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Abstract
LLMs have improved the fluency and infor-
mativeness of abstractive summarization but
remain prone to hallucinations, where gener-
ated content deviates from the source docu-
ment. Recent PMI decoding strategies miti-
gate over-reliance on prior knowledge by com-
paring output probabilities with and without
source documents, effectively enhancing con-
textual utilization and improving faithfulness.
However, existing strategies often neglect the
explicit use of salient contextual information
and rely on static hyperparameters to fix the
balance between contextual and prior knowl-
edge, limiting their flexibility. In this work, we
propose Salience-Aware Reinforced Adaptive
decoding (SARA), which incorporates salient
information and allows the model to adaptively
determine reliance on the source document’s
context, salient context, and the model’s prior
knowledge based on pointwise mutual infor-
mation. Moreover, a tokenwise adaptive de-
coding mechanism via reinforcement learning
is proposed in SARA to dynamically adjust
the contributions of context and prior knowl-
edge at each decoding timestep. Experiments
on CNN/DM, WikiHow, and NYT50 datasets
show that SARA consistently improves the
quality and faithfulness of summaries across
various LLM backbones without modifying
their weights.

1 Introduction

Abstractive summarization (Zhang et al., 2020,
2024; Jin et al., 2024; Liu and Lapata, 2019; Ryu
et al., 2024a,b) aims to generate concise and infor-
mative texts from input documents. The emergence
of recent large language models (LLMs) (Zhang
et al., 2024; Lv et al., 2024) has improved the flu-
ency and informativeness of abstractive summa-
rization. Despite the impressive performance of
LLMs, they still suffer hallucinations (or unfaith-
fulness) (Li et al., 2024b; Xia et al., 2024), where
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C o n te x t :  In an adorable video uploaded to 
Instagram by Taronga Zoo, Chloe is seen trying to 
take a nap in the mud on one of the echidnas. As 
she rolled over to snuggle up, the echidna moved 
away but Chloe still rested her eyes for a moment 
[ . . . ]  Chloe the wombat has mistaken her new 
echidna friend for a pillow at Taronga Zoo .  [...] 
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Query Prompt: Summary of the above article:
 

C onte xt  ( S a l i ent ) : In an adorable video 
uploaded to Instagram by Taronga Zoo, Chloe is 
seen trying to take a nap in the mud on one of 
the echidnas. Chloe the wombat has mistaken [...] 

 

Figure 1: (a) Previous point mutual information (PMI)
based decoding; (b) The proposed SARA.

the generated content misrepresents or distorts the
information from the origin documents. This can
be attributed to the fact that summaries rely on both
the prior knowledge embedded in pre-trained mod-
els and the context from input documents, where an
over-reliance on the prior knowledge or insufficient
utilization of the context impacts the faithfulness
of the generated content (Shi et al., 2024).

Existing methods employ various model train-
ing strategies to alleviate hallucinations, such as
enhancing the faithfulness of specific entities/to-
kens (Shen et al., 2023; Dong et al., 2022) or
suppressing the generation of irrelevant content
through contrastive learning (Chen et al., 2023b;
Choubey et al., 2023). Considering that altering
model weights may degrade the general capabili-
ties of LLMs, some works have sought to improve
the model during the inference (Lee et al., 2022;
Wan et al., 2023); Notably, pointwise mutual in-
formation (PMI) decoding strategies (Chae et al.,
2024; Xu, 2023; Shi et al., 2024; Van Der Poel
et al., 2022) are proposed to reduce the influence of

25450

mailto:nayuliu@tiangong.edu.cn
mailto:weikaiwen@cqu.edu.cn


prior knowledge that may produce hallucinations
by comparing the difference between the output
probabilities with and without source documents,
which allows generated content to be more faithful.

Despite the progress in PMI decoding, there
remain challenges as illustrated in Figure 1: (1)
How can the model effectively select salient con-
textual knowledge for decoding, especially how
can it allocate greater attention to supportive con-
tent to enhance summary faithfulness (Wang et al.,
2022; Aralikatte et al., 2021), while previous decod-
ing strategies often neglect to explicitly leverage
salient information. (2) How can the model dy-
namically determine whether to rely on contextual
or prior knowledge during decoding. Existing ap-
proaches typically rely on static hyperparameters
to assign fixed weights to output probabilities at
the sequence-level, which offers limited flexibility.

To tackle these issues, we propose Salience-
Aware Reinforced Adaptive decoding (SARA) for
LLM-based abstractive summarization. SARA
guides the decoding by incorporating salient in-
formation and allowing the model to decide, at
each generation step, whether to rely on the source
document’s context, salient information, or its prior
knowledge. SARA reduces hallucinations by com-
paring output probabilities with and without the
source document, ensuring a more faithful sum-
mary. It uses an extraction model to identify key
contextual information and enhances faithfulness
by leveraging point mutual information between
the salient context and prior knowledge. Unlike
previous methods that use fixed sequence-level
weights to combine probabilities, SARA adopts a
tokenwise adaptive decoding mechanism based on
reinforcement learning. This allows the model to
dynamically adjust the influence of different knowl-
edge sources at each step, improving the quality
and faithfulness of the generated summaries.

