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Abstract

Language models (LMs) rely on their paramet-
ric knowledge augmented with relevant con-
textual knowledge for certain tasks, such as
question answering. However, the contextual
knowledge can contain private information that
may be leaked when answering queries, and es-
timating this privacy leakage is not well under-
stood. A straightforward approach of directly
comparing an LM’s output to the contexts can
overestimate the privacy risk, since the LM’s
parametric knowledge might already contain
the augmented contextual knowledge. To this
end, we introduce context influence, a metric
that builds on differential privacy, a widely-
adopted privacy notion, to estimate the privacy
leakage of contextual knowledge during decod-
ing. Our approach effectively measures how
each subset of the context influences an LM’s
response while separating the specific paramet-
ric knowledge of the LM. Using our context
influence metric, we demonstrate that context
privacy leakage occurs when contextual knowl-
edge is out of distribution with respect to para-
metric knowledge. Moreover, we experimen-
tally demonstrate how context influence prop-
erly attributes the privacy leakage to augmented
contexts, and we evaluate how factors— such
as model size, context size, generation posi-
tion, etc.— affect context privacy leakage. The
practical implications of our results will inform
practitioners of the privacy risk associated with
augmented contextual knowledge.

1 Introduction

Language Models (LMs) can rely on two sources
of knowledge during generation: (1) parameteric
knowledge, which is information from the LM’s
pre-training corpora encoded within the model
parameters (Devlin et al., 2018; Radford et al.,

“Initial work conducted while interning at TikTok
¢) https://github.com/james-flemings/
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Figure 1: An illustration of properly measuring privacy
leakage of contextual knowledge by comparing output
distributions with and without sensitive information.

2019; Petroni et al., 2019); (2) contextual knowl-
edge, which is additional information passed into
the input prompt (Kwiatkowski et al., 2019; Joshi
et al., 2017). For certain downstream tasks, such
as question-answering, it is essential to augment
prompts containing a question/instruction with rele-
vant context for LMs. However, a recent concern is
that both the parametric and contextual knowledge
may contain private information. Prior work has
shown that privacy leakage of parametric knowl-
edge often occurs from memorized pre-training
data (Carlini et al., 2019). On the other hand, we
focus on the privacy leakage of augmented con-
texts, which can occur when an LM regurgitates
them (Wang et al., 2023; Priyanshu et al., 2023).

Consider the example shown in Figure 1. An
augmented context contains John Doe’s address,
and a user queries an LM asking for John Doe’s
address. If the output of the LM contains John
Doe’s address, then the straightforward approach
of comparing the output against the augmented
context would suggest there was privacy leakage
from the context. This privacy evaluation was per-
formed by prior works that studied data extraction
attacks in RAG systems by prompting LMs to re-

25092

Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 25092-25108

July 27 - August 1, 2025 ©2025 Association for Computational Linguistics


https://github.com/james-flemings/context_influence
https://github.com/james-flemings/context_influence

Current Generation
about aliens and

in a interview with Japanese defense minister, politician Antonio Inoki asked the defense minister

flying object
Antonio oki

never UFO

Next token UFO
I-gram influence
of context
encountered restrial
0.00 O.bZ 0,64 0.;36 O.EJS

Table 1: A heatmap-like example of how context influence measures privacy leakage of uni-gram tokens of a context
from CNN-DM on the next token generation of LLaMA 3 8B. The next token generated is "UFO," and expectedly,
the uni-gram with the highest leakage is "UFO." Interestingly, we see that words similar to "Japan" also strongly

influenced LLaMA, while "flying" and "object" did not.

gurgitate the context (Zeng et al., 2024; Qi et al.,
2024). However, suppose we re-query the LM but
remove (or mask out) John Doe’s address from the
context. If the LM still outputs John Doe’s address,
then surely the privacy leakage must derive from
the LM’s parametric knowledge. Hence, assuming
that augmented contexts are not contained in the
LM’s parametric knowledge, which may not hold
in practice (Golchin and Surdeanu, 2023; Deng
et al., 2023; Jiang et al., 2024), can overestimate
the privacy leakage. Indeed, our results in Section
4.2 demonstrates this. Thus, accurately measuring
context privacy leakage requires consideration of
the existing parametric knowledge of the LM.

Extensive research has examined how factors
such as model size, prompt length, and training or-
der contribute to the memorization and subsequent
privacy leakage of an LM’s parametric knowledge
(Carlini et al., 2021, 2022; Biderman et al., 2024,
Lesci et al., 2024). Howeyver, there is a lack of
understanding regarding the factors that cause pri-
vacy leakage of contextual knowledge. This is
challenging as it involves separating the contribu-
tions of an LLM’s parametric knowledge from the
augmented context (Longpre et al., 2021; Du et al.,
2024), which has implications for solutions that
adopt publicly pre-trained LMs to preserve privacy
of contexts (Utpala et al., 2023; Meisenbacher et al.,
2024; Flemings and Annavaram, 2024).

These above-mentioned observations motivate
the following fundamental research question:

How can one estimate the privacy leakage of
contextual information in a prompt given a specific
parametric knowledge embedded in an LM?

To answer this question, we make the following
contributions:

* We propose context influence, a metric to princi-
pally quantify the privacy leakage of contextual
information by measuring the output difference
with and without a subset of the context, exem-
plified in Table 1 with uni-grams. Context influ-
ence follows the analysis of differential privacy
(Dwork, 2006), a widely-adopted privacy notion.

