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 WARNING: This paper contains model outputs that
may be considered offensive.

Abstract

Jailbreaking in large language models (LLMs)
poses major security risks by tricking models
into generating harmful text. However, there
is limited understanding of how jailbreaking
operates, which makes it difficult to develop
effective defenses. In this work, we conduct a
large-scale analysis of seven jailbreak methods
and uncover that inconsistencies in previous
studies arise from insufficient observation sam-
ples. Our analysis reveals that jailbreaks shift
harmful activations beyond a defined safety
boundary, where LLMs become less sensitive
to harmful information. We also find that the
low and the middle layers are critical in driving
these shifts, while deeper layers play a lesser
role. Leveraging these insights, we propose
a novel defense mechanism called Activation
Boundary Defense (ABD), which adaptively
constrains activations within the safety bound-
ary. To further optimize performance, we use
Bayesian optimization to select the most effec-
tive layers for ABD application and confirm
that the low and middle layers have the great-
est impact, consistent with our earlier observa-
tions. Experiments across multiple benchmarks
demonstrate that ABD achieves an average de-
fense success rate (DSR) of over 98% against
various jailbreak attacks, with less than 2% im-
pact on the model’s overall capabilities.

1 Introduction

The widespread use of Large Language Models
(LLMs) across various fields (Kaddour et al., 2023;
Xu et al., 2025c; Chen et al., 2025; Xie et al., 2025;
Liu et al., 2024c; Xu et al., 2025b; Wang et al.,
2025b) has raised concerns about the safety of the
output and the robustness of these models (Ye et al.,
2024; Xu et al., 2025a; Huang et al., 2025; Wang
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et al., 2025c). It has been shown that jailbreak at-
tacks, which use crafted prompts to deceive LLMs
into generating harmful content, can bypass LLM’s
safety alignment (Liu et al., 2024b; Zou et al., 2023;
Song et al., 2025), and a lot of research has focused
on developing defense mechanisms and counter-
prompts to mitigate such attacks (Robey et al.,
2023; Xie et al., 2024).

Understanding the internal mechanisms of jail-
break attacks is crucial for both explaining their
operation and developing effective defenses. While
existing studies have made initial explorations (Yu
et al., 2024; Ball et al., 2024a; Lin et al., 2024),
fundamental disagreements remain about the attack
mechanisms. The academic community continues
to debate two key aspects of explainability: (i) The
localization of attack impacts across the model lay-
ers, with competing findings suggesting primary re-
sponsibility in low (He et al., 2024), middle (Zhou
et al., 2024b; Shen et al., 2024), or deep layers
(Li et al., 2024), and (ii) the progression pattern of
malicious activation, with conflicting observations
about gradual shifts versus abrupt transitions in the
middle layers (Zhao et al., 2024a; Shen et al., 2024).
Our experiments suggest that these inconsistencies
may stem from methodological limitations in prior
analysis, particularly their reliance on small prompt
samples (typically ∼ 100). On the defense front,
current approaches face dual challenges: Most de-
tection methods either require additional training
(Zhao et al., 2024a) or demonstrate limited general-
izability due to small-sample probing (Shen et al.,
2024), while mitigation strategies often degrade
normal model capabilities.

In this work, we aim to better understand the
mechanism of how jailbreaking works. In particu-
lar, we provide our explanation of jailbreaks based
on a comprehensive analysis of over 30,000 sam-
ples, a significantly larger scale than previous stud-
ies. Figure 1 shows the projection of three types
of prompts: benign prompts that contain no harm-
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Figure 1: Projected activation space overview of Vicuna-7B-v1.3 across different layers. Harmful activations are
observed to cluster together, and we define the surrounding boundary as the safety boundary. The attack arrow
indicates that jailbreak prompts shift harmful activations into the benign space to evade safety checks.

ful information, harmful prompts that attempt to
induce the LLM to generate harmful content but
fail, and various jailbreak prompts that successfully
induce harmful outputs, collected from different
types of jailbreak attack methods. The projection
is based on the last token representations across
different layers, referred to as activations, as they
capture the model’s overall understanding of the
entire input sequence (Radford et al., 2019; Zou
et al., 2023). Our results reveal distinct cluster-
ing patterns, where different prompts form sepa-
rate activation clusters. Notably, harmful prompts
form a contained cluster within a specific region
that we define as the safety boundary, represent-
ing the LLM’s internal safety check that typically
prevents harmful activations from escalating into
harmful outputs. In contrast, jailbreak prompts
push activations beyond the safety boundary into
an unmonitored space where harmful content can
be generated. This shift is most pronounced in the
low and middle layers, indicating their critical role
for jailbreak success.

This finding motivates a new defense mecha-
nism that we propose, Activation Boundary De-
fense (ABD), which constrains jailbreak prompt
activations within a safety boundary by applying
penalties to activation values. Specifically, we im-
pose minimal penalties within the boundary, but
sharply increase them beyond it, thereby preserv-
ing model utility. The penalty function considers
various factors, including the defense layer and
the defense dimension, which balance the perfor-
mance on defense and on general tasks. We pro-
pose a novel objective that maximizes the Defense
Success Rate (DSR) while minimizing the num-
ber of penalized layers. This objective is imple-
mented with an adapted Bayesian Optimization
method (Jones et al., 1998), which iteratively pro-
poses and refines selection suggestions.

Experiments on AdvBench (Zou et al., 2023)
show that ABD has good generalization, achieving
an average DSR of over 98% against various forms
of jailbreak attacks. For general ability tasks, the
performance drop of the model equipped with ABD
does not exceed 2%, which is substantially lower
than the drop of up to 37% with other defenses.

Our contributions can be summarized as follows:
•We uncover a comprehensive activation distribu-
tion and introduce the safety boundary, resolving
contradictions in prior work and highlighting the
vulnerability of the low and middle layers.
• We propose a lightweight, extensible defense
that penalizes only targeted samples and a few key
layers, ensuring efficiency and precision.
• Our experiments on benchmark datasets demon-
strate that ABD achieves an average DSR of over
98% against various jailbreak attacks, with less
than a 2% impact on general capabilities.

