
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 25347–25364
July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

Efficient Ensemble for Fine-tuning Language Models on Multiple Datasets

Dongyue Li† Ziniu Zhang† Lu Wang‡ Hongyang R. Zhang†

†Northeastern University, Boston, MA
‡University of Michigan, Ann Arbor, MI

Abstract

This paper develops an ensemble method
for fine-tuning a language model to multiple
datasets. Existing methods, such as quantized
LoRA (QLoRA), are efficient when adapting
to a single dataset. When training on multi-
ple datasets of different tasks, a common setup
in practice, it remains unclear how to design
an efficient adaptation for fine-tuning language
models. We propose to use an ensemble of mul-
tiple smaller adapters instead of a single adapter
per task. We design an efficient algorithm that
partitions n datasets into m groups, where m is
typically much smaller than n in practice, and
train one adapter for each group before taking
a weighted combination to form the ensem-
ble. The algorithm leverages a first-order ap-
proximation property of low-rank adaptation to
quickly obtain the fine-tuning performances of
dataset combinations since methods like LoRA
stay close to the base model. Hence, we use
the gradients of the base model to estimate its
behavior during fine-tuning. Empirically, this
approximation holds with less than 1% error on
models with up to 34 billion parameters, lead-
ing to an estimation of true fine-tuning perfor-
mances under 5% error while speeding up com-
putation compared to base fine-tuning by 105
times. When applied to fine-tune Llama and
GPT models on ten text classification tasks, our
approach provides up to 10% higher average
test accuracy over QLoRA, with only 9% more
FLOPs. On a Llama model with 34 billion
parameters, an ensemble of QLoRA increases
test accuracy by 3% compared to QLoRA, with
only 8% more FLOPs.

1 Introduction

Parameter-efficient fine-tuning has emerged as an
efficient approach to adapting a large language
model (LLM) to a downstream application. In prac-
tice, one often runs into a situation where the eval-

Email correspondence to {li.dongyu, zhang.zini,
ho.zhang}@northeastern.edu and wangluxy@umich.edu.

uation criterion involves a mix of many datasets or
tasks. Thus, it would be desirable to have a fine-
tuning method that can deliver robust performance
in the presence of multiple training datasets. Di-
rectly applying a base fine-tuning method such as
low-rank adaptation (Hu et al., 2021) or adapter-
tuning (Houlsby et al., 2019) can lead to negative
interference across tasks, as the optimal adapter
weights for different datasets can conflict with each
other (Wu et al., 2020; Yang et al., 2020). In this
paper, we study the design of ensemble methods for
parameter-efficient fine-tuning of language models
in the presence of multiple datasets.

Besides being a common problem for evaluating
LLMs (Hendrycks et al., 2021), other cases where
the above problem arises include fine-tuning trans-
former models on human behavior data and cog-
nitive psychology benchmarks (Coda-Forno et al.,
2024), as well as reinforcement learning (Sodhani
et al., 2021), and embodied reasoning such as task
and motion planning.

One natural approach to the above problem
would be to first pre-train a shared adapter on all
the datasets and then fine-tune this adapter specifi-
cally on each dataset, akin to the paradigm of multi-
task pretraining followed by supervised fine-tuning
(namely MTL-FT in short) (Wang et al., 2019b;
Liu et al., 2019). However, this would increase the
computational overhead by a factor of two (one
for pretraining and the other for task-specific fine-
tuning), which would be costly when the dataset
sizes are large. Directly using a parameter-efficient
fine-tuning method such as LoRA (Hu et al., 2021)
or QLoRA (Dettmers et al., 2023) can lead to nega-
tive transfer as the weights between the low-rank
factors trained on one dataset can differ from an-
other (See Section 2.1 for our experiments confirm-
ing this point).

A key technical challenge to ensure robust gen-
eralization across n datasets is to understand the
relationship between the n datasets when they are

25347

Adapters𝜃1

𝑆1

𝑆2

𝑆𝑘

𝜽⋆

…

Designing an ensemble of adapters

𝒟1 𝒟2 𝒟𝑛 …

Base language model

𝜽⋆

Input: 𝑛 downstream datasets

Output: An ensemble of 𝑚 adapters

on a base pretrained language model

𝑤1

𝜃2 𝜃𝑚

𝑤2

…

𝑤𝑚

Weighted combination

መ𝜃𝑆1

መ𝜃𝑆2

መ𝜃𝑆𝑘

𝜃1
(0)

𝜃1
(𝑡1)

𝜃𝑚
(0)

𝜃𝑚
(𝑡𝑚)

Extra gradient

boosting steps

Projected

gradients

𝑤1 𝑤𝑚

… …

…

Weighted combination

1

2
3

𝑛

…

1 2 3 𝑛…

1

3

2
𝑛

𝐺1

𝐺𝑚

Task

affinities

…

Task affinity grouping for LM fine-tuning

Base language model

𝜽⋆

Figure 1: Left: We propose an ensemble method for fine-tuning language models on multiple datasets. Given n
datasets and a base adaptation method such as LoRA, we design an ensemble of adapters that applies weighted
averaging to their outputs, with minimal computation and memory overhead to the base method. Middle: We
partition n datasets into m groups based on the task affinities scores. Our method first estimates fine-tuning
performances on multiple dataset combinations, S1, S2, . . . , Sk, by evaluating the gradients of the adapter weights
at θ⋆. For each subset Si, we estimate the fine-tuned adapter weights θ̂Si

by solving a regression problem, using
the projected gradients within Si as features. This leads to an n by n task affinity matrix T , where Ti,j is the
affinity score computed from the estimates (see equation (1)). We then partition the n datasets into m groups with
a clustering algorithm applied to T . In practice, m is usually much smaller than n. Right: We design an adapter
ensemble by fine-tuning one adapter per group and further refining it with a few gradient-boosting steps. This
overall procedure incurs little computational overhead, as we will describe in Table 1.

trained on top of an LLM. In this vein, one might
also use influence functions (Koh and Liang, 2017),
which would require scaling up influence compu-
tation to subsets of dataset combinations. Recent
developments in data modeling (Ilyas et al., 2022)
show that by randomly sampling subsets of data,
one can estimate the influence of adding or remov-
ing one sample from the dataset upon the trained
model efficiently (Park et al., 2023; Li et al., 2023).
Inspired by this line of work, we propose an effi-
cient estimation of model fine-tuning performances
without performing any fine-tuning. We begin by
noting that for fine-tuning transformer models such
as Llama and GPT, the (low-rank) adapter weights
typically stay very close to the base model (≈ 0.2%
evaluated on a Llama model with 34 billion param-
eters). Thus, one can expand the loss using first-
order Taylor’s expansion around the initialization
and then use the gradients measured at the base
model to approximate model fine-tuning behavior.
Empirically, we find that this approximation incurs
less than 5% error for a variety of fine-tuning meth-
ods, including LoRA, adapter-tuning, quantized
LoRA, and quantized adapter.

Provided with efficient estimation of fine-tuning
performances on dataset combinations, we then de-
sign an ensemble of low-rank adapters. At a high
level, given n datasets, our algorithm first parti-
tions the n datasets into m similar groups (where
m is typically much less than n). Concretely, we

achieve this based on a task affinity matrix that we
estimated using the above first-order approxima-
tion property. Then, we fine-tune one adapter in
each group, leading to m adapters in total. We fur-
ther refine the adapters by applying a few gradient-
boosting steps to reduce the loss of groups with
the highest training losses. Importantly, except for
computing the gradients at the base model, which
we use during the estimation, the rest of this proce-
dure can be done entirely on CPUs. Additionally,
the memory overhead is now roughly m times the
size of each adapter. See Figure 1 for an illustration
of our approach.

We extensively validate our approach, showing
its broad applicability in boosting a base fine-tuning
method with little computational overhead. First,
we show that our estimation method approximates
fine-tuning losses within 5% relative error while
reducing computation by 105× compared to ac-
tual fine-tuning. Second, for fine-tuning Llama
models across ten tasks from SuperGLUE, our ap-
proach improves QLoRA’s average test accuracy
by 10%, incurring only 9% additional computa-
tion and 9 GB additional memory. Compared to
two commonly used methods (Liu et al., 2019;
Fifty et al., 2021), our method achieves similar
accuracy with 45% less computation and mem-
ory. Further, we scale our approach to a feder-
ated learning setting with 500 datasets, observing
qualitatively similar results. Finally, we analyze

25348

Approach Runtime Memory

Base fine-tuning T A
Pre-train then fine-tune ≈ 2T nA
Our ensemble method T +G MA

Table 1: A summary of the runtime and memory usage
by our approach. T is the runtime of the base fine-tuning
method; G is the cost of evaluating the gradients once
for all the samples at the base model. In practice, T
is usually much higher than G. A is the memory used
by one adapter, including activation memory. M is the
number of adapters in the ensemble.

the generalization of low-rank adapters by mea-
suring their empirical generalization errors and
their sharpness. We find that small-rank LoRA
adapters consistently yield the lowest generaliza-
tion errors across tasks. An ensemble of low-
rank adapters further reduces generalization errors
compared to one adapter of the same size. We
provide the code implementation of this work at
github.com/VirtuosoResearch/EnsembleLoRA.

2 Methods

We now describe our approach to designing an
ensemble of adapters that applies to any base adap-
tation method. Our method quickly partitions n
datasets into m groups. Then, we train one adapter
for each group, with the option of adding a few
additional adapters via gradient boosting. Finally,
we take a weighted combination of all the adapters
as the ensemble output.