Extensive experimental results on CNN/DM
(Nallapati et al., 2016), WikiHow (Koupaee and
Wang, 2018), and NYT50 (Durrett et al., 2016)
datasets, have shown that SARA effectively im-
proves the quality and faithfulness of summaries
generated by various LLMs (e.g., GPT-Neo (Black
et al., 2021), LLaMA (Touvron et al., 2023), OPT
(Zhang et al., 2022b), and Mistral (Jiang et al.,
2023)) without requiring any modifications to the
LLM weights. Our contributions can be summa-
rized as follows:

1) We propose Salience-Aware Reinforced Adap-
tive decoding for LLM-based abstractive summa-

rization, which helps the model decide how to
rely on the source context, salient context, or prior
knowledge based on point mutual information.

2) We introduce a tokenwise adaptive decoding
mechanism via reinforcement learning, enabling
the model to dynamically balance contextual and
prior knowledge at each decoding step.

3) SARA achieves consistent improvements in
summary quality and faithfulness across CNNDM,
WikiHow, and NYT50 datasets on multiple LLM
backbones without modifying model weights1.

2 Preliminaries

2.1 Problem Definition

Given a language model θ, a source document X =
{x1, ..., xm}, and a query prompt Q = {q1, ..., qn},
the model produces a summary Y = {y1, ..., yk}
by autoregressively sampling from the probability
distribution generated by the model θ based on
source text X and query Q:

yt ∼ log pθ(yt|X,Q, Y<t)

∼ logitθ(yt|X,Q, Y<t)
(1)

2.2 Pointwise Mutual Information Decoding

PMI decoding (Chae et al., 2024; Xu, 2023; Shi
et al., 2024; Van Der Poel et al., 2022) calculates
the point mutual information score between the
input and output, aiming to alleviate the overre-
liance on the model’s prior knowledge (e.g., tokens
that are frequent but weakly related to the input
context) to improve the faithfulness of summary
generation. In our scenario, the output probability
distribution of the LLM without the input context
(i.e., with only the query prompt) represents the
prior knowledge. PMI decoding adjusts the final
output probabilities by using pairwise mutual in-
formation scores between the output probabilities
with and without the input context. We adopt the
formulation by Shi et al. (2024):

yt ∼ log
(
pθ(yt|X,Q, Y<t)

(pθ(yt|X,Q, Y<t)

pθ(yt|Q,Y<t)

)a)

∼ softmax[(1 + α)logitθ(yt|X,Q, Y<t)−
αlogitθ(yt|Q,Y<t)]

(2)

where the larger the hyperparameter α, the less the
decoding relies on the model’s prior knowledge,
with α = 0 degrading to standard decoding.

1The code is released at https://github.com/wkw1259/
SARA
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Figure 2: Overall architecture of SARA. In each timestep, LLM receives 1⃝ main sequence (i.e., source context
with prompt), 2⃝ salient sequence (i.e., salient context with prompt) , and 3⃝ prior sequence (i.e., only prompt), and
leverages the point mutual information of output logits between the context sequences 1⃝, 2⃝ and prior sequence 3⃝
to guide decoding process. In addition, tokenwise adaptive decoding via RL is proposed to dynamically adjust the
weights of output logits by 1⃝, 2⃝ and 3⃝ for flexible knowledge combination of different source.

3 Salience-Aware Reinforced Adaptive
Decoding Method

3.1 Overview

Figure 2 illustrates the overall architecture of the
proposed SARA, which aims to improve sum-
mary decoding by incorporating salient informa-
tion into PMI decoding and dynamically adapting
the reliance on source document context, salient
context, and prior knowledge at the token level.
We introduce SARA through three main part: (1)
salient context selection, which identifies key sen-
tences that potentially contain summary-relevant
content; (2) salience-aware decoding, which lever-
ages the point mutual information of output prob-
abilities (i.e., logits) between salient context and
prior knowledge to guide the decoding process; (3)
tokenwise adaptive reinforced decoding, which op-
timizes the contributions of source context, salient
context, and prior knowledge at each decoding
timestep through reinforcement learning, enabling
the model to flexibly adapt the utilization of differ-
ent knowledge sources.

3.2 Salient Context Selection

We directly adopt BERTSum (Liu and Lapata,
2019) to generate the salient context. BERTSum

is a BERT-based (Kenton and Toutanova, 2019)
extractive summarization model that scores each
sentence based on its likelihood of being part of
the summary, selecting a set of high-scoring sen-
tences. Different from its purpose of extracting a
few sentences for forming a concise summary, we
relax the extraction threshold to capture more key
sentences for forming salient contexts, that aims
to comprehensively cover the source content re-
quired for generating an abstractive summary. Let
S = {si}l denote the sequence of key sentences,
consisting of l key sentences.