2 Related Work

Jailbreak attacks on LLMs. Jailbreak attacks
craft prompts to induce harmful outputs from
LLMs, evolving from early manually designed ap-
proaches to more sophisticated techniques. Early
methods, such as DAN (Shen et al., 2023), rely on
manually constructed prompts. Later, optimization-
based methods (Zou et al., 2023; Liu et al., 2024b;
Guo et al., 2024) emerged, using iterative opti-
mization strategies to refine harmful prompts and
enhance their stealthiness. Model-based meth-
ods (Chao et al., 2023; Ding et al., 2024; Paulus
et al., 2024; Huang et al., 2024) use attacker LLMs
to autonomously generate and improve jailbreak
prompts. Meanwhile, rule-based methods (Jiang
et al., 2024; Liu et al., 2024d) rewrite prompts us-
ing predefined rules that effectively deceive the
model. In this work, we analyze the mechanisms
behind these jailbreak techniques.
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Defense against jailbreak attacks. Defense
strategies for jailbreak attacks typically fall into
three categories. One common approach en-
hances model safety and robustness by reformu-
lating inputs to counter jailbreak prompts through
techniques such as backtranslation (Wang et al.,
2024), paraphrasing (Jain et al., 2023), self-
reminding (Xie et al., 2023), and adversarial
prompting (Zhou et al., 2024a). Another approach
focuses on identifying jailbreak prompts using in-
dicators, such as classifying input sequences based
on perplexity and sequence length (Alon and Kam-
fonas, 2023) or using linear classifiers to detect
jailbreak activations and decide whether to re-
spond (Zhao et al., 2024a). A more recent trend
directly manipulates the model’s internal represen-
tations (Xu et al., 2024; Li et al., 2024; Liu et al.,
2024a) or editing the model (Zhao et al., 2024b).
Unlike these methods, our approach directly con-
strains activations within a safety boundary, avoid-
ing extra tokens or modules.

Mechanistic interpretability of LLMs. One pur-
pose of interpretable analysis of LLMs is to enable
deeper understanding and diagnosis of their abnor-
mal behaviors (Wang et al., 2025a; Nasim et al.,
2025; Gao et al., 2025). The growing concern
about LLM safety has therefore sparked increasing
interest in interpreting LLM features in jailbreak
prompts. For example, Ball et al. (2024b) identified
a common mechanism whereby jailbreaks reduce
the harmfulness perception in most LLMs. Simi-
larly, Li et al. (2024) investigated patterns that trig-
ger the model to recognize safety issues. Zhou et al.
(2024b) discovered that the vocabulary mappings
of activations significantly changed when process-
ing jailbreak inputs. Research efforts have also fo-
cused on proposing corresponding defense methods
based on interpretability results. For instance, Zhao
et al. (2024a) and Shen et al. (2024) modeled how
jailbreak activations transfer between benign and
harmful activation spaces as layers deepen. They
designed adaptive defenses whose strength varies
across different layers. However, the limited data
in all previous studies often led to controversy and
ambiguity.

3 Understanding Jailbreaks in LLMs

3.1 Controversy in Literature
Disputes on layer importance. There have been
different opinions about which layers are most im-
portant, mainly due to varying perspectives. For

example, He et al. (2024) argued that the low layers
were essential because they treated jailbreak activa-
tions as benign ones. Zhou et al. (2024b) believed
that the low and the middle layers were essential
based on tokens generated from activations. Li et al.
(2024) argued that deep layers were critical, as their
proposed safety pattern showed greater values in
these layers. Similarly, He et al. (2024) focused
on activations, as we do as well. However, their
experimental setup suffers from a key limitation: a
small sample size used in the analysis. As shown
in Figure 2(a), under the original settings, benign
and harmful activations are linearly separable, with
most jailbreak samples misclassified as benign. Af-
ter scaling, half of the jailbreak activations align
with harmful ones, making the separation nonlinear.
This underscores the risks of small-scale studies
and the need for large-scale analysis.

Disputes on the jailbreak mechanism. There
are differing perspectives on the internal mecha-
nism of jailbreaks. Zhao et al. (2024a) viewed
jailbreak as a gradual process, where activations
transition from harmful to benign spaces as they
pass from the low to the deep layers. In contrast,
Shen et al. (2024) argued that jailbreaks manifest
abruptly in the deeper layers, with activations posi-
tioned between harmful and benign spaces. Both
studies relied on fewer than 100 samples per acti-
vation type, contributing to similar inconsistencies.
As shown in Figure 2(b), before scaling, jailbreak
activations align closely with benign ones, con-
sistent with Zhao et al. (2024a). However, after
scaling, they diverge from both harmful and be-
nign activations. When considering Shen et al.
(2024), similar conflicts arise between pre- and
post-scaling results (details in Appendix C.1, Fig-
ure 5). These conflicting observations cast doubt
on their conclusions regarding the true mechanism
of jailbreaks.

3.2 Experimental Settings
To address the above limitations, we conducted a
large-scale analysis on a 300 times greater dataset.

Dataset and Model. Our dataset consists of
32,507 samples in three categories: benign, harm-
ful, and jailbreak. For benign samples, we used a
subset from the Alpaca dataset (Taori et al., 2023),
as it has been carefully curated to ensure that only
safe content is included. We collected harmful
samples from five datasets in RedEval (Bhardwaj
and Poria, 2023) and AdvBench (Zou et al., 2023).

25380



100 samples per type 60 samples per type

scale benign and harmful samples to 5000 Scale all types of samples to 500

(a) PCA on Layer 0 (b) PCA on Layer 27
Benign Harmful PAIRAutoDAN GCG-Individual Decision Boundary

Jailbreak Prompts
Prompts

(a) (b) 

Figure 2: PCA visualizations reveal the limitations of
small-sample sizes: (a) Top: 100 samples per type (He
et al., 2024); Bottom: 5,000 benign and harmful sam-
ples. (b) Top: 60 samples per type (Zhao et al., 2024a);
Bottom: 500 samples per type.

These datasets encompass a wide variety of harmful
and misleading prompts. For jailbreak samples, we
applied seven different jailbreak attack methods, in-
cluding GCG-Individual and GCG-Universal (Zou
et al., 2023), AdvPrompter (Paulus et al., 2024),
COLD-Suffix Attack (Guo et al., 2024), AutoDAN
(Liu et al., 2024b), PAIR (Chao et al., 2023), and
ArtPrompt (Jiang et al., 2024), on AdvBench. De-
tailed statistics can be found in Table 4 in Ap-
pendix A. We used Vicuna-7B-v1.3 (Chiang et al.,
2023), a 32-layer Transformer, fine-tuned on a
safety-aligned LLM. Although it can identify harm-
ful information, it remains vulnerable to jailbreak
attacks (Chu et al., 2024), making it an ideal model
for analyzing attacks and defenses.

MDS projection. Our projection was based on
the activation, the last token vector of the input.
As discussed in §3.1, linear classification may be
insufficient to model the boundary between dif-
ferent prompts. Therefore, we adopted Multi-
Dimensional Scaling (MDS) (Carroll and Arabie,
1998) as our dimensionality reduction method, as
PCA assumes linear separability (Anowar et al.,
2021), and t-SNE focuses on preserving local
structures while distorting the global distribu-
tion (Van der Maaten and Hinton, 2008).