2.1 Preliminaries

We present a case study by fine-tuning Llama-3-
8B on SuperGLUE (Wang et al., 2019a). We col-
lect ten datasets, covering five categories of sen-
tence completion (COPA, H-SWAG, and Story
Cloze datasets), natural language inference (CB
and RTE), coreference resolution (WSC and Wino-
grande), question answering (BoolQ and MultiRC),
and word sense disambiguation (WiC). We evalu-
ate LoRA, adapter, QLoRA (Dettmers et al., 2023),
and quantized adapter (QAdapter). In particu-
lar, QLoRA applies 4-bit quantization to the base
model, with LoRA added to the quantized base
model. We evaluate memory usage with a batch
size of 4 with a sequence length of 512.

First, we compare (i) fine-tuning one model on
each single task and (ii) fine-tuning one model on
each pairwise combination of one task with the

other nine tasks. When using full fine-tuning, we
observe that for 20 (out of 45 pairs), (ii) performs
worse than (i). For LoRA and adapter, this in-
creases to 27 and 24. For QLoRA and Qadapters,
this further increases to 33 and 35, respectively.

Second, we show that an ensemble of adapters
can improve task performance but can increase
memory cost. For each method, we train one
adapter on all tasks and fine-tune it on each in-
dividual task initialized from the pretrained adapter.
Then, we apply a weighted combination to the out-
puts of all adapters to form the ensemble. With
QLoRA, the ensemble boosts accuracy by 10.8%
over a single QLoRA adapter. With QAdapter, it
improves accuracy by 9.5%. However, this uses 4
times more memory since it combines the outputs
from 10 adapters simultaneously.

The observations indicate that a single adapter
underperforms full fine-tuning due to interference
between different datasets. If we use a separate
adapter for each dataset, the overhead is propor-
tional to training n adapters. Thus, the key chal-
lenge of adapting an LLM to multiple datasets is to
reduce this overhead in a computationally efficient
way. We propose to achieve this by grouping sim-
ilar datasets so that we can share one adapter for
each group of datasets.

2.2 Task affinity grouping for LM fine-tuning

The first step of our approach is to partition the
n given datasets into m disjoint subsets based on
their affinities trained on top of a language model.
We estimate affinity scores between dataset i and
j for every i, j ∈ {1, 2, . . . , n} as follows. Let S
be a subset of datasets containing i and j. Denote
fi(S) as the fine-tuning performance on dataset i
(e.g., validation loss) using all the datasets in S.
Let the task affinity score between i and j be:

Ti,j =
1

ni,j

∑

Sk:i∈Sk,j∈Sk

fi(Sk), (1)

where {Sk} are subsets sampled from {1, . . . , n}
and ni,j is the number of random subsets that con-
tain both i, j. This score is analogous to the feature
importance scores in random forests.

Computing Ti,j requires fine-tuning the model
on multiple subset combinations. Instead, we de-
sign an algorithm to estimate fi(S), which can run
on CPUs and deliver estimation results for fine-
tuning billion-parameter models in seconds. The
key idea is based on the observation that fine-tuned

25349

https://github.com/VirtuosoResearch/EnsembleLoRA

adapters stay close to the base model. Thus, ap-
plying a first-order Taylor’s expansion to the base
model loss yields a negligible error, which allows
us to approximate fine-tuning performance using
gradients calculated on the base model.

We now measure the relative distance from
the fine-tuned model weights to the base model,
i.e., ∥X−θ⋆∥

F
∥θ⋆Full∥F

, where X is parameter of the fine-
tuned adapter, θ⋆ is the initialized parameter of
the adapter, and θ⋆Full is the parameter of the entire
pretrained model. As shown in Table 2, we find
that the relative distance remains less than 0.2%
on average, across LoRA, adapter, QLoRA, and
QAdapter on random data subsets.

Table 2: We report the distance between fine-tuned
model weights relative to the base model. The results
are averaged over 50 sampled task subsets of size 3.

Llama-3-1B Llama-3-3B Llama-3-8B

LoRA 0.16±0.04% 0.14±0.02% 0.12±0.02 %
QLoRA 0.18±0.02% 0.16±0.03% 0.11±0.02 %
Adapter 0.09±0.03% 0.05±0.01% 0.08±0.02 %
QAdapter 0.11±0.03% 0.08±0.03% 0.07±0.01 %

A gradient-based estimation algorithm: Let the
output of a neural network be given by hX(s, y),
where s is an input such as a sentence and y is
the ground-truth label. Suppose that X ∈ Rp is
the trainable parameter in an adapter. The Taylor’s
expansion of hX(s, y) centered at θ⋆ is given as:

hX(s, y) ≈ hθ⋆(s, y) + [∇Xhθ⋆(s, y)]
⊤(X − θ⋆)

+ ϵs.

Next, we evaluate the magnitude of ϵs relative to
hX(s, y) and report the results in Figure 2. We il-
lustrate the error for six language models with up to
34 billion parameters. We find that for both Llama
and GPT-J models, the approximation error is less
than 1% in all cases. For QLoRA and QAdapter,
the approximation error is less than 3%.

Since the approximation error is small, we next
apply it to approximate the model loss. We will
illustrate the case for log loss with binary classi-
fication, and the same idea applies to other types
of loss functions. Let y ∈ {+1,−1}. Recall the
log loss is log (1 + exp (−y · hX(s, y))). Define
bs = −y · hθ⋆(s, y) and gs = ∇hθ⋆(s, y). Using
Taylor’s expansion without the higher-order terms,
we approximate hX(s, y) as:

ℓ̂(X) = log
(
1 + exp

(
b− y · g⊤(X − θ⋆)

))
.

0 3 6 9 12 15
Parameters (Billion)

0.000

0.002

0.004

0.006

A
p

p
ro

x.
E

rr
or

LoRA

0 3 6 9 12 15
Parameters (Billion)

0.000

0.002

0.004

0.006

A
p

p
ro

x.
E

rr
or

QLoRA

0 3 6 9 12 15
Parameters (Billion)

0.00

0.01

0.02

0.03

A
p

p
ro

x.
E

rr
or

Adapter tuning

0 3 6 9 12 15
Parameters (Billion)

0.00

0.01

0.02

0.03

A
p

p
ro

x.
E

rr
or

QAdapter

Llama

GPT-J

Figure 2: We report the approximation error for Llama
and GPT-J models with up to 34 billion parameters for
LoRA, QLoRA, adapter, and QAdapter. We report the
average and the standard deviation based on the results
from 50 randomly sampled task subsets of size 3.

For a subset S ⊆ {1, 2, . . . , n} with training sam-
ples denoted as DS , we estimate fine-tuned adapter
weights by minimizing averaged ℓ̂(X) on DS :

θ̂S ← argmin
X∈Rp

1

nS

∑

(s,y)∈DS

ℓ̂(X).

Using θ̂S , we evaluate the estimated fine-tuning
performance f̂i(S) for every task i ∈ S. Then, we
apply this estimation for k random subsets sampled
from [n] to compute Ti,j for every i and j. This
forms a n× n task affinity matrix T .

Given T , we apply a clustering algorithm to par-
tition n datasets into m groups. The clustering
objective maximizes the average density of scores
within clusters, which is solved based on semi-
definite programming relaxations. Additionally,
we use a trace regularization term to determine the
number of groups m. See details in Appendix A.
Let G1, G2, . . . , Gm denote the resulting groups.

In summary, we only need to compute the gra-
dients on all the training samples once at the base
model. For each subset, the estimation solves a
regression problem based on the gradients. A ran-
dom projection is used to reduce the dimension of
the gradients down to a few hundred, which prov-
ably preserves the Euclidean geometry between
the gradient vectors.1 The task affinity grouping
procedure is presented in Algorithm 1.

1This can be achieved using the Johnson-Lindenstrauss
Lemma. After projecting the dimension of the gradients down
to several hundred, solving each logistic regression problem
will only take a few seconds on a CPU.

25350

Algorithm 1 Efficient task affinity grouping for
language model fine-tuning
Input: n training/validation datasets
Require: Pretrained model hθ⋆ , number of subsets
k, and projection dimension d

1: {S1, S2, . . . , Sk} ← sample a list of subsets
from {1, 2, . . . , n} with a fixed size

2: P ← p by d Gaussian random matrix
3: for (s, y) ∈ D{1,2,...,n} do
4: g̃s ← P⊤∇hθ⋆(s, y) ▷ project the gradient
5: bs ← −y · hθ⋆(s, y)
6: end for
7: for S ∈ {S1, S2, . . . , Sk} do
8: X̂d ← solve a regression problem based

on (g̃s, bs, y) for all (s, y) ∈ DS

9: θ̂S ← θ⋆ + PX̂d ▷ restore the dimension
10: f̂i(S)← evaluate hθ̂S on the validation

set for each i ∈ S
11: end for
12: T ← compute an n by n matrix T following

equation (1)
13: {G1, G2, . . . , Gm} ← apply a clustering

algorithm on T to obtain a partition of n tasks
14: Return G1, G2, . . . , Gm

2.3 Designing an ensemble of adapters
The second step of our approach is to compute
an adapter ensemble based on the m groups com-
puted above. We first fine-tune one adapter on
tasks in each group, yielding m adapters denoted
as θ(0)1 , θ

(0)
2 , . . . , θ

(0)
m .

Next, we apply b gradient boosting steps to re-
duce the loss of groups with high training losses.
At each step i, we choose a group Gji from
G1, G2, . . . , Gm that has the largest training error,
where ji is the index of the group chosen at step i.
Suppose there are tji adapters for group Gji . We
then fit a new adapter to predict 1− ps (the nega-
tive gradient of log loss), where ps is the correct
class prediction probability of the current model on
a sample (s, y), by minimizing the mean squared
loss on group Gji :

min
X

1

nGji

∑

(s,y)∈DGji

(
1− ps − hX(s, y))

)2
.

