational time
Embedding model |, Corpus size . Embedding _ Embedding
Baseline Baseline

-Converter -Converter
Openai-3-laree 1B $16640 $185 4266 hours 37 hours
P & 50M $832 $10 213 hours | 1.9 hours
Openai-3-small 1B $2560 $115 4266 hours 23 hours
P 50M $128 $6 213 hours | 1.2 hours
1B $20480 $75 2222 hours 15 hours
gecko004 50M $1024 $4 111 hours | 0.8 hours

Table 7: Computational cost and time comparisons with Embedding-Converter for different corpus sizes. The
baseline represents re-embedding the entire corpus using the respective embedding models.

While OpenAlT’s higher-tier API offers increased RPM, potentially reducing computation time, it’s still
significantly slower than Embedding-Converter. Moreover, OpenAl’s cost per API call remains constant
across tiers, offering no cost advantage for higher RPM usage. Embedding-Converter, even without
low-level optimizations, achieves remarkable efficiency with modest compute requirements. It can process
a 50 million document corpus in under two hours (including data loading), and inference alone with a
pre-trained converter takes only 20 minutes with openai-3-small. This is over 100x faster than traditional
re-embedding.

Using 2 V100 GPUs, Embedding-Converter costs $4.96 per hour on Google Cloud’. This translates
to a cost reduction exceeding 100x compared to directly generating target model embeddings. These
results highlight Embedding-Converter’s substantial efficiency gains, providing a compelling solution for
migrating to new embedding models with significant cost and time savings, particularly for large corpora.

B Hyper-parameters & training details

We implement Embedding-Converter using a 4-layer multi-layer perceptron (MLP) with hidden layer
dimensions of (5x output dimension, 5x output dimension, 5x output dimension, output dimension). For
the gecko003 to gecko004 conversion, this resulted in a 35 million parameter model. SELU activations
and L2 normalization on the output are used. The Adam optimizer with a learning rate of 0.001 is used for
training, which proceeded for 50,000 iterations. To mitigate dataset bias and improve coverage, batches of
64 are sampled uniformly from each of the 14 BEIR datasets, ensuring equal representation. Validation
performance (using the Scifact dataset, comprising 1109 queries, 1258 labels, and 5183 corpus passages)
is evaluated every 250 iterations, and the best performing model is selected. The global and local loss
weight hyperparameters « and [are tuned within the range of [0.01, 1.0], with o = 8 = 0.1 generally
providing good results. The neighborhood size (k) for the local distance loss is set to 100 across all
experiments.

3https://openai.com/api/pricing/

*https://platform.openai.com/docs/guides/rate-limits/usage-tiers?context=tier-free

5https://cloud.google.com/ver’tex—ai/generative—ai/pricing

6https ://cloud.google.com/vertex-ai/generative-ai/docs/quotas#text-embedding-1limits
"https://cloud.google.com/compute/gpus-pricing

25475

https://openai.com/api/pricing/
https://platform.openai.com/docs/guides/rate-limits/usage-tiers?context=tier-free
https://cloud.google.com/vertex-ai/generative-ai/pricing
https://cloud.google.com/vertex-ai/generative-ai/docs/quotas##text-embedding-limits
https://cloud.google.com/compute/gpus-pricing

C Data statistics
C.1 BEIR datasets

Number of | Number of | Number of
Datasets . .
queries test pairs corpus
Arguana 1406 1406 8674
Climate-fever 1535 4681 5416593
DBPedia 467 49188 4635922
Fever 123142 148022 5416568
FiQA 6648 15872 57638
HotPotQA 97852 184810 5233329
NFCorpus 3237 122909 3633
NQ 3452 4201 2681468
Quora 15000 23301 522931
SciDocs 1000 29928 25657
SciFact 1109 1258 5183
Trec-Covid 50 66336 171332
Touche 49 2214 382545

Table 8: The statistics of 13 BEIR datasets (sorted by the alphabetical order).

