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Abstract
Large language models (LLMs) exhibit impres-
sive performance across diverse tasks but of-
ten struggle to accurately gauge their knowl-
edge boundaries, leading to confident yet incor-
rect responses. This paper explores leveraging
LLMs’ internal states to enhance their percep-
tion of knowledge boundaries from efficiency
and risk perspectives. We investigate whether
LLMs can estimate their confidence using in-
ternal states before response generation, po-
tentially saving computational resources. Our
experiments on datasets like Natural Ques-
tions, HotpotQA, and MMLU reveal that LLMs
demonstrate significant pre-generation percep-
tion, which is further refined post-generation,
with perception gaps remaining stable across
varying conditions. To mitigate risks in critical
domains, we introduce Consistency-based Con-
fidence Calibration (C3), which assesses confi-
dence consistency through question reformula-
tion. C3 significantly improves LLMs’ ability
to recognize their knowledge gaps, enhancing
the unknown perception rate by 5.6% on NQ
and 4.9% on HotpotQA. Our findings suggest
that pre-generation confidence estimation can
optimize efficiency, while C3 effectively con-
trols output risks, advancing the reliability of
LLMs in practical applications1.

1 Introduction

Large language models (LLMs) store vast amounts
of knowledge in their parameters and have demon-
strated remarkable performance across various
tasks (Touvron et al., 2023; Achiam et al., 2023;
Yang et al., 2024). However, they may hallucinate,
generating responses that appear to be fluent but
are factually incorrect. A reliable model should per-
ceive its knowledge boundaries well, providing cor-
rect answers to the questions it knows and declining
to answer those it does not. This requires the model
to align its confidence with its actual abilities.

∗Corresponding authors
1The code can be found at GitHub Repository.

Current research on a model’s perception of its
knowledge boundaries mainly involves two types
of confidence: probabilistic confidence where they
use the probability of generated tokens as the
model’s confidence in the answer (Guo et al., 2017;
Desai and Durrett, 2020; Jiang et al., 2021; Kada-
vath et al., 2022; Si et al., 2022; Kuhn et al., 2023)
and verbalized confidence where they teach the
model to express its confidence in the answer using
natural language. (Lin et al., 2022; Yin et al., 2023;
Tian et al., 2023; Xiong et al., 2023; Yang et al.,
2023; Ni et al., 2024a). Ni et al. (2024b) found that
probabilistic confidence better reflects the model’s
capability than verbalized confidence.

Recent studies have demonstrated that the inter-
nal states of LLMs can indicate the factuality of
texts (Azaria and Mitchell, 2023). Specifically, Su
et al. (2024) and Chen et al. (2024) demonstrated
that LLMs’ internal states can be leveraged to eval-
uate the factuality of self-generated content, with
confidence derived from these internal states pro-
viding a more accurate reflection of the model’s
capabilities than probabilistic confidence. Building
on this, this paper focuses on estimating LLMs’
confidence based on their internal states, aiming
to enhance their knowledge boundary perception
from efficiency and risk perspectives.

On the one hand, most existing studies rely on
the internal states of the model after generating a re-
sponse to assess its correctness. However, this does
not prevent the generation of incorrect information
and introduces extra computational overhead. In
contrast, humans often know whether they can an-
swer a question simply by considering the question
itself. This raises the question: is it necessary to
use LLMs’ internal states after generation to assess
confidence? If not, the model could save computa-
tional resources by generating answers only when
it is confident.

To explore this, we use the embeddings of the
question and the full question-answer sequence to
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estimate the model’s perception of its knowledge
boundaries before and after answer generation. We
also compare the gap between these two percep-
tions. We conduct experiments on Natural Ques-
tions (NQ) (Kwiatkowski et al., 2019), HotpotQA
(HQ) (Yang et al., 2018), and MMLU (Hendrycks
et al., 2020) to examine the effects of question
difficulty and task format. We employ Chain-of-
Thought (Wei et al., 2022) strategy to increase the
information content in generated responses, aim-
ing to explore whether this added information im-
pacts the gap between pre- and post-generation
perceptions. Furthermore, we conduct experiments
with training sets of varying sizes to assess the
impact of training data volume on this gap. Exper-
imental results reveal that LLMs exhibit a good
level of pre-generation perception, and their
post-generation perception will be further en-
hanced. The gap between these two perceptions
remains relatively stable across different ques-
tion difficulties, task formats, amounts of gen-
erated content, and training set sizes. There-
fore, in efficiency-critical scenarios, pre-perception
can be used to determine whether generation is
necessary, offering a more efficient alternative to
post-generation assessment, particularly when gen-
erating lengthy content. The time for obtaining
internal states before and after response generation
can be found in Figure 1.

On the other hand, in addition to efficiency, con-
trolling the risk associated with model outputs is
also crucial, especially in safety-critical domains
like healthcare, which helps us decide when to trust
the LLM. This requires accurately detecting what
LLMs do not know.

To enhance LLMs’ perception of what they do
not know, we introduce C3 (Consistency-based
Confidence Calibration), inspired by human behav-
ior, where repeated probing is used to detect incon-
sistencies and potential deception. C3 leverages
confidence consistency: if a model is confident in
answering a question but loses confidence when the
question format changes, this inconsistency signals
potential uncertainty, indicating that the model may
be overconfident.

C3 has two phases: Question Reformulation and
Confidence Calibration, as illustrated in Figure 4.
In the first phase, to avoid relying on additional
information and to obtain questions of varying diffi-
culty, the model is asked to generate 10 potential an-
swers for a given question. These answers are then
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Figure 1: Time (in seconds) taken to obtain pre-
generation and post-generation states for each model
on the first 500 data points of the NQ test. Pre-Vanilla
and Pre-COT refer to the pre-generation states obtained
under the vanilla prompt and COT, respectively, while
Post-Vanilla and Post-COT refer to the corresponding
post-generation states.

used to create multiple-choice questions with differ-
ent numbers of answer options. Next, we calibrate
the original confidence based on the consistency
between the model’s confidence on the original
question and its confidence on each multi-choice
question. Results show that C3 substantially en-
hances LLMs’ perception of what they do not
know, improving the unknown perception rate
by 5.6% on NQ and 4.9% on HotpotQA com-
pared to directly estimating confidence based on
the original question-answer sequence.