We approximate the above loss based on the gra-
dient estimation, leading to the following linear
regression on group Gji :

ℓ̂(X) =
(
1− ps − hθ⋆(s, y)− g⊤s (X − θ⋆)

)2
.

Algorithm 2 ENSEMBLELORA (Ensemble of
Low-Rank Adapters for multiple datasets)
Input: n training/validation datasets
Require: Pretrained model hθ⋆ , number of subsets
k, projection dimension d, boosting steps b

1: G1, G2, . . . , Gm ← apply Algorithm 1 to the
n input datasets

2: θ
(0)
1 , . . . , θ

(0)
m ← Fine-tune one adapter for

each group in G1, . . . , Gm

3: for i = 1, . . . , b do ▷ Boosting steps
4: Gji ← select the group with the highest

training loss, where ji is the group index
5: θ

(0)
ji

, . . . , θ
(tji)

ji
← get all the tji + 1

adapters currently in Gji

6: θ
(tji+1)

ji
← estimate an adapter to fit the

negative gradients of samples in DGji

7: end for
8: w1, w2, . . . , wm ← train the weights for

combining outputs of each group of adapters
9: Return

{
θ
(0)
i , . . . , θ

(ti)
i , wi

}m

i=1

Let the minimizer of the above averaged over Gji

be denoted as θ
(tji+1)

ji
. After obtaining this new

adapter, we add it along with θ
(0)
ji

, . . . , θ
(tji)

ji
to

form the ensemble for group Gi. The prediction for
this group is based on adding all the outputs from
the ensemble. In our ablation study of applying the
boosting procedure on three groups of ten tasks,
we found that the first boosting step alone reduces
training error by 18%, leading to 0.4% average test
accuracy improvement for tasks in one group.

The final ensemble contains a total of M =
m+ b adapters. We then train the weights to form
a weighted combination of the m groups. Along
with the first step, we summarize the complete pro-
cedure in Algorithm 2.

3 Experiments

We evaluate our approach to answer the following
questions. How accurate are the gradient-based
estimates relative to the actual fine-tuning losses?
What is the trade-off between performance, compu-
tation cost, and memory overhead between a base
fine-tuning method and its ensemble?

As a summary of our empirical findings, we
show that our approach estimates fine-tuning losses
within 5% error while using 105× less computa-
tion than actual fine-tuning. For fine-tuning Llama
models on SuperGLUE, ENSEMBLELORA boosts

25351

the accuracy of QLoRA and QAdapter by up to
10%, with 9% additional computation and 9 GB
extra memory usage. Compared with pretraining
followed by fine-tuning, our approach yields com-
parable performance, reducing computation and
memory both by 45%. Our approach can scale to
500 datasets and remains comparable to pretraining
followed by fine-tuning, reducing computation by
90% and memory by 91%.

3.1 Experimental setup
Our approach applies to a wide range of parameter-
efficient fine-tuning methods. For a representa-
tive evaluation, we focus on the results of using
QLoRA, while the results of other methods are
quantitatively similar and are deferred to Appendix
3. We fine-tune language models on ten NLP
tasks from SuperGLUE. All the tasks are evalu-
ated as classification tasks. The test accuracy is
computed with the provided development set. We
then split 10% of the training set as the validation
set. The statistics of the datasets are summarized
in Table 4. We use Llama-3.1-8B and CodeLlama-
34B-Instruct as the base model. With a base fine-
tuning protocol, we compare our approach against:
Base fine-tuning, which trains a single adapter on
the combined set of datasets; pretraining followed
by fine-tuning (MTL-FT) (Liu et al., 2019), which
performs multitask pretraining and then fine-tunes
task-specific adapters from the pretrained adapter;
task affinity grouping (TAG) (Fifty et al., 2021).

For each baseline, we assess the test accuracy
averaged over all tasks. The error rate is defined
as one minus the average test accuracy. We mea-
sure the computational cost as the total number of
floating point operations (FLOPs) and the memory
cost as the GPU during the inference phase of the
model, tested on two Nvidia A6000 GPUs. In our
approach, we sample k = 200 task subsets of size
3. We vary the number of groups m between 2 to 6
and the number of b between 1 to 4. We provide a
complete list of other training parameters used by
our approach in Appendix B.

3.2 Estimation results
We first evaluate the accuracy of Algorithm 1 in
estimating fine-tuning losses. Since the first-order
approximation incurs a negligible error in model
outputs, we show that the estimated fine-tuning
performance f̂i(S) closely matches the actual per-
formance fi(S). Using test accuracy as the metric,
we measure the relative error between f̂i(S) and

Table 3: We evaluate the error between estimated and
true fine-tuning performances computed on 50 random
task subsets. We report the speedup rate between the
number of FLOPs used in our approach to full fine-
tuning. d is the projection dimension in Algorithm 1.

d Llama-3-1B Llama-3-3B Llama-3-8B Speedup

200 8.2% 8.1% 7.0% 105×
400 4.7% 4.8% 4.3% 105×
800 4.6% 4.4% 4.2% 105×

1019 1020

FLOPs

10

14

18

22

E
rr

or
ra

te
%

Full FT

LoRA

QLoRA

MTL-FT

TAGOurs

QLoRA

Fu
ll

FT
TAG

LoR
A

M
TL-

FT

Q
LoR

A
O
ur

s
1018

1019

1020

#
F

L
O

P
s

QLoRA

20 40 60 80
GPU Memory (GB)

10

14

18

22
E

rr
or

ra
te

%

Full FT

LoRA

QLoRA

MTL-FT
Ours

QLoRA

Fu
ll

FT

M
TL-

FT
TAG

LoR
A

Q
LoR

A
O
ur

s
0

20

40

60

G
P

U
M

em
or

y
(G

B
) QLoRA

Figure 3: We compare error rate (one minus accuracy),
computation cost, and memory usage across our ap-
proach and baselines when fine-tuning Llama-3-8B on
ten NLP tasks. MTL-FT refers to first fine-tuning a
shared LoRA on all the datasets, and then fine-tuning
the low-rank adapter on each dataset, while Full FT
refers to full fine-tuning of the entire model. Our ap-
proach boosts the test accuracy of QLoRA by 10% on
average, only incurring 8% additional computation and
9 GB more memory. It performs on par with the best
baseline with 45% less FLOPs.

fi(S) over 50 randomly sampled subsets of size 3.
For the computation cost, we compare the number
of FLOPs between actual full fine-tuning and that
required in our estimation procedure. We experi-
ment with Llama-3-1B, 3B, and 8B models, and
vary the projected gradient dimension d between
200, 400, and 800.

Table 3 presents the results. Our approach
achieves a relative error within 9%, using 105×
less computation than full fine-tuning. We observe
that increasing d beyond 400 reduces the relative
error to under 5%, so we set d = 400 in our experi-
ments. Additionally, we observe that our approach
can achieve up to 0.6 correlation scores with the
true fine-tuning performances.

In particular, our approach uses 6.5 × 1016,
4.9 × 1016, and 3.2 × 1016 FLOPS, when using

25352

Table 4: We report the test accuracy (%) of our method, as compared with baselines. We also compute the average
test accuracy across ten NLP datasets, along with the number of FLOPs and memory usage for fine-tuning Llama-3-
8B using QLoRA. We run each experiment with three random seeds and report the standard deviations.

BoolQ CB COPA H-SWAG MultiRC Story Cloze Winogrande

Average
Accuracy

Number of
FLOPs

GPU
Memory

Train 4,242 225 360 17,957 12,259 841 4,161
Validation 471 25 40 1,995 1,362 188 462
Test 3,270 56 100 10,042 4,848 1871 1267
classes 2 3 2 4 2 2 2

Full FT 87.6±0.9 93.2±0.7 92.0±1.0 93.2±0.6 86.4±0.2 94.2±0.5 75.1±0.2 84.6±0.9 6.0×1019 73.0GB
LoRA 84.5±0.2 87.7±0.8 92.0±2.0 93.4±0.3 82.1±0.2 92.9±0.3 60.7±0.4 81.6±0.8 2.7×1019 21.5GB
QLoRA 82.0±0.5 83.7±0.7 90.0±2.0 92.3±0.3 84.2±0.8 91.5±0.7 55.1±0.3 78.6±1.2 4.3×1018 12.6GB
MTL-FT 89.9±0.2 100±0.0 95.0±0.5 93.9±0.4 89.6±0.1 98.0±0.5 84.4±0.3 89.4±0.5 8.6×1018 39.1GB
TAG 88.5±0.4 100±0.0 94.0±0.5 92.1±0.3 89.1±0.7 96.3±0.4 80.1±0.8 88.1±0.8 4.3×1019 21.4GB
Ours 89.9±0.9 100±0.0 94.0±1.0 93.5±0.3 89.1±0.3 97.1±0.1 82.0±0.5 88.6±0.6 4.7×1018 21.4GB

Llama-3-8B, 3B, and 1B models, respectively. Per-
forming actual fine-tuning requires 6.8 × 1018,
5.1 × 1018, 3.4 × 1018, respectively. The speed-
up ratio is computed between these two sets of
results. Recall that our approach involves first eval-
uating the gradients of all training samples at the
base model, and then solving logistic regression on
the projected gradients for each subset. The gradi-
ent evaluation takes over 80% of the computation.
The speed-up is calculated by the ratio between
the runtime of actual fine-tuning relative to gradi-
ent evaluation, which remains consistent across the
three models.

3.3 Experimental results

We illustrate the comparison of ENSEMBLELORA
with baselines in Figure 3. We report the evalua-
tion results in Table 4. Compared to QLoRA fine-
tuning, our approach improves accuracy by 10%
with only 8% additional computation and 9 GB
more memory. Compared to pretraining followed
by fine-tuning and task grouping, it achieves com-
parable performance while reducing computation
and memory both by 45%. Further, our approach
improves over full fine-tuning by 4.0%, with only
92% less computational cost and 52 GB less mem-
ory. Additionally, our approach also improves the
base QAdapter fine-tuning method by 9% accu-
racy, using 8% additional computation and 10 GB
more memory. The quantitative results of using
QAdapter are reported in Appendix B.