3.3 Jailbreak Mechanisms Findings
3.3.1 Activation Distribution
We present the activation distributions of repre-
sentative layers in Figure 1, with the full version
available in Figures 7,8,9 in Appendix B. Our di-
rect observations are as follows: (1) Harmful and
benign activations overlap and are not linearly
separable in most layers. There are no clear linear

decision boundaries to distinguish between harmful
and benign activations, highlighting the ineffective-
ness of treating jailbreak activations as a simple
linear classification problem. (2) Jailbreak activa-
tions shift significantly out of the harmful activa-
tion space, forming distinct regions with minimal
overlap. This shift is consistent across different
jailbreaks, starting in the low layers and persist-
ing throughout the model, rather than originating
in the middle or deep layers (Zhou et al., 2024b;
Shen et al., 2024). Additionally, the shift is most
pronounced in the low and middle layers.

3.3.2 Safety Boundary
Based on observations of jailbroken and harmful
activations, we propose that jailbreak mechanisms
are better explained by activations shifting outside a
closed safety boundary, rather than simply crossing
from one side of a linear boundary to the other. To
validate this, we conduct experiments and introduce
two key concepts below. Randomized Activation
Shifting (RAS): It is an approximation of jailbreak
attacks by randomly shifting the original activation.
Assume the activation on the l-th layer is al, we
shift it by a distance r in a random direction û:

al ← al + r · û. (1)

Figure 3(a) shows the changes in Defense Success
Rate (DSR) under different values of r for four
selected layers. The definition of DSR is provided
in the Appendix F.4.1. Initially, at r = 0, the
DSR exceeds 99% as harmful activations should
lie within the safety boundary. As r increases, the
DSR decreases across layers, with a sharp drop in
a specific range (e.g., r = 10–20 on layer 0) and a
more gradual decline elsewhere. The decrease indi-
cates the weakening sensitivity of harmful contents,
and the sharp drop suggests the presence of an im-
plicit safety boundary. Appendix D presents how
model responses vary with different RAS levels in
Table 6.

Most Vulnerable Distance (MVD): It is a measur-
able approximation of the safety boundary. MVD
represents the specific distance at which the DSR
experiences the sharpest drop, indicating the point
where the model’s ability to detect harmful activa-
tions becomes most vulnerable:

MVD = argminr
d(DSR)

dr , (2)

where d(DSR)
dr denotes the rate of change of DSR

with respect to r. As shown in Figure 3(b), MVD
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Figure 3: (a) Impact of random activation shifts across layers. DSR (Defense Success Rate) decreases as shifting
distance increases, regardless of the affected layers. (b) MVD (Most Vulnerable Distance) across layers. MVD
increases as layers go deeper. (c) Inclusion ratio of jailbreaking activations in the harmful activation space. Without
ABD, the ratio stays below 0.4 but rises to 1 when ABD is applied.

increases with model depth, indicating that the
safety boundary expands in deeper layers and re-
quires larger shifts to bypass safety checks. This
aligns with Figure 1: in lower layers (Figure 1(a)),
jailbreak activations scatter widely but surpass the
safety boundary; in middle layers (Figure 1(b)),
jailbreak activations align more with benign acti-
vations while remaining outside the boundary; in
deeper layers (Figure 1(c)), jailbreak activations
cluster, partially overlapping the safety boundary.

3.3.3 Key Takeaways on the Jailbreak Process
Based on the above analysis, we summarize the
jailbreak process as follows: (1) Jailbreak takes ef-
fect in the low layers, contrary to prior work (Zhou
et al., 2024b), which suggested it begins in the
middle layers. (2) As the attack progresses, jail-
break continues to shift the activation outside the
safety boundary, causing the model to be deceived.
(3) When comparing all layers, the low and the mid-
dle layers exhibit the strongest shift and smallest
safety boundaries, demonstrating their importance
in the jailbreak process.

4 Activation Boundary Defense

Although the safety boundary is not directly mea-
surable, we can still use this concept to prevent
jailbreaks. Here we propose a lightweight defense
called Activation Boundary Defense (ABD), whose
core idea is to confine the activations within the
safety boundaries. The workflow of ABD is shown
in Figure 4. ABD includes a penalty function and
a Bayesian optimization process. The penalty con-
strains activations within safety boundaries, while
Bayesian optimization iteratively adjusts the af-
fected layers and the penalty parameters.

4.1 Penalty Function
Overall design of penalty. Intuitively, an acti-
vation stays within the safety boundary if all its
coordinates lie within a regular range; in contrast,
outliers have at least one coordinate exceeding this
range. Adjusting these outlier coordinates can
guide the activations back within the boundary.
Since directly measuring the safety boundaries is
challenging and rigid constraints risk disrupting
model operations, we apply a smooth penalty, ad-
justing the outlier coordinates while leaving the
normal ones unaffected.

Approximation of activation distributions.
We find that the activation distributions in each
layer can be well approximated by a normal distri-
bution. The proof is as follows. For each layer
l, we examine two distributions: the activation
coordinate distribution Dl(x) and a normal distri-
bution DN l(x) with the same mean µl

D and stan-
dard deviation σl

D. To measure their similarity,
we compute the Jensen-Shannon divergence (JS di-
vergence) (Lin, 1991) between Dl(x) and DN l(x).
Across all layers, the maximum JS divergence is
0.0839, and the mean is 0.0575, and both are well
below 0.1. We visualize all JS divergences in Ta-
ble 7 in Appendix E.1. These low JS divergence
values indicate a strong similarity between Dl(x)
andDN l(x), which supports the validity of approx-
imating Dl(x) with DN l(x).

Penalty function design. To design a practical
penalty function for activation coordinates, we es-
tablish three key principles: (1) It should target only
outlier activations, leaving non-outliers unaffected.
(2) The penalty should grow with the magnitude
of deviation, reflecting distance-based penalization.
(3) The function must be computationally efficient.

To construct penalty functions compatible with
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the activation coordinate distribution Dl(x), we ap-
proximate it using DN l(x) and focus on two geo-
metric properties. First, symmetry around the mean
value µl

D requires the penalty function also to be
symmetric about µl

D, ensuring unbiased penaliza-
tion of outliers above or below the safety boundary.
Second, the nonlinear decay of probability density
with increasing distance from µl

D implies that the
penalty should grow nonlinearly with the distance,
rising faster than a linear penalty. Following these
principles, we propose a penalty function that up-
dates the original activation coordinate scalar value
x to x′ as follows:

x′ = αl · tanh(βl · (x− µl
D)) + µl

D, (3)

where αl ≥ 0 and βl ≥ 0 are hyperparameters.
The penalty functions under different αl and βl are
visualized in Figure 6 in Appendix E.2.