2 Related Work

Current research on how to express LLMs’ confi-
dence can be mainly divided into three categories:

Probabilistic Confidence. This series of work
uses the generation probability of the answer as
the model’s confidence. (Guo et al., 2017; Desai
and Durrett, 2020; Jiang et al., 2021; Kadavath
et al., 2022; Si et al., 2022; Kuhn et al., 2023). Guo
et al. (2017) found that early neural networks tend
to be overconfident and mitigated this by adjust-
ing the temperature during the generation process.
Subsequently, Desai and Durrett (2020) found that
pre-trained Bert-style models have a relatively clear
perception of their knowledge boundaries and Jiang
et al. (2021) showed that the issue of overconfi-
dence still persists in pre-trained language models.
More recent studies have explored LLMs’ percep-
tion of their knowledge boundaries. Kadavath et al.
(2022) and Si et al. (2022) demonstrated LLMs
can be reliable under approprite prompts. Kuhn
et al. (2023) argued that the probability of gener-
ated tokens does not accurately reflect the probabil-
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ity of the generated answer and estimated LLMs’
confidence in their answers based on the semantic
consistency across multiple generations.

Verbalized Confidence. With the development
of LLMs, some studies have shown that LLMs
can express their confidence in answers in natural
language (Lin et al., 2022; Yin et al., 2023; Tian
et al., 2023; Xiong et al., 2023; Yang et al., 2023;
Ni et al., 2024a). Lin et al. (2022) were the first
to demonstrate that a model (GPT-3) can learn to
express confidence about its answers using natural
language. Recently, Yin et al. (2023) found that
LLMs have difficulty in perceiving their knowl-
edge boundaries and tend to be overconfident and
Xiong et al. (2023) explored various methods of
confidence extraction. To enhance LLMs’ percep-
tion level, Tian et al. (2023) and Ni et al. (2024a)
focused on prompting methods while Yang et al.
(2023) proposed training methods.

Confidence Estimation via Internal States.
LLMs’ internal states have been found to be ef-
fective in indicating the factuality of texts. (Azaria
and Mitchell, 2023; Slobodkin et al., 2023) and (Su
et al., 2024; Chen et al., 2024) extended this ap-
proach to detect the factuality of model’s self-
generated content. This line of work utilized a
shallow network (i.e., MLP) to extract confidence
from the hidden states of LLMs. Compared to
prob-based methods, this tends to be more accurate
because converting hidden states into token prob-
abilities results in information loss. Additionally,
compared to training LLMs to express better ver-
balized confidence it is much more cost-efficient.

In this paper, we exploit LLMs’ internal states
to enhance their knowledge boundary perception
from efficiency and risk mitigation perspectives.

3 Estimating LLM Confidence with
Internal States

In this section, we introduce the task formulation,
how we extract internal states, and the confidence
estimator.

3.1 Task Formulation

We introduce the task formulation of confidence
estimation via LLMs’ internal states here. The pro-
cess of estimating a model’s confidence based on its
internal states is as follows. For a given model M
and a question q, it generates a response aM,q and
produces internal states IM,q(a). Specifically, IM,q

refers to the internal state containing only infor-
mation about the question, while IM,qa represents
the internal state containing information about the
entire question-answer sequence:

IM,q(a), aM,q = fM (q), (1)

then, we estimate the model’s confidence from its
internal state IM,q(a):

cM,q = E(IM,q(a)), (2)

where E is the confidence estimator. cM,q = 1
indicates the model is confident that it knows the
correct answer while cM,q = 0 means the opposite.
The confidence estimator E can be learned through
a dataset Dtrain

M = {(ItrainM,qi(ai)
, ctrainM,qi

)Ni=1} where
N is the count of samples in this dataset. The
ground-truth confidence ctrainM,qi

is set to 1 if the
model can correctly answer the question qi (i.e.,
cM,qi = 1); otherwise, it is set to 0. Once E is
learned, we can perform confidence estimation dur-
ing inference.

Recent works (Azaria and Mitchell, 2023; Chen
et al., 2024; Su et al., 2024) commonly use the em-
bedding of the last token in the generated answer
to estimate the model’s confidence. This state con-
tains information from the entire question-answer
sequence, potentially leading to more accurate
judgments. However, relying on post-generation
states does not prevent the generation of incorrect
information, which can mislead users and introduce
extra overhead. Therefore, in this paper, we extract
representations prior to answer generation to inves-
tigate whether LLMs can sense their knowledge
boundaries before response generation. The spe-
cific extraction method is detailed in Section § 3.2.

3.2 Internal States Extraction

In Transformer-based models, the model performs
next token prediction, where the generation of each
token is based on the semantic vectors (i.e., in-
ternal states) of the preceding tokens in its se-
quence. For a question q, let the input tokens
be {q1, q2, . . . , qn} and the output answer tokens
a be {a1, a2, . . . , am} where n and m represent
the count of tokens in the question and the gener-
ated answer, respectively. The internal states cor-
responding to the generation of each token in the
answer (See Figure 2) are represented as follows:

{I lqn , I la1 , I la2 , . . . , I lam}Ll=1, (3)

24317



Figure 2: Internal states extraction during generation.

where I lx denotes the semantic representation of the
tokens up until x at layer l, and L is the total num-
ber of layers in the model. Note that I lqn contains
only information about the question.

Layer Selection Previous work (Azaria and
Mitchell, 2023) has found that the representa-
tions from the intermediate layers best capture the
model’s awareness of factuality. Therefore, we
extract representations from the intermediate lay-
ers (i.e., 16 for Llama2-Chat-7B) to construct the
internal states I .

To investigate whether it is necessary to extract
LLMs’ internal states after response generation, we
construct I (see Figure 2) at two stages: before and
after response generation.

Extraction Before Response Generation.

1. Pre-State. We extract the state of the last
token of the question Imid

qn as I .

Extraction After Response Generation. Unlike
pre-generation states, we extract I in two ways:

1. Last State. We take the embedding of the last
token from the generated answer Imid

am as I .

2. Avg State. We take the average of the rep-
resentations of each generated token in the
answer 1

m

∑m
i=1 I

mid
ai as I .