3.3 Salience-Aware Decoding

During decoding, the summary is sampled by com-
bining the word probability distributions generated
by an LLM from three sequences: (1) the sequence
of source document X accompanied by the query
prompt Q, (2) the sequence of key sentences S
from the source document also accompanied by
the query prompt Q, and (3) the sequence contain-
ing only the query prompt Q without the context.
For simplicity, we refer to them as (1) the main
sequence XQ = [X : Q], (2) the salient sequence
SQ = [S : Q], (3) the prior sequence Q, where [:]
denotes concatenation along the sequence dimen-
sion.
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Specifically, at each decoding time step, the
word probability distribution generated from the
original main sequence XQ are accompanied by in-
corporating the probability distribution from the
salient sequence SQ to increase faithfulness to
the key context. Also, the probability distribution
of the prior sequence Q are subtracted to further
mitigate potential hallucinations arising from the
model’s reliance on high-frequency training data
or conflicting knowledge. The core formulation
of SARA’s mutual information computation is as
follows:

yt ∼ log
(
pθ(XQ)

btpθ(SQ)
ct
(pθ(XQ)

btpθ(SQ)
ct

pθ(Q)

)at
)

∼ softmax{(1 + at) [bt logitθ(yt|XQ, Y<t)+

ct logitθ(yt|SQ, Y<t)]− at logitθ(yt|Q,Y<t)},
(3)

Here, we use pθ(·) as a shorthand for pθ(yt|·, Y<t),
where · can represent XQ, SQ, or Q. at, bt, ct in
A = {ai}k, B = {bi}k, C = {ci}k represent dy-
namic weights at timestep t assigned to the output
probability vectors (i.e., logits) from the model
θ for sequences Q,XQ, SQ. We impose the con-
straints defined in Equation 4 on at, bt, ct to prevent
their excessive growth.

at, bt, ct ∈ (0, 1) ; bt + ct = 1 (4)

3.4 Tokenwise Adaptive Reinforced Decoding
Tokenwise adaptive reinforced decoding allows the
model to compare the output probabilities from
main sequence XQ, salient sequence SQ, and prior
sequence Q, and to dynamically allocate weights
A = {ai}k, B = {bi}k, C = {ci}k for the three
output probability vectors of XQ, SQ, Q at each
decoding timestep via reinforcement learning. The
weighted combination of the three probability vec-
tors produces a final probability distribution used
for sampling the summary output Ŷ = {yi}|Ŷ |.

Concretely, the sequences XQ, SQ, Q are passed
through the LLM θ, and we take the last hidden
layer features, that is, the features used for project-
ing the logits:

[Q : Ŷt
(Q)

]← LLMlast layer
θ ([Q : Ŷt

(Q)
])

[XQ : Ŷt
(XQ)

]← LLMlast layer
θ ([XQ : Ŷt

(XQ)
])

[SQ : Ŷt
(SQ)

]← LLMlast layer
θ ([SQ : Ŷt

(SQ)
])

(5)

where ← is used to represent the update of in-
put text feature representations for simplifying the

notation, and Ŷt
(Q)

, Ŷt
(XQ)

, Ŷt
(SQ) ∈ Rt×d repre-

sents the last hidden layer feature of the summary

sequence autoregressively generated by sequence
Q,XQ, SQ at time step t in the LLM, respectively.
Outside the LLM, we constructed a small MLP
network, trained via reinforcement learning, which
generates the weights A,B, and C respectively
for the weighted combination of the LLM’s output
probabilities from the sequences Q,XQ, and SQ.
The purpose of this MLP network is to model the
interactions of independent features produced by
the LLM for different input sequences, allowing the
LLM to determine how to allocate weights for com-
bining the output probabilities of input sequences.
The computation is expressed as follows:

[A : B : C]∗ =ReLU([Y
(Q)
t : Y

(XQ)

t :

Y
(SQ)

t ]∗W1 + b1)W2 + b2
(6)

where [:]∗ denotes concatenation along the fea-
ture dimensions; W1 ∈ Rd×h, b1 ∈ Rh,W2 ∈
Rh×3, b2 ∈ R3; The concatenated matrix [A : B :
C]∗ ∈ Rk∗3 represents the weights assigned to the
output logits vectors of Q,XQ, and SQ at each
time step. Next, A,B and C are normalized to
satisfy the constraints defined in Equation 4, using
a left arrow to denote the updates of A,B and C
for brevity:

[B : C]∗ ← softmax([B : C]∗)

A← sigmoid(A)
(7)

Note that the MLP’s role is to compute weights
for the logits of the three sequences produced by
the LLM in each timestep, allowing for a dynamic
combination of three sequences’ logits, rather than
allocating fixed weights to the entire sequence as
hyperparameters in previous methods. It does not
participate in the LLM’s own inference and does
not alter the LLM’s weights or the text feature
representations. Based on the combined output
probabilities, the summary Ŷ can be predicted us-
ing various sampling strategies. Inspired by the
self-critical sequence training (Rennie et al., 2017),
we enable the MLP to adjust A,B, and C through
reinforcement learning. For a predicted summary
sequence Ŷ = {yi}|Ŷ |, we set the ROUGE (Lin,
2004) and FactKB (Feng et al., 2023) metrics that
measure quality and faithfulness as reward, which
is defined as:

r(Ŷ ) =R1(Ŷ , Y ) + R2(Ŷ , Y )

+ RL(Ŷ , Y ) + λ FKB(Ŷ , Y )
(8)

where R1,R2,RL(·) and FKB(·) represent the
scores of ROUGE-1,2,L, and FactKB, respectively,
in relation to the predictions Ŷ and ground truth
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Y . Then the MLP layer is optimized by gradient
ascent based on rewards for adjusting the weights
A,B, and C, represented as:

∇θJ(θ) = (r(Ŷ )− 1

N

∑

τ

r(Ŷ τ ))∇θlog softmax({Pθ}|Ŷ |)

Pθ = (1 + ai) [bi logitθ(yi|XQ, Y<i) + ci logitθ(yi|SQ, Y<i)]

− ai logitθ(yi|Q,Y<i)

θ ← θ + η∇θJ(θ)
(9)

where Ŷ τ denotes the additional sampling se-
quence for calculating the reward deviation from
the base prediction Ŷ , N is the number of sam-
pling sequences; Pθ denotes the combined output
logits obtained from the sequences Q,XQ, and SQ

as expressed in Equation 9.

