
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 24228–24257
July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

GRaMPa: Subword Regularisation by Skewing Uniform Segmentation
Distributions with an Efficient Path-counting Markov Model

Thomas Bauwens↑ and David Kaczér↓ and Miryam de Lhoneux↑

↑LAGOM·NLP, Department of Computer Science, KU Leuven
firstname.lastname@kuleuven.be

↓Bonn-Aachen International Center for Information Technology, University of Bonn, Germany
flastname@bit.uni-bonn.de

Abstract

Stochastically sampling word segmentations
from a subword tokeniser, also called sub-
word regularisation, is a known way to in-
crease robustness of language models to out-
of-distribution inputs, such as text containing
spelling errors. Recent work has observed that
usual augmentations that make popular de-
terministic subword tokenisers stochastic still
cause only a handful of all possible segmenta-
tions to be sampled. It has been proposed to
uniformly sample across these instead, through
rejection sampling of paths in an unweighted
segmentation graph. In this paper, we argue that
uniformly random segmentation in turn skews
the distributions of certain segmentational prop-
erties (e.g. token lengths and amount of tokens
produced) away from uniformity, which still
ends up hiding meaningfully diverse tokenisa-
tions. We propose an alternative uniform sam-
pler using the same segmentation graph, but
weighted by counting the paths through it. Our
sampling algorithm, GRaMPa, provides hy-
perparameters allowing sampled tokenisations
to skew towards fewer, longer tokens. Further-
more, GRaMPa is single-pass, guaranteeing sig-
nificantly better computational complexity than
previous approaches relying on rejection sam-
pling. We show experimentally that language
models trained with GRaMPa outperform ex-
isting regularising tokenisers in a data-scarce
setting on token-level tasks such as dependency
parsing, especially with spelling errors present.

1 Introduction

Before subword tokenisation became the de facto
standard in NLP, models operated on word-level
tokens (Sutskever et al., 2014): i.e., text was split
into words, and those words were each converted to
one integer identifier serving as lookup indices in
an embedding matrix. Tokenising at this level, it is
impossible to tell based on the identifiers whether
the underlying strings contain similar characters or
not, and this absence of surface information implies

1 1 2 4 7 9 16

["P", "A"]

G R A M P A

p⃗ 1/τ

||p⃗ 1/τ ||1
1

4
2

Figure 1 – Directed acyclic graph representing the valid
segmentations of the string s ="GRAMPA". Each of the
|s|+1 nodes stores the amount of valid paths from itself
to the first node. Each arc corresponds to a subword
in the vocabulary. So far, the GRaMPa tokeniser has
taken the path in pink, giving the tokens P A. It can now
move along any of the arcs in green, choosing the tokens
M, AM and GRAM with respective probabilities 4/7 and
2/7 and 1/7 when τ = 1, in which case all 16 valid
segmentations of s are equally likely to be sampled.

that the corresponding embeddings necessarily rep-
resent concepts rather than characters.

With the shift to subword tokenisation (Sennrich
et al., 2016), this is no longer necessarily true. A
word is segmented losslessly into a sequence of
tokens, and those tokens are each mapped to their
identifiers. The same identifier can now appear in
many different words, in which case the words are
guaranteed to share the corresponding substring.
As the same identifier is used regardless of the
meaning the substring contributes to each word,
it’s unclear how much semantic information the
corresponding embedding contributes; this is sup-
ported by the finding that popular subword tokenis-
ers mostly fail to match morphological boundaries
(Zhou, 2018; Bostrom and Durrett, 2020; Bauwens
and Delobelle, 2024), in which case tokens smaller
than a word represent surface-form units rather than
meaning-bearing units. For example: Gemma 2’s
BPE tokeniser (Gemma Team et al., 2024) seg-
ments the word horseshoe into horses and hoe.

Subword tokenisers are typically deterministic,
sticking to a single segmentation for each word.
Given the above framing, this makes little sense: if
we want a model to properly understand the tokens
it’s given, we need to emphasise during training
that our opaque identifiers represent characters in

24228

the first place, not concepts. Hofmann et al. (2021)
and Clark et al. (2022) propose that language mod-
els are meant to be dual-route, memorising some
meanings and composing others. Deterministic sub-
word tokenisation does allow a model to memorise
sequences of identifiers as if they were a single
identifier, but doesn’t generalise to unseen words.
By lack of meaningful tokenisation – exacerbated
in multilingual tokenisers (Minixhofer et al., 2023)
– such words are presented as unseen sequences of
identifiers that merely encode the surface string;
to learn to compose their meaning, (part of) train-
ing may need to explicitly treat input as mere se-
quences of characters, without preferring one to-
ken sequence that represents it over another. Even
for seen words, composing meaningless tokens be-
comes useful in noisy text (Provilkov et al., 2020).

