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Abstract

Fairness in NLP must extend beyond perfor-
mance parity to encompass equitable reliability
across groups. This study exposes a critical
blind spot: models often make less reliable
or overconfident predictions for marginalized
groups, even when overall performance appears
fair. Using the FairLex benchmark as a case
study in legal NLP, we systematically evalu-
ate both performance and reliability dispari-
ties across demographic, regional, and legal
attributes spanning four jurisdictions. We show
that domain-specific pre-training consistently
improves both performance and reliability, es-
pecially for underrepresented groups. However,
common bias mitigation methods frequently
worsen reliability disparities, revealing a trade-
off not captured by performance metrics alone.
Our results call for a rethinking of fairness
in high-stakes NLP: To ensure equitable treat-
ment, models must not only be accurate, but
also reliably self-aware across all groups.

1 Introduction

As NLP systems are increasingly deployed in high-
stakes domains—such as healthcare, education,
finance, and law—the need for fairness, trans-
parency, and trust has become paramount (Chen
et al., 2024; Burkart and Huber, 2021; Pressman
et al., 2024). Fairness in NLP has traditionally
been framed through performance parity, where
models are expected to achieve comparable predic-
tive accuracy across demographic or social groups
(Mehrabi et al., 2021; Gallegos et al., 2024; Li
et al., 2023). However, this view overlooks a criti-
cal dimension of responsible model behavior: re-
liability—a model’s ability to express calibrated
confidence and to abstain when uncertain (Geif-
man and El-Yaniv, 2017; Guo et al., 2017). In
safety-critical settings, a model’s confidence can
be as consequential as its accuracy: overconfident
or erratic predictions, especially for marginalized

Figure 1: Toy example illustrating performance parity
but reliability disparity across groups. The two groups,
male and female, each contain 8 examples with 6 out of
8 correct predictions, indicating equal accuracy. Each
prediction is represented by a horizontal bar, where the
bar length encodes the model’s confidence. Correct and
incorrect predictions are marked using v* and X, respec-
tively. While accuracy is balanced across groups, the
female group’s incorrect predictions occur at substan-
tially higher confidence levels, revealing overconfident
mispredictions. This highlights how models can appear
fair under performance metrics while masking dispari-
ties in reliability across groups.

groups, can amplify harm and erode trust (Tran
et al., 2022; Ulmer, 2024).

We argue that fairness in NLP must extend be-
yond performance parity to encompass equitable
reliability across groups. This means not only de-
livering equitable outcomes, but also ensuring that
models are consistently calibrated, cautious, and
self-aware across different subpopulations. A sys-
tem that performs well on average across groups
may still exhibit overconfidence or erratic uncer-
tainty for certain groups—Ieading users to over-
trust unreliable outputs and creating hidden dispar-
ities in how risk is experienced and mitigated.

To investigate this broader fairness paradigm,
we examine the legal domain—a representative
high-stakes setting, where fairness and reliability
are not just technical ideals but also legal obli-

24376

Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 24376-24390

July 27 - August 1, 2025 ©2025 Association for Computational Linguistics



gations. Legal NLP has gained attention for its
potential to transform the legal field by enabling
efficient, scalable analysis of complex texts, sup-
porting tasks such as legal research, contract re-
view, and case summarization, and reducing tra-
ditional workflow costs (Zhong et al., 2020; Ash-
ley, 2018; Katz et al., 2023; Ariai and Demartini,
2024; Kalamkar et al., 2021). By providing data-
driven tools, these systems aim to democratize ac-
cess to legal insights and enhance decision-making
for judges, lawyers, and policymakers (Santosh
et al., 2024a,c; Chalkidis et al., 2021b; Niklaus
et al., 2023).

However, as such models are integrated into sen-
sitive legal workflows, concerns over equity in-
tensify. In law, fairness is rooted in principles of
equality and non-discrimination', demanding that
automated systems perform consistently across dif-
ferent demographic groups, jurisdictions, and case
types (Chalkidis et al., 2022). Models trained on
historical legal data risk replicating or even amplify-
ing entrenched biases, undermining the legitimacy
of legal systems and public trust, contravening the
core legal commitment to impartiality and equal
treatment under the law. To address this, Chalkidis
et al. (2022) introduced FairLex, a benchmark that
evaluates fairness across four legal jurisdictions by
measuring performance disparities across legal and
demographic attributes. Separately, Santosh et al.
(2024b) proposed a selective prediction framework
for legal NLP, allowing models to abstain in un-
certain scenarios and highlighting the importance
of calibrated decision-making. Despite these ad-
vances, fairness and reliability have largely been
treated as separate concerns.

In this work, we unify these perspectives by ad-
vocating for fairness through reliability. We pro-
pose that models should not only perform equi-
tably across groups, but also exhibit uniform relia-
bility—providing calibrated confidence and defer-
ral behavior consistently across all subpopulations.
Disparities in reliability can expose certain groups
to greater risk, even when accuracy appears bal-
anced. For example, if a model is more overcon-
fident for specific demographic groups, its errors
may be harder to detect, leading to unequal down-
stream consequences. To investigate this broader
notion of fairness, we conduct a large-scale em-
pirical study using the FairLex benchmark. Our

'The legal notion of discrimination differs in scope and
semantics from the concepts of fairness and bias in machine
learning (Chalkidis et al., 2022; Gerards and Xenidis, 2021).

goals are twofold: (i) to examine how standard fine-
tuning and domain-specific pretraining affect per-
formance and reliability disparities across groups
and (ii) to evaluate the extent to which popular bias
mitigation techniques improve overall performance,
reliability and promote equity across groups, not
only in outcomes, but also in reliability.