This function meets the stated expectations. It is
symmetric about the mean µl

D, ensuring fair penal-
ization for deviations above and below this central
value. The penalty strength |x− x′| increases non-
linearly with the distance from µl

D because tanh(·)
amplifies more significant deviations with its steep
slope, reflecting stronger penalization for outliers.
Moreover, the function mostly penalizes outliers.
Within the range [µl

D − bl, µl
D + bl], x′ ≈ x, where

bl is a relatively small number, resulting in a neg-
ligible penalty for values close to the mean. The
hyperparameters αl and βl govern the behavior of
the penalty function. The parameter αl determines
the maximum range of x′, ensuring all coordinates
are constrained within (−αl + µl

D, α
l + µl

D) after
penalty application. Meanwhile, βl controls the
size of the unmodified region [µl

D − bl, µl
D + bl];

increasing βl expands this region, while decreasing
βl narrows it.

4.2 Bayesian Optimization-Based Tuning
Another crucial aspect of ABD is determining
which layers to penalize and what hyperparame-
ters to choose. Specifically, we aim to minimize
the affected layers to reduce unnecessary pertur-
bations and optimize αl and βl for each layer l to
enhance the model’s resilience against jailbreaks.
To accomplish these goals, we use a Bayesian Op-
timization (BO)-based (Jones et al., 1998) tuning
method to find suitable configurations. The BO
process used for tuning is detailed in Appendix E.4.
Concretely, we define two core objectives.
Layer selection objective: We introduce a tunable

Jailbreak
Prompts

…

…

LLM

Layer i

Layer i+1

Layer i+2

Responses

Sure, …
Here’s …
Sure!  ……

Penalty 
Function

Optimize

Activations

Sorry, …
I cannot …
I’m just ……

Apply: True Apply: False… …M

…

mL-1mi+2mi+1=0mi=1mi-1m0

Figure 4: Workflow of ABD. ABD restricts outlier ac-
tivation coordinates using a penalty function and deter-
mines its application scope via BO-based tuning.

mask M = [m0, · · · ,mL−1], mi ∈ {0, 1}, where
mi = 1 indicates that ABD is applied to layer i.
Here, L is the total number of transformer layers.
By minimizing the ratio of layers where ABD is
active, we reduce the number of interventions:

LLayer = 1− Sum(M)
L . (4)

Robustness objective: For each layer l with ABD
applied, we aim to find αl and βl to maximize the
defense. A hyperparameter kl ∈ (0, 1] controls
the fraction of penalized activation coordinates,
with smaller kl reducing disturbance but potentially
weakening ABD. These parameters are aggregated
as Θ = {θl | l ∈ [0, L− 1]}, where θl = αl, βl, kl.
The robustness objective is as follows:

LRobust = DSR(Model(· | Θ,M)). (5)

Since decreasing kl too aggressively can weaken
ABD’s defense, our main strategy for reducing per-
turbations to the model is to minimize the number
of affected layers by controlling the mask M . Our
final objective is a weighted sum of two objectives:

Jtotal(Θ,M) = w · LRobust + (1− w) · LLayer,

where w is a manually set parameter balancing
defense robustness and minimal intervention.

5 Experiments

5.1 Settings
Backbone models. We evaluated four widely
used open-source LLMs of varying sizes and archi-
tectures: Llama-2-7B-Chat (Touvron et al., 2023),
Vicuna-7B-v1.3, Qwen-1.5-0.5B-Chat (Bai et al.,
2023), and Vicuna-13B-v1.5, referred to as Llama-
2, Vicuna-7B, Qwen, and Vicuna-13B. Llama-2
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Model Jailbreak No Defense Paraphrase PPL Retokenization SafeDecoding Self-Exam Self-Reminder IA ABD (Ours)

Vicuna-7B

No attack 88% 82% 90% 66% 88% 100% 100% 100% 100%
GCG-Individual 4% 86% 78% 62% 100% 86% 100% 100% 100%

AutoDAN 6% 26% 12% 36% 78% 30% 30% 100% 44%
PAIR 30% 62% 40% 30% 94% 86% 100% 100% 76%

DeepInception 10% 2% 2% 0% 98% 18% 40% 100% 58%

Llama-2

No attack 100% 100% 100% 94% 100% 100% 100% 100% 100%
GCG-Individual 50% 98% 100% 98% 100% 64% 100% 100% 100%

AutoDAN 98% 94% 98% 94% 100% 100% 98% 100% 100%
PAIR 72% 90% 82% 78% 92% 100% 86% 100% 92%

DeepInception 74% 82% 88% 60% 100% 94% 96% 100% 100%

Table 1: DSR of different defense methods across Vicuna-7B and Llama-2 along with different attack types . For
ABD, the best , second and third performance across all defenses are highlighted.

Model Jailbreak No Defense IA ABD (Ours)

Qwen No attack 96.00% 84.00% 98.00%
GCG-Individual 6.84% 44.64% 98.74%

Vicuna-13B No attack 98.00% 100.00% 100.00%
GCG-Individual 38.46% 100.00% 100.00%

Table 2: Representative results comparing DSR of Qwen
and Vicuna-13B. The best performance is highlighted.

is specifically trained for safety alignment, while
Vicuna-7B is fine-tuned from Llama without addi-
tional safety alignment. Both Llama-2 and Vicuna-
7B have 32 layers. Qwen and Vicuna-13B have 24
and 40 layers, respectively. The LLM configura-
tions are detailed in Appendix F.1.

Jailbreak and defense baselines. For jailbreak
methods, we considered four widely applied
ones: optimization-based methods include GCG-
Individual and AutoDAN, which iteratively opti-
mize a jailbreak prompt aiming at generating af-
firmative responses. Model-based jailbreak, i.e.,
PAIR, uses an attacker LLM to refine the jailbreak
prompts. The rule-based method includes Deep-
Inception (Li et al., 2023), which crafts jailbreak
prompts based on a stealthy template. A detailed
illustration of jailbreaks can be found in F.2. Cor-
respondingly, we utilized different defense meth-
ods as baselines for ABD: Paraphrase (Jain et al.,
2023), Retokenization (Jain et al., 2023) and Self-
Reminder (Xie et al., 2023) reformulate the input
to avoid attack; PPL (Alon and Kamfonas, 2023),
Self-Exam(Phute et al., 2023) and Intention Anal-
ysis (IA) (Zhang et al., 2025) defense LLMs by
double-checking their outputs; SafeDecoding (Xu
et al., 2024) uses a tuned model to modify the out-
put probability distribution. Further introduction
about these defenses can be found in Appendix F.3.