4 Experiments

4.1 Datasets

The proposed method is evaluated on three sum-
marization datasets: CNN/DM (Nallapati et al.,
2016), WikiHow (Koupaee and Wang, 2018), and
NYT50 (Durrett et al., 2016). CNN/DM consists of
news articles in CNN and Daily Mail paired with
summaries, providing a widely-used summariza-
tion benchmark. WikiHow contains instructional
articles with corresponding summaries, offering a
diverse range of topics and writing styles. NYT50
is a filtered version of the New York Times An-
notated Corpus dataset (Sandhaus, 2008), where
articles with summaries shorter than 50 words are
excluded.

4.2 Setup and Metrics

Implementation Details. Please refer to Ap-
pendix B for complete implementation details, in-
cluding the prompts for summarization, and rein-
forcement learning and inference hyperparameters
in LLMs.
Metrics. Following prior works (Shi et al., 2024;
Xu, 2023), ROUGE (Lin, 2004), BERTScore-
Prediction (Zhang et al.), and FactKB (Feng et al.,
2023) are used to measure the quality and factual
consistency, respectively. In addition, SacreBLEU
(Post, 2018) is also introduced to evaluate the sum-
maries.

Furthermore, we utilize GPT-42 (Achiam et al.,
2023) to evaluate the quality and faithfulness of
the generated summaries, which provides human-
like preference assessments compared to traditional

2https://chatgpt.com/

evaluation metrics (Gao et al., 2023; Chen et al.,
2023a). Specifically, GPT-4 ranks the summaries
generated by different methods based on the origi-
nal documents and reference summaries. Prompts
for GPT-4 are provided in Appendix C.

4.3 Models and Baselines

We implement the proposed method on four LLMs:
GPT-NEO3 (3B) (Black et al., 2021), LLaMA-
2-Chat (7B)4 (Touvron et al., 2023), OPT5 (7B)
(Zhang et al., 2022b), and Mistral-Instruct-v0.2
(7B)6 (Jiang et al., 2023). The proposed method is
compared with CAD (Shi et al., 2024; Xu, 2023)
and the vanilla usage of LLMs, where CAD applies
PMI decoding to LLMs and adjusts the proportion
of context and prior knowledge with hyperparame-
ters. All baselines maintaining the same inference
settings as detailed in Appendix B.

4.4 Overall Performance

Table 1 presents the performance of different meth-
ods on CNNDM, WikiHow, and NYT50 in terms
of ROUGE, SacreBLEU, BERTScore-P, and Fac-
tKB metrics. Overall, SARA outperforms both
CAD and the vanilla decoding across all three
datasets. Notably, the performance gains are more
pronounced on CNNDM and NYT50 compared to
WikiHow. We attribute this to the more extractive
nature of CNNDM and NYT50 while WikiHow
leans towards abstractive, and the proposed method
showing a more notable advantage in scenarios that
lean towards extractive summarization, where key
contextual information plays a crucial role. Con-
versely, on the WikiHow dataset, while CAD im-
proves factual consistency, its ROUGE scores drop
on LLaMA, likely due to an overemphasis on con-
textual knowledge at the expense of the model’s
prior knowledge. Our method, with adaptive token-
level weight allocation through salient context and
reinforcement learning, effectively maintains both
summary quality and faithfulness.

4.5 Effect of Weight Allocation on Triple
Sequences

Can reinforcement learning (RL) effectively find
the reasonable weight allocation among the main
sequence, salient sequence, and prior sequence log-

3https://huggingface.co/EleutherAI/gpt-neo-2.7B
4https://huggingface.co/meta-llama/Llama-2-7b-chat-hf
5https://huggingface.co/facebook/opt-6.7b
6https://huggingface.co/mistralai/Mistral-7B-Instruct-

v0.2
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Datasets Model Decoding ROUGE-1 ROUGE-2 ROUGE-L SacreBLEU BERTScore-P FactKB

CNN/DM

GPT-NEO
Vanilla 29.46 8.89 26.34 6.76 85.27 70.49
CAD 34.10 12.71 30.66 9.90 86.07 83.60

SARA 35.25 13.63 31.71 10.63 86.34 85.17

LLaMA
Vanilla 37.69 14.28 33.63 9.81 88.06 91.34
CAD 38.18 15.07 34.02 10.38 87.92 93.14

SARA 38.74 15.41 34.57 10.69 88.06 93.95

OPT
Vanilla 33.22 12.07 29.80 9.42 86.02 85.59
CAD 35.49 13.99 31.85 11.02 86.28 89.90

SARA 36.36 14.66 32.74 11.62 86.55 90.74

Mistral
Vanilla 38.16 14.26 33.98 9.85 87.94 90.36
CAD 38.46 14.86 34.18 10.29 87.90 92.26