We also apply our approach to a CodeLlama-
34B model using QLoRA as the base method. We
observe an improved accuracy by 3.0%, while in-
curring only 8% additional computation and 29 GB
more memory. Compared to pretraining followed
by fine-tuning, ENSEMBLELORA maintains com-
parable accuracy while reducing computation by

46% and memory from 66 GB to 28 GB.

Determining the ensemble size. We find that the
test accuracy stabilizes after m reaches 3, so we
report results using three clusters. We also find that
a single boosting step suffices to reduce training
error by 18%, resulting in a 0.4% increase in the
average test accuracy across tasks. This leads to an
ensemble of 4 adapters. In general, we choose m
that maximizes the average density of task affinity
scores within clusters, as it correlates with test ac-
curacy in practice. Moreover, the boosting step b is
determined by the point where the training loss no
longer decreases, which can depend on the number
of groups. For settings of fewer groups, a single
step is often sufficient. Once task affinity is esti-
mated, selecting these parameters takes only a few
seconds, since no fine-tuning is involved.

Extension. We apply our approach to federated
learning on a dataset with 500 tasks, where each
speaking role in a play represents a distinct task
(client). Data is split 80% for training and 20% for
testing. We use QLoRA for fine-tuning, Llama-3-
1B as the base model, and the Federated Averaging
algorithm. We sample 2,000 subsets of size 10,
varying the number of task groups m from 10 to
30 and boosting steps b from 1 to 10.

Our approach reduces test loss over QLoRA by
over 9%, while only using 8% additional com-
putation and 15 GB more memory. Compared
to pretraining followed by fine-tuning, ENSEM-
BLELORA gives comparable test losses while re-
ducing computation by 90% and memory by 91%.

4 Generalization of Low-rank Adaptation

Next, we analyze the generalization behavior of
low-rank adaptations and their ensembles. Our
findings reveal that relatively small adapters often

25353

4 16 64 256
Rank

0.3

0.6

0.9

Error (RTE)

4 16 64 256
Rank

0.0

0.3

0.6

Errors (COPA)

4 16 64 256
Rank

0.0

3.0

6.0

Traces× 10−5 (RTE)

4 16 64 256
Rank

0.0

4.0

8.0

Traces× 10−5 (COPA)

(a) Varying the rank of QLoRA

1 2 4 8
k

0.3

0.6

0.9

Errors (RTE)

1 2 4 8
k

0.0

0.3

0.6

0.9
Errors (COPA)

1 2 4 8
k

0

1.0

2.0

3.0

Traces× 10−5 (RTE)

1 2 4 8
k

0

2.0

4.0

6.0

Traces× 10−5 (COPA)

(b) Varying ensemble size

4 16 64 256
Rank

0.3

0.6

0.9

Error (RTE)

LoRA

QLoRA

4 16 64 256
Rank

0.0

0.3

0.6

Errors (COPA)

4 16 64 256
Rank

0.0

3.0

6.0

Traces× 10−5 (RTE)

LoRA

QLoRA

4 16 64 256
Rank

0.0

4.0

8.0

Traces× 10−5 (COPA)

(c) Comparing LoRA and QLoRA

Figure 4: Illustrating the empirical generalization errors and sharpness measures with respect to QLoRA weights.
(4a) Smaller adapters with a rank of 16 achieve the lowest generalization errors. Additionally, the Hessian trace
values correlate with generalization errors, suggesting that smaller adapters tend to converge to flatter minima. (4b)
An ensemble of k adapters leads to lower generalization errors and Hessian traces. Here, we fix the sum of the
dimensions of k adapters to be equal to 256. (4c) QLoRA, which is trained on a quantized base model, yields lower
generalization errors and Hessian trace values compared to LoRA.

achieve the best generalization performance. Addi-
tionally, ensembles of adapters yield lower gener-
alization errors than individual adapters. We also
observe that adapters trained on quantized models
exhibit smaller generalization errors compared to
those trained on full-precision models.

In more detail, we evaluate a sharpness mea-
sure based on the trace of the Hessian of the loss.
Previous work has shown that this Hessian-based
measure closely correlates with empirical general-
ization errors (Ju et al., 2022), which is derived
from the PAC-Bayes generalization framework
(Neyshabur et al., 2018). Specifically, we eval-
uate the trace of the loss’s Hessian with regard to
the adapter weights. Then, we compute the maxi-
mum of the trace over the training data points. A
smaller trace value suggests a flatter loss landscape.
We measure the empirical generalization error, de-
fined as the difference between the test loss and the
training loss of a fine-tuned model. Results for eval-
uating the largest eigenvalue of the loss Hessian as
the sharpness measure are quantitatively similar.

For a base fine-tuning method, we vary the rank
of adapter weights between 4, 16, 64, and 256 in
fine-tuning Llama-3-8B. For adapter ensembles,
we set a total rank of k adapters as 256. Then, we
fine-tune k individual adapters with 256/k rank
and ensemble them through weighted averaging.
We vary k between 2, 4, and 8 (beyond which the
ensemble exceeds the maximum memory limit).
Additionally, we compare the generalization errors
of fine-tuning adapters on the full-precision model
(LoRA) and the 4-bit quantized model (QLoRA).

We fine-tune LoRA adapters on two NLP tasks,
including RTE and COPA.
♢ Figure 4a shows the results of varying the rank

of LoRA and QLoRA. We find that using a small-
sized adapter with a rank of 16 typically achieves
the smallest generalization error. Moreover, the
Hessian-based sharpness measure correlates with
the empirical generalization errors, suggesting that
a smaller adapter tends to find a fatter minimum.
We find that the results are consistent for other
datasets and for adapter tuning, which are shown
in Appendix B.5.
♢ Next, shown in Figure 4b, for ensembles of k

adapters, we find that the ensemble of two adapters
reduces the generalization errors by 44% and the
sharpness measure by 74% on average. Increasing
k further reduces the generalization errors. Sim-
ilarly, the Hessian-based sharpness measure also
correlates with generalization errors. This justi-
fies the improved generalization performance of
ensembles of adapters in our previous experiments.
♢ Lastly, shown in Figure 4c, we also notice that

QLoRA, which is trained on the quantized model,
yields lower generalization errors than those on the
full precision language model. The generalization
error and Hessian traces of QLoRA are 34% and
51% lower than LoRA on average.

5 Related Work

Parameter-efficient fine-tuning adapts LLMs by ei-
ther fine-tuning a small subset of parameters or
introducing new trainable parameters. Adapter
tuning (Houlsby et al., 2019) inserts two feedfor-

25354

ward layers per transformer layer, with one for
down-projection and another for up-projection of
the hidden representations. Prefix tuning (Li and
Liang, 2021; Lester et al., 2021) involves prepend-
ing small, continuous task-specific soft prompts to
input embeddings. LoRA (Hu et al., 2021) op-
timizes a low-rank decomposition of parameter
updates with regard to pretrained model weights.
Building on the individual tuning methods, Chen
et al. (2023) propose an automatic parameter alloca-
tion algorithm to assign individual tuning methods
to different parameter groups. Additionally, quanti-
zation can be used to reduce the memory costs of
LoRA (Dettmers et al., 2023) by training on top
of a 4-bit quantized LLM. LQ-LoRA (Guo et al.,
2024) employs mixed-precision quantization to fur-
ther reduce the memory cost, using integer linear
programming to dynamically configure bit alloca-
tion. We refer readers to recent surveys for further
references (Ding et al., 2023).

Several studies have explored training multiple
adapters on top of LLMs. AdaMix (Wang et al.,
2022) uses a mixture of adaptation modules per
Transformer layer on a single dataset. AdaMix first
trains the mixture using routing techniques from
mixture-of-expert architectures (Fedus et al., 2022)
and combines adapter weights through weight av-
eraging (Wortsman et al., 2022). Similarly, there
has been work on training a sparse mixture of soft
prompts, using a gating mechanism to activate spe-
cific prompts per sample. Mini-ensemble of LoRA
adapters (Ren et al., 2024) uses fewer trainable pa-
rameters while maintaining a higher rank of LoRA
adapters to improve the performance of LoRA.

In the presence of multiple datasets, there has
been work on fitting transformers that learns hyper-
networks that generate adapters for every layer,
which condition on task, adapter position, and layer
within a transformer model. AdapterFusion (Pfeif-
fer et al., 2021) uses a group of adapters for multi-
ple prediction tasks, by first learning task-specific
adapters and then combining adapters with a cross-
attention module to fuse the representations com-
puted from each adapter.

Different notions of generalization in LLMs have
been explored, including out-of-distribution gen-
eralization (Koh et al., 2021). There has been
work on designing meta-learning algorithms for
prompt tuning, enabling a single prompt to gener-
alize across multiple datasets. Another relevant no-
tion is cross-lingual generalization. Muennighoff
et al. (2023) study prompted fine-tuning with mul-

tilingual instructions for zero-shot learning. Liu
et al. (2023) propose scheduled unfreezing to miti-
gate catastrophic forgetting in multilingual adapter
fine-tuning.

Supervision and representation strategies for
language understanding have been well explored.
Kozareva et al. (2011) enhance class-instance la-
beling using instance-instance graph propagation,
showing that instance-level connections improve
label coverage. Arora et al. (2016) explain the lin-
ear algebraic structures observed in word embed-
dings using a latent variable model that links partial
mutual information with random walk dynamics.
Karamanolakis et al. (2024) introduce a framework
to combine rule extraction with expert feedback for
efficient weak supervision. Min et al. (2023) survey
pretrained language models, outlining fine-tuning,
prompting, and generation paradigms along with
their strengths and challenges.