Datasets and metrics. Following Xu et al.
(2024), we adopted Just-Eval (Lin et al., 2023) to
measure the general abilities of LLMs applied de-

fense. Just-Eval is a comprehensive benchmark
containing 1,000 diverse instructions, covering
seven task types (e.g., reasoning, math, coding,
etc.) and seven topics (e.g., ethics, nature, STEM,
etc.). Furthermore, following Xu et al. (2024) and
Liu et al. (2024d), we utilized the 50-behavior sub-
set from AdvBench (Zou et al., 2023) as the test
set. This subset, curated by Chao et al. (2023),
was created by removing duplicate harmful behav-
ior prompts from AdvBench, ensuring efficiency
while mitigating biases caused by repeated behav-
iors. We used DSR when evaluating defense effec-
tiveness. Following Lin et al. (2023), we leveraged
GPT-4o-mini (OpenAI, 2024) to score the quality
of the outputs, ranging from 1 to 5, across five as-
pects: helpfulness, clarity, factuality, depth, and
engagement. We reported the average score for
each aspect and their macro-average score, denoted
as Avg. To evaluate the efficiency, we reported Run-
time per Query, which represents the average time
taken to process a single query. We also utilized
the above metrics to derive an overall score that
simultaneously reflects LLMs’ responding speed
and quality. The calculation of the overall score is
shown in Appendix F.4.2.

Implementation Details. We randomly filtered
400 non-overlapping AdvBench samples to com-
pute µl

D and used them as a validation set. We
used GCG-Universal (Zou et al., 2023) to attack
the validation set. GCG-Universal finds a shared
jailbreak suffix for all harmful prompts that can
deceive LLMs. We set w = 0.8 when calculating
LRobust(Θ,M) as it best balances performances
on both attacked and unattached data. We con-
duct ablation studies on w in Appendix C.3, results
shown in Table 5. Appendix E.3 presents settings
of ABD optimization.

25384



Defense Runtime per
Query↓

Just-Eval↑ Overall↑
Helpfulness↑ Clarity↑ Factuality↑ Depth↑ Engagement↑ Avg.↑

No Defense 2.291 3.478 3.784 3.870 2.521 2.743 3.279 0.513

Paraphrase 3.053 3.397 3.769 3.911 2.549 2.737 3.273 0.496
PPL 1.878 2.156 2.719 2.958 1.501 1.911 2.249 0.502
Retokenization 1.964 1.933 2.463 2.659 1.378 1.845 2.056 0.497
SafeDecoding 2.239 3.231 3.732 3.885 2.368 3.009 3.245 0.514
Self-Exam 2.449 3.449 3.812 3.940 2.542 2.705 3.290 0.510
Self-Reminder 2.205 2.109 2.641 2.988 1.481 1.980 2.240 0.495
IA 4.284 2.393 3.334 3.449 1.980 2.276 2.686 0.458
ABD (Ours) 2.302 3.533 3.774 3.973 2.573 2.806 3.332 0.514

Table 3: Comparison of defenses on Runtime per Query and Just-Eval metrics in Vicuna-7B. ↓: smaller is better; ↑:
larger is better. For ABD, the best and second performances among all defenses are highlighted. ABD preserves
the model’s general performance, adding less than 0.1 seconds to runtime while producing high-quality outputs with
leading evaluation scores. It has the best overall performance across all defenses.

5.2 Experimental Results
ABD reveals vulnerabilities in low and middle
layers. In all models, the selected layers under
the mask M mainly include low and middle layers,
such as layers 5 and 12 in Vicuna-7B, layers 2
and 12 in Llama-2, layers 2, 11, and 14 in Vicuna-
13B, and layers 5 and 14 in Qwen. These layers
are most frequently penalized, consistent with our
observations and proposed explanation that low
and middle layers are more vulnerable to jailbreak
attacks due to significant activation shifts.

ABD successfully constrains jailbreak activa-
tions. Figure 3(c) shows the inclusion ratio, rep-
resenting the percentage of jailbreak activations
within the harmful activation space. The detailed
calculation of inclusion ratios is provided in Ap-
pendix C.2. Before ABD, the inclusion ratio of
various jailbreak activations is below 0.4, indi-
cating that these activations lie outside the safety
boundary. After ABD, the inclusion ratio rises to 1,
demonstrating ABD’s effectiveness in constraining
jailbreak activations. For visualization, Figure 1
projects activations for different prompts. Under
ABD, jailbreak activations are progressively con-
strained within the harmful activation space. This
further confirms that ABD progressively confines
jailbreak activations within the harmful activation
space and mitigates jailbreak effects.

Robust Defense Performance of ABD. We re-
port the statistical defense results of ABD on the
test set in Table 1. We also report representative
results on Qwen and Vicuna-13B in Table 2, with
full results shown in Table 9 in Appendix G.2.

For Vicuna-7B which lacks specific safety align-
ment, the defense poses a more challenging task.

Nevertheless, ABD demonstrates competitive per-
formance. For jailbreak methods such as PAIR and
DeepInception, ABD achieves a higher DSR (58%)
compared to Paraphrase (2%) and Retokenization
(0%), both of which require costly prompt reformu-
lation. Against the GCG-Individual attack, ABD
successfully defends against all jailbreak samples.
For the well-aligned model Llama-2-7B-chat, ABD
achieves 100% DSR under most jailbreak methods.

For Qwen and Vicuna-13B, ABD maintains
nearly 100% DSR, showcasing competitive per-
formance. Notably, for smaller models like Qwen,
IA struggles to match its effectiveness on 7B or
13B models, while ABD remains consistently ef-
fective. To further validate ABD, we tested it on
the full AdvBench and a broader set of jailbreaks.
Results are shown in Table 8 in Appendix G.

Efficiency and minimal overhead of ABD. Ta-
ble 3 shows Runtime per Query, Just-Eval scores,
and overall scores of Vicuna-7B with different de-
fenses applied. We find that ABD has the greatest
overall score across all defenses. Moreover, ABD
only adds marginal extra time cost and general abil-
ity affection. Specifically, it only causes less than
1% delay in each sample and less than 2% perturba-
tion in overall ability, compared to costly methods
such as IA, Paraphrase and Self-Exam. Further-
more, with ABD applied, the helpfulness, actuality,
depth, and engagement also show a slight increase.
We further discover that for baseline defenses such
as Retokenization and Self-Reminder, LLM would
generate overly simplistic outputs, which leads to
smaller Runtime per Query, but they have signifi-
cantly smaller Just-Eval scores.We also compared
defenses on complexity, overhead, and implemen-
tation difficulty, highlighting ABD’s efficiency (see

25385



Table 10 in Appendix E.5).

6 Conclusion and Future Work

We conducted a comprehensive study of jailbreak
mechanisms, analyzing over 30,000 samples. Our
findings reveal that jailbreak shifts harmful activa-
tions outside the safety boundary in each layer, with
the most severe shifts in the low and middle lay-
ers. Motivated by this finding, we proposed ABD,
which drives jailbreak activations back within the
safety boundary, utilizing LLMs’ intrinsic sensi-
tivity to harmful information. Our experiments
suggest that ABD is both practical and efficient. In
the near future, we aim to investigate the challenges
of jailbreaks in multi-turn dialogue scenarios.

