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Abstract

Vision-language retrieval-augmented genera-
tion (RAG) has become an effective approach
for tackling Knowledge-Based Visual Ques-
tion Answering (KB-VQA), which requires
external knowledge beyond the visual con-
tent presented in images. The effectiveness
of Vision-language RAG systems hinges on
multimodal retrieval, which is inherently chal-
lenging due to the diverse modalities and
knowledge granularities in both queries and
knowledge bases. Existing methods have not
fully tapped into the potential interplay be-
tween these elements. We propose a multi-
modal RAG system featuring a coarse-to-fine,
multi-step retrieval that harmonizes multiple
granularities and modalities to enhance effi-
cacy. Our system begins with a broad ini-
tial search aligning knowledge granularity for
cross-modal retrieval, followed by a multi-
modal fusion reranking to capture the nuanced
multimodal information for top entity selection.
A text reranker then filters out the most rele-
vant fine-grained section for augmented gener-
ation. Extensive experiments on the InfoSeek
and Encyclopedic-VQA benchmarks show our
method achieves state-of-the-art retrieval per-
formance and highly competitive answering re-
sults, underscoring its effectiveness in advanc-
ing KB-VQA systems. Our code can be found
at https://github.com/ChaoLinAViy/OMGM.

1 Introduction

Visual Question Answering (VQA) involves an-
swering questions about a given query image by
comprehensively understanding its semantic con-
tent, demanding proficiency in both visual and
textual understanding. Large Language Models
(LLMs) have demonstrated remarkable general-
ization and reasoning capabilities in text-based
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Figure 1: An illustration of our method. First, a coarse-
grained cross-modal entity search is performed between
entity summaries and the query image to retrieve the top-
k entity candidates. Next, a hybrid-grained multimodal
fusion reranker uses the multimodal query to retrieve
image-section pairs, refining the selection of the most
relevant entity. Finally, within knowledge associated
with the top-1 entity, fine-grained textual filtering is
applied to extract most relevant section, which is used
to enhance generation in downstream generator.

tasks (Raffel et al., 2020; Brown et al., 2020). By in-
tegrating visual encoders with LLMs, Multimodal
Large Language Models (MLLMs) have emerged
as an effective approach for handling VQA tasks,
as they can jointly model both image and text rep-
resentations for enhanced comprehension and rea-
soning (Alayrac et al., 2022; Liu et al., 2024; Li
et al., 2023b). Knowledge-Based Visual Question
Answering (KB-VQA) extends this challenge by re-
quiring the incorporation of external world knowl-
edge that transcends the visible elements of the im-
age. In KB-VQA, questions are designed to probe
for information pertaining to the image’s subject
matter, but necessitate insights not directly present
within the image itself.

Retrieval-Augmented Generation (RAG) offers
a cost-effective and efficient solution to the chal-
lenges of KB-VQA by retrieving query-relevant
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knowledge from the knowledge base and integrat-
ing it as contextual information for response gener-
ation (Karpukhin et al., 2020; Si et al., 2023). The
effectiveness of this approach depends on efficient
retrieval mechanisms capable of identifying the
most relevant information from large-scale, hetero-
geneous knowledge bases. However, multimodal
retrieval in KB-VQA introduces complexities be-
yond the standard text-based retrieval used in most
RAG systems. These complexities stem from two
key factors:
• Multiple Modalities. Both queries and knowl-

edge bases comprise multiple modalities, such as
images and text, necessitating diverse relevance
assessment strategies that may involve single-
modal, cross-modal, or multi-modal approaches.
The choice of retrieval schema is influenced by
the retrieval model’s capabilities and the require-
ments of specific tasks.

• Hybrid Granularities. Queries and knowledge
bases often involve information at different lev-
els of granularities. For instance, a query might
include a query image with coarse-grained knowl-
edge identifying a subject, paired with a question
seeking fine-grained details about the subject.
Similarly, a knowledge base might consist of
articles with coarse-grained overview reference
images and titles as well as fine-grained detailed
sections containing in-depth information.

Recent research efforts have explored both single-
step and multi-step multimodal retrieval strate-
gies to enhance retrieval effectiveness and ulti-
mately improve answer generation. Single-step
approaches retrieve passages directly using a mul-
timodal query (Lin and Byrne, 2022; Deng et al.,
2025; Jian et al., 2024; Lin et al., 2024). While ef-
fective, these methods often require expensive task-
specific pretraining and incur high computational
costs during inference due to exhaustive full-range
searches. Conversely, multi-step retrieval methods
adopt hierarchical retrieval strategies that enhance
searching efficiency by progressively narrowing the
search space. These methods often employ differ-
ent retrieval modalities at each step, enabling the
evaluation of knowledge relevance from multiple
perspectives (Caffagni et al., 2024; Yan and Xie,
2024; Qi et al., 2024). Nevertheless, the potential
of multi-step retrieval remains underexplored. Cur-
rent approaches frequently overlook the intricate
interplay between retrieval modalities, granulari-
ties, and the sequencing of retrieval steps, limiting
their overall effectiveness and adaptability.

We propose a multimodal RAG system, OMGM,
which employs a coarse-to-fine, multi-step re-
trieval strategy to effectively Orchestrate Multiple
Granularities and Modalities across queries and
knowledge bases, enhancing multimodal retrieval.
As illustrated in Figure 1, our system operates in
three stages: it begins with a coarse-grained cross-
modal retrieval to identify an initial pool of entity
article candidates, followed by a hybrid-grained
multimodal reranker that leverages both coarse-
grained and fine-grained knowledge to rerank can-
didates and select the most relevant entity. Finally,
a fine-grained text reranker filters the selected en-
tity’s sections to extract the most pertinent sections
for augmented response generation. Throughout
the process, query and candidates are aligned based
on their granularities, and embedding models are
carefully selected to ensure effective multimodal
representation. More importantly, these retrieval
steps interact sequentially, with similarity scores
from earlier stages propagated forward and fused in
subsequent steps, enabling a cohesive and context-
aware retrieval process. We conduct extensive re-
trieval and VQA experiments on two KB-VQA
datasets, where our method achieved state-of-the-
art retrieval performance and competitive question-
answering results compared to other existing multi-
step retrieval methods.

In summary, the main contributions of our work
can be summarized as follows:

• We propose that multimodal retrieval should
be tailored to the characteristics of KB-VQA,
specifically in data modality and knowledge
granularity. To achieve this, we introduce a
coarse-to-fine multi-step retrieval strategy that
progressively enhances retrieval quality by
leveraging retrieval steps with varying modal-
ities and granularities.

• We introduce a trainable multimodal reranker
to maximize the utilization of full-modal in-
formation while minimizing inference costs
by restricting the reranking scope, thereby en-
suring both effectiveness and efficiency.

• We conducted extensive experiments on the
InfoSeek and Encyclopedic-VQA (E-VQA)
benchmarks, showcasing the effectiveness of
the proposed method. Furthermore, a compre-
hensive ablation study validates the contribu-
tion of each retrieval step, offering valuable in-
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sights for designing multimodal retrieval sys-
tems in KB-VQA tasks.