Our findings reveal that: (a) Domain-specific
pretraining improves both performance and relia-
bility, particularly benefiting worse-off groups and
reducing disparity gaps.(b) Representational im-
balance and distributional misalignment partially
explain performance disparities but fail to account
for reliability gaps, highlighting the need to inves-
tigate their distinct causes. (c) High performance
does not imply better reliability or calibration; in
fact, higher-performing groups often exhibit over-
confidence on incorrect predictions, undermining
trust. (d) Bias mitigation methods, while occasion-
ally improving performance parity, frequently ex-
acerbate reliability disparities, revealing trade-offs
that accuracy-based fairness evaluations fail to cap-
ture.(e) No single method consistently improves all
fairness dimensions across settings, underscoring
the need for context-aware approaches that jointly
address both disparities.

Our results suggest that reliable model behavior,
particularly in how uncertainty is handled across
groups, must be a core component of fairness evalu-
ation in NLP, especially in high-stakes applications.
While our study focuses on legal NLP as a case
study, the insights are broadly applicable and call
for a shift in how fairness is conceptualized and
operationalized across the NLP landscape.

2 Related Work

Uncertainty Quantification & Selective Predic-
tion Uncertainty is a core concept in machine
learning, reflecting a model’s confidence in its
predictions. In selective prediction, a model
can abstain from predicting when uncertainty is
high—allowing it to defer decisions it deems un-
reliable. This area has been a focus of research
(Chow, 1957; Hellman, 1970; Fumera and Roli,
2002; Cortes et al., 2016; El-Yaniv et al., 2010;
Geifman and El-Yaniv, 2017) and has gained at-
tention in NLP tasks, such as question answering
(Kamath et al., 2020; Garg and Moschitti, 2021),
classification (Gu and Hopkins, 2023; Varshney
et al., 2022b,a), knowledge probing (Yoshikawa
and Okazaki, 2023), and text generation (Ren et al.,
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2022; Chen et al., 2023; Cole et al., 2023; Wen
et al., 2024). A related area, though distinct is
model calibration (Jiang et al., 2018; Desai and
Durrett, 2020; Wang et al., 2020a; Guo et al., 2017),
which aims to develop interpretable confidence
measures that adjust a model’s overall confidence
level, unlike selective prediction which focuses on
relative confidence across individual examples.
Uncertainty quantification techniques originally
developed for classification and regression in deep
learning (Gal et al., 2016) have been adapted for
NLP tasks using encoder-only language models
like BERT (Zhang et al., 2019; He et al., 2020;
Shelmanov et al., 2021; Vazhentsev et al., 2022;
Kotelevskii et al., 2022; Wang et al., 2022; Xin
et al., 2021). They have been extended to text gen-
eration tasks, which is more challenging, as it re-
quires estimating uncertainty for entire sequences,
which can involve an exponential or infinite num-
ber of predictions (Malinin and Gales, 2020; Kuhn
et al., 2023; Ren et al., 2022; Vazhentsev et al.,
2023; Lin et al., 2023; Van der Poel et al., 2022;
Vashurin et al., 2024; Fadeeva et al., 2023, 2024).
In legal NLP, Santosh et al. (2024b) explored
factors such as pre-training corpus, model size,
confidence estimator, and loss function on relia-
bility in case outcome classification tasks using
selective prediction. Our work extends this line by
examining group-level disparities in reliability and
how bias mitigation methods impact both perfor-
mance and reliability equity. We argue that fairness
evaluations should include not just equitable out-
comes, but also consistent reliability across groups,
ensuring that all subpopulations receive depend-
able predictions and are equally protected from
overconfident errors.
Fairness Fairness in machine learning addresses
various forms of discrimination (Makhlouf et al.,
2021; Mehrabi et al., 2021), including group fair-
ness, individual fairness, and causality-based fair-
ness. Group fairness ensures equitable predictions
across demographic subgroups, avoiding differen-
tial treatment based on attributes like race, gen-
der, or age (Hardt et al., 2016; Zafar et al., 2017;
Corbett-Davies et al., 2017). Individual fairness
focuses on treating similar individuals similarly
(Sharifi-Malvajerdi et al., 2019; Yurochkin et al.;
Dwork et al., 2012), while causality-based fair-
ness aims to reduce biases from confounding vari-
ables (Wu et al., 2019; Zhang and Bareinboim,
2018). To address fairness and bias issues, sev-
eral bias mitigation methods are proposed which

can be categorized into pre-processing (modifying
data before training) (Kamiran and Calders, 2012;
Calmon et al., 2017), in-processing (adjusting the
model during training) (Kamishima et al., 2012;
Beutel et al., 2017; Zhang et al., 2018; Mehrotra
and Vishnoi, 2022; Madras et al., 2018), and post-
processing (altering outputs after training) (Hardt
et al., 2016; Jiang et al., 2020).

In the legal domain, fairness research is emerg-
ing due to the societal consequences of biased de-
cisions. Angwin et al. (2016) identified racial bias
in the COMPAS parole risk assessment tool and
Wang et al. (2021) found gender disparities in legal
judgment prediction. Chalkidis et al. (2022) devel-
oped the FairLex benchmark to assess bias miti-
gation algorithms across different groups. While
most work focuses on group fairness, recent work
explores counterfactual fairness in lower court de-
cisions (Santosh et al., 2024a).

In our study, we adopt the group fairness cri-
terion and examine in-processing bias mitigation
techniques, as benchmarked in FairLex. Unlike
prior work, we analyze not just whether perfor-
mance disparities are reduced, but also whether
reliability is equitably maintained across all groups.
By unifying uncertainty estimation and fairness,
we aim to expand the fairness agenda to ac-
count for how models express and manage un-
certainty—through calibrated confidence and ap-
propriate abstention across groups—particularly in
high-stakes settings.

3 Tasks & Datasets

We describe the four datasets used in Fairlex
(Chalkidis et al., 2022), along with their tasks, as-
sociated groups under each attribute.