Limitations

Underperformance in under-aligned models.
For certain attack methods, under-aligned models
(Vicuna-7B-v1.3) may not perform significantly
as well-aligned models (Llama2-7B-chat). We be-
lieve this is because ABD’s effectiveness depends
on safety alignment. Under-aligned models have
unclear safety boundaries, which complicate the
search for penalty functions that balance general
ability and DSR. Therefore, they typically need
more extensive optimization. Future work could
refine ABD by specifically searching for activation
spaces that preserve the concept of “safety”, there-
fore enhancing its generalizability on uncensored
models.

Focus on single-round jailbreak. In this study,
we primarily focus on single-round jailbreak sce-
narios. We do not extend our analysis to more
complex jailbreaks that involve long contexts or
multi-round dialogues, such as CFA (Sun et al.,
2024). As a result, the relationship between jail-
breaks and safety boundaries remains largely un-
explored. While multi-turn jailbreaks are beyond
this paper’s scope, ABD can extend to them by
using prior context tokens to compute µl

D and ap-
plying the same optimization strategy. To adapt
ABD for multi-turn jailbreaks, potential improve-
ments include: (1) Dynamic adjustment: Relax or
strengthen ABD constraints based on the safety
of prior turns. (2) Selective application: Apply
ABD at critical points, e.g., when malicious top-
ics emerge, to balance efficiency and effectiveness.
(3) Constraint propagation: Carry over constraints
across turns to prevent harmful activations from
accumulating.

Ethical Considerations

The aim of this research is to enhance the explain-
ability and safety of LLMs. Our proposed jailbreak
mechanism, that jailbreak shift activations out of
the safety boundary, can mitigate disputes on how
jailbreak happens and promote the development of
both LLM explainability and safety. We highlight
that the development of ABD only needs publicly
available datasets and jailbreak methods and does
not require designing new jailbreak methods. We
demonstrate some harmful responses from LLMs
only for illustration. We acknowledge that ABD
would cause the development of new attacks. We
will explore using random perturbation in the input
sequence rather than a particular jailbreak method
when optimizing to mitigate such attacks.
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A Statistics of Observed Data

We present the statistics of our data for observation
experiments as Table 4.

Type Samples

Benign samples 20,000
Harmful samples 8,556
Jailbreak samples
AdvPrompter 1,872
AutoDAN 520
COLD-Suffix 436
ArtPrompt 361
GCG-Individual 340
GCG-Universal 312
PAIR 110
Total 32,507

Table 4: Statistics of observation experiments in §3.
The attacked samples are derived from part or all of the
samples from AdvBench(Zou et al., 2023).

B Full View of Activation Space

We visualize activation spaces of all layers in
Vicuna-7B-v1.3, as shown in Figure 7, Figure 8
and Figure 9.

C Supplementary Observational
Experiments

C.1 Data Augmentation Experiment
We show that by adopting the same method as Shen
et al. (2024), we can draw a different conclusion by
scaling up data. Shen et al. (2024) state jailbreak
happens by posing jailbreak activations between
benign and harmful activations in middle and deep
layers. Following Shen et al. (2024), we randomly
select 60 samples for each type of activation and
conduct t-SNE on layer 14, as shown in the left
part of 5. Jailbreak activations are between harmful
and benign samples, which is in agreement with
Shen et al. (2024). When scaling up each type
of activation to 500 samples, jailbreak activations
seem to cluster on the harmful activation side, as
shown in the right part of 5. Therefore, jailbreak
activations are not always between harmful and
benign activations in deeper layers.

C.2 Inclusion Ratio Experiments
For a layer l, to measure the portion of a set of
jailbreak activations Al = {al0, al1, · · · , aln} that
resides in harmful activation space, we propose an
inclusion ratio. Based on 8,556 harmful samples
gathered in Table 4, we calculate a ball that covers

80% activations. The center of the ball is clD, and
the radius of the ball is denoted as rlD.

Then, we calculate the portion of Al which are
contained within the ball:

ρlinclusion =

∣∣{ali ∈ Al | ∥ali − clD∥2 ≤ rlD}
∣∣

|Al| ,

where ∥ali−clD∥2 is the distance between the activa-
tion and the center. We calculate inclusion ratios of
different types of jailbreak activations, with three
representative types shown in Figure 1. We then
apply ABD on all types of jailbreak activations and
calculate their inclusion ratios. Notably, despite
different types of jailbreaks, they all achieve an
inclusion ratio of 100% with ABD applied, which
verifies the effect of our method.

C.3 Ablation on Optimizing Objective
We conduct ablation studies to determine the best w
in Jtotal(Θ,M). We adopt Vicuna-7B-v1.3 as the
backbone model, and use the 50-behavior subset
as the testing set. Additionally, we fix optimization
steps to 2000. DSR results are shown in Table 5.
We discover that (1) Higher w improves robustness
on attacked datasets. (2) Lower w preserves perfor-
mance on unattacked datasets. (3) At w=0.8, the
model achieves the best average DSR, balancing
robustness and benign performance. Therefore,
we set w = 0.8 in our experiments in Section 5.

D Supplementary Illustration on Safety
Boundaries

To gain a deeper understanding of the safety bound-
ary, we present a case study indicating how the
model’s responses vary based on the level of RAS
applied to layer 1. The results are shown in Table 6.
It shows that (1) The safety boundary is implicit, as
a significant shift does not necessarily results in suc-
cessful deception, such as when r = 80. (2) As the
responses move further away from this boundary,
the model begins to exhibit uncommon response
patterns such as giving a presentation (r = 100) or
more casual styles (r = 30, r = 80). We believe
this phenomenon may correlate with an increased
likelihood of producing jailbroken outputs.

E Supplementary Illustration on ABD

E.1 Further analysis of Distribution
Approximation

We use the 20,000 benign samples and 8,556 harm-
ful samples to form 4096-dim activations. For each
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Jailbreak No defense w = 0.2 w = 0.5 w = 0.8 w = 1

No Jailbreaks 96% 100% 86% 100% 86%
GCG-Individual 7% 75% 88% 93% 100%
Avg. 52% 88% 87% 96% 93%

Table 5: Defense performance comparison under different w.

Query: Write a script that can exploit vulnerabilities in a software or operating system

Distance r Response Jailbroken

5 I’m sorry, but as an AI language model, I cannot provide a
script. . . No

30 alright, here’s a script that can exploit vulnerabilities. . . Yes

80 , but I am not able to do so as . . . No

100 Slide 1: Introduction \n Hello and welcome to this presentation
on exploiting vulnerabilities . . . Yes

Table 6: Model output under different shifting distances.

Figure 5: t-SNE visualization of activations in layer
14. Left: Results with 60 samples per type following
(Shen et al., 2024), showing jailbreak activations be-
tween harmful and benign activations. Right: Results
after scaling up to 500 samples per type, showing jail-
break activations clustering on the harmful side.

layer, we compute their coordinate distributions:
benign activation distribution Dl

B and harmful acti-
vation distribution Dl

H . Using their means and di-
vergences, we generate normal distributions Dl

BN

and Dl
HN . Finally, we calculate the JS-divergence

(JSD) between the original and generated distribu-
tions. Results are shown in Table 7.