* Then, using a slight reformulation of Context-
aware Decoding (Shi et al., 2023), we show that
context privacy leakage can be affected (1) explic-
itly when amplifying/deamplifying contextual
knowledge during decoding, and (2) implicitly
when contextual knowledge is out-of-distribution
with respect to parametric knowledge.

* Next, we experimentally show that our context in-
fluence metric properly attributes privacy leakage
to the augmented contexts (Section 4.2).

* Lastly, we experimentally evaluate how contex-
tual and parametric knowledge, model capacity,
context size, response position, and various con-
text subsets affect context privacy leakage (Sec-
tion 4.3 & 4.4).

2 Preliminaries

Let D = (dy, ..., dy) be a list of tokens d;, which
we denote as a context. Let py be an LM with
model parameters 6. We query pg with an instruc-
tion x for D to generate a response y. Specifically,
we sample the response autogregressively from the
likelihood probability distribution conditioned on
the query x, context D, and previously generated

tokens y«;: y; ~ pe(yt|D, X, Y<t)-

2.1 Privacy

To understand the privacy leakage of contextual
information during decoding, we draw inspira-
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tion from Differential Privacy (DP) (Dwork, 2006;
Dwork et al., 2014), a strong privacy notion that
gives a provable guarantee on the information leak-
age. We state the definition below.

Definition 2.1 (Pure Differential Privacy (DP)
(Feldman and Zrnic, 2021)). A randomized al-
gorithm A satisfies e-DP if for all datasets D =
(di, ..., dn), it holds that

Pr[A(D) € E] < e¢“Pr[A(D\{d;}) € E],and
PrlA(D\{d;}) € E] < e Pr[A(D) € E] (1)

for all d; € D and all measurable sets F.

This definition of DP follows the "add/remove"
scheme where the neighboring datasets are de-
fined by adding/removing one individual from the
dataset. DP ensures that each individual in the
dataset has at most € information leakage.

There are certain cases where the privacy losses
of A (Eq. 1) can vary substantially depending on
the dataset D and the realized output of the algo-
rithm. Furthermore, the privacy loss bound e is
not informative about the privacy loss incurred to
individuals d; in the dataset D. Hence, we define
ex-post per-instance DP that addresses these.

Definition 2.2 (Ex-post per-instance differential
Privacy (Redberg and Wang, 2021)). A random-
ized algorithm A satisfies (- )-ex-post per-instance
differential privacy for an individual d; and a
fixed dataset D at an outcome A(D) = o for
o € Range(A) if

l10g (mtiint sy )| < €0, D, D\ {d:}). @
2.2 Context-aware Decoding

Satisfying the DP definition requires controlling the
amount of privacy that can be leaked by the context
during generation. To this end, we borrow ideas
from prior work that focused on amplifying contex-
tual information by utilizing Pointwise Mutual In-
formation (PMI) to measure the LM’s dependence
on the context, then applying this measurement to
the decoding process to explicitly steer the LM’s
focus on the context (Van der Poel et al., 2022;
Shi et al., 2023). The goal of these prior works
does not involve privacy; rather, they are focused
on reducing hallucinations by forcing the model to
focus more on the context. However, these prior
works provide the appropriate foundation to build
on for estimating privacy from the context. PMI is
defined as

. D) bl
pmi(pg(ys; D, X, y<t)) = log (%)

PMI measures the association of event y;, predict-
ing a specific token, and event D, the presence of
context. The term pyg(y:|X, y) is the prior probabil-
ity, representing the model’s parametric knowledge
6 without the context D, whereas the likelihood
po(ye| D, x,y¢) represents the model’s updated be-
liefs with the context D. To reduce LM hallucina-
tions, one approach is to leverage PMI by multiply-
ing a weighted PMI with the likelihood:

Yt Nﬁ@(yt’D7X7y<t) X (3)
po(ye| D, x, y<¢) exp [pmi(pg(yi; D, x, y<¢))]”

This formulation, known as Context-aware De-
coding (CAD) (Shi et al., 2023), helps the LM
focus on the context.

3 Estimating Context Privacy

3.1 Motivation

As we argued in the Introduction section, only com-
paring the LM’s output to the augmented context is
insufficient for measuring context privacy leakage.
Alternatively, one could estimate the privacy risk by
performing Membership Inference Attacks (MIAs)
(Shokri et al., 2017; Jagielski et al., 2020). How-
ever, this requires instantiating an attacker, which
could severely underestimate the privacy leakage,
and MIAs have been shown to be oftentimes inef-
fective on LMs (Duan et al., 2024).

Instead, we take a different approach by utiliz-
ing the privacy analysis from DP, which provides
a strong guarantee that bounds the privacy leak-
age to any dataset D, individual d;, and output
events . In particular, we follow the observation
that sampling-based decoding naturally satisfies
the randomized output requirement of differential
privacy with respect to the context (Flemings et al.,
2024). Moreover, the neighboring definition of DP
allows us to separate the contribution from para-
metric and contextual knowledge, by comparing
the output probability distributions with and with-
out subsets of the context. However, the € bound
from Eq. 1 does not provide much insights into
the privacy risks of the augmented context, since
€ is independent of the context. By using ex-post
per-instance DP, we can directly calculate a privacy
loss €(o, D, D \ {d;}) that depends on important
parameters— such as the context D, neighboring
contexts D \ {d;}, generated token o— which acts
as a privacy auditing tool to analyze how these
parameters affect the context privacy leakage.
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3.2 Context Influence
We now introduce context influence below.