2 Related Work

2.1 KB-VQA

Traditional VQA tasks focus primarily on the visual
content within images to answer the related textual
question (Antol et al., 2015). However, KB-VQA
expands this by incorporating external knowledge
bases to address questions requiring information
beyond the image. Datasets such as OK-VQA and
A-OKVQA (Marino et al., 2019; Schwenk et al.,
2022) involve visual question answering that re-
quire outside knowledge, which consists of general
commonsense that lacks distinctiveness.

The emergence of the E-VQA and InfoS-
eek (Mensink et al., 2023; Chen et al., 2023)
datasets presents a greater challenge for end-to-end
LLMs/MLLMs by incorporating varying granulari-
ties of encyclopedic knowledge alongside extensive
multimodal information. In response to these char-
acteristics of KB-VQA task, our work adopts a
multi-step, granularity-aligned retrieval framework,
resulting in improved retrieval and VQA perfor-
mance compared to the current multimodal RAG
system (Caffagni et al., 2024; Lerner et al., 2024;
Yan and Xie, 2024).

2.2 Vision-language RAG

Retrieval-Augmented Generation (RAG) (Guu
et al., 2020) enhances the generation performance
of LLMs by retrieving external documents relevant
to the input query and using them as guiding con-
text in prompts. In addition to text augmentation,
recent work (Lin and Byrne, 2022; Xia et al., 2024)
has targeted generation enhancement specifically
for vision-language tasks, which are more closely
aligned with complex real-world scenarios.

Vision-language retrieval-augmented generation
typically entails handling multimodal documents
and queries, requiring the retrieval process across
these modalities. For example, the approaches in-
troduced in PreFLMR and MuKA (Lin et al., 2024;
Deng et al., 2025) encodes features across various
modalities and dimensions, and separately concate-
nates the retrieval matrices for the query and the
candidate, thereby facilitating a fine-grained knowl-
edge search. Wiki-LLaVA (Caffagni et al., 2024)
and EchoSight (Yan and Xie, 2024) employ a hier-
archical retrieval strategy, achieving efficient cross-
step multimodal retrieval. LLM-RA (Jian et al.,

2024) and RoRA-VLM (Qi et al., 2024) adopt
LLM-based and similarity-based approaches, re-
spectively, for fine-grained denoising on queries
and knowledge, thereby improving the accuracy
of both retrieval and question answering. Addi-
tionally, mR2AG (Zhang et al., 2024) and Reflec-
tiVA (Cocchi et al., 2024) emphasize reflective pro-
cessing. By fine-tuning large models, they lever-
age token outputs to drive the retrieval process and
subsequently perform relevance-based re-screening
and modifications on both the retrieved content and
the generated answers. Unlike previous methods,
our system constructs a multi-step retrieval process
that integrates granularity alignment with cross-
step joint retrieval. At each step, we align queries
with the corpus using techniques such as summary
extraction, multimodal fusion, and question-based
section denoising, then fuse results via similarity
fusion to boost recall and enhance downstream KB-
VQA performance of MLLMs/LLMs.

3 Methodology

To address the challenges in KB-VQA, we intro-
duce a multimodal RAG system that features ef-
ficient coarse-to-fine, multi-step multimodal re-
trieval. This system is capable of extracting per-
tinent information from a vast multimodal knowl-
edge base with millions of entries. The retrieved
data is subsequently used to enhance the gener-
ator’s responses. An overview of the proposed
framework is shown in Figure 2, which comprises
three key components: coarse-grained cross-modal
entity searching, hybrid-grained multimodal-fused
reranking, and fine-grained section-augmented gen-
eration.

3.1 Coarse-Grained Cross-Modal Entity
Searching

To preliminarily filter out wiki entity information
related to the query from a large corpus, we design
a coarse-grained entity retrieval method. In this
step, the query image indicating a subject serves as
a coarse-grained query, while entity summaries act
as coarse-grained candidates, ensuring appropriate
information granularity alignment.
Summary Generation. Since the complete wiki
entity articles are too redundant as entity informa-
tion for effective retrieval indexing, we align them
with the macro-level entity information of the query
image. Specifically, we use article summaries as
the retrieval index for wiki entities, these concise
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Figure 2: An overview of our framework. Our framework first performs a coarse-grained, cross-modal entity search
by using offline-generated knowledge summaries as indices and a query image as the query; it then conducts a
hybrid-grained multimodal-fused reranking that aligns image and text details via feature fusion and integrates
cross-step similarities. Finally, a fine-grained section-augmented generation selects the most relevant knowledge
section through combined text and multimodal similarities to support answer generation.

abstracts densely encapsulate key aspects of the en-
tity’s information. To maintain real-time retrieval
efficiency, we generate summaries for all entity
articles in the knowledge base offline. Given an
entity article ai, we employ a pre-trained language
model Ms with an instruction prompt template P
to generate a summary si, ensuring that the sum-
mary is both informative and well-aligned with the
retrieval task.

si = Ms(P, ai) (1)

Image-to-Summary Entity Searching. After ob-
taining the wiki entity summaries, we use the query
image from the VQA triplet, uniquely represent-
ing the target entity, as the query object for entity
searching. Specifically, both the query image and
candidate entity summaries are transformed into
feature vectors, which are used for similarity-based
matching for entity searching.

Entk = F (Ev(Iq), Et(S), k) (2)

where Iq denotes the query image, and S =
s1, s2, ..., sn represents all entity summaries in
the knowledge base. These are encoded through
the visual encoder Ev and textual encoder Et of

CLIP (Radford et al., 2021), respectively. We use
the Faiss library F (Johnson et al., 2019) to index
the feature vectors of the entity summaries and
perform embedding matching based on the inner
product. Finally, we retain the top-k most relevant
entity summaries along with their corresponding
entity information Entk.

3.2 Hybrid-Grained Multimodal-Fused
Reranking

After the initial search, we obtain the top-k en-
tity candidates most similar to the query subject.
Within this candidate set, we extract hybrid-grained
multimodal fusion feature matrices from the coarse-
grained images and fine-grained texts provided by
the query and candidate knowledge. Then, by em-
ploying a late-interaction mechanism, we obtain a
fine-grained section similarity. By integrating the
entity similarity from the previous step, we derive
a coarse-grained reranking similarity that yields a
more accurate ordering of relevant entities.
Multimodal Fusion Feature Matching. Specifi-
cally, we leverage the Q-Former (Li et al., 2023b)
architecture to extract multimodal fusion features
from both query and candidates. The pipeline for
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fusion feature extraction is as follows:

Q = Em(q), Cseche
= Em(dhe ) (3)

As the input to the q-former multimodal encoder
Em, we use the query image Iq and textual ques-
tion Tq on the query side, forming the input pair
q = (Iq, Tq). On the candidate side, we construct
the input as dhe = (Ie, sec

h
e ), where Ie is the main

image of entity and seche is the h-th section of the
entity article ae = {sec1e, sec2e, . . . , secpe}. The
fusion feature matrix Q and Cseche

are the output
vectors corresponding to the query tokens of en-
coder Em. We calculate the fine-grained multi-
modal similarity sim

seche
m between the query q and

candidate dhe using the late-interaction (Khattab
and Zaharia, 2020), which fully leverages the cor-
relations between each token vector in the feature
matrix and integrates them into a single similarity
score through a Max-Sum operation. lQ and lC
denote the total number of tokens in Q and Cseche