ECHR (Chalkidis et al., 2021a) contains 11,000
cases from the European Court of Human Rights,
which adjudicates complaints against states for al-
leged human rights violations. Given case facts, the
task is to predict the set of articles deemed violated
by the court, making this a multi-label classifica-
tion across 10 articles. The data is chronologically
split into 9,000 cases for training (2001-16), 1,000
for development (2016—17), and 1,000 for testing
(2017-19). Attributes include (a) defendant states
(grouped into Central-Eastern or other European
states), (b) applicant’s age group (< 35, 35-64, or
> 64), and (c) applicant’s gender (male or female).
SCOTUS consists of 9,262 cases from US
Supreme Court opinions, which generally address
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only the most complex or controversial cases un-
resolved by lower courts. The task is to predict
the issue area based on the court opinion, a single-
label multi-class classification task with 14 labels.
The cases are split as follows: 7,400 for training
(1946-1982), 914 for development (1982-1991),
and 931 for testing (1991-2016). Attributes in-
clude (a) the type of respondent (categorized as
person, public entity, organization, or facility) and
(b) decision direction (liberal or conservative).
FSCS (Niklaus et al., 2021) includes 85,000 deci-
sions from the Federal Supreme Court of Switzer-
land, which addresses complex cases unresolved
by lower courts and are available in one of three
languages (German, French or Italian). Given the
facts of case, the task is to predict whether the
plaintiff’s request is approved or dismissed, a bi-
nary classification. Cases are chronologically split
into train (59.7k, 2000-2014), development (8.2k,
2015-2016), and test (17.4k, 2017-2020) sets. At-
tributes include (a) Decision language (German,
French, or Italian), (b) legal area (public law, penal
law, social law, civil law, or insurance law), and (c¢)
originating canton region (R. Lémanique, Ziirich
E., Mittelland, E. Switzerland, N.W. Switzerland,
C. Switzerland, Ticino or Federation).

CAIL (Xiao et al., 2018; Wang et al., 2021) con-
tains over 1 million cases from the Supreme Peo-
ple’s Court of China, originating from high courts
on matters of national importance. The dataset in-
cludes labels for criminal code article prediction,
charge type, imprisonment term, and monetary
penalty. Following Chalkidis et al. (2022), the im-
prisonment term prediction is reframed as a crime
severity classification task—a single-label, multi-
class task in Chinese based on case facts. This task
classifies severity into 6 clusters (0, < 12, < 36,
<60, < 120, >120 months). Cases are chronolog-
ically split into 80,000 for training (2013-2017),
12,000 for development (2017-2018), and 12,000
for testing (2018). Attributes include (a) applicant’s
gender (male or female) and (b) the provincial-level
administrative region (Beijing, Liaoning, Hunan,
Guangdong, Sichuan, Guangxi or Zhejiang).

We report performance on each dataset using
macro-F1 scores to account for label imbalances.

4 Background & Methods

We introduce a selective prediction framework,
along with metrics for evaluating reliability and
bias mitigation algorithms, we apply in our study.

4.1 Selective Prediction

A standard classifier learns a function f : X — Y
that maps input X to labels Y. We extend this
with a selection function g : X — {0, 1}, forming
a selective classifier h = (f,g9); h — Y U {L},
where L represents abstention. For input z, the
selective classifier returns f(z) when the selection
function signals prediction, and abstains otherwise.

f(x) ifg(x) =1
h@ﬂ—(ﬂgxw——{L ) — 0
A common approach for g is to rely on a confidence
estimator g : X — R that assigns confidence val-
ues to instances along with a threshold v € R.
Ideally, g(x) should be high when f(x) is correct
and low when incorrect, to obtain a reliable clas-
sifier with better self-awareness. We use the most
widely used Softmax Response (SR) (Hendrycks
and Gimpel, 2016) as confidence estimator, based
on the maximum probability assigned to one of the
labels:

g(x) = maxp(y)

g(a) = 1[3(x) > nay

Metrics for Selective Prediction Coverage (C') is
the proportion of instances the model chooses to
predict and risk (R) is the error on those subset of
predictions. For selective classifier h = (f, g) on
dataset D with inputs x; and true labels y;:

cthy=— 3 gl

(zi,y:)€D

3

(xi,y:)€D

U(f (i), vi) - g(xi)
C(h)

where loss function [ measures the error between
prediction f(x;) and ground truth y;. A reliable
model should achieve high coverage at low risk,
meaning accurate predictions for many instances
and abstentions on incorrect ones. Lowering v
increases coverage but may also raise risk, leading
to a risk-coverage trade-off. Thus, we plot coverage
against risk to create a Risk-Coverage curve (EI-
Yaniv et al., 2010) and calculate the Area under
Risk-Coverage Curve (AuRCC), where a lower
AuRCC indicates a better reliable classifier.

Xin et al. (2021) propose Reversed Pair Proportion
(RPP), a normalized form of the Kendall-Tau dis-
tance, to assess deviation from ideal case where g

R(h) =
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should rank all correct predictions above all incor-
rect ones. RPP measures the proportion of instance
pairs with a reversed confidence-error relationship.
Gu and Hopkins (2023) propose a refinement met-
ric that normalizes by the worst-case Kendall-Tau
distance, yielding a calibrated, interpretable score
where values of 0, 0.5, and 1 indicate optimal, ran-
dom, and worst cases, respectively:

> Lg(x) < g(x)), 1 < 1]
1<i,j<| D|

Rf= 1D~ o)

where ¢ denote number of correct predictions made
by the prediction function. While, AuRCC mea-
sures threshold-sensitive trade-off between risk and
coverage, Rf covers confidence ranking across all
instances. Thus, AuRCC depends on the separabil-
ity of confidence scores while Rf depends on the
monotonicity of the confidence-error relationship.