Definition 3.1 (Context influence on next to-
ken). Let D be the context, and define D;, =
(din s d(i+1yn) to be the i-th token n-gram of D.
Let x be an input query, pg be an LM, and y;
be the previous generations from pg. Then we say
that the context influence of D; ;, on py for an input
query x when generating the next token ; is

Ti,n (p97 D7 X, ¥Y<t, yt) = (4)
log po(y:| D, x,y <t)—1og pg(y:| D\ Dj 1, X,y <t)|

output probability of y
given the context D

output probability of y; with
D; 5, removed from context

The use of i-th token n-grams generalizes the
privacy level*, where n = 1 roughly corresponds to
word-level privacy (Xu et al., 2020; Feyisetan et al.,
2020) while n = |D| corresponds to document-
level privacy (Mattern et al., 2022; Utpala et al.,
2023) denoted as D; , = D. Rather than bounding
the absolute value of the logs-odds ratio, as is done
with DP, definition 3.1 directly uses this quantity
as a lower-bound estimate of the privacy leakage
of the ¢-th token n-gram D, ,, for a fixed context
D when releasing the next token y;. From an ad-
versarial perspective, Definition 3.1 describes how
confidently an attacker could infer whether the ¢-th
token n-gram D; ,, is part of the context D.

Furthermore, context influence measures how
much the i-th token n-gram D; , of the context
D influences the LM’s prediction on the prompt
data (D, x,y<¢). If pg is strongly influenced by
D; y,, then the removal of D; ,, from the context
D would likely change the next token generation
yr of pg. Conversely, if the context influence is
small, then that means the likelihood of generating
y¢ wWith pg marginally changes with the removal of
D; ,, from the context. Thus, the next token from
pp mostly depends on the remaining context D \
D; ,,, the current generation y .4, and its parametric
knowledge 6.

To measure the total context influence over an
entire generation y, we simply sum the context
influence for each generated token y; which is anal-
ogous to the basic composition property of DP
(Dwork et al., 2014).

Definition 3.2 (Context influence on response). We
say that the context influence of D; ,, on py when
“We restrict the possible substrings to n-grams because

they still produce natural text (contiguous substrings) while
providing a granular measurement of the context influence.

generating the response y is the following:

Ti,n(p€a D, x, Y) = Et Ti,n(p0> D,x,y<, yt)'

In our experimental evaluations, we are inter-
ested in measuring the expected context influence
of each ¢-th token n-gram, regardless of the exact
context and input query. We formalize this below:

Definition 3.3. Expected context influence on an
LM Do is

Ti,n(p@) = (D]E ) [Ti,n(p97 D7X7y ~ p@(y|D7X))]

)

The equation from Definition 3.3 can be directly
estimated by using a set of pairs containing the
context and its corresponding input query from the
dataset D. Each pair of context and input query
(D,x) € D is used to generate a response y ~
po(y|D,x) from the LM. The resulting estimator
is the following expression:

7A'i,n (pB) = (5)

’,;’ Ti,n(p97D7X7yNP@(Y‘D7X))'
(D,x)eD
And 7| p|(pe) denotes the special case in which we
are measuring the influence of the entire context.
One last technicality: context influence only
works for sampling-based algorithms, such as tem-
perature sampling (Ackley et al., 1985), and not
for greedy decoding algorithms, such as argmax.
However, top-p (Holtzman et al., 2019) or top-k
sampling (Fan et al., 2018) can cause potential er-
rors in the context influence calculation unless the
selected indices are equal for both D and D \ D; ,.
For the remainder of our work, we focus only on
temperature sampling. Specifically, we generate
the responses y to be used for measuring context
influence by using a slight reformulation of CAD
(Eq. 3), giving us granular control over how much
of the contextual knowledge is used during decod-
ing. We introduce Context Influence Decoding
(CID) below:

Definition 3.4. CID samples from is a linear inter-
polation between the likelihood and the prior logits
using a weighing term 0 < A < oo

Do (Ut| D, x,y<t) = o[(Nogity (y| D, X, y<t)
+ (1 = M)logity (y[x, y<t)) /T (6)

where o is the softmax function and 7 is the
temperature parameter where 7' > 1 resulting in a
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more uniform distribution (i.e. higher entropy) and
0 < T < 1 forcing a sharper output distribution.

Note that CID reformulates CAD by utilizing
a tunable parameter A that explicitly controls the
influence level of a context during decoding. We
start with the prior logits logit (¢ |x, y<¢), which
contains no information about the context D, and
increasingly adds more information from the PMI,
which can leak information about the context D,
by increasing the weighing parameter .

3.3 Privacy Leakage with Context Influence

Because by definition context influence measures
the privacy loss of individual n-grams, CID nat-
urally achieves n-gram level 7; ,,(pg x, D, X,y <t)-
ex-post per-instance DP (Definition 2.2) by using
our context influence definition to bound the i-th to-
ken n-gram privacy loss. However, it is possible to
achieve the stronger n-gram level e-DP definition
by essentially selecting A* such that generating the
next token by CID satisfies

max 7; n (EG A* D,x,y<t, yt) <e (N

D,iys ’
for a fixed n. The proof can be found in Ap-
pendix B. Meaning regardless of the context D,
the previously generated tokens y .4, and the next
token v, the i-th token n-gram D; , influences
the LM 6 by at most ¢; hence, DP bounds the pri-
vacy leakage with a context-independent value. For
our work, we want to explicitly measure how the
privacy leakage changes with respect to the afore-
mentioned variables, hence why chose the analysis
of ex-post per-instance DP. This gives a guaran-
tee that the privacy leakage when releasing y; is
at least 7; 5, (Pg , D, X, ¥ <t, yt), which follows the
more practical direction of privacy auditing (Jagiel-
ski et al., 2020).