,
respectively.

simseche
m = simm(q, dhe ) =

lQ∑

i=1

lC
max
j=1

QiC
j
seche

⊤

(4)
Finally, we obtain the coarse-grained entity simi-
larity by maximizing simm of all the sections in
the entity article ae, with section size lae . We then
compute the final reranking similarity scores for the
top-k entities Entk by performing a weighted sum-
mation with the initial entity similarity sime

c from
the previous cross-modal retrieval step. The most
relevant entity etop1 is selected based on the highest
reranking score. The weighting factor α balances
the contributions of the two similarity measures,
optimizing reranking performance.

etop1 = arg max
e∈Entk

(α·sime
c+(1−α)· lae

max
h=1

simseche
m )

(5)
Multimodal Reranker Training. To train the
multimodal fusion encoder, we employ contrastive
learning with the hard negative samples from previ-
ous retrieval step. Specifically, the coarse-grained
retrieval in earlier step generates a top-k candidate
entity set for each training sample. Most of these
entities share similar coarse-grained characteris-
tics, but differ in fine-grained details. To construct
training pairs, we randomly select negative pairs
by pairing the main images of candidate entities
with non-evidentiary sections from their articles.

Datasets #Samples #Entity Articles

Gen. Train Ret. Train Valid Test Train Valid/Test

Infoseek 100K - - 71,335 100K 100K
E-VQA 100K 191k 11,696 4,750 2M 2M

Table 1: Statistics of Infoseek and E-VQA datasets used
in our experiments. Gen. Train and Ret. Train represent
the number of training samples for the generator and the
multimodal fusion module in reranking, respectively.

In contrast, positive pairs consist of the main image
and the evidence section of the correct entity.

L = − log
exp(simm(q, d+)/T )

∑N
j=1 exp(simm(q, dj)/T )

(6)

By constructing each training sample containing N
contrastive pairs d, we train the reranker to match
queries with the positive candidate pairs d+ based
on hybrid-grained multimodal information with the
adaptive temperature T for the smoothness of the
softmax distribution. This multimodal-fused re-
trieval approach not only complements the coarse-
grained entity retrieval in step one but also paves
the way for subsequent fine-grained refinement.

3.3 Fine-Grained Section-Augmented
Generation

After completing the first two steps of entity rank-
ing, we identify etop1 as the entity most relevant
to the query. In this step, we perform fine-grained
knowledge filtering on the entity information and
use the filtered knowledge as auxiliary context to
enhance the generation of the downstream gener-
ator. Specifically, we employ a pre-trained tex-
tual reranker Rt to calculate the textual similar-
ities simsec

t = Rt(Tq, sec) between sections of
the entity article and question. These textual sim-
ilarities are then combined with the fine-grained
multimodal-fused similarity simsec

m obtained from
the previous step through weighted summation, en-
abling us to extract the most relevant entity section
secbestetop1 for the query.

secbestetop1 = arg max
sec∈etop1

(β·simsec
m +(1−β)·simsec

t )

(7)
Here, β serves as a balancing factor to weigh the
similarities derived from retrieval at different steps.
Finally, the most relevant section is provided as
input context along with the query to the generator
for question-answering.
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4 Experiments

4.1 Datasets

We utilize two challenging KB-VQA datasets, In-
foSeek and E-VQA (Chen et al., 2023; Mensink
et al., 2023), for training and testing. To ensure
fairness in both retrieval and VQA evaluations, we
adopt the same setup used by many previous stud-
ies, with the specific configuration detailed in Ta-
ble 1. For the images associated with the entity
articles in the knowledge base, we crawled multi-
ple images, including the main image, from each
entity’s corresponding wikipedia page to consti-
tute the knowledge base’s image set. Our experi-
ments primarily focus on assessing both retrieval
and question-answer performance: retrieval is eval-
uated using Recall@K, while VQA performance is
measured using the official metrics for each dataset
(e.g., BEM score (Zhang et al., 2019) for E-VQA
and both VQA accuracy (Antol et al., 2015) and re-
laxed accuracy (Methani et al., 2020) for InfoSeek).
More details on the datasets and their evaluation
methods can be found in the Appendix B.

4.2 Implementation Details

In this section, we briefly introduce some details
of the various steps in our framework. Regard-
ing the models and prompts used, please refer to
Appendix C.1 and Appendix A, respectively.

Initial Entity Searching. To produce high-quality
summaries of entity articles, we leveraged Lang-
GPT (Wang et al., 2024) to develop the "Wiki Sum-
mary Generator Assistant" prompt. For efficient
entity search using the FAISS library, we employed
the pooled embeddings from the last layer of en-
coder for calculating image-text similarity. We set
k to 20 and retrieved only the top-20 most relevant
entities to strike a balance between the speed and
effectiveness of subsequent retrieval and question-
answering tasks, as validated by the experimental
results presented in the Table 7.

Multimodal-Fused Encoder Training and In-
ference. The encoder model is initialized with
pre-trained q-former weights using the LAVIS Li-
brary (Li et al., 2023a). We select the top 32 embed-
dings from the model output as our multi-modal
fusion feature matrix, corresponding to the position
and number of defined query tokens. Since InfoS-
eek training samples do not include labels for the
evidence section, our encoder is trained on the E-
VQA training set and then tested on both datasets.

This setting aligns with the training requirements
and characteristics of the datasets, while also al-
lows us to evaluate the model’s generalization abil-
ity. Given that each question-answer pair in the
training samples corresponds to multiple query im-
ages, we use only the first query image to form the
triplet with the question-answer pair as the actual
training sample. This strategy ensures training qual-
ity while enhancing efficiency. Additional details
regarding this step can be found in Appendix C.2.
Results of ablation experiments on the hyperpa-
rameter for cross-stage similarity propagation are
presented in Appendix D.2.

Generator Training and Inference. we primarily
employ pre-trained LLM/MLLM models for abla-
tion studies and most of the main experiments. To
assess the performance of the generator fine-tuned
under our retrieval system, we experiment with
lightweight and efficient fine-tuning on LLaVA-
1.5-7B (Liu et al., 2024) and evaluate its VQA
performance. More details are presented in Ap-
pendix C.3.

4.3 Main Results

The results of our method compared with other
works are presented in Tables 2 and Table 3, pri-
marily on entity retrieval and VQA performance.

Retrieval Result. Table 2 showcases the re-
trieval performance of various multimodal RAG
approaches across two datasets. The "CLIP I-T"
refers to the naive approach, where CLIP is used
for the cross-modal similarity search, linking the
query image to the wiki article with embeddings.
By examining the Recall@1 results, our method (w.
reranking) significantly outperforms other meth-
ods, which demonstrates the robust retrieval ca-
pability of our retrieval method. Additionally, the
reranking in step two improves Recall@1 by 23.7%
and 11.4% for the two datasets compared to step
one alone, underscoring the effectiveness of multi-
modal retrieval and cross-step similarity propaga-
tion in boosting reranking performance. Further-
more, even without reranking, our method outper-
forms the full-scale retrieval strategies commonly
used in other works across all retrieval ranges,
demonstrating the significant advantage provided
by the granularity alignment between the summary
and the query image in step 1.