4.2 Fairness

Consider a labeled dataset with each instance con-
sisting of an input z;, a target label y; and an asso-
ciated group attribute g; € A (e.g., Under attribute
gender A, group g; could be male or female). To
evaluate fairness, in line with prior work (Chalkidis
et al., 2022), fairness is defined in terms of perfor-
mance parity (Hashimoto et al., 2018), where a fair
classifier demonstrates similar performance across
all groups in A. To quantify performance dispari-
ties, we use the Group Disparity, which captures
the variance in macro-F1 scores across groups:

1 —
GD = \/’G| > (mFl, — mF1)?
geG

where mF1, represents macro-F1 score for group
g, and mF1 is average macro-F1 score across all
groups. A higher GD value indicates that certain
groups exhibit disproportionately lower model per-
formance compared to others. In addition to assess-
ing performance disparities, we argue it is crucial
to evaluate how the reliability of predictions varies
across groups. Thus we can extend the Group Dis-
parity metric to the Reliability measures, such as
AuRCC or Refinement in place of macro-F1, em-
phasizing the need for both equal performance and
consistent reliability across all groups.

Bias Mitigation Methods Traditional fine-tuning
methods optimize the loss equally over all instances
in a given batch, referred to as Empirical Risk
Minimization (ERM) (Vapnik, 1991). We also

utilize a variant of ERM with a balanced group
sampler (GS), where an equal number of instances
from each group are included in each batch. We
explore several bias mitigation methods derived
from group-robust or domain-invariant representa-
tion learning, which enhance transferability across
groups by eliminating group-specific information
and thus prevent overfitting to specific groups and
improve generalization across groups.

GDRO (Sagawa et al., 2019) Group Distribution-
ally Robust Optimization aims to optimize the
worst-group loss wherein the each group-wise ag-
gregated losses are weighted inversely proportional
to the performance of instances in that group.
V-REx (Krueger et al., 2021) hypothesize that vari-
ation of training loss across groups is representative
of the variation later encountered at test time, so
they also consider the variance across the group-
wise losses as an extra loss term.

IRM (Arjovsky et al., 2019) seeks to estimate non-
linear, invariant, causal predictors from multiple
training environments, to ensure better generaliza-
tion. To learn invariances across environments,
they fit an optimal classifier on top of that represen-
tation matches for all environments.
DeepCORAL (Sun and Saenko, 2016) aligns the
second-order statistics of the distributions across
groups by penalizing the differences in covariance
between the feature distributions of each pair of
groups, to obtain group invariant representations.
Adversarial Removal (Elazar and Goldberg, 2018)
uses an additional adversarial classifier to remove
the group-specific attribute information encoded
in the feature representations. This classifier is ap-
plied on top of the feature extractor to predict the
group for each instance. Through adversarial train-
ing, we maximize the feature extractor’s ability to
capture relevant information for the main classifi-
cation task while minimizing its ability to predict
the group (Santosh et al., 2022).

S Experiments

Models: Following earlier works of Chalkidis et al.
(2021b, 2022), we use a hierarchical BERT-based
model to account for the longer input lengths. We
utilize a pre-trained BERT model to encode each
paragraph in the input independently, obtaining
the [CLS] token representation for each paragraph,
which is then passed to a two-layer transformer
(similar to the configuration of the first layer) to
obtain context-enriched representations. These are
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| | ERM-DPT | ERM-Gen
|%t KLd |[mF11 AuR| Rf| |mF11 AuR] Rf|
ECHR
Applicant Age
<=35 14 0.19 | 42.90 1.67 25.94|40.27 1.46  23.06
<=65 68 0.18 | 51.00 699 9.03 |51.13 7.19 10.47
>65 18 0.32 | 49.07 133 20.65|44.03 145 1791
Applicant Gender
Male 77 0.17 | 4820 7.53 1039 | 4844 7.70 12.54
Female 23 026 | 45.10 141 1251|4387 155 18.23
Defendant State
E.C 80 0.17 | 50.27 13.44 10.33 | 49.87 1447 11.90
West 20 0.28 | 43.77 1.88 27.58 4137 192 27.63
SCOTUS
Decision Direction
Liberal 52 0.04 | 84.27 24.69 19.96 | 81.23 29.73 20.09
Conservative | 48 0.05 | 81.77 2398 15.62 | 76.43 28.22 17.55
Respondent Type
Person 34 0.05 | 80.10 19.17 20.01 | 75.83 24.00 2091
Organization| 13 0.11 | 88.50 593 21.86|86.23 745 2393
Public Entity| 51 0.07 | 81.50 18.38 16.26 | 74.13 22.83 18.24
Facility 3 0.26|89.07 140 26.03|89.03 154 2437
FSCS
Court Region
R.Léman. |27 0.04 | 71.30 382.72 25.33|69.75 601.29 32.51
Ziirich 18 0.04 | 68.17 168.08 20.19 | 68.21 222.36 24.54
E. Mittel. 17 0.08 | 70.27 130.72 19.57 | 67.16 21571 24.32
N.W. Swiss | 11 0.02 | 71.77 9445 17.19 | 7043 13496 21.50
E. Swiss 12 0.03 | 71.20 10543 2240 | 69.61 135.05 25.77
C. Swiss 10 0.03 | 6793 80.24 21.39|66.34 104.17 23.49
Ticino 6 0.00 ] 6270 33.69 18.15|64.42 50.89 2045
Federation 3 0.00| 62.10 114.94 33.28 | 64.14 151.15 38.57
Decision Language
German 60 0.03 | 68.80 646.57 2091 | 67.92 877.39 24.53
French 35 0.03 | 71.40 48548 24.95)|69.34 783.50 32.13
Ttalian 5 0.04|6410 4081 18.50|63.71 70.14 22.93
Legal Area
Public Law | 31 0.00 | 56.53 741.66 33.27 | 55.93 1,200.32 42.32
Penal Law | 25 0.00 | 82.13 212.57 20.18 | 81.64 243.49 21.63
Social Law | 24 0.02 | 64.93 197.37 21.73 | 6591 309.05 28.26
Civil Law 20 0.06 | 70.10 212.61 18.45 | 68.63 360.10 24.86
CAIL
Court Region
Beijing 21 0.05 | 65.63 140.39 22.77 | 60.15 204.00 25.62
Liaoning 17 0.05 | 56.70 408.93 33.81 | 46.75 517.66 36.98
Hunan 16 0.05 | 58.97 404.85 33.17 | 54.45 517.18 35.39
Guangdong | 15 0.05 | 57.60 262.24 30.14 | 49.85 353.61 32.51
Sichuan 14 0.06 | 56.03 338.40 33.76 | 51.20 424.67 36.18
Guangxi 11 0.07 | 60.47 306.71 34.42|50.75 376.27 35.99
Zhejiang 5 0.07 | 56.27 263.96 32.60 | 54.95 351.77 36.55
Defendant Gender
Male 92 0.03 | 59.13 1886.90 31.36 | 53.60 2459.77 33.99
Female 8 0.08 | 59.60 151.24 30.01 | 51.00 200.25 33.16