Training Data Construction. For each question
q in the training set, we prompt the model to gener-
ate a response and construct {I, c}, where c = 1 if
the ground-truth answer is included in the response,
and c = 0 otherwise.

3.3 Binary Confidence Estimator
Similar to previous works (Azaria and Mitchell,
2023; Chen et al., 2024; Su et al., 2024), we take a

lightweight MLP (Multi-layer Perceptron) network
as the estimator to perform binary classification on
the model’s confidence. The estimator takes the
internal states which are constructed as described
in Section § 3.2 as input and outputs a binary
confidence label indicating whether the model is
confident to provide a correct answer. This process
can be mathematically expressed as:

P (ĉ = 1) = σ (MLP (I)) , (4)

where ĉ is the predicted confidence, σ is the sig-
moid function, and I ∈ R1×h is the internal state
vector where h refers to the model’s hidden dimen-
sion. Wi ∈ Rdi×di−1 where di denotes the number
of hidden units in the ith hidden layer (i.e., d0 =
h) and b ∈ Rdi represent weights and the biases of
MLP, respectively. We use a 4-layer MLP for bi-
nary classification on I , with the following number
of hidden units in each layer: (512 → 64 → 32 →
2), and ReLU as the activation function.

Training. We employ cross-entropy loss as the
training objective:

LCE = −
N∑

i=1

1(ci) log(Pi)+1(1−ci) log(1−Pi),

(5)
where ci is the ground-truth label for the ith
training sample and Pi = P (ĉi = 1). We
randomly initialize the model parameters and use
the Adam optimizer with an initial learning rate
of 5 × 10−5. To enhance the reliability of the
results, we train the model 30 epochs under three
random seeds (0, 42, 100) and report the average
performance as the final result.

Inference. During inference, we can determine
whether a model is confident to provide a correct
answer as follows:

ĉi = arg max
y∈{0,1}

P (ci = y). (6)

4 LLMs’ Perception Before and After
Response Generation

In this section, we evaluate the gap between LLMs’
perception level before and after response gener-
ation, as well as the impact of question difficulty,
question format, the amount of generated content,
and training data amount.
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4.1 Experimental Setup

Datasets. We take three representative open-
domain QA benchmark datasets, including Nat-
ural Questions (NQ) (Kwiatkowski et al., 2019),
HotpotQA (HQ) (Yang et al., 2018), and
MMLU (Hendrycks et al., 2020). NQ and Hot-
potQA are two free-form QA datasets that primar-
ily evaluate the model’s factual knowledge, with
varying levels of difficulty. NQ is constructed from
Google Search queries, with annotated short and
long answers. HotpotQA is a dataset consisting of
question-answer pairs that require multi-hop rea-
soning. These pairs are collected via Amazon Me-
chanical Turk. MMLU is a multi-choice dataset
containing questions from 57 different subjects. We
conduct experiments on both free-form and multi-
choice QA datasets to investigate the influence of
task format. Due to space limitation, Count of sam-
ples for each dataset can be found in Table 4 in
Appendix and details of data selection is shown in
Appendix § A.2. For training, we randomly select
1,000 positive and 1,000 negative samples from the
training set shown in Table 4 to mitigate the impact
of label imbalance. The choice of 1,000 is because
all experiments in this paper include 1,000 positive
and negative samples. Additionally, to examine
the impact of training data size, we also evaluate
performance using the full training set. Details
on data construction and confidence estimation are
provided in section § 3.2.

LLMs. We conduct experiments on four repre-
sentative open-source models, including Llama2-
7B-Chat (Touvron et al., 2023), Llama3-8B-
Instruct (Dubey et al., 2024), Qwen2-7B-
Instruct (Yang et al., 2024), and Llama2-13B-
Chat (Touvron et al., 2023). We use half-precision
for the 13B model. For all the models, we set the
temperature to 1.0 and select the token with the
highest probability at each position (i.e., greedy
search). Unless otherwise specified, all the other
parameters are set to their default values.

Metrics. Following previous research (Ni et al.,
2024a), we use accuracy to evaluate the QA perfor-
mance considering a response correct if it contains
the ground-truth answer. For the model’s percep-
tion level, we use alignment, overconfidence, and
conservativeness as the evaluation metrics. Align-
ment refers to the proportion of samples where the
model’s confidence matches its QA performance,
serving as an indicator of the model’s overall per-

ception level. Overconfidence and conservative-
ness represent the proportions of samples where
the model’s confidence exceeds or falls below its
actual capabilities, respectively, which illustrate
why the model’s perception level is not perfect.

Dimensions of Analysis. We hypothesize that
question difficulty, question format, and the amount
of training data may influence the gap between
the model’s pre- and post-generation perception.
Therefore, we investigate along these dimensions.
The specific settings are detailed in Paragraph
Datasets 4.1. Additionally, to examine whether
the information content in generated responses im-
pacts the gap in LLMs’ perception, we employ
two strategies: Vanilla, where the model is simply
asked to provide the correct answer, and Chain-of-
Thought (Wei et al., 2022) (COT), where the model
first outputs its reasoning process before providing
the final answer.

4.2 Results and Analysis

The QA performance and alignment results for
all the models, trained on 2,000 examples, can be
found in Table 1, and the detailed perception re-
sults for Llama3-8B-Instruct are shown in Table 2.
Detailed perception results for the other models
can be found in Table 8, 10, 11. We observe that:

1) LLMs can perceive their knowledge bound-
aries before generating the response, and incor-
porating the representations of the generated
answer further enhances the perception. In Ta-
ble 1, across all the models and datasets, Align-P
consistently achieves high perception level. Align-
L and Align-A often show improvement compared
to Align-P. This provides us a trade-off between
judging whether the model can provide the correct
answer and the computational cost. On one hand,
if we determine that the model cannot provide the
correct answer before it generates a response, we
can stop the generation to save computational cost,
especially when responses tend to be long. On the
other hand, making the judgment after generation
improves the accuracy of the assessment.