VQA Result. Table 3 presents a comparison of
our VQA results with the state-of-the-art meth-
ods. RORA-VLM (Qi et al., 2024) is a retrieval-
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Method E-VQA InfoSeek

R@1 R@5 R@10 R@20 R@1 R@5 R@10 R@20

CLIP I-T 3.3 7.7 12.1 16.5 32.0 54.0 61.6 68.2
Wiki-LLaVA 3.3 - 9.9 13.2 36.9 - 66.1 71.9
LLM-RA - - - - 47.3 53.8 - -
mR2AG - - - - 38.0 - 65.0 71.0
ReflectiVA 15.6 36.1 - 49.8 56.1 77.6 - 86.4
EchoSight

w/o. reranking 13.3 31.3 41.0 48.8 45.6 67.1 73.0 77.9
w. reranking 36.5 47.9 48.8 48.8 53.2 74.0 77.4 77.9

OMGM (ours)
w/o. reranking 19.1 41.2 49.8 58.7 52.6 73.9 80.0 84.8
w. reranking 42.8 55.7 58.1 58.7 64.0 80.8 83.6 84.8

Table 2: Retrieval results on the E-VQA test set and InfoSeek validation set. "w/o. reranking" and "w. reranking"
represent the entity retrieval results after step one and step two, respectively. Best in bold, second-best underlined.

Method Generator Model Gen. FT Ret. FT E-VQA
InfoSeek

Unseen-Q Unseen-E Overall

RoRA-VLM LLaVA-1.5-7B ! % 20.29 27.34 25.10 -
Wiki-LLaVA LLaVA-1.5-7B ! % 21.8 30.1 27.8 28.9
LLM-RA BLIP2-Flan-T5XL ! ! - 26.12 20.90 23.14
EchoSight Mistral-7B | LLaMA3-8B % ! 41.8 - - 31.3
mR2AG LLaVA-1.5-7B ! ! - 40.6 39.8 40.2
ReflectiVA LLaVA-MORE-8B ! ! 35.5 40.4 39.8 40.1

OMGM (ours)
InternVL-2.5-8B % ! 48.72 37.16 35.1 36.1

LLaMA3-8B % ! 49.94 35.26 33.61 34.42
LLaVA-1.5-7B ! ! 50.17 43.46 43.53 43.49

Table 3: VQA accuracy comparison with the baselines. Gen. FT and Ret. FT indicate whether the generator and
retriever of the method were fine-tuned, respectively. Best in bold, second-best underlined.

augmented VLM system that removes irrelevant
information based on token-level embedding sim-
ilarity and incorporates noise-resilient retrieval-
augmented training. mR2AG (Zhang et al., 2024)
and ReflectiVA (Cocchi et al., 2024) center on re-
flection. By fine-tuning large models, they lever-
age token outputs to drive the retrieval process
and perform re-screening and modifications on re-
trieved content and generated answers. Our method
achieves superior VQA results on both datasets
compared to existing approaches, demonstrating
the improved generation performance of down-
stream models after enhancing retrieval capabil-
ities. Notably, our method, which only fine-tunes
the retriever, outperforms most approaches that
fine-tune downstream generators, highlighting its
efficiency. We test the VQA performance of main-
stream LLMs and MLLMs under zero-shot set-
tings and our framework on two datasets and pro-
vide results in Appendix D.1. Our method demon-
strates excellent VQA results across both MLLM
and LLM models, underscoring its ability to gener-
alize retrieval optimization to enhance generation

across different types of downstream generators.

4.4 Ablation Study

We conduct extensive experiments to assess the
effectiveness of our framework and the design
of each step, focusing on retrieval and question-
answering performance. Due to space limitations,
we have placed additional ablation experiments in
Appendix D.2 and Appendix D.3, and the results
of some ablation experiments on InfoSeek can be
found in Appendix D.4.

Impact of Retrieval Steps on VQA Results. Ta-
ble 4 records the VQA results on two datasets, as
each step of our framework is executed in sequence.
When only step one is completed, the generator re-
ceives the top-1 entity article as context. After step
two is executed, the generator’s context is provided
with the top-1 section. Each step in our multi-step
framework progressively improves the VQA per-
formance of the downstream generator, confirming
the effectiveness of its design. Notably, step two of-
fers the most significant enhancement, highlighting
the powerful retrieval capability of our multimodal-
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fused reranker with similarity propagation.

step-1 step-2 step-3 E-VQA InfoSeek

% % % 17.2 9.3
! % % 25.45 18.87
! ! % 39.81 31.38
! ! ! 41.81 33.29

Table 4: The ablation study on the impact of differ-
ent steps in our framework on the VQA results, using
LLaVA-1.5-7B as the answer generator.

Impact of Retrieval Design on Initial Entity
Search. As the first step of multi-step retrieval, we
perform a coarse-grained search for entity-related
knowledge within a large knowledge base. We
use the query image as the query, which uniquely
contains entity information. Retrieval candidates
can be selected based on different modalities and
knowledge granularities. Table 5 presents our re-
trieval experiments using images, articles, titles,
and summaries as candidates. The results indicate
that the Image-to-Summary method achieves the
best retrieval performance, suggesting that sum-
maries offer better alignment with query images
in terms of information granularity, leading to im-
proved retrieval outcomes.

Ret. Method R@1 R@5 R@10 R@20

Image → Article 13.2 27.7 35.5 41.7
Image → Image 13.4 31.8 41.9 48.8
Image → T itle 17.5 31.9 38.6 44.8

Image → Summary 19.1 41.2 49.8 58.7

Table 5: Ablation study on modalities and granularities
design for entity retrieval in step 1.

Effect of Multimodal Fusion Reranking. In step
two, we rerank a small subset of entities obtained
from the initial search to identify the most relevant
one to the query. Consequently, we must leverage
question-oriented, fine-grained textual information,
such as the query question and the sections asso-
ciated with each entity. In VQA tasks, both the
query and the knowledge base are inherently multi-
modal. Therefore, it is reasonable to consider in-
corporating multi-modal fusion features into the
retrieval process. Based on this rationale, we exper-
imented with four retrieval approaches: purely text-
based retrieval, multimodal-to-text retrieval, text-
to-multimodal retrieval, and fully multimodal re-
trieval. Using Q-Former as the base encoder model,
we fine-tune all four retrieval modality approaches
under the same training configuration and evaluated

their performance. The results presented in Table 6
indicate that the method employing multimodal fu-
sion features on both the query and candidate sides
achieve the best retrieval performance. This finding
directly demonstrates the effectiveness and com-
prehensiveness of the multimodal-fused reranking
design in our framework.

Ret. Modality Sec. R@1 R@1 R@5 R@10

T → T 24.6 30.7 51.8 57.4
(I, T ) → T 22.5 28.7 51.3 57.0
T → (I, T ) 24.3 30.3 51.1 56.9

(I, T ) → (I, T ) 32.8 40.2 54.8 57.8

Table 6: Ablation study on retrieval modality of step
two on E-VQA. "I" indicates image modality and "T"
indicates text modality. "Sec. R@1" refers to the recall
of the top-1 section. α is set to 0 for direct comparison.