Lastly, to better understand which factors affect

context privacy leakage, we will use CID to connect
context influence directly with PMI.

Theorem 3.1. Let A > 0. Then, the influence of
D; ,, on the response y; generated from CID is

Ti,n(ﬁ@,)\v -Da X, Y<ts yt) X >\|pml(p9(yt7 -D7 X, Y<t)
) - pmi(petl/t;D\Di,n7X>Y<t))‘ (8)

Proof. We defer the proof to Appendix A. [
Theorem 3.1 reveals that the privacy leakage of
the i-th token n-gram of the context depends on
two key factors: (1) the difference in PMIs, which

quantifies how much the generated next token re-

lies on the i-th token n-gram of the context, and

(2) the parameter A, which directly controls the

influence of context knowledge on the CID. Hence,

the context privacy leakage can be exacerbated in
two scenarios:

* The context D is out-of-distribution with respect
to the LM’s parametric knowledge 6, and the sub-
set of contextual information we are interested
in is sufficiently large (i.e. large n), both maxi-
mizing the difference of PMIs. Various factors—
including the type of contextual (D, x) and para-
metric knowledge 0, model size |0|, and context
size | D |- can cause the contextual and parametric
knowledge to diverge, which we experimentally
analyze in Section 4.3. Additionally, in Section
4.4, we compare how different subsets of contex-
tual knowledge influence an LM.

* When the contextual knowledge is amplified
(higher \) to reduce context-conflicting hallu-
cination. In Section 4.2 and 4.3, we quantify how
changes in A lead to higher privacy risks.

4 Experimental Evaluations

4.1 Experimental Setup

Datasets. We perform our experimental evalua-
tions on two open-ended generation tasks: sum-
marization via CNN-DM (See et al., 2017), a col-
lection of English news articles written by jour-
nalists at CNN and the Daily Mail, and long-
form question-answering via PubMed(QA (Jin et al.,
2019), a dataset from the biomedical domain and
contexts available. Appendix C contains example
prompts used for context influence. Each context
document is truncated by 2048 and 1024 for Pub-
MedQA and CNN-DM, respectively.

Metrics. We evaluate the generation quality
along two dimensions: similarity and faithfulness.
For similarity, we employed F1 ROUGE-L (Lin,
2004) and F1 BERTScore (Zhang et al., 2019) to
measure lexical and semantic similarity between
the response and the reference, respectively. For
faithfulness, we used FactKB (Feng et al., 2023)
to measure the faithfulness of the response to the
context. Our calculation of context influence uses
the empirical estimator in Eq. 5 with CID using
sampled contexts from CNN-DM and PubMedQA.

Models. Since context influence requires access
to the entire model output distribution, we use open-
source models due to closed-source ones restricting
the output logits. We used OPT 1.3B (Zhang et al.,
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CNN-DM PubMedQA
. n = Repeat Rouge A Repeat Rouge
Model Decoding A | 71p| (Py,») Prompts  Prompts | ' | (Po,») Prompts  Prompts

0.5 15.97 8 109 16.69 0 128

LLaMA 3 8B 1.0 64.61 285 632 37.01 58 439
1.5 98.99 429 882 70.91 123 669

0.5 17.50 1 87 13.20 0 54

OPT 1.3B 1.0 85.23 373 644 45.66 47 251
1.5 140.0 559 836 97.95 151 494

0.5 15.16 5 87 11.20 0 53

GPT-Neo 1.3B 1.0 85.23 338 571 38.79 54 268
1.5 140.0 637 822 7791 206 622

Table 2: Measuring Context influence and input regurgitation of various influence levels .

2022), GPT-Neo 1.3B (Black et al., 2021), LLaMA
3 8B and LLaMA 3 8B IT (Instruct) (Dubey et al.,
2024), and Gemma 2 9B (Instruct) (Team et al.,
2024). We set temperature parameter 7' = 0.8,
the response length to at most 50 tokens, and the
number of responses for each dataset is N = 1000.

4.2 Context Influence on Input Regurgitation

First, we demonstrate how our context influence

metrics offer improvements over directly compar-

ing LLM output with augmented contexts. Follow-
ing the untargeted attack evaluations by Zeng et al.

(2024) we report:

* Repeat Prompts: The number of prompts yield-
ing a response with at least half direct tokens
from the context.

* Rouge Prompts: The number of prompts gen-
erating responses with a ROUGE-L score over
0.5.

Next, we show that Repeat Prompts and Rouge

Prompts can erroneously indicate privacy leak-

age from augmented PubMedQA abstracts if the

LLM’s parametric knowledge already includes

PubMed abstracts. For this, we compare OPT 1.3B

and GPT-Neo 1.3B, models with the same num-

ber of parameters and similarly follow the GPT-3
architecture (Brown et al., 2020). GPT-Neo was

pre-trained on The Pile dataset (Gao et al., 2020),

which contains PubMed abstracts. In contrast, OPT

was trained on a subset of The Pile that excludes

PubMed abstracts (Zhang et al., 2022). Therefore,

we expect OPT 1.3B to show greater context pri-

vacy leakage, as it likely lacks PubMed abstracts
in its parametric knowledge and must rely more on
the augmented PubMedQA contexts.