2) Including reasoning process in the output
does not widen the gap between an LLM’s per-
ception level before and after generating a re-
sponse, but it may reduce the model’s overall
perception level. Table 1 shows that COT does not
markedly increase the gap between Align-P and
Align-L (or Align-A) in any scenario. Addition-
ally, in free-form QA tasks, COT often improves
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Datasets Metrics Llama2-7B Llama3-8B Qwen2-7B Llama2-13B

Vanilla COT Vanilla COT Vanilla COT Vanilla COT

NQ

Acc 26.12 36.43 27.53 44.35 27.31 37.76 32.27 41.99

Align-P 73.65 67.51 73.79 65.21 72.69 64.06 68.67 65.16
Align-L 73.73 68.98 74.73 67.56 70.77 67.85 72.15 66.12
Align-A 74.82 70.12 75.35 67.66 72.65 69.78 71.20 67.03

HotpotQA

Acc 19.93 29.55 21.63 36.79 24.96 33.34 23.69 33.10

Align-P 79.69 74.36 78.58 74.61 79.34 76.79 75.91 73.55
Align-L 79.16 74.77 80.77 74.59 75.13 75.20 77.66 74.10
Align-A 79.91 72.71 80.61 74.67 77.77 75.33 76.32 72.57

MMLU

Acc 42.20 45.51 62.49 63.77 68.72 68.63 50.58 51.18

Align-P 62.86 63.83 71.95 68.17 69.33 68.68 64.88 64.25
Align-L 68.11 66.55 72.86 70.43 70.02 72.66 67.75 67.96
Align-A 68.71 67.95 73.98 71.61 72.57 72.74 69.18 69.30

Table 1: QA performance and LLMs’ perception of knowledge boundaries on the NQ, HotpotQA, and MMLU
datasets with 2,000 training samples. Bold values denote the highest performance per model and dataset. Align-P,
Align-L, and Align-A represent alignment scores for Pre-generation, Last, and Average States, respectively.

Datasets States Vanilla COT

Acc Conf. Align.↑ Overcon.↓ Conserv.↓ Acc Conf. Align.↑ Overcon.↓ Conserv.↓

NQ
Pre-State 27.53 17.38 73.79 8.02 18.18 44.35 41.12 65.21 15.78 19.01
Last State 27.53 21.47 74.73 9.60 15.67 44.35 41.50 67.56 14.79 17.65
Avg State 27.53 19.71 75.35 8.41 16.23 44.35 43.91 67.66 15.95 16.39

HQ
Pre-State 21.63 26.91 78.58 13.35 8.08 36.79 31.29 74.61 9.95 15.44
Last State 21.63 24.88 80.77 11.24 7.99 36.79 35.18 74.59 11.90 13.51
Avg State 21.63 24.55 80.61 11.15 8.24 36.79 37.72 74.67 13.13 12.20

MMLU
Pre-State 62.49 67.83 71.95 16.36 11.70 63.77 80.24 68.17 23.87 7.97
Last State 62.49 63.39 72.86 13.68 13.46 63.77 75.33 70.43 20.28 9.29
Avg State 62.49 64.95 73.98 13.90 12.12 63.77 76.97 71.61 20.51 7.88

Table 2: Detailed perception results for Llama3-8B. Conf., Align., Overcon., and Conserv. stands for Confident
Ratio, Alignment, Overconfidence, and Conservativeness, respectively. Bold denotes the best scores on each dataset.

QA performance but tends to reduce the model’s
perception level. From Table 2, it can be seen
that COT leads to an increase in the model’s con-
fidence. However, this change in confidence does
not align with the changes in QA performance,
which may increase the overconfidence or conser-
vativeness, thereby harming the alignment. How-
ever, on MMLU, COT has no significant impact
on QA performance, similar to the previous find-
ings (Sprague et al., 2024), and its effect on percep-
tion level shows no clear pattern.

3) LLMs exhibit better perception of their
knowledge boundaries on more difficult ques-
tions. The results from Table 1 and Table 2 show
that, compared to NQ, the model’s QA perfor-
mance on HotpotQA is lower, yet its confidence
remains at a comparable or even higher level. This
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Figure 3: Llama2-7B’s perception of its knowledge
boundaries with 10,000 training samples.

reduces conservativeness and improves alignment.
4) The perception levels of LLMs before and

after response generation can be improved
with additional training data, though the gap
between these levels remains nearly unchanged.
Figure 3 illustrates the perception level of
Llama2-7B trained on 10,000 samples. Compared
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Figure 4: Workflow of C3. C3 includes two phases: Question Reformulation and Confidence Calibration. First,
we ask the model to generate multiple answers and reformulate the original question into multiple-choice (MC)
questions. Then, we estimate the model’s confidence via its internal states, and calibrates its original confidence
based on the consistency between its confidence in answering the original and reformatted questions.

to the results in Table 1, the gap between the
LLMs’ perception levels before and after response
generation remains almost identical. A detailed
analysis can be found in Appendix § A.5.

5 C3: Consistency-Based Confidence
Calibration

A model introduces risks when it provides incor-
rect answers, which is especially unacceptable in
safety-critical domains such as healthcare. In this
section, we present C3, a method aimed at enhanc-
ing LLMs’ perception of what they do not know.

5.1 Overview
If someone truly knows the correct answer, they
will remain confident in their ability to answer
the question correctly, even when the question
is asked in different ways. Inspired by this, we
think a model may be overconfident if the model
is confident in its ability to answer a question
correctly but loses confidence when the question
format changes. In such cases, the model’s original
confidence should be calibrated. This approach,
which reduces overconfidence by leveraging the
consistency of the model’s confidence across
differently phrased questions, is termed C3

(Consistency-based Confidence Calibration).
We focus on calibrating the model’s confidence
on free-form questions cause they are the most
commonly used question format in practice.

5.2 Methodology
We aim to ask the model using different question
formats and leverage the consistency of the model’s
confidence across these formats to calibrate its con-
fidence. Therefore, C3 includes two phases: Ques-
tion Reformulation and Confidence Calibration,
as shown in Figure 4.

Step1-Question Reformulation. To avoid rely-
ing on additional information and to obtain ques-
tions of varying difficulty, we ask the model to gen-
erate multiple candidate answers and use these an-
swers to construct multiple-choice questions. The
process can be described in the following two steps:

1. For question q, we first ask the model to gen-
erate α (i.e., α = 10) possible answers. Each
model is able to generate more than 8 unique
answers on average for questions across all the
datasets, with the correctness rate of earlier-
generated answers being higher. The analysis
of these generated answers is provided in Ap-
pendix § A.3, and the prompt can be found in
Appendix § A.1.