Effect of Reranking Scope on Retrieval Perfor-
mance. The reranking scope k influences both
the number of entities filtered during the initial
search and the range of multi-modal fused features
extraction during reranking. Table 7 presents the re-
trieval results and the average retrieval time for the
first two steps with varying k values. Our frame-
work can consistently improve the retrieval capac-
ity while increasing k from 10 to 100, accompanied
with more retrieval time as well. To balance re-
trieval quality and efficiency, we set the reranking
scope k to 20 for experiments across both datasets.

k Sec. R@1 R@1 R@5 R@10 R@20 Time

10 31.6 39.0 48.8 49.8 - 0.630
20 34.7 42.8 55.7 58.1 58.7 1.110
50 37.4 45.9 61.3 64.6 66.7 2.420

100 38.8 47.4 65.0 69.4 72.2 4.642

Table 7: The effect of the retrieval scope K on the re-
trieval results and time after step two on E-VQA.

Generalization on Additional Benchmark with
Differen Document Structures. For E-VQA and
InfoSeek documents, which consist of entity-based
Wikipedia articles, we segmented them into sec-
tions based on their inherent structure. This method
allowed us to leverage the natural organization of
Wiki-style content, which often includes headings
and subheadings, to create meaningful sections for
retrieval. For KB-VQA datasets with document
structures that differ significantly from E-VQA or
InfoSeek, alternative segmentation strategies can
be employed to ensure effective organization of
knowledge. One potential approach is to use rule-
based method, which relies on predefined heuris-
tics such as paragraph breaks, headings, or specific

24552



keywords to define section boundaries. Another
approach is semantic clustering, which groups text
segments based on semantic similarity, enabling
the creation of fine-grained, section-like knowl-
edge units even in the absence of explicit document
structure.

To evaluate the generalizability of OMGM on
different segmenation setting, we tested our method
on the OK-VQA(Marino et al., 2019) dataset,
which lacks a highly structured format and seg-
mented using a rule-based segmentation method.
As shown in Table 8, OMGM demonstrated strong
performance, achieving higher retrieval accuracy
(Pseudo Recall@5) and VQA scores compared
to the strong baseline PreFLMR(Lin et al., 2024).
Specifically, OMGM achieved a Pseudo Recall@5
of 73.4 and a VQA score of 66.57, outperform-
ing PreFLMR by a notable margin. These results
suggest that OMGM’s framework is robust and
adaptable to varying document structures across
different KB-VQA datasets.

Method Pseudo Recall@5 VQA score

PreFLMR 70.9 61.88
OMGM 73.4 66.57

Table 8: Comparison of the retrieval and VQA results
of OMGM and PreFLMR on OK-VQA.

Quantitative evaluation on the efficiency of
OMGM’s step-by-step approach. To further per-
form the efficiency of the proposed OMGM frame-
work, we conducted a comparative evaluation of
OMGM, the one-step multimodal RAG method
PreFLMR(Lin et al., 2024), and the direct use of
LLaVA-1.5-7B for VQA on the E-VQA dataset.
We evaluated three key metrics: average retrieval
time, average inference time, and VQA perfor-
mance. It is worth noting that PreFLMR prepro-
cesses and encapsulates all passage embeddings
prior to inference, which reduces retrieval time
during runtime to primarily consist of query em-
bedding and similarity matching. To ensure a fair
comparison, OMGM’s retrieval time calculation
also focuses on these two components.

Method Avg. Ret. Time Avg. Inf. Time VQA Result

LLaVA-1.5-7B - 1.432 17.00
PreFLMR 0.984 2.196 54.45
OMGM 0.402 2.023 63.39

Table 9: Comparison of average retrieval and inference
time as well as VQA performance on E-VQA.

As shown in Table 9, OMGM achieves sub-
stantial improvements in VQA performance, sur-
passing both LLaVA-1.5-7B and PreFLMR. De-
spite employing a step-by-step retrieval strategy,
OMGM maintains competitive inference efficiency.
Compared to direct use of LLaVA-1.5-7B, OMGM
delivers significantly better VQA results while in-
troducing only a minimal increase in inference
time.

Additionally, when compared to the one-step
PreFLMR, OMGM demonstrates a notable reduc-
tion in retrieval time, decreasing from 0.98s to
0.4s. This improvement is due to its orchestrated
retrieval process, which is specifically designed to
optimize the integration of different modalities and
knowledge granularities at each step, achieving an
effective balance between retrieval efficiency and
performance.

5 Conclusion

In this paper, we propose a RAG system with multi-
step multimodal retrieval. By employing queries
and candidates of appropriate modalities at each
step, the system aligns the information granularities
for better retrieval. Our system capitalizes on cross-
step similarity propagation to enhance retrieval in-
teractions and employs a multimodal-fused design
to fully exploit the rich multimodal information
present in queries and candidates. Experimental
results on mainstream KB-VQA datasets show that
our approach surpasses existing approaches in re-
trieval performance. The comprehensive retrieval
pipeline enables pre-trained models and lightly fine-
tuned models to outperform the systems heavily
reliant on extensive fine-tuning, and we reveal the
rationality and effectiveness of it by ablation stud-
ies. These findings provide valuable insights for
designing effective multimodal retrieval systems
tailored to KB-VQA tasks.

Limitations

Our RAG system focuses primarily on the de-
sign of the multimodal retrieval module. While it
has demonstrated significant performance improve-
ments, several limitations remain: 1) Multimodal
knowledge bases often include not only coarse-
grained main images of entities but also numerous
fine-grained secondary images linked to specific
sections. Our current method does not exploit these
secondary images to optimize multimodal retrieval,
presenting a promising area for future exploration.
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2) Although our approach enhances VQA perfor-
mance through improved retrieval, further explo-
ration is needed to determine how generator mod-
els can more effectively utilize multimodal fusion
features to enhance answer quality during the gen-
eration phase.
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Appendix

A Prompt Used in Our Methodology

In this section, we present the prompt templates
utilized for invoking LLM/MLLM in our method-
ology, encompassing processes such as LLM-based
summary generation and VQA across various
datasets. The prompt template used to instruct
the LLM to generate summaries offline for entity
knowledge is presented in Table 15. It is evident
that the entire template is structured in an agent-
like format. Under this format, we expect the LLM
to strictly adhere to the instructions to efficiently
produce high-quality entity summaries.

During the question-answering phase in step
3, we have designed corresponding prompt tem-
plates tailored to the characteristics of different
datasets and the capabilities of LLM/MLLM. This
is to ensure that the true efficacy of our method in
question-answering is demonstrated as accurately
as possible. As demonstrated by the prompt for
E-VQA testing shown in the Table 16, when de-
ploying the MLLM, simple visual constraints and
a query image for the query are incorporated into
the prompt. For the InfoSeek dataset, which em-
ploys the stringent exact match evaluation criteria,
it is crucial to thoroughly guide the downstream
generator to adhere to the prescribed output format
in order to showcase genuine question-answering
performance. Consequently, we have incorporated
additional format instructions and a one-shot exam-
ple from the training set into the prompt presented
in Table 17.