Table 1: Comparison of model performance (mF1) and
reliability measures (AuRCC, Rf) for fine-tuned models
using ERM, initialized with either domain-specific pre-
trained (DPT) or general-purpose (Gen) models, across
groups defined by each attribute on four datasets. Rep-
resentation inequality and temporal concept drift are
quantified using %t (percentage of the training split)
and KLd (KL-Divergence), respectively. AuR repre-
sents AuRCC.

max-pooled to obtain the final representation of the
input, which is sent to the classification layer.

We use the four mini-sized BERT models from
(Chalkidis et al., 2022), which are continually
pre-trained on the corpora of these four datasets,
as our initialization in the first-level hierarchical
model. We also experiment with their base mod-
els, MiniLMv2 model checkpoints (Wang et al.,
2020b), which is the distilled version of ROBERTa
(Liu, 2019) for the English datasets (such as ECHR
and SCOTUS), and the one distilled from XLM-R
(Conneau, 2019) for the rest (trilingual FSCS, and
Chinese CAIL). We run each experimental vari-
ant with five random seeds to report mean results.
Implementation details are provided in App. A.

5.1 Disparities across Groups with ERM

We present the performance (mF1) and reliabil-
ity measures (AuRCC, Rf) for each group under
each attribute across four datasets, using ERM fine-
tuned with domain-specific pre-trained and general
models as initializations, in Table 1. Additionally,
we analyze factors related to data distribution for
each group to study their relationships: (a) Rep-
resentation Inequality: The extent to which each
group is represented in the training data, measured
by the percentage of training instances belonging
to the group. (b) Temporal Concept Drift: Changes
in label distributions over time for each group, due
to the chronological nature of dataset splits, quanti-
fied using the KL divergence between training and
test label distributions.

ECHR Groups with higher representation in the
training split and lower KL divergence (e.g., <=65
under the attribute applicant age) achieve higher
macro-F1 scores, likely due to better alignment
with the training distribution, which aids gener-
alization. However, these groups exhibit higher
AuRCC values, indicating overconfident predic-
tions, as the model struggles to abstain from mak-
ing incorrect predictions. This highlights that high
performance does not necessarily equate to well-
calibrated or reliable decision-making. Notably,
lower Rf values in high-performing groups sug-
gest effective ranking of predictions (correct versus
incorrect), but this does not align with threshold-
based AuRCC, emphasizing a disconnect between
these metrics. Across all attributes (age, gender,
state), we observe stark disparities in macro-F1,
AuRCC, and Rf values among different groups,
with pronounced differences in reliability metrics.
Domain-specific pretraining improves both reliabil-
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ity and performance across groups while narrowing
disparities, especially benefiting underrepresented
groups, compared to general models.

SCOTUS For decision direction, better-
represented groups exhibit higher performance
but slightly worse reliability, with disparities
being less pronounced due to more balanced data
distributions. Interestingly, the least-represented
group with the highest KL divergence under
respondent type (i.e., Facility) achieves better
performance and AuRCC, suggesting that repre-
sentation is not always the sole determinant of
reliability or performance. A positive correlation
between AuRCC and Rf is observed for decision
direction, contrasting with the inverse trend in
respondent type, indicating that group-specific
factors influence reliability differently. Consis-
tently, domain-specific pretraining improves both
performance and reliability across groups, further
reducing disparities.

FSCS Representation inequality partially explains
performance disparities in decision language and
court region but not in legal area. Interestingly,
lower-performing groups often exhibit better relia-
bility in decision language and court region. For in-
stance, Public Law, despite high representation and
no KL divergence, shows the lowest performance
and the worst reliability (AuRCC, Rf). One possi-
ble explanation is the more consistent judicial out-
comes in Penal Law, which align better with model
predictions, as noted in prior studies (Niklaus et al.,
2021; Chalkidis et al., 2022). Domain-specific pre-
training consistently enhances performance and
reliability across all groups.

CAIL In the gender attribute, males exhibit higher
AuRCC than females, despite similar performance
and Rf values, indicating poorly calibrated confi-
dence scores for male instances. For region, lower-
performing groups tend to have higher Rf and Au-
RCC values, reflecting reduced reliability. Domain-
specific pretraining improves both performance and
reliability, while reducing disparities across groups.
Key Takeaways (i) Highly representative groups
closer to the training distribution typically achieve
better performance but often exhibit overconfident
predictions, evidenced by higher AuRCC values.
(i) High ranking quality (Rf) does not always
align with reliable abstention (AuRCC), particu-
larly for high-performing groups. (iii) While low-
performing groups often exhibit better reliability
(lower AuRCC, Rf), exceptions underscore calibra-
tion challenges, emphasizing the need for further

investigation into underlying causative factors. (iv)
Domain-specific pretraining consistently enhances
both performance and reliability, reducing dispari-
ties across groups compared to general models. (v)
Certain group attributes (e.g., respondent type in
SCOTUS or public law in FSCS) deviate from typi-
cal trends, highlighting the need for deeper analysis
of data characteristics and task complexity.

5.2 Performance of Bias Mitigation methods

Since these methods are applied to groups under
each specific attribute, we evaluate each of the
bias mitigation method across that specific attribute.
Fig. 2 presents the average macro-F1 (mF1) across
groups, reliability measures (AURCC, RF), and
group disparity metrics (calculated for mF1, AU-
RCC, and RF) across four datasets, using domain-
specific pre-trained model initializations. Detailed
results are provided in App. B.