C.2 CQADupStack datasets

Number of | Number of | Number of

Datasets . .
queries test pairs corpus
Android 699 1696 22998
English 1570 3765 40221
Gaming 1595 2263 45301
Gis 885 1114 37637
Mathematica 804 1358 16705
Physics 1039 1933 38316
Programmers 876 1675 32176
Stats 652 913 42269
Tex 2906 5154 68184
Unix 1072 1693 47382
Webmasters 506 1395 17405
Wordpress 541 744 48605

Table 9: The statistics of 12 CQADupStack datasets (sorted by alphabetical order). We only use test samples for

the evaluation.

C.3 STS and classification datasets

Number of Number of | Number of
Tasks Datasets .
train samples | test samples classes
Classification Toxic 50000 50000 2
Tweet 27481 3534 3
STS-13 - 1500 -
STS STS-14 - 3750 -
STS-22 - 197 -

Table 10: The statistics of 2 classification and 3 STS datasets. We only use test samples for the evaluation.

25476

D Additional experiments

D.1 Converting from new to old embedding models

To further demonstrate Embedding-Converter’s versatility, we conduct experiments converting from
a newer to an older model. This "downgrading" scenario might occur due to resource constraints or
compatibility needs. Specifically, we reverse the conversion direction from gecko004 (source) to gecko003
(target), contrasting with the conversions shown in Table 1 (left) and Table 2 (left).

| gecko004 — gecko003 | gecko004 — openai-3-small

Dataset gecko004 | gecko003 | Embedding || geckoO04 | openai-3-small | Embedding

(source) (target) -Converter (source) (target) -Converter
Arguana 0.6070 0.5189 0.5148 0.6070 0.5530 0.5713
Climate-fever 0.3369 0.2540 0.2905 0.3369 0.2792 0.2931
DBPedia 0.4677 0.4128 0.3979 0.4677 0.4154 0.3898
Fever 0.8106 0.7431 0.7327 0.8106 0.7227 0.6972
FiQA 0.5481 0.4582 0.4824 0.5481 0.4048 0.4507
HotpotQA 0.6892 0.6248 0.5794 0.6892 0.6121 0.5519
NFCorpus 0.3503 0.3284 0.3347 0.3503 0.3314 0.3318
NQ 0.6058 0.5166 0.5147 0.6058 0.5254 0.5151
Quora 0.8621 0.8626 0.8369 0.8621 0.8881 0.8396
SciDocs 0.2041 0.1836 0.1743 0.2041 0.2092 0.1928
SciFact 0.7693 0.7221 0.7227 0.7693 0.7292 0.7074
Trec-covid 0.7840 0.7454 0.7187 0.7840 0.8285 0.8278
Touche 0.2565 0.2161 0.2423 0.2565 0.2723 0.2684
Average \ 0.5609 \ 0.5067 \ 0.5032 H 0.5609 \ 0.5209 \ 0.5105

Table 11: In-domain retrieval performance (in nDCG @ 10) of the Embedding-Converter on 13 BEIR datasets. Two
conversion scenarios are presented: (i) intra-model conversion between different versions of Google’s Gecko model
(gecko004 to gecko003), and (ii) inter-model conversion from Google’s gecko004 to OpenAl’s text-embedding-3-
small model.

The results, presented in Table 11 (left) and Table 12 (left), show that Embedding-Converter’s per-
formance remains remarkably consistent with the (older) target model. This highlights the flexibility of
our approach, supporting both upgrading and downgrading of embedding models for a wider range of
practical applications.

25477

D.2 Converting from smaller dimensional embedding to larger dimensional embeddings

While the main manuscript focuses on conversions where the target model has equal or smaller dimen-
sionality, we also explore the challenging, yet practical, scenario where the target model has higher
dimensionality, as is often the case with newer models. Specifically, we train and evaluate Embedding-
Converter with gecko004 (768 dimensions) as the source and openai-3-small (1536 dimensions) as the
target.