B Dataset Details

Encyclopedic VQA (Mensink et al., 2023) The
dataset encompasses approximately 221k question-
answer pairs linked to 16.7k distinct fine-grained
entities, with each entity represented by up to five
images. The fine-grained entities and associated im-
ages are derived from the iNaturalist 2021 dataset
and the Google Landmarks Dataset V2 (Van Horn
et al., 2021; Weyand et al., 2020). Moreover, the
dataset provides a controlled knowledge base de-
rived from WikiWeb2M (Burns et al., 2023) with
2M Wikipedia articles with images, which contain
evidences to support each answer. According to
the number of reasoning steps required, the ques-
tions in the dataset can be divided into single-hop
and two-hop questions. The dataset triplets are
split into training, validation, and test subsets, con-

taining 1 million, 13k, and 5,800 samples, respec-
tively. For performance comparison with other re-
lated works, we also only use single-hop questions
for training and testing. Therefore, we adopt the
sample allocation method as shown in the Table 1.

To evaluate the performance of our proposed
retrieval-augmented QA LLM framwork in E-
VQA, we utilize the standard metric Recall@K and
BEM score (Zhang et al., 2019) as metrics to eval-
uate its retrieval capability and question-answering
capability, respectively. Recall@K evaluates the
proportion of test samples whose top-k retrieved
entities contain the correct entity, thereby reflecting
the retrieval performance within the top-k scope.
As the specific evaluation metric for the E-VQA
dataset, the BEM score is obtained by comparing
the predicted answer with the correct answers using
a BERT model specifically fine-tuned for answer
similarity assessment. This method correctly eval-
uates candidate answers that are valid but do not
exactly match the reference answers in annotations,
as opposed to common VQA metrics.

InfoSeek (Chen et al., 2023) The dataset com-
prises 1.3 million image-question-answer triplets,
corresponding to approximately 11,000 visual enti-
ties from OVEN (Hu et al., 2023). There are 8.9K
human-written visual info-seeking questions and
1.3M automated generated questions in InfoSeek.
The triplets are partitioned into training, valida-
tion, and test sets, containing approximately 934k,
73k, and 348k samples, respectively. Due to the
lack of ground truth for test split, our evaluation
is conducted on the validation set. In particular,
both the validation and test sets feature questions
pertaining to unseen entities or queries that are
not encountered during training. Additionally, the
dataset includes a knowledge base consisting of 6
million Wikipedia entities. To be consistent with
related works, like EchoSight (Yan and Xie, 2024),
we utilize the subset of 100,000 entities, ensuring
the inclusion of the 6,741 entities corresponding
to the questions from the training and validation
splits. When collecting images from Wikipedia
pages for Wikipedia entities, we found that a very
small portion of validation samples in the infoseek
dataset corresponded to correct entities that lacked
associated images. As a result, we filter out these
samples and conduct evaluations on the remaining
71,335 validation samples, which still account for
96.9% of the original dataset and ensures that the
final results are not significantly affected.
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For the retrieval evalution, we retained Re-
call@K as the evaluation metric, consistent with
E-VQA. Following the specific question-answering
evaluation criteria of InfoSeek, we employed two
different metrics based on the question types. For
questions requiring string-based answers, such as
entity names, we report accuracy using the VQA
accuracy metric (Antol et al., 2015). This metric
allows for multiple valid answers by considering
slight variations in phrasing as correct. The model
is evaluated based on whether its answer exactly
matches any of these valid responses. For ques-
tions requiring numeric answers, we use relaxed
accuracy (Methani et al., 2020), which considers
an answer correct if it falls within an acceptable
tolerance range around the ground truth.

C More Experimental Details

C.1 Model Checkpoints.

We adopted LLaMA-8B-Instruct (AI@Meta, 2024)
as the summarization model, whose robust abil-
ity to follow instructions guarantees the reliability
of the output, while its open-source nature and
compact size ensure high efficiency for a massive
knowledge base. With the Eva-CLIP encoder (Eva-
CLIP-8B) (Sun et al., 2024), we extract the embed-
dings of the query images and entity summaries.
When selecting the best section from the entity arti-
cle in step 3, we used BGE-Reranker-v2-m3 (Chen
et al., 2024a) for obtaining text similarity, which
is a lightweight, efficient text reranking model that
has been pre-trained for optimal performance. Re-
garding the answer generator, we tested not only
LLMs such as LLaMA-8B-Instruct and Mistral-7B-
Instruct-v0.2, but also MLLMs like LLaVA-1.5-7B
and InternVL-2.5-8B (AI@Meta, 2024; Jiang et al.,
2023; Liu et al., 2024; Chen et al., 2024b). Ad-
ditionally, we further tested the performance of
GPT-4 and GPT-4-o, which refer to GPT-4-1106
and GPT-4-o-2024-08-06, respectively.

C.2 More Details about Step 2 Experiments.

When employing hard negative sampling for
multimodal-fused retriever training, we set N = 16
image-section pairs for one training sample, which
contain only one positive pair and 15 negtive pairs.
For the image in the positive pair, we offline select
the most similar image to the query image from
multiple wiki images associated with the evident
entity, using Eva-CLP for similarity ranking. And
we directly choose the first image of the entity ar-

ticle as the image for the negative pair. Among
the 15 negative pairs, we select up to three harder
negative pairs from other sections of the article
that contains the evidence section. Through the
above contrastive pairs construction method, we
efficiently obtain positive pairs most relevant to
the query image and question, as well as diverse
and challenging negative pairs. During retrieval
training, we use learning rate 1e-5 and batch size
8, training for 1 epoch on a total of 191k training
samples processed from E-VQA. This configura-
tion allow the training to complete in 11 hours on 1
Nvidia A100 (80G). In the reranking inference, we
set the similarity fusion hyper-parameter α to 0.9,
indicating that fine-grained multimodal similarity
can be used to fine-tune the coarse-grained entity
similarity, which can be valiated by the results as
shown in Appendix D.2

C.3 More Details about Step 3 Experiments.

For the best section similarity fusion, we set β
to 0.2 to incorporate multimodal information with
a small weight into unimodal information, which
can be proved by the results as presented in Ap-
pendix D.2. For the LLaVA-1.5-7B fine-tuning
samples, we randomly selected 100k samples from
the training set of each dataset and used our sys-
tem’s retrieval step to match the corresponding sec-
tion paragraphs, thereby constructing training sam-
ples in the RAG format. Regarding the fine-tuning
settings, we adopted the official LLaVA-1.5 LoRA
training parameters, using a learning rate of 2e-5
and a batch size of 8x16. Lightweight training was
performed for 1 epoch on 1 Nvidia A100 (80G).

Regarding the baseline details in our main re-
sults, we consider mR²AG and ReflectiVA to have
fine-tuned their MLLM to perform a reranking-like
relevance reflection on the retrieved content, and
thus we treat them as having fine-tuned the retriever.
Additionally, the E-VQA results for mR²AG were
not adopted because they utilize the online Google
Lens retrieval results provided by E-VQA, which
differ from the settings in other works where the
retrieval system is custom-designed, so no compar-
ison is made.