ECHR Applicant age: Balanced Group Sampler
(ERM+GS) not only improves performance but
also enhances reliability metrics while significantly
reducing disparities in both performance and relia-
bility (AuRCC, Rf). DeepCoral also mitigates per-
formance disparity, though at the expense of overall
performance. But it increases AuRCC and Rf, as
well as their respective disparities, highlighting the
complex relationship between performance and re-
liability. GDRO and V-REx improve Rf and reduce
Rf disparity but do not neither improve AuRCC
or performance, nor their disparities. Applicant
Gender: ERM+GS continues to improve perfor-
mance and reliability, while also reducing AuRCC
and performance disparities. However, it struggles
to improve Rf. AdvRem reduces Rf disparity but
worsens overall Rf, while GDRO improves Au-
RCC and reduces its disparity but underperforms
in terms of Rf. Defendant State: ERM+GS delivers
improvements in both performance and reliability,
while also reducing disparities. Other algorithms
show modest performance gains but fail to reduce
disparities and experience declines in both the re-
liability metrics. GDRO and V-REx reduce Rf
disparity but at the expense of overall Rf.
SCOTUS Decision Direction: IRM stands out
by enhancing performance and reducing both per-
formance and Rf disparities, though it sacrifices
overall Rf. GDRO narrows disparities in AuRCC
and Rf, but with a slight decline in AuRCC. Other
methods, including ERM+GS, fail to reduce perfor-
mance disparity even with reduced overall perfor-
mance. AdvRem, GDRO, and DeepCoral improve
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(a) ECHR - Applicant Age (b) ECHR - Applicant Gender (c) ECHR - Defendant State
mF1 mF1 mF1

Daur Daur
(d) SCOTUS - Decision Direction (e) SCOTUS - Respondent Type

mF1 mF1

Daur Daur
(f) FSCS - Court Region (g) FSCS - Decision Language (h) FSCS - Legal Area

mF1 mF1 mF1

Daur Daur
(i) CAIL - Court Region (j) CAIL - Defendant Gender

mF1 mF1

Daur Daur

Figure 2: Results of bias mitigation algorithms applied to domain-specific pre-trained models for each attribute in the
ECHR, SCOTUS, FSCS and CAIL datasets. We report the average macro-F1 score across groups (mF1), reliability

metrics (AuRCC (AuR), Rf), and group disparities in performance (D,,,r1), AuRCC (D 4,Rr), and refinement

(Dry). To ensure consistent interpretation, metrics where lower is originally better (AuR, Rf, and disparity metrics)
have been inverted so that higher values indicate better performance. The macro-F1 score (mF1) is reported as is
since higher is naturally better. Therefore, for all metrics shown, higher scores correspond to better outcomes.
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overall Rf while decreasing Rf disparity. Respon-
dent Type: All methods reduce performance dispar-
ity, but at the cost of overall performance. AdvRem
achieves the best improvement in performance dis-
parity but with the greatest drop in overall perfor-
mance. None of the methods improve AuRCC or
its disparity. Only DeepCoral, IRM improve over-
all Rf while reducing Rf disparity.

FSCS Court Region: All methods narrow per-
formance disparity, with ERM+GS performing
the best, albeit with a slight loss in overall per-
formance. None improve overall AuRCC or its
disparity. While overall Rf remains unimproved,
ERM+GS, GDRO, AdvRem, and DeepCoral re-
duce Rf disparity. Decision Language: GDRO
achieves slight overall performance improvement
while narrowing disparities in performance, Au-
RCC, and Rf. Other methods do not perform as
well. Legal Area: ERM+GS and DeepCoral re-
duce performance disparity but at the expense of
overall performance. None of the methods improve
AuRCC, Rf, or their disparities.

CAIL Court Region: All methods reduce perfor-
mance disparity but exhibit overall performance
losses (except DeepCoral). None improve AuRCC,
Rf, or their disparities. Gender: Only AdvRem nar-
rows performance disparity, but this comes at the
cost of overall performance. Most methods, except
IRM, narrow Rf disparity but at the expense of over-
all Rf. GDRO strikes a better balance, achieving a
trade-off between overall reliability and disparity
reduction for both AuRCC and Rf.

Key Takeaways: While most bias mitigation
methods show partial success in reducing perfor-
mance disparities, they often fail to maintain well-
calibrated predictions, leading to widening dispar-
ities in reliability metrics. This highlights a crit-
ical gap: achieving equity in performance does
not guarantee equitable reliability across groups.
Therefore, future research must focus on devel-
oping methods that simultaneously address both
performance and reliability disparities. No sin-
gle method consistently improves all key met-
rics—performance, AuRCC, Rf, and their dispar-
ities—across all datasets. This suggests that bias
mitigation approaches need to be tailored to the
unique characteristics of each dataset and fairness
objective. Among the evaluated methods, Balanced
Group Sampling (ERM+GS) was particularly effec-
tive in reducing disparities in both performance and
reliability metrics, especially in the ECHR dataset.
While GDRO showed promise by improving over-

all AURCC and narrowing AuRCC disparity across
groups, IRM demonstrated potential in improving
Rf and reducing its disparity.