| gecko004 — gecko003 I gecko004 — openai-3-small

Dataset gecko004 | gecko003 | Embedding || gecko004 | openai-3-small | Embedding

(source) (target) -Converter (source) (target) -Converter
Android 0.5780 0.5258 0.5172 0.5780 0.5414 0.5374
English 0.5411 0.5019 0.4785 0.5411 0.5006 0.4844
Gaming 0.6720 0.6288 0.6175 0.6720 0.6125 0.6052
Gis 0.4503 0.3982 0.4008 0.4503 0.4055 0.3951
Mathematica 0.3621 0.2908 0.2879 0.3621 0.3053 0.2984
Physics 0.5291 0.4738 0.4750 0.5291 0.4615 0.4670
Programmers 0.5027 0.4455 0.4479 0.5027 0.4342 0.4460
Stats 0.4036 0.3531 0.3444 0.4036 0.3581 0.3384
Tex 0.3517 0.2958 0.2849 0.3517 0.2925 0.2879
Unix 0.4980 0.4362 0.4287 0.4980 0.4349 0.4329
Webmasters 0.4954 0.4297 0.4345 0.4954 0.4105 0.4338
Wordpress 0.3923 0.3453 0.3289 0.3923 0.3434 0.3334
Average | 04814 | 04271 | 04205 | 04814 | 0.4250 | 04217

Table 12: Out-of-domain retrieval performance (nDCG@10) of the Embedding-Converter on 12 CQADupStack
datasets. Two conversion scenarios are presented: (i) intra-model conversion between different versions of
Google’s Gecko model (gecko004 to gecko003), and (ii) inter-model conversion from Google’s gecko004 to Ope-
nAT’s text-embedding-3-small model.

The results (Table 11 (right) and Table 12 (right)) show that our method handles this conversion
with minimal performance degradation. This further demonstrates Embedding-Converter’s robustness
and generalizability, showing its ability to effectively bridge embedding spaces even when the target
dimensionality is greater than the source.

25478

D.3 Embedding-converter with mixed embeddings

Real-world applications often involve dynamically updating corpora. Embedding-Converter offers a
significant advantage here as well. Instead of converting new documents to the source embedding space
before target embedding generation, we can directly embed them using the target model, resulting in
a mixed corpus of converted (older documents) and new embeddings. To simulate this, we randomly
replace half of the corpus embeddings with target embeddings.

| gecko003 — gecko004

Dataset | gecko003 | gecko004 | Embedding-Converter

| (source) | (target) | Standard | Mixed

Arguana 0.5189 0.6070 0.6103 0.6082
Climate-fever 0.2540 0.3369 0.2959 0.3124
DBPedia 0.4128 0.4677 0.4322 0.4486
Fever 0.7431 0.8106 0.7786 0.7946
FiQA 0.4582 0.5481 0.5040 0.5196

HotpotQA 0.6248 0.6892 0.5923 0.6410
NFCorpus 0.3284 0.3503 0.3435 0.3466

NQ 05166 | 0.6058 | 05755 | 0.5435
Quora 08626 | 0.8621 | 08392 | 0.8304
SciDocs 0.1836 | 02041 | 0.1908 | 0.1963
SciFact 07221 | 07693 | 07601 | 0.7671
Trec-covid | 0.7454 | 0.7840 | 0.8079 | 0.7865
Touche 02161 | 02565 | 02397 | 02481
Average | 05067 | 05609 | 05362 | 0.5419

Table 13: In-domain retrieval performance (in nDCG@ 10) of the Embedding-Converter on 13 BEIR datasets from
gecko003 to gecko004. Two conversion scenarios are presented: (i) Standard: with 100% converted corpus, (ii)
Mixed: with 50% converted corpus and 50% target corpus.

The results (Table 13 and 14) show that performance in this mixed setting exceeds the scenario
where all embeddings are converted. This highlights two key strengths: (1) Compatibility: Converted
embeddings seamlessly integrate with new embeddings, demonstrating strong space compatibility. (2)
Generalizability: Embedding-Converter effectively handles mixed embeddings, further validating its
robustness and real-world applicability.

ecko003 — gecko004
g g

Dataset | gecko003 | gecko004 | Embedding-Converter
| (source) | (target) | Standard | Mixed
Android 0.5258 0.5780 0.5687 0.5632
English 0.5019 0.5411 0.5163 0.5255
Gaming 0.6288 0.6720 0.6422 0.6547
Gis 0.3982 0.4503 0.4223 0.4394
Mathematica 0.2908 0.3621 0.3329 0.3490
Physics 0.4738 0.5291 0.4981 0.5148
Programmers 0.4455 0.5027 0.4766 0.4877
Stats 0.3531 0.4036 0.3715 0.3846
Tex 0.2958 0.3517 0.3201 0.3323
Unix 0.4362 0.4980 0.4622 0.4775
Webmasters 0.4297 0.4954 0.4698 0.4781
Wordpress 0.3453 0.3923 0.3701 0.3807