SARA 38.92 15.16 34.61 10.54 88.00 92.38

WikiHow

GPT-NEO
Vanilla 20.77 3.67 19.45 2.03 83.24 64.91
CAD 22.88 4.77 21.31 2.91 83.59 76.03

SARA 23.10 4.88 21.47 2.99 83.56 77.50

LLaMA
Vanilla 24.93 5.90 23.18 2.95 84.50 83.59
CAD 24.86 5.89 22.91 3.13 84.34 84.84

SARA 25.08 5.97 23.19 3.03 84.47 85.52

OPT
Vanilla 20.29 3.62 18.95 2.10 83.21 60.71
CAD 22.64 4.71 21.07 2.99 83.68 73.55

SARA 23.05 4.99 21.36 3.19 83.85 73.60

Mistral
Vanilla 24.98 5.72 23.32 2.66 84.67 69.92
CAD 25.30 5.95 23.48 2.78 84.60 77.96

SARA 25.92 6.18 24.09 2.92 84.82 77.14

NYT50

GPT-NEO
Vanilla 25.63 7.32 22.30 5.82 84.64 57.92
CAD 30.19 11.51 26.68 9.22 85.43 70.54

SARA 30.44 11.57 26.98 9.24 85.61 73.28

LLaMA
Vanilla 35.76 14.16 31.36 9.38 88.20 85.31
CAD 37.66 16.79 33.33 11.42 88.26 88.05

SARA 37.84 16.96 33.50 11.51 88.31 89.46

OPT
Vanilla 27.74 9.71 24.51 7.77 85.10 69.43
CAD 31.04 13.07 27.76 10.37 85.35 74.72

SARA 31.70 13.47 28.31 10.69 85.66 76.72

Mistral
Vanilla 36.43 14.48 31.83 9.82 88.19 84.03
CAD 37.73 16.59 33.23 11.38 88.05 87.67

SARA 37.88 16.65 33.45 11.46 88.14 87.78

Table 1: Performance comparison on the CNN/DM, WikiHow, NYT50 datasets with various LLM backbones and
decoding strategies. Overall, SARA consistently outperforms both CAD and the vanilla decoding across different
datasets and backbones.

its at different time steps? To answer this, we manu-
ally set various weight configurations and observed
the model’s performance across different metrics.
Experiments were conducted using GPT-NEO as
the backbone on the CNNDM dataset, with results
shown in Table 2. It can be observed that: (1) As
the weight for the prior sequence a increases, the
model’s performance initially improves and then
declines, peaking when a = 0.5; (2) Compared
to using only the main sequence, the combina-
tion of weights for the main and salient sequences
b, c enhances the model’s performance; (3) Com-
pared to multiple manual weight configurations,
the proposed method consistently achieves the best
results, demonstrating the advantage of adaptive

token-level weight allocation over fixed sequence-
level weight allocation.

4.6 Ablation Analysis

To evaluate each component in the proposed
method, we conducted the following ablation ex-
periments: (a) removing the main sequence XQ,
(b) removing the salient sequence SQ, (c) remov-
ing the prior sequence Q, respectively; and (d) re-
moving the FactKB reward and (e) removing the
ROUGE reward in RL, respectively. The experi-
mental results presented in Table 3 show that: (1)
all three sequences positively contribute to perfor-
mance, with the prior sequence playing a crucial
role; (2) using only the ROUGE reward or only
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Models ROUGE-1 ROUGE-2 ROUGE-L SacreBLEU BERTScore-P FactKB

SARA 35.25 13.63 31.71 10.63 86.34 85.17
a=0, b=1, c=0 29.46 8.89 26.34 6.76 85.27 70.49
a=0.1, b=1, c=0 31.59 10.47 28.32 8.00 85.72 76.37
a=0.3, b=1, c=0 33.83 12.40 30.44 9.70 86.11 82.28
a=0.5, b=1, c=0 34.10 12.71 30.66 9.90 86.07 83.60
a=0.7, b=1, c=0 33.73 12.44 30.12 9.53 85.78 81.52
a=1, b=1, c=0 32.27 11.42 28.38 8.53 85.01 73.87
a=0, b=0.7, c=0.3 29.59 8.93 26.44 6.70 85.33 70.63
a=0, b=0.5, c=0.5 29.71 9.01 26.55 6.80 85.34 70.92
a=0, b=0.3, c=0.7 29.69 8.98 26.52 6.80 85.33 70.46
a=0, b=0, c=1 29.72 9.04 26.52 6.89 85.29 70.64
a=0.3, b=0.7, c=0.3 34.27 12.64 30.87 9.85 86.21 82.77
a=0.3, b=0.5, c=0.5 34.46 12.77 30.99 9.89 86.25 82.57
a=0.3, b=0.3, c=0.7 34.40 12.74 30.96 9.90 86.24 82.73
a=0.3, b=0, c=1 34.32 12.77 30.86 9.91 86.18 82.66
a=0.5, b=0.7, c=0.3 34.95 13.31 31.42 10.40 86.28 84.40
a=0.5, b=0.5, c=0.5 35.08 13.46 31.54 10.47 86.29 84.60
a=0.5, b=0.3, c=0.7 35.01 13.42 31.50 10.43 86.26 84.44
a=0.5, b=0, c=1 34.89 13.34 31.30 10.39 86.19 84.82

Table 2: Effect of weight allocation. a, b, c represent sequence-level weights for prior sequence Q, main sequence
XQ, and salient sequence XQ, respectively. It degrades into CAD when a = 0, and degrades into vanilla decoding
when a = 0, c = 0.