2. We deduplicate the candidate answers and
take the top-k (in order) as the options to con-
struct the multi-choice question MCk. This
prevents LLMs from becoming uncertain due
to the absence of the correct answer among
the options. Further analysis can be found in
Appendix A.3.

We set k to 2, 4, 6, and 8, respectively.

Step2-Confidence Calibration We check the
consistency between the model’s confidence coq
in the original question q and its confidence cmck

in the constructed multiple-choice questions MCk

to calibrate coq. The specific strategy is as follows:

1. We estimate the model’s confidence for each
question based on its internal states after gen-
erating the response according to Section § 3.2

2. coq is refined based on multiple cmcαas:

coq =

{
0, if coq = 1and

∑
k∈K cmck ≤ β,

coq, otherwise,
(7)
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Models Methods NQ HotpotQA

Conf. UPR↑ Overcon.↓ Align.↑ Conf. UPR↑ Overcon.↓ Align.↑

Llama2-7B Vanilla 21.59 85.29 10.87 73.73 25.91 83.25 13.41 79.16
C3 14.23 91.24 6.47 75.16 21.56 86.93 10.46 80.71

Llama3-8B Vanilla 21.47 86.74 9.60 74.73 24.88 85.66 11.24 80.77
C3 15.37 91.53 6.14 75.56 18.89 89.85 7.95 81.35

Qwen2-7B Vanilla 29.41 78.46 15.66 70.77 29.95 80.12 14.93 75.13
C3 22.82 84.51 11.26 72.99 24.16 85.06 11.21 76.79

Llama2-13B Vanilla 26.92 83.39 11.25 72.15 25.10 84.45 11.88 77.66
C3 17.79 90.32 6.56 72.41 20.47 88.40 8.85 79.08

Table 3: The results of LLMs’ perception level of their knowledge boundaries after calibration with C3. Conf.,
Overcon., and Align. stands for Confident Ratio, Overconfidence, and Alignment, respectively. Bold indicates the
best scores for each model and the results are based on Last State.

where K is the set of k values. We set K to
{2, 4, 6, 8} and β to 0.

UPR Evaluation. To assess the ability to de-
tect what the model does not know, we introduce
Unknown Perception Rate (UPR). The UPR can
be calculated as:

UPR =

∑n
i=1 1(Acc(ai) = 0 and ci = 0)∑n

i=1 1(Acc(ai) = 0)
, (8)

The rest of the experimental settings are the same
as in Section §4.1.

5.3 Results and Analysis
The performance of C3 based on Last State is pre-
sented in Table 3. It shows that: 1) C3 substan-
tially enhances LLMs’ perception of what they
do not know. Compared to the vanilla method, C3

substantially improves UPR in all the cases. This
improvement occurs because the method reduces
the proportion of samples where the LLMs are con-
fident but provides wrong answers, which mitigates
the LLMs’ overconfidence. 2) C3 does not exces-
sively calibrate the LLMs’ confidence. Reducing
the model’s confidence significantly decreases over-
confidence, while slightly increasing conservative-
ness (See Table 9). Overall alignment consistently
improves, suggesting that C3 does not excessively
calibrate the model’s confidence. The performance
of C3 based on Avg State shows similar conclu-
sions and can be found in Table 7 in Appendix.

Effects of β A larger β results in more samples
being calibrated, which aids risk mitigation but
may lead to overly calibrated outcomes. The
alignment score improves across almost all β
values, as shown in Figure 5. This suggests
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Figure 5: The alignment scores of C3 under different
β when using Last State on HotpotQA. The horizontal
line represents the alignment score without C3.

that C3 does not excessively adjust the model’s
confidence. Smaller values of β may lead to good
alignment but can limit risk mitigation, as overly
strict calibration criteria may emerge. We can
adjust β to balance risk mitigation and alignment.
Alignment scores under different β values on NQ
can be found in Figure 6 in Appendix.
6 Conclusion
In this paper, we first examine LLMs’ ability to as-
sess the factuality of their responses using internal
states before and after response generation. Our
findings show that LLMs can predict the correct-
ness of their answers prior to generation, providing
a cost-efficient approach that avoids inference, with
this ability further enhanced post-generation. Next,
we introduce C3 (Consistency-based Confidence
Calibration), a method to refine the model’s per-
ception after response generation. Experimental
results demonstrate that C3 substantially improves
LLMs’ ability to recognize what they do not know
and consistently enhances their overall perception.
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Limitations

First, we conduct research based on binary con-
fidence to determine whether the model’s output
can be trusted. Further exploration is needed in the
future for more fine-grained confidence. Second,
we focus on the model’s perception of its factual
knowledge boundaries. The model’s perception
of its non-factual knowledge boundaries require
further investigation. Third, due to resource limita-
tions, we conduct our experiments only on 7B and
13B models. The effectiveness of our approach on
larger models remains to be validated.

Ethics Statement

We approach ethics with great care. In this paper,
all the datasets and models we use are open-source.
Additionally, the methods we propose aim to en-
hance the reliability of LLMs’ responses and do
not encourage or induce the model to generate any
harmful information.
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A Appendix

A.1 Prompts

Candidate Answers Generation. Generate 10
possible answers for the following question, each
separated by a semicolon. These 10 answers must
be different, and your response should be as con-
cise as possible, with no irrelevant words beyond
the answers.
Question: [Question]
Answer:

Vanilla. Answer the following question based on
your internal knowledge with one or few words.
Question: [Question]
Answer:

COT. Answer the question by briefly explaining
your reasoning with one or few sentences, then
provide the final answer.
Question: [Question]
Answer:

MC Vanilla. The following are multiple choice
questions (with answers). Select the correct an-
swer without any irrelevant words. Do not include
conversational words and do not provide any ex-
planation.
Question: [Question]
Answer:

MC COT. The following are multiple choice
questions (with answers)subject. Briefly explain
your reasoning with one or few sentences and
choose the correct answer. Start with “So, the
correct answer is” to select the correct answer.
Question: [Question]
Answer:

A.2 Data Selection

For the NQ dataset, we use its test set as our
NQ-test, the validation set as NQ-dev, and ran-
domly sample 10,000 examples from the training
set as NQ-train. For HotpotQA, similar to previous
work (Ni et al., 2024a), we use the validation set
as the HQ-test. Additionally, we randomly sample
non-overlapping 10,000 and 6,000 examples from
the training set as the HQ-train and HQ-dev, respec-
tively. For MMLU, we randomly sample 50% of
its test set as MMLU-train, and split the remaining
test set equally into MMLU-dev and MMLU-test.
Count of samples for each dataset can be seen in
Table 4.