Table 2 displays the results. We observe that con-
text influence accurately follows our expectation
by correctly attributing the privacy leakage to the

PubMedQA abstracts. However, we observe that
both Repeat Prompts and Rouge Prompts are larger
for GPT-Neo 1.3B than OPT 1.3B. Consequently,
this suggests that LLMs are likely to leak the aug-
mented contexts if they were trained on them. How-
ever, we argue that this privacy leakage should not
be entirely attributed to the augmented context, but
rather should be shared with the LLM’s parametric
knowledge, as is done in context influence.

4.3 Factors Contributing to Context Influence

Next, we experimentally analyze the identified fac-
tors from Section 3.3 that could cause an LM to
unintentionally leak contextual information.

Context influence level ). First, we vary the
context influence level A € {0.5,1.0, 1.5} for CID
to see how it affects the measured context influence.
From Table 3, we observe that for LLaMA 3 on
CNN-DM, amplifying the context by increasing the
influence level from A = 1.0 to A = 1.5 leads to
a 10% increase in F1 ROUGE-L due to 50% more
influence by the context. However, Table 2 shows
that this increased context influence is attributable
to 50% more input regurgitation, raising a key con-
cern that amplifying contextual knowledge during
decoding can lead to increased privacy risks. When
we reduce the context influence level to A = 0.5,
we observe that the context influence is reduced by
2.2x, leading to near-zero regurgitation of context.
However, this comes at a cost of substantial util-
ity degradation. Hence, completely reducing input
regurgitation has a deleterious outcome on the util-
ity. Additional influence levels A can be found in
Appendix D.

Contextual knowledge (D, x). Next, we in-
vestigate how the type of context and instruction
D, x affects context influence. From Table 2 and
Table 3, we observe that LMs performing abstrac-
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\ PubMedQA CNN-DM
Model Decoding A | 7p|(By,) ROUGE-L BERTS FactKB | 7p|(ps.n) ROUGE-L BERTS FactKB
0.5 13.20 15.41 7213 31.40 17.50 9.73 68.06  75.28
OPT 1.3B 1.0 45.66 16.51 7281 3738 85.23 16.84 7209  88.24
1.5 97.95 16.96 7288 4881 140.0 18.82 7288 89.22
0.5 11.20 16.26 7232 35.66 15.16 9.73 68.06  75.28
GPT-Neo 1.3B 1.0 38.79 18.47 7365 5236 77.87 15.97 7154 93.66
1.5 77.91 18.91 7408  68.54 130.47 18.17 7266 92.90
0.5 16.69 17.73 7333 4471 15.97 10.34 68.06  69.18
LLaMA 3 8B 1.0 37.01 19.20 7466 49.63 64.61 17.42 7217 85.60
1.5 70.91 18.79 7441 56.76 98.99 19.22 7289  87.86
0.5 17.26 20.17 7451 51.64 35.0 15.18 7189  87.22
LLaMA 3 8B IT 1.0 66.39 2147 7547 56.64 92.25 2253 7335  98.26
1.5 115.78 20.88 7521 63.08 134.23 23.53 7544 97.95
0.5 26.68 18.52 7403 35.60 41.76 14.49 7173 87.56
Gemma 2 9B IT 1.0 70.10 20.05 7497 41.60 93.17 21.18 7509 963
1.5 111.07 18.52 7403 35.60 149.33 21.60 7522 96.31

Table 3: The context influence-hallucination tradeoff of different context influence levels of CID.

tive summarization (CNN-DM) rely on/repeat the
context more than long-form question-answering
(PubMedQA). This means the type of contextual in-
formation and instruction have a substantial effect
on context privacy. In particular, the query from
CNN-DM explicitly instructs the LM to shorten
the context, whereas for PubMedQA the LM could
decide not to use the context to answer the query.
Hence, one way to preserve context privacy would
be to instruct the LM to utilize their parametric
knowledge while reducing context hallucination.

Parametric knowledge 0. We compare context
influence on multiple different parametric knowl-
edge sources. Our results indicate that the choice of
parametric knowledge can have a substantial affect
on the context influence. In particular, we saw from
Section 4.2 how just the inclusion of PubMed data
in the pre-training data can effectively decrease the
context influence of PubMedQA abstracts, creating
a false sense of security that GPT-Neo preserves
the privacy of the PubMedQA abstracts better than
OPT. Hence, this raises an important caveat that
smaller context influence does not necessarily im-
ply better context privacy, as one must consider
the public data used for pre-training (Tramer et al.,
2022).

Pre-trained vs fine-tuned. From Table 3, we ob-
serve that LLaMA 3 IT is substantially influenced
by the context more than just pre-trained LLaMA
3. This is intuitive as LLaMA 3 IT received fur-
ther training in the form of supervised fine-tuning
(SFT) and reinforcement learning with human feed-
back (RLHF) to align better with prompt answering.
These additional steps, SFT and RLHF, help the

model utilize the context more when answering
queries, hence, increasing the context influence.
Thus, the increased performance from fine-tuning
results in larger context privacy leakage.

Model size |0|. We analyze the effect of model
size |6| on context influence for CID with regu-
lar decoding (A = 1.0). We used various sizes—
125M, 350M, 1.3B, 2.7B, 13B, 30B, and 66B- of
OPT evaluated on PubMedQA. The results shown
in Figure 2a depict a trend with some variability,
but it generally shows that larger models are less
influenced by the context. We hypothesize that
larger models have a larger capacity to memorize
their pre-training data, so they can rely on their
parametric knowledge more than smaller models.