Models ROUGE-1 ROUGE-2 ROUGE-L SacreBLEU BERTScore-P FactKB

SARA 35.25 13.63 31.71 10.63 86.34 85.17
a w/o Seq. XQ 34.71 13.18 31.18 10.29 86.19 84.61
b w/o Seq. SQ 34.25 12.79 30.76 9.94 86.09 82.73
c w/o Seq. Q 29.83 9.15 26.65 6.93 85.31 70.60
d w/o Reward FKB 35.35 13.68 31.74 10.65 86.34 84.60
e w/o Reward R 34.32 12.66 30.72 9.64 85.33 85.42

Table 3: Ablation analysis of main sequence XQ, salient sequence XQ, prior sequence Q, and different RL rewards
on CNN/DM test set.

the FactKB reward for weight adjustment improves
the corresponding metric but leads to a decline in
others.

4.7 Effect of Different Salient Sequence
Lengths

How does the length of the salient sequence SQ af-
fect model performance? To explore this, we varied
the number of salient context sentences l extracted
from the source document, including 3, 5, 10, 15,
20 sentences, and observed the experimental results
with the GPT-NEO backbone on the CNN/DM test
set. As shown in Figure 3, excessively long salient
sequences do not enhance ROUGE scores, with the
best ROUGE performance observed at 5 and 10
sentences. Meanwhile, the FactKB metric steadily
improves with longer salient sequences, stabilizing

after reaching 10 sentences. The complete experi-
mental results are provided in Table 8 in Appendix
D.1.

Figure 3: ROUGE-L and FactKB score changes under
the salient sequence with different number of sentences.
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Dataset Method Quality Faithfulness
1st-2nd-3rd 1st-2nd-3rd

CNN/DM
Vanilla 0.09-0.31-0.60 0.09-0.36-0.55
CAD 0.35-0.42-0.23 0.31-0.40-0.29

SARA 0.56-0.27-0.17 0.60-0.24-0.16

WikiHow
Vanilla 0.05-0.14-0.81 0.04-0.20-0.76
CAD 0.45-0.45-0.10 0.36-0.50-0.14

SARA 0.50-0.41-0.09 0.60-0.30-0.10

NYT50
Vanilla 0.16-0.13-0.71 0.16-0.16-0.68
CAD 0.29-0.55-0.16 0.31-0.46-0.23

SARA 0.55-0.32-0.13 0.53-0.38-0.09

Table 4: Quality (Q) ranking, Faithfulness (F) ranking
via GPT-4 evaluations. SARA outperforms both CAD
and vanilla decoding with a winning rate exceeding 50%
across different datasets.

4.8 GPT-4 Evaluations

Table 4 presents the ranking results of GPT-4 for
the quality and faithfulness of summaries generated
by vanilla decoding, CAD, and SARA. We em-
ployed GPT-NEO as the backbone model. As can
be seen from the experimental results that, SARA
obviously outperforms both CAD and vanilla de-
coding with a winning rate exceeding 50% across
CNN/DM, WikiHow, NYT50 datasets, effectively
reducing hallucinations. This indicates the advan-
tage of SARA in leveraging ROUGE and FactKB
as rewards to dynamically incorporate source doc-
uments, salient contexts, and the model’s prior
knowledge for summary decoding.

5 Related Work

Hallucination in LLM refers to the phenomenon
where language models generate factually incorrect
or inconsistent information. Recent works focused
on the detection and evaluation of hallucinations
(Jia et al., 2023; Manakul et al., 2023; Bang et al.,
2023; Guerreiro et al., 2023; Mündler et al., 2024).
To mitigate hallucinations, a number of studies im-
proved LLMs during the fine-tuning stage, includ-
ing factual consistency objectives training (Wan
and Bansal, 2022), reinforcement learning (Roit
et al., 2023), contrastive learning (Sun et al., 2023),
post-processing (Gou et al., 2024), and prompt en-
gineering (Wang et al., 2023a; Dhuliawala et al.,
2024; Lv et al., 2023). Additionally, some works
have attempted to alleviate hallucinations during
the inference stage, such as retrieval-augmented
generation (Shuster et al., 2021; Peng et al., 2023;
Xu et al., 2024; Yang et al., 2025) and various de-

coding strategies (Lee et al., 2022; Xu, 2023; Wan
et al., 2023; Shi et al., 2024).
Faithfulness in summarization is an important
topic, which refers to the consistency between
the generated and original text. When the gener-
ated content lacks faithfulness, hallucinations often
arise. Researchers have proposed various methods
to improve the faithfulness of summarization, with
recent works focusing primarily on entity/token-
specific training (Shen et al., 2023; Zhang et al.,
2022a; Dong et al., 2022; Nan et al., 2021), post-
processing (Balachandran et al., 2022; Fabbri et al.,
2022), loss truncation (Kang and Hashimoto, 2020),
chain-of-thought (Wang et al., 2023b; Wei et al.,
2025), active learning (Xia et al., 2024; Li et al.,
2024a), contrastive learning (Feng et al., 2024;
Chen et al., 2023b; Choubey et al., 2023; Chen
et al., 2021; Cao and Wang, 2021), and factual con-
sistency evaluation (Feng et al., 2023; Cao et al.,
2022; Jia et al., 2023; Luo et al., 2024).