Dataset Train Dev Test

NQ 10,000 6,489 3,610
HotpotQA 10,000 6,000 7,405

MMLU 7,021 3,510 3,511

Table 4: Count of samples for each dataset.
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Figure 6: The alignment scores of C3 under different β
when using Last State on NQ. The horizontal line repre-
sents the model’s alignment under the vanilla approach.

A.3 Analysis on Candidate Answers
Generation

Unique Answers Count. In this paper, we ask
the model to generate 10 candidate answers for
each free-form question. The number of remaining
answers after deduplication is presented in Table 5.
The table shows that, across all the datasets, all
the models generate an average of more than 8
unique answers. Based on this, we reformulate
the free-form question into 4 multiple-choice ques-
tions, with the count of options for each MC ques-
tion being 2, 4, 6, and 8, respectively.

Datasets Models Train Dev Test

NQ

Llama2-7B 8.50 8.51 8.29
Llama3-8B 9.30 9.29 9.43
Qwen2-7B 9.47 9.44 9.46

Llama2-13B 8.56 8.55 8.46

HQ

Llama2-7B 8.84 8.80 8.67
Llama3-8B 9.03 9.01 9.00
Qwen2-7B 9.71 9.67 9.75

Llama2-13B 8.70 8.65 8.53

Table 5: The count of unique answers in the generated
candidate answers for the NQ and HotpotQA datasets.
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Figure 7: The proportion of the ground-truth answer included in the top-k answers generated by different models on
the NQ and HotpotQA test sets.

Datasets Metrics Llama2-7B Llama3-8B Qwen2-7B Llama2-13B

Vanilla COT Vanilla COT Vanilla COT Vanilla COT

NQ

Acc 26.12 36.43 27.53 44.35 27.31 37.76 32.27 41.99

Align-P 75.38 68.40 75.57 67.43 72.73 67.50 70.13 66.28
Align-L 76.53 70.17 78.43 70.70 75.24 70.22 73.92 68.13
Align-A 77.88 71.19 78.69 69.87 76.12 70.94 73.72 68.16

HotpotQA

Acc 19.93 29.55 21.63 36.79 24.96 33.34 23.69 33.10

Align-P 80.91 76.92 82.13 74.68 79.60 77.25 78.89 74.71
Align-L 82.68 77.41 83.29 76.35 79.79 76.25 80.33 75.26
Align-A 82.59 77.07 83.47 76.04 79.93 77.24 79.84 75.28

MMLU

Acc 42.20 45.51 62.49 63.77 68.72 68.63 50.58 51.18

Align-P 65.20 65.80 71.51 69.88 71.08 71.43 65.51 65.41
Align-L 68.13 64.17 72.86 72.44 70.78 73.36 67.00 66.09
Align-A 69.46 68.42 72.98 73.34 70.87 72.59 68.62 68.15

Table 6: QA performance and LLMs’ perception of their knowledge boundaries on the NQ, HotpotQA, and MMLU
datasets with 10,000 training samples. Bold values indicate the highest performance for each model on each dataset.
Align-P, Align-L, and Align-A represent alignment scores using the Pre-generation State, Last State, and Average
State, respectively.

Answer Quality. We evaluate the proportion of
the ground-truth answer included in the top-k an-
swers generated by different models on the NQ and
HotpotQA test sets, with results shown in Figure 7.
The figure indicates that as the number of gener-
ated answers increases, the top-k accuracy also
improves. However, the rate of accuracy growth
slows down as the number of answers increases,
suggesting that LLMs tend to generate correct
answers in the earlier positions. Notably, we do
not explicitly instruct the model to prioritize gener-
ating the correct answer; it does this autonomously.
The proportion of ground-truth answers included in
the options is relatively high, which helps prevent
situations where the model, despite being confident

in its correct answer for the free-form question, be-
comes uncertain due to the absence of the correct
answer among the options. This ensures more accu-
rate calibration and prevents incorrect confidence
adjustments.

A.4 LLMs’ QA Performance and Perception
on Reformatted Questions

LLMs’ QA performance and perception levels on
reformatted questions can be seen in Table 9.

1) LLMs can be misled by self-generated an-
swers, leading to worse QA performance. As
the number of options increases, despite the higher
likelihood of including the ground-truth answer
among them (See Figure 7), LLMs’ QA perfor-
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Models Methods NQ HotpotQA

Conf. UPR↑ Overcon.↓ Align.↑ Conf. UPR↑ Overcon.↓ Align.↑

Llama2-7B Vanilla 13.50 91.50 6.28 74.82 23.43 85.26 11.80 79.91
C3 8.86 95.14 3.59 75.55 18.94 88.56 9.16 80.70

Llama3-8B Vanilla 19.71 88.40 8.41 75.35 24.55 85.76 11.15 80.61
C3 15.82 91.31 6.30 75.69 18.91 89.79 8.00 81.27

Qwen2-7B Vanilla 26.76 81.57 13.40 72.65 27.18 83.72 12.23 77.77
C3 20.03 87.22 9.29 74.14 21.80 87.91 9.07 78.69

Llama2-13B Vanilla 29.16 81.03 12.84 71.20 44.32 75.31 12.36 76.32
C3 17.76 89.91 6.83 71.82 22.42 86.29 10.47 77.80

Table 7: The results of LLMs’ perception level of their knowledge boundaries after calibration with C3. Conf.,
Overcon., and Align. stands for Confident Ratio, Overconfidence, and Alignment, respectively. Bold indicates the
best scores for each model and the results are based on Avg State.