6 Conclusion

This work examined fairness in legal NLP through
the lens of reliability, challenging the assump-
tion that equitable performance alone ensures eq-
uitable treatment. Using the FairLex benchmark,
we showed that models can exhibit significant dis-
parities in confidence calibration and abstention
behavior across groups—even when performance
appears balanced. Such reliability gaps pose subtle
but serious risks in high-stakes legal settings, where
overconfident or erratic predictions can undermine
trust, compound harm, or evade accountability. Our
findings demonstrate that domain-specific pretrain-
ing improves both performance and reliability, par-
ticularly for worse-off groups. In contrast, pop-
ular bias mitigation methods, though sometimes
effective at reducing performance gaps, frequently
worsen reliability disparities—highlighting the lim-
itations of current fairness interventions that focus
solely on outcome parity. These results suggest the
need to reframe fairness as a multi-dimensional ob-
jective, where reliability becomes a central concern
alongside accuracy. In legal NLP, this means build-
ing models that are not just accurate, but also trans-
parently uncertain, well-calibrated, and cautious
in ambiguous or sensitive contexts. Such prop-
erties are essential not only for technical robust-
ness but also for enabling meaningful human over-
sight, contestability, and trust in sociolegal appli-
cations. While our study centers on legal NLP, the
insights extend to other high-stakes domains—such
as healthcare, education, and finance—where de-
cisions informed by NLP models carry real-world
consequences. Future work should investigate how
fairness-aware objectives can jointly optimize per-
formance and reliability; how evaluation metrics
can better capture disparities in model uncertainty;
and how deployment practices (e.g., abstention, es-
calation to human review) can be designed to serve
all groups equitably.

This work invites the community to reflect on a
deeper question: Can a model truly be fair if it is
confident for some and uncertain for others? As
NLP systems increasingly inform decisions with
real-world consequences, fairness must not only
concern what a model predicts, but also how, when,
and for whom it chooses to speak or remain silent.
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Limitations

While the FairLex benchmark spans multiple ju-
risdictions, languages, and attributes, it may not
fully represent the diversity of real-world legal sys-
tems. Certain legal contexts or demographic groups
might be underrepresented, potentially limiting the
generalizability of our findings. Our analysis fo-
cuses on reliability using selective prediction but
does not exhaustively explore other aspects of re-
liability, such as robustness to adversarial exam-
ples or interpretability, which are also crucial in
high-stakes legal contexts. Our study evaluates
disparities across predefined single attributes such
as demographics, jurisdictions and legal domains.
However, these attributes may not capture the full
complexity of intersectional identities that might
affect both the performance and the reliability.

Ethics Statement

In conducting this research, we used publicly avail-
able datasets from the FairLex benchmark, curated
by Chalkidis et al. (2022), with attention to ethical
considerations. These datasets were designed to
assess fairness across multiple jurisdictions, lan-
guages, and demographic attributes, providing a
broad foundation for evaluating performance and
reliability disparities. However, it is important to
note that, as stated in Fairlex, some protected at-
tributes, such as gender and age in the ECtHR
dataset, were extracted automatically using regular
expressions or manually clustered by the authors
(e.g., defendant state in ECtHR dataset and respon-
dent attribute in SCOTUS dataset). These simpli-
fications, such as binarizing gender, may not be
appropriate in real-world applications, where more
nuanced categorizations are needed. Additionally,
the datasets’ ground truth (with the exception of
SCOTUS) reflects the subjective interpretation of
judges within specific jurisdictions (e.g., ECHR,
Swiss, Chinese), and as such, the labels can be
subjective, especially for non-trivial cases.

This study aims to address disparities in both
performance and reliability in Legal NLP systems,
with the goal of advancing fairness and trustwor-
thiness in high-stakes legal applications. We rec-
ognize the significant societal and ethical implica-
tions of deploying such systems, especially in the
legal domain, where biases and disparities could
perpetuate systemic inequities, potentially impact-
ing individuals’ rights and access to justice. By
systematically investigating disparities across at-

tributes like demographic groups, jurisdictions, and
legal domains, our research seeks to highlight and
mitigate these risks. Moreover, we emphasize the
ethical importance of addressing reliability dispar-
ities, as uneven reliability across groups can un-
dermine trust and deepen inequities in decision-
making processes. By prioritizing uniform relia-
bility alongside performance, we advocate for the
development of Legal NLP systems that treat all
groups equitably, ensure consistent model behavior,
and promote transparency and accountability. This
commitment aligns with our broader goal of sup-
porting ethical, equitable, and socially responsible
advancements in Legal NLP.
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A Implementation Details

We fine-tune the models end-to-end using the
AdamW optimizer (Loshchilov, 2017), with a learn-
ing rate of 3e-5 and a batch size of 16. Training
is conducted in a mixed-precision setting (fp16) to
reduce memory usage. Models are trained for up to
20 epochs, with early stopping applied if validation
performance does not improve for 3 consecutive
epochs. Each experiment is repeated five times us-
ing different random seeds, and the mean results are
reported. We utilize the FairLex datasets available
on HuggingFace?. The A parameter for Adversar-
ial Removal, DeepCORAL, IRM, and V-REx is
uniformly set to 0.5 across all datasets. We use
mini-sized BERT models similar to those in Fair-
Lex, comprising 6 Transformer blocks, 384 hidden
units, and 12 attention heads. Details regarding the
HuggingFace model links and their corresponding
datasets are provided in Table 2.

Dataset  Model

Domain-specific Pre-trained

ECHR coastalcph/fairlex-ecthr-minilm
SCOTUS coastalcph/fairlex-scotus-minilm
FSCS coastalcph/fairlex-fscs-minilm
CAIL coastalcph/fairlex-cail-minilm
General Pre-trained
ECHR nreimers/MinilMv2-L6-H384-distilled-from-RoBERTa-Large
SCOTUS nreimers/MinilLMv2-L6-H384-distilled-from-RoBERTa-Large

FSCS nreimers/mMinilMv2-L6-H384-distilled-from-XLMR-Large
CAIL nreimers/mMinilLMv2-L6-H384-distilled-from-XLMR-Large

Table 2: Datasets and their respective domain-specific
and general purpose and pre-trained models.

B Results

Tab. 3, 4 presents the average macro-F1 (mF1),
reliability measures (AURCC, RF) across groups
and group disparity metrics (calculated for mF1,
AURCC, and RF) across four datasets, under spe-
cific attribute, using domain-specific pre-trained
model initializations. Higher mF1 indicates better
overall performance, while lower AuRCC and Rf
reflect greater reliability. Lower group disparity
scores (Dyr1, Daur, DRy) suggest more equi-
table performance across groups under the evalu-
ated attribute.