Closely related to our work is PMI-based decod-
ing (Chae et al., 2024; Xu, 2023; Shi et al., 2024;
Van Der Poel et al., 2022), which mitigates the
influence of model prior knowledge that induces
hallucinations by contrasting the output probabili-
ties with and without the source document, thereby
enhancing the role of contextual knowledge. The
goal of SARA is to further introduce the mutual
information of salient information and prior knowl-
edge, as well as incorporating reinforcement learn-
ing to adaptively adjust the weights of contextual
and prior knowledge at each time step.

6 Conclusion

In this work, we propose SARA, salience-aware
reinforced adaptive decoding for abstractive sum-
marization, which guides LLMs to determine how
to rely on source documents’ context, salient con-
text, and models’ prior knowledge during decoding
based on pointwise mutual information. Moreover,
we propose a tokenwise adaptive reinforced decod-
ing mechanism in SARA that dynamically adjusts
the contributions of contextual knowledge and prior
knowledge at each timestep, enabling the flexible
integration of knowledge from different sources in
decoding. Experimental results on the CNN/DM,
WikiHow, and NYT50 datasets show that the pro-
posed method consistently improves the quality
and faithfulness of generated summaries across var-
ious LLM backbones without compromising their
general reasoning capabilities.
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Limitations

We consider SARA as a feature-level voting mecha-
nism for LLMs: it combines word probabilities gen-
erated from different important sequences, voting
at each timestep to determine the final word proba-
bility for decoding, while reinforcement learning
assigns weights to the voting process. Although
SARA improves summarization guided by RL re-
wards on LLMs, this work has not further validated
its applicability in traditional encoder-decoder sum-
marization architectures. On the other hand, SARA
computes point mutual information based on word
probabilities from the same language. Given LLMs’
multilingual capabilities, whether the proposed
method can effectively guide summary decoding
in cross-lingual summarization scenarios (where
the source and target languages differ) remains an
interesting question for future exploration.
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Datasets Train/Val/Test Partition Avg. Article/ Summary Len.
CNN 90,266/1,220/1,093 760.50/45.70
DM 196,961/12,148/10,397 653.33/54.65
WikiHow 168,126/6,000/6,000 579.8/62.1
NYT50 96,834/4,000/3,452 800.04/45.54

Table 5: Dataset statistics.

Hyperparameters CNN/DM WikiHow NYT50
Max input length 1,024 1024 1,024
Min new tokens 30 20 30
Max new tokens 70 80 90
Salient context sent. num l 10 10 10
LLM float type bf16 bf16 bf16
Batch size 4 4 4
Gradient accumulation 1 1 1
Learning rate 5e-5 1e-5 1e-5
Top-k for base pred. Ŷ 10 10 10
Top-p for base pred. Ŷ 0.5 0.5 0.5
Top-k for sampling pred. Ŷ 100 100 100
Top-p for sampling pred. Ŷ 0.95 0.95 0.95
Sampling sequence num N 5 5 5
Training steps 2000 2000 2000
Warmup ratio 0.05 0.05 0.05
Optimizer Adam Adam Adam
Adam beta1 0.9 0.9 0.9
Adam beta2 0.999 0.999 0.999
GPU A100×1 A100×1 A100×1
Avg. num of algorithm runs 3 3 3
Temperature 1.0 1.0 1.0
Beam size 1 1 1
Length penalty 1.0 1.0 1.0
Repetition penalty 1.0 1.0 1.0
MLP hidden size h 4,096 4,096 4,096
FactKB reward weight λ 1.0 1.0 1.0

Table 6: Reinforcement learning hyperparameters.
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Hyperparameters CNN/DM WikiHow NYT50
LLM float type bf16 bf16 bf16
Top-k 50 50 50
Top-p 0.9 0.9 0.9
Temperature 1.0 1.0 1.0
Beam size 1 1 1
Length penalty 1.0 1.0 1.0
Repetition penalty 1.0 1.0 1.0
Max input length 1,024 1024 1,024
Min new tokens 30 20 30
Max new tokens 70 80 90
Salient context sent. num l 10 10 10

Table 7: Inference hyperparameters.

Prompt (Separate Quality and Faithfulness)

You will be provided with an article, a reference summary,
and three different generated summaries (Method
A, Method B, Method C). Your task is to rank the
generated summaries in terms of (1) overall quality
and (2) faithfulness with the article and reference summary.

1. **Quality**: How well the summary covers the
key points of the article, considering coherence and
informativeness.
2. **Faithfulness**: How accurately the summary
represents the information in the article, avoiding
hallucinated or unsupported content.

Please rank the summaries from best to worst based on
their overall performance in both criteria.

**Article**: <Article text>

**Reference Summary**:
<Reference summary>

**Method A Summary**:
<Method A summary>

**Method B Summary**:
<Method B summary>

**Method C Summary**:
<Method C summary>

**Ranking**:
1. Overall Quality Ranking: <Rank from A to C>
2. Factual Consistency Ranking: <Rank from A to C>

Provide only the rankings as output.

Figure 4: Prompt to rank generated summaries based
on quality and faithfulness respectively.