Average | 04271 | 04814 | 04542 | 0.4656

Table 14: Out-of-domain retrieval performance (nDCG@10) of the Embedding-Converter on 12 CQADupStack
datasets from gecko003 to gecko004. Two conversion scenarios are presented: (i) Standard: with 100% converted
corpus, (ii) Mixed: with 50% converted corpus and 50% target corpus.

25479

D.4 Embedding-converter with multiple versions of embedding models

Embedding models are constantly updated, creating the challenge of converting embeddings across
multiple versions. For example, a user might need to transition from gecko003 to GTE-Large and then
to gecko004. While a direct gecko003 to gecko004 conversion is possible, we also explored using a
sequence of converters: gecko003 to GTE-Large, then GTE-Large to gecko004. This sequential approach
might be beneficial when direct conversion is costly or when intermediate embeddings are needed.

| gecko003 — gecko004
| gecko003 | gecko004 | Embedding-Converter

Dataset

| (source) | (target) | Direct | Multiple
Arguana 0.5189 0.6070 0.6103 0.5812

FiQA 0.4582 0.5481 0.5040 0.4903
NFCorpus 0.3284 0.3503 0.3435 0.3470
Quora 0.8626 0.8621 0.8392 0.8361

SciDocs 0.1836 0.2041 0.1908 0.1953
SciFact 0.7221 0.7693 0.7601 0.7626
Trec-covid 0.7454 0.7840 0.8079 0.7580
Touche 0.2161 0.2565 0.2397 0.2358

Average | 0.5044 | 05609 | 05369 | 0.5258

Table 15: In-domain retrieval performance (in nDCG @ 10) of the Embedding-Converter on 8 BEIR datasets from
gecko002 to gecko004. Two conversion scenarios are presented: (i) Direct: converting gecko003 to gecko004
directly, (ii) Multiple: converting gecko0O03 to GTE-Large first and then converting GTE-Large to gecko004.

Table 15 compares these strategies. Direct conversion performed slightly better, but the difference
was minimal. This demonstrates Embedding-Converter’s flexibility and its ability to effectively handle
multi-version conversions, providing a practical solution for navigating the evolving embedding model
landscape.

D.5 Converting open-source model to black-box model

To further demonstrate Embedding-Converter’s versatility, we evaluate conversions between open-source
and black-box embedding models, a crucial aspect for ensuring compatibility and facilitating transitions
across different model ecosystems. Specifically, we convert embeddings from the open-source GTE-Large
model (Li et al., 2023) to Google’s black-box gecko004 model.

| GTE-Large — gecko004

Dataset GTE-Large | gecko004 | Embedding

(source) (target) -Converter
Arguana 0.5928 0.6070 0.6081
FiQA 0.4434 0.5481 0.5059
NFCorpus 0.3391 0.3503 0.3478
Quora 0.8824 0.8621 0.8391
SciDocs 0.2330 0.2041 0.2080
SciFact 0.7402 0.7693 0.7689
Trec-covid 0.7053 0.7840 0.7628
Touche 0.2237 0.2565 0.2431
Average \ 0.5200 \ 0.5477 \ 0.5355

Table 16: In-domain retrieval performance (in nDCG@ 10) of the Embedding-Converter on 8 BEIR datasets across
inter-model conversion from GTE-Large to Google’s gecko004 model.

Table 16 shows that Embedding-Converter effectively bridges these models across various BEIR
datasets, maintaining strong performance. This highlights the generalizability of our approach and its
ability to handle diverse conversion scenarios, including those involving both open-source and proprietary
models.

25480

D.6 Embedding-Converter on multilingual datasets

In this subsection, we leveraged the well-known MIRACL datasets (Zhang et al., 2023), to evaluate the
generalizability of Embedding-Converter across different languages. Here, we utilized textembedding-
gecko-multilingual @001 as the source embedding model and text-multilingual-embedding-0028 as the
target embedding model.