Datasets States
Vanilla COT

Acc Align.↑ Conf. Overcon.↓ Conserv.↓ Acc Align.↑ Conf. Overcon.↓ Conserv.↓

NQ
Pre-State 26.1 73.65 11.09 5.66 20.69 36.4 67.51 28.27 12.17 20.32
Last State 26.1 73.73 21.59 10.87 15.4 36.4 68.98 32.52 13.55 17.46
Avg State 26.1 74.82 13.5 6.28 18.9 36.4 70.12 32.01 12.73 17.15

HQ
Pre-State 19.9 79.69 16.47 8.42 11.88 29.55 74.36 27.46 11.78 13.86
Last State 19.9 79.16 25.91 13.41 7.43 29.55 74.77 28.74 12.21 13.02
Avg State 19.9 79.91 23.43 11.8 8.3 29.55 72.71 34.83 16.29 11.00

MMLU
Pre-State 42.2 62.86 33.7 14.06 23.08 45.51 63.83 37.21 14.26 21.91
Last State 42.2 68.11 31.4 10.28 21.61 45.51 66.55 38.36 13.47 19.98
Avg State 42.2 68.71 32.13 10.35 20.94 45.51 67.95 34.04 10.61 21.44

Table 8: Detailed perception for Llama2-Chat-7B. Align., Conf., Overcon., and Conserv. stands for Alignment,
Confidence level, Overconfidence, and Conservativeness, respectively. Bold denotes the best scores on each dataset.

mance consistently decline. This suggests that the
more options there are, the harder it becomes for
LLMs. This indicates that the LLMs struggle to
select the correct answer when faced with similar
self-generated answers.

2) LLMs show better perception level on re-
formatted questions. The decline in LLMs’ con-
fidence on reformatted questions is often less than
the decrease in QA performance, which reduces
conservativeness and enhances alignment. More
accurate assessments of these questions enable us
to obtain reliable supplementary information.

3) Transforming a free-form question into a
multiple-choice question may improve the model’s
perception level, but it comes at the cost of QA
performance. In contrast, C3 achieves the lowest
overconfidence in most cases and consistently en-
hances alignment without negatively impacting QA
performance.

A.5 The Impact of Training Sample Amount

The QA performance and alignment results for all
the models, trained on 10,000 examples, can be
found in Table 6. We observe that:

1) The alignment scores can be improved (most
are in the 70s, with some even exceeding 80) with
a little more training data.

2) Compared to Table 1, the gap between LLMs’
perception levels before and after response gen-
eration remains nearly unchanged with different
training amount.

In this part of the comparison, our focus is not
on determining the optimal number of training sam-
ples for achieving the best perception level. Instead,
we are solely concerned with the gap in the model’s
perception of its knowledge boundaries before and
after generating the answers and the effects of train-
ing sample amount.

24327



Llama2-7B Llama3-8B Qwen2-7B Llama2-13B
Models

20

30

40

50

60

70

80

90
Al

ig
nm

en
t 62.7

71.7
74.4

77.9

70.1 72.1

80.9 82.6

43.3

71.8
75.3

78.7

37.2

77.7 78.1
83.5

39.8

73.5 74.4 76.1

42.7

78.5 77.5
79.9

35.3

65.7
68.4

73.7

29.1

71.7

77.5
79.8

Comparison with Representative Baselines
Result & Dataset

Verb
Consis
Prob
Align-A
NQ
HQ

Figure 8: Comparison between Align-A with representative baselines.

A.6 Alignment of Representative Baselines

In this section, we introduce several mainstream
confidence estimation methods and compare their
alignment scores with those obtained from LLMs’
internal states. The methods are:
• Probabilistic Confidence (Prob): This method

calculates the average generation probability of
all tokens in the response as the model’s confi-
dence in the answer (Guo et al., 2017).

• Verbalized Confidence (Verb) (Xiong et al.,
2023): Some studies have shown that LLMs can
express their confidence in answers using words.

• Semantic Consistency-Based Confidence (Con-
sis) (Manakul et al., 2023): Rather than relying
on probabilistic confidence, this method mea-
sures consistency across multiple responses to
the same question, using NLI models or LLMs to
check if the responses convey the same meaning.

The Vanilla method in our paper is a strong baseline
because prior research (Ni et al., 2024b; Su et al.,
2024) has shown that confidence derived from
the model’s internal states (the Vanilla method)
more accurately reflects the model’s true capabili-
ties compared to other methods like probabilistic
confidence, verbalized confidence, and semantic
consistency-based confidence. We evaluate these
baselines using the following experimental setup:
• Answer and confidence generation: For Prob and

Verb, we obtain the greedy answer. For Consis,
we generate the greedy answer and additionally
sample 10 responses with a temperature of 0.8.
We use Qwen2.5-32B-Instruct (Yang et al., 2024)
to evaluate the semantic consistency between
each sampled response and the greedy answer.

• Confidence binarization: We select the optimal
threshold using the training (10,000 samples for
each dataset) and development sets to binarize

the confidence scores.
Figure 8 presents a comparison of the alignment

between answer correctness and the confidence es-
timated by various methods, alongside Align-A.
Align-A is trained on the same training set as the
baselines (10,000 samples). The results demon-
strate that Align-A consistently outperforms all
baseline methods across the board. Therefore, in
C3, we focus exclusively on further improving per-
formance using hidden states.

A.7 Costs of C3

Cost of C3: 1) Cost of question reformulation:
This requires one LLM inference call. In this step,
the model generates multiple candidate answers
in a single generation, and automated rules are
used to construct multi-choice questions from these
answers. 2) Cost of consistency checking: This
requires γ = 4 (i.e., count of constructed multi-
choice questions) LLM inference calls because the
model is asked to answer four different multiple-
choice questions (i.e., with k = 2, 4, 6, 8 options).
We then obtain the model’s confidence via the MLP
and use an automated program to check the con-
sistency of the confidence. Therefore, C3 requires
only γ + 1 = 5 LLM inference calls.