A Datasets

The proposed method is evaluated on three summa-
rization datasets, CNN/DM (Nallapati et al., 2016),
WikiHow (Koupaee and Wang, 2018), and NYT50
(Durrett et al., 2016), and the statistics are shown
in Table 5.

Prompt (Both Quality and Faithfulness)

You will be provided with an article, a reference summary,
and three different generated summaries (Method A,
Method B, Method C). Your task is to rank the generated
summaries based on two criteria:

1. **Quality**: How well the summary covers the
key points of the article, considering coherence and
informativeness.
2. **Faithfulness**: How accurately the summary
represents the information in the article, avoiding
hallucinated or unsupported content.

Please rank the summaries from best to worst based on
their overall performance in both criteria.

**Article**: <Article text>

**Reference Summary**: <Reference summary>

**Method A Summary**:
<Method A summary>

**Method B Summary**:
<Method B summary>

**Method C Summary**:
<Method C summary>

**Ranking**:
1. <Best method>
2. <Second best method>
3. <Third best method>

Provide only the rankings as output.

Figure 5: Prompt to rank generated summaries based
on both quality and faithfulness.

B Implementation Details

B.1 Prompt for Summarization

The prompts we used for summarization follow
the settings of previous works (Xu, 2023). For all
LLM backbones, we use the following prompt for
the Wikihow dataset,

Article: <Article text>. Summary of the above
article:

and use the following prompt for the CNN/DM and
NYT50 datasets,

Article: <Article text>. Summary of the above
news article:

For salient sequences, we directly replace <Arti-
cle text> with salient content. For prior sequences,
<Article text> is replaced with an empty input "".
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#Sent. of Seq. S ROUGE-1 ROUGE-2 ROUGE-L SacreBLEU BERTScore-P FactKB

3 34.57 12.87 31.03 9.93 86.31 83.26
5 35.39 13.67 31.82 10.61 86.44 84.43
10 35.25 13.63 31.71 10.63 86.34 85.17
15 34.92 13.39 31.39 10.40 86.25 85.23
20 34.84 13.27 31.29 10.35 86.21 85.33

Table 8: Complete experimental results under the salient sequence with different number of sentences, corresponding
to Figure 3 in main text of the paper.

Dataset Method Both Q&F
1st-2nd-3rd

CNN/DM
Vanilla 0.10-0.31-0.59
CAD 0.32-0.46-0.22

SARA 0.58-0.23-0.19

WikiHow
Vanilla 0.04-0.16-0.80
CAD 0.37-0.52-0.11

SARA 0.59-0.32-0.09

NYT50
Vanilla 0.12-0.22-0.66
CAD 0.30-0.52-0.18

SARA 0.58-0.26-0.16

Table 9: Both Quality and Faithfulness (Q&F) ranking
via GPT-4 evaluations.

Model Decoding R-L FKB ms/batch

GPT-NEO
Vanilla 26.34 70.49 5,143
CAD 30.66 83.60 6,429

SARA 31.71 85.17 8,571

LLaMA
Vanilla 33.63 91.34 5,857
CAD 87.92 93.14 7,286

SARA 88.06 93.95 9,714

OPT
Vanilla 29.80 85.59 5,571
CAD 31.85 89.90 6,857

SARA 32.74 90.74 8,857

Table 10: Inference speed of different methods.

B.2 Hyperparameters

Table 6 lists the detailed hyperparameters for rein-
forcement learning, and Table 7 provides the de-
tailed hyperparameters for inference in this work,
which mainly follow the settings of Shi et al. (2024)
and Xu (2023).

C Prompt for GPT-4 Evaluations

We utilize GPT-4 to evaluate the quality and
faithfulness of the generated summaries. GPT-4
ranks the summaries generated by vanilla decoding,
CAD, and SARA based on the original documents
and reference summaries. For each method, we
test 200 samples. We used two types of prompts:

a. Ranking the summaries based on quality and
faithfulness separately, as shown in Figure 4; and b.
Ranking the summaries based on both quality and
faithfulness jointly, as shown in Figure 5. We in-
clude only the separately ranked GPT-4 evaluation
results in the main text.

D Experimental Results

D.1 Effect of Different Salient Sequence
Lengths

How does the length of the salient sequence affect
model performance? To address this question, we
varied the number of salient context sentences ex-
tracted from the source document (3, 5, 10, 15, 20
sentences) to conduct experiments. The complete
experimental results are listed in Table 8, corre-
sponding to Figure 3 in the main text of the paper.

D.2 GPT-4 evaluations
Table 9 presents GPT-4’s evaluation results for
ranking the summaries based on both quality and
faithfulness jointly, corresponding to the prompt in
Figure 5.

D.3 Inference Speed
Considering that SARA incorporates salient con-
text sequences, which may increase inference time,
we compared the runtime of different decoding
methods. Specifically, we measured the inference
time (in milliseconds per batch) for Vanilla decod-
ing, CAD, and SARA on GPT-NEO, LLaMA, and
OPT backbones using a single A100 GPU, with
a batch size of 16. As shown in the experimen-
tal results in Table 10, SARA achieves the best
performance with a slight trade-off in inference
speed. Therefore, the proposed method is particu-
larly well-suited for scenarios where performance
is prioritized over inference speed.
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