A series of works have used gradient similar-
ity to measure task similarity. Xia et al. (2024)
propose selecting a subset of instruction data for
targeted fine-tuning by computing gradient-based
influence scores and selecting data with high co-
sine similarity to the target task. Park et al. (2023)
introduce a scalable data attribution method that
approximates model prediction losses on other data
samples when adding or removing individual train-
ing samples. Li et al. (2024b,a) use gradients from
a meta initialization to approximate fine-tuning loss
and apply the estimates to select auxiliary tasks to
jointly fine-tune with the target task. Inspired by
these works, we conduct the first comprehensive
study of linearization in parameter-efficient fine-
tuning methods. We also propose an adapter en-
semble that combines task clustering with gradient
boosting.

6 Conclusion

This paper presents an ensemble method of low-
rank adapters for adapting language models across
multiple datasets. First, we develop an efficient
task affinity grouping algorithm, with a first-order
approximation for estimating task affinities and a
clustering step to partition tasks into groups. Then,
we construct an ensemble for groups of tasks, con-
sisting of adapters fine-tuned on each group with
additional boosting steps. Our method consistently
improves fine-tuning performance with minimal
computational overhead. Lastly, we analyze the
sharpness measures of low-rank adapters.

25355

Acknowledgments

Thanks to the anonymous referees and the action
editor for their constructive feedback. The work
of D. Li, Z. Zhang, and H. Zhang is partly sup-
ported by NSF award IIS-2412008. D. Li was
also partially funded by a PhD fellowship from
JPMorgan Chase & Co. Any views or opinions ex-
pressed herein are solely those of the authors listed,
and may differ from those expressed by JPMorgan
Chase & Co. or its Affiliates.

Limitations

Our approach requires full access to model weights
and gradients. Estimating fine-tuning performance
without direct access to internal parameters re-
mains an open question. This could involve explor-
ing gradient-free optimization methods for closed-
source models like GPT-4 and Gemini. Moreover,
while our study focuses on multiple fixed datasets,
other scenarios require dynamically adapting to
new incoming tasks, such as in continual learning.
Extending our work to actively manage a dynamic
set of adapters could be a promising direction. Be-
sides, our analysis of sharpness measures for gen-
eralization performance leaves open the question
of their applicability to out-of-distribution gener-
alization or adversarial robustness in NLP models,
which may be worth considering in future work.

Broader Implications

This paper examines the problem of adapting lan-
guage models to multiple datasets. While the use of
language models may have potential societal conse-
quences in the future, there are no specific concerns
arising from our work. Due to the technical nature
of this paper, there are no direct implications for
potential negative impacts.

References
Sanjeev Arora, Yuanzhi Li, Yingyu Liang, Tengyu Ma,

and Andrej Risteski. 2016. A latent variable model
approach to pmi-based word embeddings. Transac-
tions of the Association for Computational Linguis-
tics (TACL), 4:385–399.

Jiaao Chen, Aston Zhang, Xingjian Shi, Mu Li, Alex
Smola, and Diyi Yang. 2023. Parameter-efficient fine-
tuning design spaces. In International Conference
on Learning Representations (ICLR).

Julian Coda-Forno, Marcel Binz, Jane X Wang, and Eric
Schulz. 2024. CogBench: a large language model

walks into a psychology lab. In International Con-
ference on Machine Learning (ICML), pages 9076–
9108.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and
Luke Zettlemoyer. 2023. QLoRA: Efficient fine-
tuning of quantized llms. Advances in Neural In-
formation Processing Systems (NeurIPS), 36:10088–
10115.

Ning Ding, Yujia Qin, Guang Yang, Fuchao Wei, Zong-
han Yang, Yusheng Su, Shengding Hu, Yulin Chen,
Chi-Min Chan, Weize Chen, Jing Yi, Weilin Zhao, Xi-
aozhi Wang, Zhiyuan Liu, Hai-Tao Zheng, Jianfeng
Chen, Yang Liu, Jie Tang, Juanzi Li, and Maosong
Sun. 2023. Parameter-efficient fine-tuning of large-
scale pre-trained language models. Nature Machine
Intelligence.

William Fedus, Barret Zoph, and Noam Shazeer. 2022.
Switch transformers: Scaling to trillion parameter
models with simple and efficient sparsity. Journal of
Machine Learning Research (JMLR), 23(120):1–39.

Chris Fifty, Ehsan Amid, Zhe Zhao, Tianhe Yu, Rohan
Anil, and Chelsea Finn. 2021. Efficiently identifying
task groupings for multi-task learning. In Advances
in Neural Information Processing Systems (NeurIPS),
volume 34, pages 27503–27516.

Han Guo, Philip Greengard, Eric P Xing, and Yoon Kim.
2024. Lq-LoRA: Low-rank plus quantized matrix de-
composition for efficient language model finetuning.
In International Conference on Learning Representa-
tions (ICLR).

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou,
Mantas Mazeika, Dawn Song, and Jacob Steinhardt.
2021. Measuring massive multitask language under-
standing. In International Conference on Learning
Representations (ICLR).

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,
Bruna Morrone, Quentin De Laroussilhe, Andrea
Gesmundo, Mona Attariyan, and Sylvain Gelly.
2019. Parameter-efficient transfer learning for NLP.
In International Conference on Machine Learning
(ICML), pages 2790–2799.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. 2021. LoRA: Low-rank adaptation of
large language models. In International Conference
on Learning Representations (ICLR).

Andrew Ilyas, Sung Min Park, Logan Engstrom, Guil-
laume Leclerc, and Aleksander Madry. 2022. Data-
models: Predicting predictions from training data.
In International Conference on Machine Learning
(ICML).

Haotian Ju, Dongyue Li, and Hongyang R Zhang. 2022.
Robust fine-tuning of deep neural networks with
hessian-based generalization guarantees. In Inter-
national Conference on Machine Learning (ICML),
pages 10431–10461.

25356

Giannis Karamanolakis, Daniel Hsu, and Luis Gravano.
2024. Interactive machine teaching by labeling rules
and instances. Transactions of the Association for
Computational Linguistics (TACL), 12:1441–1459.

Pang Wei Koh and Percy Liang. 2017. Understand-
ing black-box predictions via influence functions.
In International Conference on Machine Learning
(ICML), pages 1885–1894.

Pang Wei Koh, Shiori Sagawa, Henrik Mark-
lund, Sang Michael Xie, Marvin Zhang, Akshay
Balsubramani, Weihua Hu, Michihiro Yasunaga,
Richard Lanas Phillips, Irena Gao, Tony Lee, Etienne
David, Ian Stavness, Wei Guo, Berton Earnshaw, Im-
ran Haque, Sara M Beery, Jure Leskovec, Anshul
Kundaje, Emma Pierson, Sergey Levine, Chelsea
Finn, and Percy Liang. 2021. WILDS: A benchmark
of in-the-wild distribution shifts. In International
Conference on Machine Learning (ICML), pages
5637–5664.

Zornitsa Kozareva, Konstantin Voevodski, and
Shanghua Teng. 2011. Class label enhancement via
related instances. In Empirical Methods in Natural
Language Processing (EMNLP), pages 118–128.

Brian Lester, Rami Al-Rfou, and Noah Constant. 2021.
The power of scale for parameter-efficient prompt
tuning. In Empirical Methods in Natural Language
Processing (EMNLP), pages 3045–3059.

Dongyue Li, Huy L Nguyen, and Hongyang R Zhang.
2023. Identification of negative transfers in multitask
learning using surrogate models. Transactions on
Machine Learning Research (TMLR).

Dongyue Li, Aneesh Sharma, and Hongyang R Zhang.
2024a. Scalable multitask learning using gradient-
based estimation of task affinity. In ACM SIGKDD
Conference on Knowledge Discovery and Data Min-
ing (KDD), pages 1542–1553.

Dongyue Li, Ziniu Zhang, Lu Wang, and Hongyang R
Zhang. 2024b. Scalable fine-tuning from multiple
data sources: A first-order approximation approach.
In Findings of the Association for Computational
Linguistics: EMNLP 2024, pages 5608–5623.

Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning:
Optimizing continuous prompts for generation. In
Association for Computational Linguistics and In-
ternational Joint Conference on Natural Language
Processing (ACL / ICLNLP), pages 4582–4597.

Chen Cecilia Liu, Jonas Pfeiffer, Ivan Vulić, and
Iryna Gurevych. 2023. Improving generalization
of adapter-based cross-lingual transfer with sched-
uled unfreezing. In North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies (NAACL), pages 1998–2015.

Xiaodong Liu, Pengcheng He, Weizhu Chen, and Jian-
feng Gao. 2019. Multi-task deep neural networks for
natural language understanding. In Association for
Computational Linguistics (ACL), pages 4487–4496.

Bonan Min, Hayley Ross, Elior Sulem, Amir
Pouran Ben Veyseh, Thien Huu Nguyen, Oscar Sainz,
Eneko Agirre, Ilana Heintz, and Dan Roth. 2023.
Recent advances in natural language processing via
large pre-trained language models: A survey. ACM
Computing Surveys, 56(2):1–40.

Niklas Muennighoff, Thomas Wang, Lintang Sutawika,
Adam Roberts, Stella Biderman, Teven Le Scao,
M Saiful Bari, Sheng Shen, Zheng-Xin Yong, Hai-
ley Schoelkopf, Xiangru Tang, Dragomir Radev, Al-
ham Fikri Aji, Khalid Almubarak, Samuel Albanie,
Zaid Alyafeai, Albert Webson, Edward Raff, and
Colin Raffel. 2023. Crosslingual generalization
through multitask finetuning. In Association for Com-
putational Linguistics (ACL), pages 15991–16111.