2https://huggingface.co/datasets/coastalcph/
fairlex
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ECHR

‘ Applicant Age ‘ Applicant Gender ‘ Defendant State
| mF1 Dppi AuR  Dayg  Rf Dgg|mFl Dppi AuR  Daug  Rf Dpy| mFl Dppi AuR Dayr Rf Dpy

ERM 5093 345 333 259 1854 7.06|50.50 155 447 3.06 1145 1.06|50.93 325 7.66 578 18.95 8.62
ERM+GS |55.06 3.34 313 242 1792 7.03|51.44 026 420 285 1221 1.50|51.44 3.14 723 548 18.43 838
AdvRem |51.44 641 371 298 2123 6.22|53.68 0.78 476 335 13.90 0.03 5644 597 8.66 595 1993 7.67
DeepCoral | 49.26 292 4.47 324 2281 9.40|50.60 166 532 3.64 11.32 1.82|54.18 5.02 10.07 6.00 22.28 9.89
GDRO 5070 3.65 325 271 17.14 576|51.42 165 415 2.80 1473 3.48|51.76 422 841 632 19.07 834

IRM 51.84 4.12 431 3.11 1935 7.03|51.54 242 507 323 1554 390|51.88 3.62 899 685 18.98 7.8I
V-REx 50.80 4.10 381 2.86 17.72 5.68|51.16 042 468 299 1321 2.06|5240 3.69 865 658 19.19 8.01
FSCS

‘ Court Region ‘ Decision Language ‘ Legal Area
| mF1 Dppi AuR Dayg  Rf Dgg|mFl Dppi AuR  Dayp  Rf Dpg| mFl Dppi AuR  Daygr RE Dpy
ERM 69.63 3.59 138.78 99.09 22.19 4.82|69.63 3.02 390.95 256.17 21.45 1.66|69.63 9.28 341.05 231.38 2341 5.81

ERM+GS |68.00 2.94 161.21 116.18 22.25 4.47|67.62 3.93 521.37 307.39 2596 1.95|68.42 9.09 429.01 281.60 26.76 6.28
AdvRem |66.54 3.10 14577 102.32 23.79 4.69|69.14 4.86 502.10 296.06 25.12 3.69 |66.68 12.71 429.11 258.57 26.27 7.40
DeepCoral | 68.42 3.51 165.77 112.68 24.46 4.76 |66.60 3.51 459.97 268.12 24.29 2.34 |67.38 8.06 415.16 268.64 25.39 6.02
GDRO 67.65 3.47 164.63 117.82 23.44 3.94 |68.78 1.73 400.49 251.48 23.63 1.44 |66.60 9.87 437.45 318.21 38.29 5.66
IRM 68.58 3.17 161.93 109.49 23.67 4.95|67.78 4.24 499.88 290.58 26.21 2.81 |68.26 9.72 474.86 315.72 27.68 6.25
V-REx 68.18 3.38 161.03 114.97 23.18 5.20|67.23 3.99 488.96 284.05 25.87 2.69 |68.60 9.70 392.41 254.61 24.90 591

Table 3: Results of bias mitigation algorithms on domain-specific pre-trained models applied to each attribute in
ECHR and FSCS dataset. We report average of macro-F1 performance across groups (mF1), Reliability metrics
(AuRCC (AuR), Rf) and Group Disparities in performance (D, 1), AuRCC (D 4,r) and Refinement (Dg ). For
mF1 (1), higher is better. For the rest, AuR (}), Rf (), Dynr1 (1), Daywr (1) and Dgry (1), lower scores are better.

SCOTUS
‘ Decision Direction ‘ Respondent Type
| mF1 Dppi AuR  Daug  Rf  Dpg| mF1 Dppi AuR Dayg Rf Dpy
ERM 83.00 125 2434 036 1882 1.27|83.00 4.03 11.22 773  21.86 248

ERM+GS |81.02 150 2498 044 1752 0.83|8042 3.13 13.13 8.55 2225 372
AdvRem |79.93 130 2753 124 1790 1.11|78.82 221 14.13 893 2583 7.73
DeepCoral | 81.14 193 26.61 1.61 18.17 1.54|80.10 3.17 13.73 9.96 19.55 1.71
GDRO 81.14 195 2491 0.6 17.24 0.99 |80.82 3.84 12.24 8.10 24.05 6.40

IRM 83.10 1.21 2633 052 19.19 0.84|78.70 2.61 15.47 10.82  21.69 1.88
V-REx 81.94 1.66 2559 141 19.16 1958130 3.37 12.93 9.12 2238 2.80
CAIL

| Court Region | Defendant Gender
| mF1 Dppi AuR  Daug  Rf  Dpg| mF1 Dppi AuR Dayg Rf Dpy
ERM 59.23 3.15 303.64 86.59 31.53 3.80|59.23 0.23 1019.07 867.83 30.69 0.67

ERM+GS |58.62 290 323.64 90.85 31.79 4.20|5532 0.86 1263.08 1068.08 33.98 0.29
AdvRem |5833 272 310.74 92.85 3231 4.49 5398 0.4 1313.26 110421 34.92 0.19
DeepCoral | 59.53 3.11 33452 9245 33.01 4.36|58.10 027 1198.03 1012.73 34.24 0.58
GDRO 5827 242 317.58 89.30 31.84 4.17 |58.23 0.93 1098.87 936.82 32.36 0.09
IRM 57.45 3.01 33729 94.04 3255 3.87 |54.10 043 1276.12 1074.44 34.54 0.73
V-REx 5826 3.08 319.64 9234 31.76 4.54|56.84 0.44 1186.63 1002.14 33.31 0.11

Table 4: Results of various bias mitigation algorithms on domain-specific pre-trained models applied to each
attribute in the SCOTUS and CAIL datasets. The notations are consistent with those in Table 3.
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