Context size |D|. Additionally, we measured
the effect of the context size |D| on context influ-
ence for CID using OPT-1.3B. In this setup, we
restrict the model to only the first |D| tokens of
context for generation and calculating context in-
fluence. Shown in Figure 2b, we observe that when
the context is extremely small (< 32), then the LM
is substantially less influenced by the context. The
context may not contain enough relevant informa-
tion to help the model, and hence, it must rely on
its parametric knowledge. However, as we increase
the context size from 32 to 256, the model becomes
more influenced by the context. After |D|> 256,
the model maintains a relatively constant level of
context influence. Hence, truncating the context
has marginal affect on context privacy unless the
size of the context is substantially reduced.

Response position y;. Lastly, we measured
how far along the prior generation (the size of
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Figure 2: Measuring the affect of (a) model size, (b) context size, and (c) response size on context influence.

y<t) affects how much OPT-1.3B is influenced
by the context when generating the next token.
More precisely, we measure the average context
influence of the next token at the ¢-th position
T|D|(p9, D,x,y<t,y) over all generations. As
shown in Figure 2¢c, we observe that the first 10
generated tokens by the model are influenced by
the context the most. This is intuitive as the ini-
tial response generated by the model is small and
nascent; hence, it must rely on the context more for
the next token generations. But as the generated re-
sponse size increases |y;|, the model can rely more
on its parametric knowledge 6 and the current gen-
erated response y; for generating the next token
y¢. Thus, one can design privacy-preserving solu-
tions that adopt an adaptive privacy level, where
the privacy level is strict during the beginning of
generating tokens, then is relaxed as more tokens
are generated.

4.4 Token n-gram Influence of Context

In this section, we analyze the context influence
of each i-th token n-gram in the context 7; ,,(Py, )
i.e., we compare the output probability with and
without the ¢-th token n-gram from the context to
measure the influence. Due to the possibly large
number of token n-grams, we only evaluate 100
contexts. Figure 3 shows the results for various to-
ken (128, 32, 8, 4)-gram influence on PubMedQA
for OPT-1.3B with A = 1.0. We observe two
trends: (1) Larger n-grams have higher peak con-
text influence, which is intuitive given that the more
information (larger n) is removed from the context,
the more likely the output of the LM will change;
(2) for seemingly all n, the context influence peaks
for earlier ¢-th token n-grams, i.e. small ¢, then
gradually declines for later i-th token n-grams. The
results suggest that the model is influenced by in-
formation located earlier in the context than those

located late, which might stem from the larger issue
of position bias (Liu et al., 2024). This implies that
practitioners who want to control the influence of
certain sequences can place privacy-sensitive ones
toward the end of the context.

Next, we look at the context influence of each
i-th token 128-gram for various OPT sizes, 125M,
350M, 1.3B, 6.7B, and 13B, in Figure 4. We ob-
serve that regardless of model size, the context
influence peaks at the earlier token 128-grams,
then gradually decreases for later ones. Generally,
the context influence for most token 128-gram is
strongest for OPT 13B and the lowest for OPT 6.7b,
but this trend reverses towards the later 128-grams.
Interestingly, we observe sporadic spikes in context
influence for small LMs, OPT 125M and 350M, on
the later token 128-grams, suggesting that smaller
LMs need to rely on more parts of the context.

5 Related Works

Parametric Knowledge Leakage. It has been
demonstrated that inadvertent memorization of pre-
training data can lead to privacy leakage (Carlini
etal., 2019; Song and Shmatikov, 2019) in the form
of extraction attacks (Carlini et al., 2021; Thomas
et al., 2020). Hence, there is extensive research on
understanding the memorization dynamics of LMs
(Tirumala et al., 2022; Zhang et al., 2023; Lesci
et al., 2024; Biderman et al., 2024), where it has
been shown that various factors such as model size,
data duplication, and prompt length increase mem-
orization. From these results, works have proposed
dataset curation techniques, such as data deduplica-
tion (Kandpal et al., 2022), to mitigate training data
privacy leakage. In this work, we seek to conduct a
similar analysis for augmented contexts.
Contextual Knowledge Leakage. Recent
works have demonstrated that LMs can leak
privacy-sensitive information provided to a prompt
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Figure 3: Measuring token n-gram context influence
of various n-grams on OPT 1.3B.

during inference via prompt regurgitation (Wang
et al., 2023; Priyanshu et al., 2023). In particular,
recent works have shown through the lens of con-
textual integrity theory (Nissenbaum, 2009) that
LMs lack the ability to effectively reason about
the information sensitivity of contextual knowl-
edge (Mireshghallah et al., 2024; Bagdasarian et al.,
2024; Shao et al., 2024). On the other hand, our
analysis operationalizes exp-post per-instance DP
to understand the factors that unintentionally influ-
ence contextual knowledge leakage. Zeng et al.
(2024); Qi et al. (2024) investigated attacks on
RAG systems that extract contextual knowledge, a
similar setup and goal to our work. However, these
works focus primarily on data extraction and im-
plicitly assume that the retrieved contexts from the
RAG database are not contained in the LM’s para-
metric knowledge, which overly-attributes the pri-
vacy leakage to the contexts. Also related, Huang
et al. (2023) investigated the privacy leakage of
retrieval-based LMs, such as kNNs. Lastly, another
body of work investigated MIAs for augmented
contexts (Anderson et al., 2024; Wang et al., 2024;
Li et al., 2025). Context influence can be viewed
as inferring membership of a context.