Behnam Neyshabur, Srinadh Bhojanapalli, and Nathan
Srebro. 2018. A PAC-Bayesian approach to
spectrally-normalized margin bounds for neural net-
works. In International Conference on Learning Rep-
resentations (ICLR).

Sung Min Park, Kristian Georgiev, Andrew Ilyas, Guil-
laume Leclerc, and Aleksander Madry. 2023. TRAK:
Attributing model behavior at scale. In International
Conference on Machine Learning (ICML), pages
27074–27113.

Jonas Pfeiffer, Aishwarya Kamath, Andreas Rücklé,
Kyunghyun Cho, and Iryna Gurevych. 2021.
Adapterfusion: Non-destructive task composition for
transfer learning. In European Chapter of the Associ-
ation for Computational Linguistics: Main Volume
(EACL), pages 487–503.

Pengjie Ren, Chengshun Shi, Shiguang Wu, Mengqi
Zhang, Zhaochun Ren, Maarten de Rijke, Zhumin
Chen, and Jiahuan Pei. 2024. MELoRA: Mini-
ensemble low-rank adapters for parameter-efficient
fine-tuning. In Association for Computational Lin-
guistics (ACL), pages 3052–3064.

Shagun Sodhani, Amy Zhang, and Joelle Pineau. 2021.
Multi-task reinforcement learning with context-based
representations. In International Conference on Ma-
chine Learning (ICML), pages 9767–9779.

Alex Wang, Yada Pruksachatkun, Nikita Nangia, Aman-
preet Singh, Julian Michael, Felix Hill, Omer Levy,
and Samuel Bowman. 2019a. SuperGLUE: A stick-
ier benchmark for general-purpose language under-
standing systems. In Advances in Neural Information
Processing Systems (NeurIPS).

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R. Bowman. 2019b.
GLUE: A multi-task benchmark and analysis plat-
form for natural language understanding. In Inter-
national Conference on Learning Representations
(ICLR).

Yaqing Wang, Subhabrata Mukherjee, Xiaodong Liu,
Jing Gao, Ahmed Hassan Awadallah, and Jian-
feng Gao. 2022. Adamix: Mixture-of-adapter for
parameter-efficient tuning of large language models.

25357

In Empirical Methods in Natural Language Process-
ing (EMNLP), pages 5744–5760.

Mitchell Wortsman, Gabriel Ilharco, Samir Ya Gadre,
Rebecca Roelofs, Raphael Gontijo-Lopes, Ari S Mor-
cos, Hongseok Namkoong, Ali Farhadi, Yair Carmon,
Simon Kornblith, and Ludwig Schmidt. 2022. Model
soups: averaging weights of multiple fine-tuned mod-
els improves accuracy without increasing inference
time. In International Conference on Machine Learn-
ing (ICML), pages 23965–23998.

Sen Wu, Hongyang R Zhang, and Christopher Ré. 2020.
Understanding and improving information transfer in
multi-task learning. In International Conference on
Learning Representations (ICLR).

Mengzhou Xia, Sadhika Malladi, Suchin Gururangan,
Sanjeev Arora, and Danqi Chen. 2024. LESS: Se-
lecting influential data for targeted instruction tuning.
In International Conference on Machine Learning
(ICML), pages 54104–54132.

Fan Yang, Hongyang R Zhang, Sen Wu, Christopher
Ré, and Weijie J Su. 2020. Precise high-dimensional
asymptotics for quantifying heterogeneous transfers.
arXiv preprint arXiv:2010.11750.

25358

A Omitted Details about Our Approach

Notations. We provide a list of mathematical nota-
tions for reference:

• S: A subset of {1, 2, . . . , n}.

• fi(S): The performance of a model fine-tuned
on tasks in S, evaluated on task i.

• θ⋆: The vectorized model weights of the pre-
trained initialization.

• θ̂S : The vectorized model weights fine-tuned
on a subset of tasks S.

• hθ⋆(s, y): Model output given an input pair
s, y.

• ∇hX(s, y): Vectorized gradients of model
output with respect to model weights X .

• Ti,j : The average performance of fi(S) over
multiple subsets S that include task i, for ev-
ery i = 1, 2, . . . , n.

• ji: The index of the group chosen at step i of
the boosting procedure.

• Gji : The group of tasks chosen at step i of the
boosting procedure.

• tji : The number of adapters with in the group
Gji fit in the gradient boosting procedure.

A.1 Clustering algorithms
We now describe a clustering algorithm to partition
the n tasks into k disjoint subsets. Given an n by
n task relevance score matrix T , we will find a
clustering that maximizes the average density of all
clusters. Concretely, let C1, . . . , Ck be a disjoint
partition of [n]. Let v1, . . . , vk be a 0-1 vector
indicating whether a task is in one cluster. The
average density of this clustering can be written as:

1

k

k∑

i=1

v⊤i Tvi
v⊤i vi

.

This integral objective is NP-hard to optimize in
general.

We design a Semi-Definite Programming (SDP)
relaxation and then round the SDP solution to a
clustering. Let us denote the assignment variables
as an n × k matrix V , such that each entry Vi,j

indicates whether a task i belongs to a cluster j,
for every i = 1, . . . , n, j = 1, . . . , k. Moreover,

let the jth column of V , which is the characteristic
vector of the j-th cluster, be denoted as vj . Under
this assignment, the sum of Vi,j across any task i
must be one, as we allow one task to be assigned in
a single group. By contrast, the sum of Vi,j across
Cj is the number of tasks assigned to Cj , which is
at least one.

Let e denote the all-ones vector. We state an
integer program to maximize the average density
of all k clusters as follows

max
V ∈Rn×k

〈
T,

1

k

k∑

j=1

vjv
⊤
j

v⊤j vj

〉

V e = e,
n∑

i=1

Vi,j ≥ 1, for 1 ≤ j ≤ k

Vi,j ∈ {0, 1} , for 1 ≤ i ≤ n, 1 ≤ j ≤ k.

Note that viv⊤i is a rank-one semidefinite matrix.
Let us denote the sum of them (normalized by
v⊤i vi) as the following new variable

X =

k∑

j=1

vjv
⊤
j

v⊤j vj
.

X has rank k since it is the sum of k rank-1 ma-
trices, and the vi’s are orthogonal to each other.
Additionally, its trace is equal to k because the

trace of
vjv

⊤
j

v⊤j vj
is one for any j. Second, one can

verify that the entries of every row of X sum up
to one. Removing the 0-1 integer constraint and
regularizing the number of clusters, we derive the
problem as

max
X∈Rn×n

⟨T,X⟩+ λTr[X]

Xe = e

X ≥ 0, X ⪰ 0.

where λ is a hyperparameter for regularization.
This leads to a convex program, which can be
solved efficiently.

Given a solution of the SDP, denoted as X̂ , the
last step is to round X̂ into an integer solution. We
set a threshold λ such that if X̂u,v ≥ λ, tasks u and
v are assigned to the same cluster. In the experi-
ments, we set λ as c/n for a constant c ≥ 1, since
X̂u,v should be 1

|Ci| when they are in the same clus-
ter with |Ci| < n. Thus, the intra-cluster distance
must always be at least λ with the assignment.

25359

A.2 Boosting algorithms

In each step of our boosting procedure, it picks
the group with the largest training error, denoted
as Gji . Then, compute the negative gradient w.r.t.
current model predictions for each sample in the
group (s, y) ∈ DGji

:

− ∂L
∂h(s, y)

= 1− p,

where p is the current prediction probability for
the correct class label of sample i. Then, we fit
an adapter θ(t+1)

ji
to the combined data set of DGji

,
mapping the input sample s to the negative gradi-
ents 1− p in regression. Update the current ensem-
ble h

(t+1)
ji

(s, y) = h
(t)
ji
(s, y) + ηh

θ
(t+1)
ji

(s, y).

After multiple steps, the algorithm returns the
final ensemble for one group:

h(s, y) = h
θ
(0)
ji

(s, y) + η

b∑

t=1

h
θ
(t)
ji

(s, y).

We use η as 0.1. Note that we use one group as an
example. We apply the boosting procedure to m
groups in our approach.

Extension to AdaBoost: In a similar sense, we
can apply AdaBoosting to boost adapters. At each
iteration, the sample weights are modified, and a
new adapter is trained on the reweighted training
samples. Denote the error rate of h(t) at iteration
t as err(m). Denote α(t) = log 1−err(t)

err(t)
. The train-

ing samples that are misclassified by the classifier
h(t−1) have their weights increased exponentially
by err(t):

w
(t)
i ← w

(t−1)
i exp

(
α(t)1

(
yi ̸= hθ(m)(si, yi)

))

In our setup, weights can be assigned to separate
tasks instead of single tasks. We use parameter-
efficient fine-tuning to fit each model, such as
LoRA and Adapters. At each iteration, a new
model is fit on a reweighted version of the training
dataset. Similarly, the first-order approximation
can be applied to this case by solving a reweighted
version of logistic regression on gradients. There-
fore, we can also leverage Algorithm 1 to fit the
adapter weights in each new model quickly.

A.3 Computation and memory costs

The computation cost of our approach involves:

• O(n) gradient evaluation of all the tasks and
solving logistic regression on M random sub-
sets.

• Fine-tuning m adapters, each on a cluster of
tasks. The combination of m task groups is n
tasks.

• Applying b iterations of gradient boosting on
the adapters, which computes O(n) gradients
of the existing model’s outputs.

Thus, Algorithm 2 involves O(n) computation in
the number of forward and backward passes. This
is comparable to training a single multitask model
on all tasks. We report the exact computation cost
of our approach in experiments.