Cost of existing semantic consistency-based
methods: Semantic consistency-based methods of-
ten require generating multiple responses and using
powerful LLMs to assess the semantic consistency
between texts. In our experiment, generating an-
swers takes 11 inference calls (1 greedy answer +
10 sampling answers), and consistency checking
takes 10, totaling 21 inference calls. Compared
to existing semantic consistency-based confidence
estimation methods that rely on text semantic con-
sistency, C3 achieves a much lower cost.
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Models Methods NQ HotpotQA

Acc Align.↑ Conf. Overconf.↓ Conserv.↓ Acc Align.↑ Conf. Overconf.↓ Conserv.↓

Llama2-7B

Vanilla 26.12 74.82 13.50 6.28 18.90 19.93 79.91 23.43 11.80 8.30
MC-2 21.91 76.17 17.73 9.82 14.01 17.58 80.31 18.51 10.31 9.38
MC4 19.09 78.04 14.76 8.82 13.14 16.34 77.79 25.80 15.84 6.38
MC-6 15.46 79.64 20.45 12.68 7.68 13.80 84.17 12.04 7.03 8.80
MC-8 13.66 83.20 14.80 8.98 7.83 12.72 82.69 16.22 10.40 6.90
C3 26.12 75.55 8.86 3.59 20.86 19.93 80.70 18.94 9.16 10.15

Llama3-8B

Vanilla 27.53 75.35 19.71 8.41 16.23 21.63 80.61 24.55 11.15 8.24
MC-2 26.20 75.90 26.15 12.02 12.08 19.81 80.43 19.93 9.84 9.72
MC-4 23.07 78.46 18.60 8.53 13.01 18.65 80.40 23.92 12.44 7.17
MC-6 22.22 79.76 17.80 7.91 12.33 17.80 80.50 23.75 12.73 6.78
MC-8 21.0 79.09 23.93 11.92 8.98 16.29 80.26 23.85 13.65 6.09
C3 27.53 75.69 15.82 6.30 18.01 21.63 81.27 18.91 8.00 10.73

Qwen2-7B

Vanilla 27.31 72.57 26.76 13.40 13.95 24.96 77.79 27.18 12.23 10.00
MC-2 21.30 75.02 26.57 15.12 9.85 20.51 80.40 21.91 10.50 9.10
MC-4 20.08 77.94 22.40 12.19 9.87 16.85 80.65 20.42 11.46 7.89
MC-6 17.84 77.61 22.21 13.38 9.01 15.65 81.22 18.60 10.87 7.91
MC-8 18.12 77.42 22.77 13.62 8.97 14.75 81.89 17.34 10.35 7.76
C3 27.31 74.14 20.03 9.29 16.57 24.96 78.69 21.80 9.07 12.23

Llama2-13B

Vanilla 32.27 71.20 29.16 12.84 15.96 23.69 76.32 27.27 13.63 10.05
MC-2 25.90 74.25 25.08 12.47 13.29 21.38 77.58 24.75 12.90 9.52
MC-4 22.74 76.21 21.52 11.28 12.50 18.83 78.52 24.33 13.49 7.99
MC-6 19.31 78.64 19.48 10.77 10.59 16.87 79.39 22.29 13.01 7.59
MC-8 16.95 80.49 18.05 10.30 9.21 14.79 79.59 24.29 14.96 5.46
C3 32.27 71.82 17.76 6.83 21.35 23.69 77.80 22.42 10.47 11.74

Table 9: LLMs’ QA performance and perception level on reformatted MC questions when using Avg State.

Datasets States
Vanilla COT

Acc Align.↑ Conf. Overcon.↓ Conserv.↓ Acc Align.↑ Conf. Overcon.↓ Conserv.↓

NQ
Pre-State 27.31 72.69 0 0 27.31 37.76 64.06 29.30 13.74 22.2
Last State 27.31 70.77 29.41 15.66 13.56 37.76 67.85 34.27 14.33 17.82
Avg State 27.31 72.65 26.76 13.4 13.95 37.76 69.78 37.67 15.07 15.15

HQ
Pre-State 24.96 79.34 19.90 7.81 12.86 33.34 76.79 25.59 7.73 15.49
Last State 24.96 75.13 29.95 14.93 9.93 33.34 75.20 29.12 10.29 14.51
Avg State 24.96 77.77 27.18 12.23 10.00 33.34 75.33 35.33 13.33 11.34

MMLU
Pre-State 68.72 69.33 92.26 27.19 3.48 68.63 68.68 92.45 27.75 3.57
Last State 68.72 70.02 87.58 24.50 5.48 68.63 72.66 81.46 20.26 7.07
Avg State 68.72 72.57 82.27 20.57 6.85 68.63 72.74 85.76 22.38 4.89

Table 10: Detailed perception for Qwen2-7B-Instruct. Align., Conf., Overcon., and Conserv. stands for Alignment,
Confidence level, Overconfidence, and Conservativeness, respectively. Bold denotes the best scores on each dataset.
Conf=0 is due to insufficient training on the pre-state. Training on 10,000 data can address this.

Datasets States
Vanilla COT

Acc Align.↑ Conf. Overcon.↓ Conserv.↓ Acc Align.↑ Conf. Overcon.↓ Conserv.↓

NQ
Pre-State 32.27 68.67 18.91 8.98 22.35 41.99 65.16 24.72 8.78 26.06
Last State 32.27 72.15 26.92 11.25 16.60 41.99 66.12 35.47 13.67 20.20
Avg State 32.27 71.20 29.16 12.84 15.96 41.99 67.03 35.60 13.29 19.69

HQ
Pre-State 23.69 75.91 24.26 12.33 11.76 33.1 73.55 24.11 8.73 17.72
Last State 23.69 77.66 25.10 11.88 10.46 33.10 74.10 28.76 10.78 15.12
Avg State 23.69 76.32 27.27 13.63 10.05 33.10 72.57 30.79 12.56 14.87

MMLU
Pre-State 50.58 64.88 55.23 19.97 15.15 51.18 64.25 49.76 17.77 17.97
Last State 50.58 67.75 51.58 16.71 15.54 51.18 67.96 54.94 18.51 13.53
Avg State 50.58 69.18 44.32 12.36 18.46 51.18 69.30 46.58 13.66 17.04

Table 11: Detailed perception for Llama2-Chat-13B. Align., Conf., Overcon., and Conserv. stands for Alignment,
Confidence level, Overconfidence, and Conservativeness, respectively. Bold denotes the best scores on each dataset.
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