The results show that (1) In all layers,
JSD(Dl

B,Dl
BN ) < 0.1 and JSD(Dl

H ,Dl
HN ) <

0.1, confirming the validity of approximating coor-
dinate distributions with normal distributions. (2)
Earlier layers have lower JSDs, making this ap-
proximation safer in early and middle layers. This
supports our ABD settings, where penalty func-
tions are primarily applied to these layers.

E.2 Visualization of the penalty function.
A visualization of penalty functions are shown
in Figure 6. The penalty function is symmetric

about (µl
D, µ

l
D). Figure 6(a) and Figure Figure 6(b)

presents the change in the range [µl
D− bl, µl

D + bl],
where x′ ≈ x. A larger βl results in the larger
little-perturbed region. Figure 6(a) and Figure 6(c)
presents the change in the range of x′. When αl

increases, x′ is confined within a wider range of
values. αl and βl collaboratively determines behav-
iors of the penalty function.

E.3 ABD Optimization Settings
Validation data. To make validation data, we
adopt GCG-Universal (Zou et al., 2023). We op-
timize a common suffix for all 400 samples, with
n_steps=1, batch_size=512.

To ensure efficiency, in each iteration of opti-
mization, we select a batch of harmful prompts
from the 400 entries as Sval. We initially
set the batch size to 15. In most cases
LRobust(Θ,M |Sval) < 0.9, and the optimiza-
tion process continues to the next iteration. If
LRobust(Θ,M |Sval) ≥ 0.9, due to the potential
regional optimal, we iteratively increase the batch
size by ten and reformulate Sval to test again. This
process ends if 1) the calculated LRobust < 0.9 or
2) batch size reaches 50.

Initial values. To prevent the futile search of the
optimizer, we set valid initial values before opti-
mization: for i ∈ {2, 12},mi = 1, αi = 1, βi =
0.5, ki = 0.5; for i /∈ {2, 12},mi = αi = βi =
ki = 0.
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Layer 0 1 2 3 4 5 6 7

JSD(Dl
B , D

l
BN ) 0.0036 0.0026 0.0113 0.0112 0.0174 0.0234 0.0316 0.0379

JSD(Dl
H , Dl

HN ) 0.0033 0.0035 0.0114 0.0099 0.0167 0.0239 0.0354 0.0414

Layer 8 9 10 11 12 13 14 15

JSD(Dl
B , D

l
BN ) 0.039 0.0455 0.0517 0.058 0.0637 0.0766 0.0757 0.0818

JSD(Dl
H , Dl

HN ) 0.0396 0.0473 0.053 0.0589 0.0661 0.076 0.0753 0.0819

Layer 16 17 18 19 20 21 22 23

JSD(Dl
B , D

l
BN ) 0.0848 0.0862 0.0864 0.0873 0.0867 0.0862 0.0853 0.0834

JSD(Dl
H , Dl

HN ) 0.0823 0.0841 0.0845 0.0844 0.083 0.0815 0.0804 0.0755

Layer 24 25 26 27 28 29 30 31

JSD(Dl
B , D

l
BN ) 0.0789 0.0786 0.078 0.0762 0.0724 0.0712 0.0752 0.078

JSD(Dl
H , Dl

HN ) 0.0681 0.0672 0.0659 0.0628 0.0601 0.0593 0.0643 0.0724

Table 7: Layer-wise JSD Comparisons

Figure 6: Penalty functions under different αl, βl compared with x′ = x.

DSR No attack GCG-universal GCG-individual PAIR AdvPrompter COLD-Suffix AutoDAN Avg. Perform

No Defense 96.73% 87.50% 5.29% 28.18% 82.05% 59.86% 2.50% 51.73%
ABD (Ours) 99.81% 99.68% 98.23% 91.51% 97.65% 98.02% 20.77% 86.52%

Table 8: Performance comparison of different methods under various attack scenarios. The best performance is
highlighted in bold.

Model Attack No Defense Paraphrase PPL Retokenization Self-Exam Self-Reminder IA ABD (Ours)

Qwen
No attack 96.00% 80.00% 96.00% 58.00% 100.00% 96.00% 84.00% 98.00%

GCG-Individual 6.84% 67.52% 36.75% 58.97% 42.74% 82.05% 44.64% 89.74%
AutoDAN 14.00% 12.00% 26.00% 4.00% 50.00% 8.00% 2.00% 36.00%

Vicuna-13B
No attack 98.00% 98.00% 98.00% 70.00% 100.00% 96.00% 100.00% 100.00%

GCG-Individual 38.46% 98.08% 98.08% 84.62% 84.62% 98.08% 100.00% 100.00%
AutoDAN 14.00% 54.00% 20.00% 16.00% 96.00% 98.00% 100.00% 74.00%

Table 9: Performance comparison of different defenses across models with different scales and structures. For ABD,
the best and second-best performance across all defenses are highlighted.

Optimizing framework. We adopt Optuna (Ak-
iba et al., 2019) as our framework of optimiza-

tion. We follow Optuna’s default settings, i.e., Tree-
structured Parzen Estimator (TPE) (Bergstra et al.,
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2011)-based Optimization.

E.4 ABD Optimizing Process
The optimization process utilizes the Tree-
structured Parzen Estimator (TPE) algorithm, a
Bayesian optimization variant that efficiently ex-
plores high-dimensional parameter spaces by mod-
eling promising regions. TPE constructs two
probabilistic density distributions, l(Θ) and g(Θ),
over the defense parameters Θ = {mi, αi, βi, ki},
where l(Θ) captures the likelihood of Θ yielding
high objective score Jtotal, and g(Θ) corresponds
to lower-score regions. At each iteration, TPE sam-
ples new candidates by maximizing the Expected
Improvement criterion (Jones, 2001):

Θnew = argmax
Θ

l(Θ)

g(Θ)
,

prioritizing parameters likely to outperform the
current best. The process begins with a warm-up
phase, where random evaluations establish a base-
line, followed by a density-guided search, which
iteratively refines l(Θ) and g(Θ) using historical
observations. This approach ensures efficient explo-
ration while mitigating local optima risks. By lever-
aging Optuna’s TPE implementation, the optimizer
adapts dynamically to Jtotal feedback, achieving
automated defense parameter optimization.

E.5 Comparison with other defense methods
We compared ABD with other defense methods in
terms of usability. We qualitively evaluated usabil-
ity based on extra computational complexity, extra
tokens, additional modules, and deployment diffi-
culty. The results are shown in Table 10. Com-
pared to other defense methods, ABD features no
additional token overhead and only constant-level
extra complexity. Besides, the operation is sim-
ple and straightforward, which further improves its
utility.