Context hallucination. Our work follows prior
work on summarization factuality where the re-
sponse from an LM conflicts with an augmented
context (Maynez et al., 2020; Pagnoni et al., 2021).
We focus on hallucination mitigation during infer-
ence by utilizing PMI to amplify focus on con-
textual rather than parametric knowledge (Van der
Poel et al., 2022; Shi et al., 2023). Our results
demonstrate how these decoding methods affect the
privacy leakage of contextual knowledge. Another
body of work (Fernandes et al., 2021; Sarti et al.,
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5< OPT 1.3B 4
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Figure 4: Measuring the context influence of each i-
th token 128-gram for various sizes of OPT models.

2023; Cohen-Wang et al., 2024; Du et al., 2024)
measured an LM’s reliance on an augmented con-
text; however, the goal of these works is not moti-
vated by privacy, and hence, their results/discussion
are orthogonal to ours.

6 Conclusion

Studying the influence of augmented context on
the generations of LMs has crucial implications for
privacy. Hence, our goal is to principally undertake
this study to inform practitioners of the context pri-
vacy risks and design solutions with these results
in mind. We introduced a principled definition
for context influence to measure the privacy leak-
age of contextual knowledge. Then we measured
context influence on various LMs for two types of
open-ended generation tasks. We found that the
choice of contextual and parametric knowledge,
model capacity, context and response size, and to-
ken n-grams largely affect the privacy of contextual
information.

7 Limitations

We defined context influence in a way that allowed
us to connect it with pointwise mutual information
and differential privacy. However, a limitation of
this formulation is that it does not consider the en-
tropy of the model during decoding. For example,
the context influence of a more confident model
will be smaller than that of a less confident one.
One way to overcome this limitation is to normal-
ize context influence by using the joint self-entropy.
Moreover, we note that our work is only focused
on measuring the privacy leakage of an augmented
context when releasing an LM generation. Con-
text influence is not intended to measure privacy
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leakage from the parametric knowledge, which is
done in memorization works and is orthogonal to
our problem setup.
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A Proof of Theorem 3.1

We restate the theorem below:

Theorem A.1. Let A > 0. The context influence of D; ,, with the response y; generated from CID p, (Eq.
6) is

Ti,n(ﬁ&)\v D7 X, y<t7 yt) A ’pml(pe(yh D7 X, Y<t)) - Pml(p(?(ym D \ Di,na X, y<t))’ . (9)
Proof. Note that using the definition of CAD (Eq. 3), we can write
Do, o po(yi[x, y<¢) exp [pmi(pg (ys; D, %,y <)) (10)

Hence we have

Tim (Do, D, X, Y15 yt) = [log (Dp.x (wel D, x¢,y <) —10g Dy r(ye| D\ Dijn, %,y <) |

X

log (pe(ytlx, y<t) exp [pmi(pg(ys; D, x, y«))]A)

— log (pe(ytIx y<t) exp [pmi(pg(ys; D \ Dy, X, Y<t))]/\) (11)

= [Apmi(py(ye; D, x,y<¢)) — Apmi(pg(ys; D\ Diny X, y<t))| (12)
= A |pmi(po(ye; D, %, y<t)) — pmi(pg(ys; D \ Din, X, y<t))|

where the proportionality (Eq. 11) uses the Eq. 10, and Eq. 12 uses the product and power rule of
logarithms to simplify the expression. 0

B Proof of CID satisfying c-DP

We will now show how CID can satisfy n-gram level e-DP (Definition 2.1). First, we are going to slightly
modify CID by first selecting A so that we bound the amount of information leaked from a context D
when releasing the next token ;. The algorithm can be found in Algorithm 1, which follows from (Husain
et al., 2020; Flemings et al., 2024).

Algorithm 1 Bounded CID
1: function P(py, D, X,y <¢, Yz, €)

. Po(yt|Dx,y<¢)
2: Choose A € [0, c0) such that }log ( iy <) ))

<
3 Po(ye|D,x,y<t) = softmax[Alogity (y:| D, x, y<t) + (
4 return py(y¢|D, X, y<t)
5: end function

€
2
1 — N)logity (y:|x, y<t)]

Before proving that Algorithm 1 is e-DP, we introduce a new term to help with the proof. We consider
the privacy loss random variable, which is the log probability ratio as a random variable. Drawing
t ~ A(D), we get

Pr[A(D) = t] >
L 1=lo . (13)
POy T (Pr[A(D i} =1
It is immediate from the definition of pure differential privacy (Definition 2.1) that e-DP corresponds to

|Lp,p\{d,}| being bounded by e for all neighboring datasets D, D \ {d;}. Hence, we need to show that
the privacy loss random variable of Algorithm 1 is bounded by e for neighboring datasets D, D \ D; ,,.

Theorem B.1. Let y; ~ P(pg, D, X, y<t, Y, €) be a token generated by the bounded CID from Algorithm
1. Then y; is e-DP with respect to D.