As for the memory, Algorithm 2 uses the mem-
ory for maintaining m+ b adapter models and one
base model.

B Omitted Experiments

B.1 List of models and datasets

We experiment with the following models: Llama-
3.2-1B, Llama-3.2-3B, GPT-J-6B, Llama-3.1-8B,
Llama-2-13B, and CodeLlama-34B-Instruct.

The datasets used in our experiments include Su-
perGLUE, HellaSwag, Story Cloze, WinoGrande
and the Shakespeare dataset. We refer readers to
their respective web pages for a detailed descrip-
tion of the dataset statistics. Due to computational
constraints, we use 50% of the training set for train-
ing and sample 10% of it for validation. We report
the test accuracy on the development set provided
by the datasets.

B.2 Results for first-order approximation

We report the first-order approximation error for
the outputs of fine-tuned language models by vary-
ing the fine-tuning distance from 0.05% to 0.25%
across six pretrained language models in Table 5.

We report the correlation score between the esti-
mated and true fine-tuning performances. We ob-
serve that our approach yields a correlation score
up to 0.6, evaluated on the results of 50 randomly
sampled subsets of size 3, across three Llama mod-
els of size up to 8 billion. The results are evaluated
across d between 200, 400, and 800.

B.3 Results on adapter tuning

Fine-tuning Llama-8B with QAdapter. In this
section, we report additional evaluation results by

25360

https://huggingface.co/meta-llama/Llama-3.2-1B
https://huggingface.co/meta-llama/Llama-3.2-1B
https://huggingface.co/meta-llama/Llama-3.2-3B
https://huggingface.co/EleutherAI/gpt-j-6b
https://huggingface.co/meta-llama/Llama-3.1-8B
https://huggingface.co/meta-llama/Llama-2-13b-hf
https://huggingface.co/meta-llama/CodeLlama-34b-Instruct-hf
https://super.gluebenchmark.com/
https://super.gluebenchmark.com/
https://rowanzellers.com/hellaswag/
https://cs.rochester.edu/nlp/rocstories/
https://winogrande.allenai.org/
https://huggingface.co/datasets/flwrlabs/shakespeare

Table 5: We evaluate the first-order approximation errors within the fine-tuning region close to the model pre-trained
initialization. We measure the fine-tuned distance as ∥X−θ⋆∥

F

∥θ⋆
Full∥F

. We evaluate the RSS error between hX(s, y) and
the first-order approximation using the pretrained model weights θ⋆. To ensure the statistical significance of these
results, we report the average over 50 random task subsets.

Distance/RSS Llama-3.2-1B Llama-3.2-3B GPT-J-6B Llama-3.1-8B Llama-2-13B

Full-precision pretrained model with LoRA fine-tuning

0.05% 9.1±3.1 × 10−4 6.7±3.3 × 10−4 4.5±0.8 × 10−5 3±0.3 × 10−5 2.5±1.1 × 10−3

0.10% 1.9±0.4 × 10−3 9.1±3.9 × 10−4 4.9±0.9 × 10−5 6±0.9 × 10−5 8.2±0.4 × 10−3

0.15% 3.4±1.2 × 10−3 1.6±0.9 × 10−3 5.2±1.3 × 10−5 3±0.6 × 10−4 3.1±0.0 × 10−3

0.20% 5.0±1.1 × 10−3 2.3±0.8 × 10−3 1.3±1.0 × 10−4 4±0.4 × 10−4 3.3±2.2 × 10−3

0.25% 5.4±1.0 × 10−3 5.2±2.0 × 10−3 1.4±0.6 × 10−4 5±0.4 × 10−4 2.3±1.2 × 10−2

4-bit quantized pretrained model with Quantized LoRA (QLoRA) fine-tuning

0.05% 1.7±0.5 × 10−4 2.0±0.9 × 10−4 1.0±0.4 × 10−4 1.2±1.1 × 10−3 2.9±0.3 × 10−3

0.10% 5.6±2.8 × 10−4 2.1±1.0 × 10−4 1.9±0.2 × 10−4 1.4±0.4 × 10−3 3.3±0.7 × 10−3

0.15% 1.0±0.5 × 10−3 6.2±1.9 × 10−4 2.5±2.3 × 10−4 5.3±4.2 × 10−3 4.6±0.4 × 10−3

0.20% 2.0±0.5 × 10−3 1.1±0.5 × 10−3 2.8±0.6 × 10−4 3.7±2.4 × 10−3 4.9±1.0 × 10−3

0.25% 2.2±0.9 × 10−3 1.7±0.7 × 10−3 4.3±2.5 × 10−4 1.3±0.9 × 10−2 6.8±0.7 × 10−3

Distance/RSS Llama-3.2-1B Llama-3.2-3B GPT-J-6B Llama-3-8B Llama-2-13B

Full-precision pretrained model with adapter tuning

0.05% 8.9±3.0 × 10−3 1.4±0.1 × 10−2 3.5±0.8 × 10−3 1.3±0.2 × 10−6 7.7±1.1 × 10−7

0.10% 1.5±1.0 × 10−2 1.9±0.8 × 10−2 2.8±1.3 × 10−3 1.4±0.1 × 10−6 1.2±0.8 × 10−6

0.15% 2.1±1.1 × 10−2 1.8±1.0 × 10−2 3.4±0.8 × 10−3 1.9±0.4 × 10−6 1.4±0.1 × 10−6

0.20% 2.1±0.5 × 10−2 2.0±0.7 × 10−2 4.1±0.7 × 10−3 2.2±1.6 × 10−6 1.5±0.8 × 10−6

0.25% 7.0±1.1 × 10−2 7.5±6.4 × 10−2 6.9±6.7 × 10−3 2.9±1.9 × 10−6 1.5±0.7 × 10−6

4-bit quantized pretrained model with quantized adapter (QAdapter) tuning

0.05% 7.0±1.7 × 10−3 1.5±0.2 × 10−2 6.7±0.0 × 10−7 3.0±1.6 × 10−6 1.8±0.3 × 10−6

0.10% 1.1±0.9 × 10−2 1.7±0.8 × 10−2 7.3±0.8 × 10−7 3.1±0.8 × 10−6 2.1±1.4 × 10−6

0.15% 1.1±0.9 × 10−2 1.8±0.6 × 10−2 8.0±0.5 × 10−7 5.4±3.4 × 10−6 2.2±1.8 × 10−6

0.20% 1.4±0.5 × 10−2 1.9±0.5 × 10−2 8.8±1.1 × 10−7 6.1±6.4 × 10−6 1.8±0.4 × 10−6

0.25% 1.5±0.6 × 10−2 4.0±1.9 × 10−2 1.1±0.2 × 10−6 9.1±9.6 × 10−6 2.5±0.6 × 10−6

using QAdapter as the base fine-tuning protocol
in our ensemble method. Figure 5 presents the re-
sults of using QAdapter. Our approach improves
QAdapter accuracy by 9%, incurring 8% more
computation and increasing memory from 9GB
to 19GB. Compared to MTL-FT and task grouping,
it achieves similar accuracy while reducing compu-
tation by 46% and memory from 43GB to 19GB.
Against full fine-tuning, it lowers computation by
96% and memory by 74%, while improving test
accuracy by 1%.

Next, we report the full comparison in fine-
tuning LLama-3-8B on ten NLP tasks using
QAdapter and fine-tuning CodeLlama-34B-Instruct
using QLoRA in Table 6.

For the hyperparameters, in all our experiments,
we fine-tune models with AdamW with a learn-
ing rate 2e−5 for ten epochs. For LoRA, we set
the LoRA rank to 4. For Adapters, we set the re-
duction ratio to 256. These are determined by a
hyperparameter search via cross-validation.

B.4 Clustering based on gradient similarities

There has been a line of work on using gradient
similarity to measure task similarity. In particular,
Park et al. (2023) proposed a scalable data attri-
bution method to quantify the influence of adding
or removing one sample on the prediction of the
other samples. Their approach also uses JL to re-
duce the dimension of the gradient features before
solving each logistic regression. Xia et al. (2024)
designed a method to select a small subset of in-
struction data for targeted instruction tuning on a
target task. Their method computes gradient-based
influence scores by comparing low-dimensional
projected gradients from multiple model check-
points in a warmup training phase. Then, they
select data based on cosine similarity to target task
gradients.

It should be worth emphasizing that our ap-
proach adds very little overhead relative to these
gradient similarity-based methods, since we only
need to compute the gradients at the base model

25361

Table 6: We report the test accuracy (%) of our method, as compared with baselines. We also compute the average
test accuracy across ten NLP tasks, along with the number of FLOPs and memory usage. We report the results of
fine-tuning CodeLlama-34B-Instruct using QLoRA. We run each experiment with three random seeds and report
the standard deviations.