D More Experiments and Ablation studys

D.1 Consistency of our work across LLMs
and MLLMs.

As shown in Table 10, we tested the VQA per-
formance of mainstream LLMs and MLLMs un-
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Generator Model W/OMGM E-VQA InfoSeek

LLaVA-1.5-7B
% 17.2 9.3
! 41.81 33.29

InternVL-2.5-8B
% 25.56 10.95
! 48.72 36.1

Mistral-7B
% 17.71 0
! 48.08 17.14

LLaMA3-8B
% 18.78 1.56
! 49.94 34.42

GPT-4
% 18.23 -
! 50.88 -

GPT4-o
% 35.92 38.35
! 51.18 42.09

Table 10: The ablation study on the impact of our
method on the VQA results of different generator mod-
els. We use the Overall Score as the primary metric for
the VQA results on the InfoSeek dataset. Regarding
the performance variations of closed-source models on
InfoSeek, due to the vast number of samples in the In-
foSeek test set and the cost constraints of API calls, we
only evaluated the most critical model, GPT4-o.

der zero-shot settings and our framework on two
datasets. Firstly, from the perspective of closed-
source and open-source models, we can observe
that our framework enhances the performance of
small open-source models to approach or even sur-
pass that of powerful closed-source models in a
zero-shot setting (some cases are shown in Ap-
pendix E), while also significantly improving the
VQA performance of closed-source models, which
demonstrates the generalizability of our RAG sys-
tem for generation models. Additionally, we ob-
served that for LLMs, if the retrieval performance is
sufficiently good, their question answering results
can approach or even surpass those of MLLMs
(49.94 for LLaMA3-8B and 48.72 for InternVL-
2.5-8B in E-VQA), when query images are not
accessible. This highlights the correct retrieved
content about visual entity can help LLMs in ana-
lyzing and answering visual questions.

D.2 Effect of different hyper-parameters’
value in step 2 and 3

In this section, we investigate the impact of the
hyperparameters α and β, which control the simi-
larity mixing in step 2 and 3 of our method, on the
retrieval and question-answering results.

In step 2, we set α as the weight to integrate the
coarse-grained similarities obtained from the initial
entity search into the multimodal-fused similari-

ties, thereby achieving a comprehensive reranking
similarity. In the experiments with α, we tested its
variation from 0 to 1 and observed the changes in
the final retrieval entity recall of step 2, as illus-
trated in the Figure 3.

Figure 3: The variation of Entity Recall@1 with the
change of step 2 similarity fusion hyper-parameter α on
the E-VQA and InfoSeek

From the Figure 3, we can see that the fusion
of similarities at different steps has a very positive
impact on the reranking effect. When α is set to
0, we solely rely on the similarity from step 2 for
reranking, achieving relatively satisfactory results
on both datasets (51.3% and 40.2%), highlight-
ing the excellent entity reranking capability of the
multimodal-fused reranker. Notably, for E-VQA,
the retrieval outcomes in step 2 significantly sur-
pass those of step 1, which is attributed to the fact
that this dataset was used as the training set for the
reranking encoder, demonstrating the remarkable
effectiveness of multimodal fusion retrieval. More-
over, on InfoSeek, the approach exhibits strong gen-
eralizability, as combining similarities results in a
substantial improvement in reranking performance
(52.6% to 64.0%). The best retrieval performance
is achieved when the similarity from step 1 is mixed
at a higher proportion (0.9), indicating that the sim-
ilarity of multimodal-fused retrieval optimizes the
coarse-grained entity similarity obtained from the
initial search in a "fine-tuning" manner.

In the step 3, we set β as the weight to integrate
the multimodal-fused section similarity into the
direct text similarity, aiming for better knowledge
denoising. In the experiments with β, we tested its
variation from 0 to 1 and observed the changes in
the retrieval and question-answering effectiveness
on two datasets in step 2, as presented in Figure 4
and Figure 5.

Compared to the significant impact of α on re-
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Figure 4: The changes in Section Recall@1 on the
E-VQA dataset under varying values of the step 3 simi-
larity fusion hyper-parameter β

Figure 5: The changes in Overall Score on the InfoSeek
dataset under varying values of the step 3 similarity
fusion hyper-parameter β

trieval, the positive impact of β is relatively limited.
This is because the knowledge denoising in step 3
is conducted in a top-1 document context, without
involving entity-level filtering, so simply using a
pretrained text reranker can achieve good denoising
results. The performance improvement obtained
by integrating the multimodal fusion similarity at
a small proportion also demonstrates the compre-
hensiveness and generalization ability of cross-step
similarity propagation.

D.3 Methods for computing multimodal
fusion feature similarities

In order to achieve the best retrieval performance,
we need to adopt an appropriate similarity computa-
tion method to match the multimodal fusion feature
matrix. Based on previous studies (Yan and Xie,
2024; Radford et al., 2021; Khattab and Zaharia,
2020), we evaluated three commonly used methods
for computing similarity in Table 11 and Table 12.
Q-Former’s Image-to-Text Correspondence (ITC)
computes the highest pairwise similarity between
each multimodal query token embedding and the
pooling token embedding of the multimodal candi-

Sim. Calculation Sec. R@1 R@1 R@5 R@10

CLIP’s ITC 28.3 37.1 53.2 57.5
Q-Former’s ITC 25.2 34.3 52.6 57.2
Late-Interaction 32.8 40.2 54.8 57.8

Table 11: The ablation study on the impact of different
Step 2 similarity computation methods on entity-level
and section-level retrieval results of E-VQA. The α of
step 2 is set to 0 to facilitate a direct comparison.

Sim. Calculation R@1 R@5 R@10

CLIP’s ITC 47.6 76.2 82.2
Q-Former’s ITC 47.5 76.6 82.4
Late-Interaction 51.3 77.9 82.8

Table 12: The ablation study on the impact of different
step 2 similarity computation methods on entity-level
retrieval results of InfoSeek. The α of step 2 is set to 0
to facilitate a direct comparison.

date. CLIP’s ITC computes the similarity between
the first token embeddings of the multimodal query
and candidate. Late-Interaction gets the retrieval
score by aggregating the maximum dot products
over all query tokens with respect to all candidate
tokens. From the results in the Table 11 and Ta-
ble 12, it is clear that, whether at the entity level
or the section level, retrieval performance obtained
through Late-Interaction is superior. This finding
indicates that a fine-grained, comprehensive token-
level similarity computation method is more suit-
able for multimodal-fused retrieval.

D.4 Some Ablation study results in InfoSeek
Table 13 and Table 14, respectively, present the
results of two distinct ablation experiments on In-
foSeek, whose results on E-VQA are shown respec-
tively in Tables 5 and Tables 6. It is evident that,
similar to the results on E-VQA, these findings sub-
stantiate the key conclusions of the corresponding
ablation studies. This also indirectly demonstrates
the soundness and generalizability of our frame-
work design.