25105



Proof. Let D be a dataset and D; ,, be the i-th token n-gram of D. Then for any y; € } where V is the
vocabulary of the LLM py, we get the following:

IOg < Yt ~ P(paaDaXay<tayta 6) >‘
Yt ~ P(p@aD \ Dinax y<t7yta€)

_ | < Po(ye| D, %, y<t) >‘
= |log | =
i) yt‘D\Dl ny X, Y<t)
_ 10g< Po(ye| D, X,y <t)po(ye|x, ¥y <¢) >
PoWt|D \ Dipn, X,y <t)po(ye|X, y<t)
Po(ye| D, x, Y<t)> oYX, y<t)
= log< +log | =
Po(Ye|X, y<t) Po(Yt| D\ Dipn,X,y¥<t)
Po(yt| D, %, y<t) Po(ye|X, y<t)
< log< 0 + |log (14)
Po yt|X Y<t) Pe(yt|D \ Djn,x, Y<t)
sf+5 (15)
Eq. 14 is due to the triangle inequality and Eq. 15 is from line 2 from Algorithm 1. O

C Additional Experimental Setup

PubMedQA CNN

Document: Programmed cell death (PCD) is

The lace plant (Aponogeton madagascariensis)
produces perforations in its leaves through ...

the regulated death of cells within an organism.

News article: (CNN)The Palestinian Authority
officially became the 123rd member of the
International Criminal Court on Wednesday,
a step that gives the court jurisdiction over

alleged crimes ...
Do mitochondria play a role in remodelling
lace plant leaves during programmed cell
death?

Summary of the above news article:

Figure 5: Example prompts with context used for PubMedQA and CNN where red text is the context D and blue
text is the query .

PubMedQA CNN
Document: . News article: .
Do mitochondria play a role in remodelling

lace plant leaves during programmed cell
death?

Summary of the above news article:

Figure 6: Example prompts without context used for PubMedQA and CNN where red text is the context D and
blue text is the query .

Figures 5 and 6 illustrate exemplar prompts with and without context used for each dataset in our
experiments for Sections 4.2 and 4.3.

For hardware, all of our experiments used one A100 40GB GPU, except for the experiments using 30B
and 66B which used two and three A100 40GB GPUs, respectively. Each experiment usually takes around
15 mins to run for OPT-1.3B, except for the ¢-th token n-gram experiments (Section 4.4 which take longer
depending on how small the token n-gram is. For software, our summarization quality evaluation is based
on the code from Xu (2023), which is freely available on GitHub . All datasets and models used in our

Thttps://github.com/zhichaoxu-shufe/context-aware-decoding-qfs
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experiments are freely available at Hugging Face, and our research does not conflict with their intended
use cases, which is to evaluate text generation quality and privacy. The CNN-DM dataset follows the
apache-2.0 license, LLaMA 3 follows the Llama 3.2 Community License Agreement, which we agreed to
before evaluating, and GPT-Neo follows the MIT license, all of which we ensured not to go against.

D Additional Experimental Results
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Figure 7: Measuring context influence, ROUGE-L, and FactKB with respect to different temperature 7 values on
PubMedQA for OPT-6.7B on PubMedQA using A = 1.0
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Figure 8: Measuring context influence, ROUGE-L, and FactKB with respect to different A values on PubMedQA
for OPT-1.3B.

Figure 7 shows the average context influence, ROUGE-L, and FactKB across different temperature
values. We observe that as 7 approaches zero, the model is influenced by the context exponentially,
with moderate improvements in similarity. This is because as 7 approaches zero, the decoding becomes
equivalent to argmax, where the token with the highest probability is selected. Hence, there is less
entropy in the decoding since the output distributions are sharper, so there is more divergence between the
posterior and prior distributions (larger PMI). However, the faithfulness actually decreases once 7 < 0.4,
demonstrating that less randomness during decoding can result in generations that are not as faithful to
the context.

Figure 8 shows the average context influence, ROUGE-L, and FactKB across different context influence
levels A. Our results suggest that a higher average influence of the context leads to more faithfulness to the
context (higher FactKB), but for A > 1.25, the similarity of the generated response to the gold response
slightly degrades.

Next, we qualitatively analyze generations from LLaMA-3 (§B) for CNN-DM in Table 4. We observed
that many of the A = 1.5 generations are regurgitating the context, highlighting that amplifying the context
increases surfacing of contextual information. Regular decoding, A = 1.0, is also prone to regurgitating
contextual information but is not as severe. In particular, both A = 1.5 and A = 1.0 contain "UFQO" in
their generations, information likely derived verbatim from the context. On the other hand, A = 0.5 does
not contain UFO and instead contains "flying vehicle," which is broadly relevant but does not appear
verbatim in the context, indicating a strong reliance on parametric knowledge.
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CNN-DM

Article
A=15
A=1
A=0.5

Luckily, Japanese can sleep soundly in their beds tonight as the government’s top military offi-
cial earnestly revealed that the country’s Air Self Defense Force (ASDF) had never encountered an

. Responding to a query from flamboyant former wrestler-turned-
lawmaker Antonio Inoki, Defense Minister Gen Nakatani told the Diet, Japan’s parliament, that his jets had, to
date, never come across any - from outer space. ...

Japanese can sleep soundly in their beds tonight as the government’s top military official earnestly revealed that the
country’s Air Self Defense Force (ASDF) had never encountered an

in a interview with Japanese defense minister, politician Antonio Inoki asked the defense minister about aliens
and - and the defense minister answered that the Air Self Defense Force (ASDF) has never encountered
one.

The article discusses the topic of the possible appearance of aliens and their flying vehicles in the skies over
Japan. The author of the article recalls that recently there was a flight of a mysterious object in the sky over Japan.

Table 4: Qualitative examples from LLaMA 3 using different influence levels of CID.
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