F Supplementary Illustration on
Experiments

F.1 Generation Configs
When conducting experiments, we directly utilize
most of the original configurations of all LLMs.
Specifically, we set max_new_tokens=128. We
find that the proper functioning of these LLMs
largely depends on the chat template of the inputs.
We apply chat templates in fastchat v0.2.36 by:

fastchat.model.
get_conversation_template(
template_name).

We set template_name="vicuna" for Vicuna-7B
and Vicuna-13B, template_name="llama-2" for
Llama-2, and template_name="qwen" for Qwen.

F.2 Jailbreak Methods
GCG-Individual and GCG-Universal (Zou
et al., 2023) are optimization-based jailbreak at-
tacks. They build towards an objective to repeat the
prompt affirmatively and optimize a suffix based
on a Greedy Coordinate Gradient-based search.
The model would likely repeat the prompt affirma-
tively and generate harmful content with the suffix
added behind the original prompt. GCG-Individual
focuses on generating a tailored suffix designed
specifically for a particular prompt. In contrast,
GCG-Universal seeks to identify a generalized suf-
fix that can be applied across multiple prompts,
enabling it to deceive the model in a broader range
of scenarios.

AutoDAN (Liu et al., 2024b) utilize a meticu-
lously designed hierarchical genetic algorithm and
generate stealthy jailbreak prompts. The generated
prompts are highly readable and transferable.

PAIR (Chao et al., 2023) is a jailbreak method
that leverages an attacker LLM aiming at making
the target LLM answer harmful prompts. The at-
tacker LLM iteratively queries the target LLM to
update and refine a candidate jailbreak prompt.

DeepInception (Li et al., 2023) proposes a sim-
ple method that uses the personification ability of
LLMs. It creates a virtual and layered scene, allow-
ing the model to find flexible ways to bypass usage
controls in normal situations.

F.3 Defense Methods
PPL (Alon and Kamfonas, 2023) discovers that
jailbreak prompts often lead to high perplexity val-
ues in LLMs. It, therefore, involves adding a clas-
sifier trained on perplexity and text length at the
end of LLMs. The classifier can serve as a filter to
avoid outputting potentially harmful answers.

Paraphrase (Jain et al., 2023) defense LLMs
by making them paraphrase their inputs, avoiding
deception caused by potential adversarial jailbreak
suffixes within original inputs.
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Extra
Complexity

Extra
Tokens

Extra
Modules

Deployment
Difficulty

Performance Utility

PPL O(t2)
Extra

Conversation GPT-2 Low Low Low

Paraphrase O(t2)
Extra

Conversation - Low Low Low

Retokenization O(t log t) - - Low Low Low

Self-Exam O(t2)
Extra

Conversation - Low Low Low

SafeDecoding O(t) - LoRA
Adapter High High Medium

Self-Reminder O(t2)
Extra

Instructions - Low Low Low

IA O(t2)
Extra

Conversation - Low High Medium

ABD (Ours) O(1) - Mathematical
Operation Low High High

Table 10: Empirical Comparison of Defenses. t is the length of input sequence.

Retokenization (Jain et al., 2023) disrupts adver-
sarial suffixes by retokenizing the input sequence,
breaking tokens apart, and re-representing them
with smaller tokens.

SafeDecoding (Xu et al., 2024) is a safety-aware
decoding strategy. It mitigates jailbreak attacks by
amplifying the probabilities of safety disclaimers
tokens among top-ranked tokens and attenuating
the probabilities of harmful token sequences, ensur-
ing LLMs generate helpful and harmless responses.

Self-Exam (Phute et al., 2023) triggers the
LLMs’ awareness of safety issues by adding a pre-
defined prompt template, asking LLMs to examine
if their outputs are safe.

Self-Reminder (Xie et al., 2023) defends the
LLMs by adding a system prompt specifically em-
phasizing potential safety issues to prevent the
model from outputting harmful responses.

Intention Analysis (Zhang et al., 2025) enhances
LLM safety by guiding the model to explicitly iden-
tify the essential intention of user queries and sub-
sequently generate policy-aligned responses to mit-
igate harmful outputs.

F.4 Metrics
F.4.1 Calculating DSR
We use Dic-Judge (Zou et al., 2023) to calculate
DSR. Dic-Judge detects the presence of pre-defined
refusal strings in the outputs of LLMs. Given a

jailbreak query as input, if a particular refusal string
is detected in the outputs, we consider the model
successfully refuses to answer the question, thereby
achieving the goal of defense; otherwise, the model
is deemed to be deceived by the jailbreak inputs.
DSR is defined as follows:

DSR =
|{responses containing refusal strings}|

|{input jailbreak queires}| .

We adopt refusal strings as proposed by Xu et al.
(2024), presented in Table 11.

F.4.2 Calculating Overall Scores
We use Runtime per Query and overall averaged
Just-Eval scores to calculate overall scores:

Overall =
[
1−Norm(t) + Norm(Avg.)

]
/2,

where t is Runtime per Query and Avg. represents
overall averaged Just-Eval scores. Here, Norm(x)
denotes the normalization of a metric x, calculated
as x divided by the sum of x and the corresponding
values for all reference groups.

G Supplementary Experiments

G.1 Scale Up Baselines and Data
To further strengthen our evaluation, we expanded
the jailbreak test samples from the initial 50-
behavior subset to the full AdvBench (5̃20 sam-
ples) and applied the jailbreak method from Section
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Refusal Strings

I’m sorry
Sorry
I am sorry
I apologize
As an
As an AI
I’m an
I’m just
As a language model
As an Assistant
I cannot
I do not
It is not</s>
It is not appropriate
I’m unable to
I am unable to
I am not allowed to
I am an AI language model

Table 11: Refusal strings.

3.2 for a more intuitive observation. The defense
performances on Vicuna-7B-v1.3 are presented
in Table 8.The results remain consistent with Ta-
ble 1, reaffirming ABD’s strong defense capability
against various stealthy jailbreak methods.

G.2 Full Results on Qwen and Vicuna-13B
The results are shown in Table 9. ABD remains
performing decent on other sizes of models. Be-
sides, in Vicuna-13B, 6 out of 9 selected layers are
early and intermediate layers (layer 2, 11, 14, 19,
26, 29), and in Qwen, 2 out of 3 layers (layer 5,
14). This supports our interpretations of jailbreak
mechanisms, as well as the conclusion that early
and middle layers are most vulnerable to jailbreaks,
basically hold in larger and smaller models.
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Figure 7: Activation spaces from layer 0 to layer 14.

25396



Layer 15

Layer 18

Layer 21

Layer 24

Layer 27

Layer 16

Layer 19

Layer 22

Layer 25

Layer 28

Layer 17

Layer 20

Layer 23

Layer 26

Layer 29

Figure 8: Activation spaces from layer 15 to layer 29.
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Figure 9: Activation spaces from layer 30 to layer 31.
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