\ gecko-multilingual-001 — gecko-multilingual-002

Dataset "o ko-multilingual-001 | gecko-multilingual-002 Embodding Converter
(source) (target)

Swahili 0.6745 0.6660 0.6749
Telugu 0.7536 0.7540 0.7576
Thai 0.6605 0.6641 0.6614
Chinese 0.5072 0.5322 0.5126
Japanese 0.5551 0.5339 0.5379
Russian 0.5114 0.5446 0.5272
French 0.4098 0.4924 0.4634
Germany 0.4295 0.4928 0.4742

Table 17: Multilingual retrieval performance (in nDCG@ 10) of the Embedding-Converter on 8 MIRACL datasets
across intra-model conversion from Google’s gecko-multilingual-001 to gecko-multilingual-002 models.

Table 17 clearly demonstrates the ability of Embedding-Converter to successfully transform source
embeddings into target embeddings within multilingual contexts.

D.7 Embedding-Converter with smaller dimensions

In this subsection, we further verify the generalizability of Embedding-Converter on smaller dimensional
embeddings because techniques like Matryoshka embedding (Kusupati et al., 2022) can integrate to
reduce embedding dimension via truncation. Since OpenAl’s openai-3-small model possesses Matryoshka
properties, we designed an experiment to evaluate our converter in this context. Specifically, we trained the
Embedding-Converter using 384-dimensional truncated versions of openai-3-small to original gecko004
model (with 768 dimensions) as source and target embeddings, to highlight the strength of the Embedding-
Converter for low-to-high dimensional transformation settings.

‘ openai-3-small-384-truncated — gecko-004

Dataset -
openai-3-small-384-truncated | gecko-004 Embedding-Converter
(source) (target)

Arguana 0.5445 0.6070 0.5862
FiQA 0.3633 0.5481 0.4140
NFCorpus 0.3164 0.3503 0.3428
Quora 0.8816 0.8621 0.8330
SciDocs 0.1923 0.2041 0.1935
SciFact 0.7105 0.7693 0.7516
Trec-covid 0.7984 0.7840 0.7813
Touche 0.2634 0.2565 0.2484

Table 18: Retrieval performance (in nDCG@10) of the Embedding-Converter on 8 BEIR datasets across intra-
model conversion from 384-dimensional truncated versions of openai-3-small to Google’s gecko-004 models (from
384 dimensions to 768 dimensions).

Table 18 demonstrates that our Embedding-Converter consistently outperforms the original source
embeddings, even when applied to the lower dimensional transformation settings.

8https://cloud.google.com/vertex-ai/generative-ai/docs/embeddings/get-text-embeddings

25481

https://cloud.google.com/vertex-ai/generative-ai/docs/embeddings/get-text-embeddings

D.8 Embedding-Converter from BERT-based model to decoder-only model

In this subsection, we introduce additional experiments with the following experimental setup. Given
that the Gemini embedding model(Lee et al., 2025) represents the current state-of-the-art, particularly
for decoder-only architectures, we designed our experiment to explore the potential of converting from a
BERT based embedding model to this advanced model. Specifically, we utilize GTE-Large as our source
model and the Gemini embedding as our target model. We then train the Embedding-Converter to map
embeddings from the source to the target. The performance of this converted embedding is subsequently
evaluated on the subsets of BEIR benchmark datasets.

GTE-Large — Gemini embedding

Dataset . -
‘ GTE-Large | Gemini embedding Embedding-Converter
(source) (target)
Arguana 0.5928 0.6539 0.6469
NFCorpus 0.3391 0.4131 0.3923
SciDocs 0.2330 0.2396 0.2280
SciFact 0.7402 0.9680 0.9218

Table 19: Retrieval performance (in nDCG@10) of the Embedding-Converter on 4 BEIR datasets across inter-
model conversion from GTE-Large to Google’s Gemini embedding models (from BERT-based model to decoder-
only model).

Table 19 demonstrates that, irrespective of the underlying architecture of the embedding models
involved, our proposed Embedding-Converter effectively transforms the source embeddings into represen-
tations more closely aligned with the target Gemini embedding.

25482