E Case Study

To visually assess the performance of our proposed
method on the KB-VQA task, we present in the
Figure 6 the qualitative results on the test dataset
for fine-tuned LlaVA-1.5 using OMGM (the best
one shown in Table 3) and for GPT4-o in zero-shot
mode. Evidently, the strong retrieval capability
enables the generator to handle a wide range of
questions, including those that require precise nu-
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Ret. Method R@1 R@5 R@10 R@20

Image → Article 44.5 64.5 70.7 76.0
Image → Image 45.6 68.6 74.6 77.9
Image → T itle 51.5 69.2 74.8 79.1

Image → Summary 52.6 73.9 80.0 84.8

Table 13: The ablation study on the impact of different
step 1 retrieval methods on entity retrieval results of
InfoSeek.

Ret. Modality R@1 R@5 R@10

T → T 25.8 65.6 79.2
(I, T ) → T 28.2 67.5 80.0
T → (I, T ) 26.9 67.6 79.8

(I, T ) → (I, T ) 51.3 77.9 82.8

Table 14: The ablation study on the impact of differ-
ent step 2 retrieval modalities on entity-level retrieval
results of InfoSeek. Since InfoSeek does not provide
annotations for evidence sections, Sec. R@1 is only
reported for the results on the E-VQA dataset.

merical answers (as shown in the top-right and mid-
right examples) and those that involve specialized
entity knowledge (as illustrated in the top-left and
mid-left examples). In contrast, GPT4-o often fails
to identify specific entity information in the images,
which leads to either incorrect responses or state-
ments declaring its inability to answer. These ex-
amples qualitatively demonstrate the enhanced per-
formance of our method for compact open-source
models on the KB-VQA task.

Moreover, the bottom row also displays three
failure cases. In these examples, we are generally
able to retrieve the corresponding knowledge for
the relevant entities. However, several factors may
lead to deviations between the generated answers
and the true answers: in cases where the lengthy
retrieved information contains multiple potential
answers, the generator might be unable to accu-
rately extract the specific answer sought by the
query (as shown in the bottom-left example); when
the output format required by the query differs from
that of the retrieved knowledge, the generator may
provide an answer in an incorrect format (as seen
in the bottom-mid example); and if the relevant
content in the retrieved knowledge is nested across
multiple layers, the generator might either omit
part of the answer or offer a rough response (as
illustrated in the bottom-right example). This in-
dicates that although our method achieves excel-
lent retrieval performance, the limitations in the
downstream generator’s instruction-following and
analytical capabilities still restrict its overall VQA

performance.
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System:
You are a Wiki Summary Generator Assistant. Following is some information about you:
## Profile
- name: Wiki Summary Generator Assistant
- language: English
- description: The Wiki Summary Generator Assistant is designed to create concise and informative
summaries based on provided Wikipedia content. It extracts key aspects of the entity mentioned in the
Wiki article, covering various dimensions such as history, characteristics, significance, appearance and
impact.
## Workflows
1. Input the provided Wikipedia content into the system.
2. Identify the main sections and key information related to the entity.
3. Synthesize this information into a well-structured summary.
4. Review and refine the summary for clarity, coherence, and completeness before finalizing.
## Rules
1. Focus on summarizing key details across multiple aspects (e.g., appearance, features, impact) of the
entity.
2. Ensure the summary is concise, clear, and free of irrelevant details.
3. Retain the original meaning and context of the Wiki content while rephrasing it into a summary.
User:
Following is the input Wikipedia content:
{ Wikipedia content }
Based on the above Wikipedia content, I would like you to generate a summary of the Wikipedia content.
Here is the summary of the Wikipedia content:

Table 15: Prompt template used to instruct the LLM to generate summaries offline for entity knowledge

System:
Answer the encyclopedic question about the given image. Don’t mention the visuall content of image in
your output. Directly output the answer of the question according to the context.
You are a helpful assistant for answering encyclopedic questions.
If the context does not contain the information required to answer the question, you should answer the
question using internal model knowledge.
User:
{ Query Image }
- Context: { Entity section }
- Question: { Textual question }
The answer is:

Table 16: Prompt used for the VQA process of LLM/MLLM in E-VQA. The yellow part is the content only used

for MLLM. The red part is the content only used for LLM. The green part is the content used for both LLM and
MLLM.

24562



System:
Answer the encyclopedic question about the given image. Don’t mention the visuall content of image in
your output. Directly output the answer of the question according to the context.
You are a helpful assistant for answering encyclopedic questions. Do not answer anything else.
If you need to answer questions about numbers or time, please output the corresponding numerical format
directly. If the context does not contain the information required to answer the question, you should
answer the question using internal model knowledge.
There is an example:
- Context: # Wiki Article: Dolomites
## Section Title: Dolomites
The Dolomites, also known as the Dolomite Mountains, Dolomite Alps or Dolomitic Alps, are a mountain
range located in northeastern Italy. The Dolomites are located in the regions of Veneto, Trentino-Alto
Adige/Südtirol and Friuli Venezia Giulia, covering an area shared between the provinces of Belluno,
Vicenza, Verona, Trentino, South Tyrol, Udine and Pordenone.
- Question: Which city or region does this mountain locate in?
Just answer the questions , no explanations needed. Short answer is: Province of Belluno
User:
{ Query Image }
- Context: { Entity section }
- Question: { Textual question }
Just answer the questions , no explanations needed. Short answer is:

Table 17: Prompt used for the VQA process of LLM/MLLM in InfoSeek. The yellow part is the content only used

for MLLM. The red part is the content only used for LLM. The green part is the content used for both LLM and
MLLM.

Q: In which part of the world does this animal live?

GPT4-o:
The animal, a centipede, can
be found in various parts
of the world, particularly in
tropical and subtropical re-
gions%
Ours:
Southwestern United States
and northern Mexico!

Q: Who is the current curator of this museum?

GPT4-o:
I apologize, but I cannot pro-
vide the name of the cur-
rent curator of the Stax Mu-
seum of American Soul Mu-
sic based solely on the image
%
Ours:
Soulsville Foundation!

Q: How many meters tall does this plant grow to?

GPT4-o:
0.1 to 0.5 meters%
Ours:
0.5-1.5!

Q: What is the source that produces this plant?

GPT4-o:
Vitis species (grapevine)%
Ours:
Vitis labrusca!

Q: What is the length of this bridge in metre?

GPT4-o:
1451%
Ours:
1450!

Q: In which year was this item invented or discovered?

GPT4-o:
1889%
Ours:
1876!

Q: When was this building built?

GPT4-o:
... I can’t determine the con-
struction date ... %
Ret. Sec: ... structure c.
1850 ... It was constructed
during the 1980s ...
Ours:
1850s%
Ground-truth:
1980s

Q: What is the area in square kilometre occupied by
this lake?

GPT4-o:
18%
Ret. Sec: ... The lake has an
area of 118 hectares ...
Ours:
118%
Ground-truth:
1.18

Q: What is the location of this building?

GPT4-o:
Munich, Germany%
Ret. Sec: ... located in Mu-
nich’s district Am Riesen-
feld ...
Ours:
München%
Ground-truth:
Am Riesenfeld

Figure 6: Qualitative VQA results comparing to GPT4-o. The first row shows results in E-VQA and the second row
shows results in InfoSeek. Some failure cases are shown in the third row altogether with ground-truth.
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