BoolQ CB COPA H-SWAG MultiRC RTE Story Cloze WiC Winogrande WSC

Average
Accuracy

Number of
FLOPs

GPU
Memory

Train 4,242 225 360 17,957 12,259 1,120 841 2,442 4,161 498
Valid 471 25 40 1,995 1,362 200 188 270 462 56
Test 3,270 56 100 10,042 4,848 277 1871 638 1267 104
classes 2 3 2 4 2 2 2 2 2 2

QLoRA 91.9±0.7 96.2±0.6 90.0±1.0 90.7±0.9 89.5±0.3 84.6±0.4 96.9±0.6 74.2±0.5 76.6±2.4 75.5±1.2 86.9±1.6 1.8×1019 18.6GB
MTL-FT 92.1±0.4 100±0.0 95.0±0.5 96.1±0.9 91.7±0.4 90.7±0.4 98.2±0.9 78.9±0.4 85.1±1.1 82.7±1.5 90.2±0.8 3.7×1019 65.8GB
Ours 92.1±0.4 100±0.0 94.0±1.5 94.3±0.4 90.7±0.4 88.0±0.7 98.1±0.8 74.1±0.6 84.3±1.5 76.9±1.4 89.9±0.9 1.9×1019 47.8GB

1018 1019 1020

FLOPs

15

20

25

E
rr

or
ra

te
%

Full FT

Adapter

QAdapter

MTL-FT

TAG
Ours

QAdapter

20 40 60 80
GPU Memory (GB)

15

20

25

E
rr

or
ra

te
%

Full FT

Adapters

QAdapters

MTL-FT
Ours

QAdapter

Fu
ll

FT
TAG

Ada
pt

er

M
TL-

FT

Q
Ada

pt
er

O
ur

s
1018

1019

1020

#
F

L
O

P
s

QAdapter

Fu
ll

FT

M
TL-

FT
TAG

Ada
pt

er

Q
Ada

pt
er

O
ur

s
0

20

40

60

G
P

U
M

em
or

y
(G

B
)

QAdapter

Figure 5: This figure compares the error rate (one average minus test accuracy), computation cost, and GPU memory
across our approach and baselines, for fine-tuning Llama-3-8B on ten NLP tasks with QAdapter.

once. It is an interesting question to further explore
the use of gradient similarity as a measure. In our
preliminary study, we find that by clustering the
tasks with their gradients, the (average) test accu-
racy remains 0.8% lower than our method. The
results are reported in Table 7.

In terms of how our work complements prior
works, first, we have measured the linearization
accuracy of parameter-efficient fine-tuning meth-
ods, including LoRA, Adapter tuning, quantized
LoRA (QLoRA), and QAdapter, on a wide range
of LLMs. Our empirical finding reinforces the be-
lief that, locally, the output of large models can be
accurately linearized, as these parameter-efficient
fine-tuning methods all stay very close to the base
pretrained model. Thus, the approximation error is
less than 3% relative to model outputs. This has not
been observed in prior works, including the work
of Park et al. (2023). Second, we designed an en-
semble method to use several low-rank adapters for
multiple datasets as opposed to a single (high-rank)
adapter for all datasets. This is complementary to
the work of Xia et al. (2024). Third, we conducted
extensive evaluations of our ensemble method in
various multitask settings. This is again comple-
mentary to both of these prior works.

B.5 Sharpness measurements

We observe similar evaluation of generalization er-
rors and sharpness measures on the BoolQ dataset.

We also notice consistent results of using QAdapter,
which are reported in Figure 6.

4 16 64 256
Rank

0.3

0.6

0.9

Errors (RTE)

4 16 64 256
Rank

0.0

4.0

8.0

Traces× 10−5 (RTE)

4 16 64 256
Rank

0.0

0.3

0.6

Errors (COPA)

4 16 64 256
Rank

0.0

0.5

1.0

Traces× 10−5 (COPA)

4 16 64 256
Rank

0.0

0.2

0.4

0.6
Errors (BoolQ)

4 16 64 256
Rank

0.0

1.0

2.0

3.0

Traces× 10−5 (BoolQ)

Figure 6: We show the empirical generalization er-
rors (termed Error in the figures) and estimated Hes-
sian traces of the loss for fine-tuned adapters (using
QAdapter on Llama-3-8B) across various hidden dimen-
sions. Smaller adapters achieve the lowest generaliza-
tion errors. Additionally, the Hessian trace values corre-
late with generalization errors, suggesting that smaller
adapters tend to converge to flatter minima.

B.6 Measuring transfer effects

Consider fine-tuning a foundation model to predict
n individual tasks. Given a fine-tuning protocol
such as QLoRA, denoted by f , and a subset of
tasks S ⊆ {1, 2, . . . , n}, let fi(S) represent the
loss value of the fine-tuned model evaluated on
task i, for any i ∈ S. We define the positive trans-
fer rate of f as follows. First, we say that tasks

25362

Table 7: We compare our method, which uses gradients to estimate fine-tuning performances, with using gradient
similarity for clustering tasks. We report the test accuracies in fine-tuning Llama-3-8B using QLoRA. We run each
experiment with three random seeds and report the standard deviations.

BoolQ CB COPA H-SWAG MultiRC RTE Story Cloze WiC Winogrande WSC

Clustering with gradient similarities 88.0±0.7 100±0.0 92.0±1.0 92.5±0.6 89.1±0.3 83.0±0.2 96.5±0.9 70.3±0.7 81.5±0.9 79.6±0.3

Clustering by task affinity scores (Ours) 89.9±0.9 100±0.0 94.0±1.0 93.5±0.3 89.1±0.3 85.7±0.3 97.1±0.1 69.9±0.9 82.0±0.5 79.8±2.2

S provide a positive transfer to task i if fi(S) is
lower than the single-task loss value of fi{i}. Oth-
erwise, we say that the transfer is negative. Then,
imagine a scenario where we examine a list of task
subsets S1, . . . , Sk (for instance, in the simplest
case, m could be 1 and S1 could include all the
tasks as S1 = {1, 2, . . . , n}). With this notion of
positive/negative transfer, we evaluate the positive
transfer rate averaged over the k subsets as:

1

k

k∑

j=1

∣∣ {i ∈ Sj : fi(Sj) < fi({i})}
∣∣

∣∣Sj

∣∣ .

With this definition in hand, next, we will examine
the transfer rate of various fine-tuning methods,
along with their memory usage. In a nutshell, we
observe that there is an intricate trade-off between
transfer and memory, as we will show below. Our
overall goal is to design a boosting system that
optimizes positive transfer on a base fine-tuning
protocol with minimal computation and memory
overhead.

Computational cost vs. transfer. We now re-
port the memory usage of various fine-tuning al-
gorithms. We evaluate the memory usage of an
ensemble of adapters, which involves using multi-
ple adapters and combining their outputs through
weighted averaging. Our findings using Llama-3-
8B as the base model (the results obtained with
other base models are qualitatively similar) are the
following. As expected, with full fine-tuning, mem-
ory size scales as 21.5 GB (size of Llama-8B) times
m. With PEFT, this reduces to 21.5 + 2.8(m− 1)
GB for LoRA and 21.5 + 6.5(m− 1) for adapter
tuning. Applying 4-bit quantization to the base
model further reduces the memory by 53% using
LoRA and 56% using adapter tuning.

Next, we report the transfer rates from the above
fine-tuning procedures. Recall that this depends
on the specification of the subsets. We first con-
sider k = 1 and S1 = {1, 2, . . . , n}. Interest-
ingly, we note that the transfer rate decreases with
(quantized) PEFT compared to full fine-tuning.
For full fine-tuning, the positive transfer rate is

109 1010 1011

FLOPs

0

25

50

75

N
eg

at
iv

e
tr

an
sf

er
%

Full FT

LoRA

QLoRA

MTL-FT

TAGOurs

50 100
GPU Memory (GB)

0

25

50

75

N
eg

at
iv

e
tr

an
sf

er
%

Full FT

LoRA

QLoRA

MTL-FT

Ours

(a) Using QLoRA with base protocol

1018 1019 1020

FLOPs

0

30

60

90

N
eg

at
iv

e
tr

an
sf

er
%

Full FT

Adapter

QAdapter

MTL-FT

TAGOurs

50 100
GPU Memory (GB)

0

30

60

90

E
rr

or
ra

te
%

Full FT

Adapters

QAdapters

MTL-FT

Ours

(b) Using QAdapter as base protocol

Figure 7: We illustrate the trade-off between trans-
fer, computation cost, and GPU memory between our
approach and baselines. ENSEMBLELORA achieves
the best trade-off between task transfers and computa-
tion/memory costs. This experiment uses Llama-3-8B
as the base model.

6/10 = 60%. With LoRA/adapter, this decreases
to 40%. For QLoRA and QAdapter, this further
decreases to 30% and 10%.

Next, we consider k = 45 and let the list of
subsets be {1, 2} , {1, 3} , . . . , {n− 1, n}, which
includes all pairwise combinations. We find that
for full fine-tuning, the positive transfer rate is 56%.
For LoRA/adapter, this decreases to 38% and 48%,
and 26% and 22% with quantization. In addition,
we consider f by averaging the weights of two
adapters, each trained on a single task. This further
reduces positive transfer across tasks.

Our approach also achieves the best trade-off
between the positive transfer rate and computa-
tion/memory cost, illustrated in Figure 7. Com-
pared to QLoRA and QAdapter, our approach con-
sistently boosts the positive transfer rates from 30%
to 80%. Our approach achieves a comparable pos-
itive transfer rate as MTL-FT (90%) and also im-
proves over the positive transfer rate of full model
fine-tuning by 60%.

Next, we report the cosine similarity score be-

25363

tween adapter weights to explain the decrease in
transfer rates. We use the base model Llama-3-
1B and evaluate fine-tuned QLoRA and QAdapter
weights. Given two weight matrices from two mod-
els, we compute the score between their rank-r
decompositions. For QLoRA, we apply the decom-
position to the weight matrix, ∆W = BA, with
the same rank as A, and average the scores over
layers. We measure the similarity between models
fine-tuned on random subsets S and the single-task
fine-tuned models, varying the size of S from 2
to 10. We also compute the scores using weight
averaging as f . As illustrated in Figure 8, for both
fine-tuning and weight averaging, the similarity
score becomes lower as the size of S increases.

2 4 6 8 10
|S|

0.1

0.2

0.3

C
os

in
e

si
m

ila
ri

ty

Weight averaging

QLoRA

2 4 6 8 10
|S|

0.1

0.3

0.5

C
os

in
e

si
m

ila
ri

ty

Weight averaging

QAdapter

Figure 8: We measure the average similarity between
models fine-tuned on random subsets S and single-task
models. We observe that the similarity score becomes
lower as the size of S increases.

25364