The promise of subword regularisation as coined
by Kudo (2018) was exactly this: make tokenisers
stochastic, so that for any string s, all its valid seg-
mentations are sampled during training. The tokens
of a "valid segmentation" satisfy two constraints:
(1) concatenating back into s, and (2) all being
part of a given finite vocabulary V . Both make
sampling difficult. The first implies having to sup-
port NV (s) ≤ 2|s|−1 outcomes,1 easily leading
to intractable time or space complexity. The sec-
ond is usually managed by basing the sampler on
the vocabulary’s deterministic tokeniser: stochastic
ULM (Kudo, 2018) uses the same Viterbi grid as
deterministic ULM, except now tracking the k > 1
best segmentations; BPE-dropout (Provilkov et al.,
2020) uses the same merge rules as BPE, except
disabling some at random; MaxMatch-dropout (Hi-
raoka, 2022) greedily acquires tokens left-to-right
like MaxMatch (Bauwens, 2023; Uzan et al., 2024),
except ignoring some at random. Since the original
inference is naturally constrained by the vocabulary,
augmenting it stochastically is a straightforward
way to satisfy the second constraint.

Cognetta et al. (2024) recently observed that
these approaches all yield extremely skewed dis-
tributions, so that still only a handful of segmenta-
tions occur in practice. They propose an algorithm
that returns every valid segmentation with equal
probability (see §2). Yet, this implicitly assumes
that any sampled set of segmentations is equally
informative for model training. We argue against
this. For example, say we sample 5 segmentations
for the string tokenisation. We hypothesise that a

1|s| − 1 inter-character positions can be a boundary or not.

model will learn more from examples using
{t oken isat ion; tok eni sation; to ken is ati on;

t o ken isat io n; toke ni sa ti on}
than from examples using
{to k e n i s a t i on, t ok e n i s a t io n, t o ke n i s

a ti o n, t o k en i s at i o n, t o k e ni sa t i o n}
because segmentations in the latter set have a cer-
tain redundancy to them. Conversely, in the former
set, the longer tokens cause embeddings to be more
specialised and hence more semantically laden, a
larger variety of previously unassociated tokens is
brought into the same context with every segmen-
tation, and the model is forced to reason about the
meaning of the same word with a variable amount
of embeddings to store its results in.

Problematically, although both sets are equally
probable in uniform sampling (P = NV (s)

−5),
segmentations and sets that look like the latter set
are more probable than the former because there
exist more of those. That is, redundancy is more
likely when all segmentations are equally likely.

In short: rather than aiming for a diversity of
segmentations, it may be better to aim for diver-
sity of the properties that distinguish them (e.g. the
amount of tokens) by skewing away from unifor-
mity, which already improved Kudo’s downstream
results when allowing a larger set of segmenta-
tions. Further, uniform sampling doubles the aver-
age amount of tokens produced (m in Table 7), qua-
drupling the cost of transformer attention (Vaswani
et al., 2017); Cognetta et al.’s algorithm unfortu-
nately does not easily allow for skewing towards
longer tokens, and itself needs an indeterminate
amount of processing time. In this paper, we hence:

• Analyse the distributional characteristics of
uniform sampling (§3.1);

• Propose a single-pass quadratic tokenisation
algorithm, GRaMPa, that samples random
segmentations of a string such that every seg-
mentation is equally likely and every token
is in the vocabulary, based on counting paths
through the segmentation graph (§4);

• Show how to skew this sampling algorithm
away from uniformity with a single tempera-
ture hyperparameter (§4.3), and how to softly
enforce a minimum token length (§4.4);

• Train DeBERTa models on GRaMPa’s tokeni-
sations for several combinations of hyperpa-
rameters and subword vocabularies in a data-
scarce setting, showing improvement on de-
pendency parsing (§6.1), especially when in-
troducing spelling errors after training (§6.2).

24229

2 Related Work

Segmentation DAG Kudo (2018)’s ULM intro-
duces a procedure for creating a subword vocab-
ulary and an associated unconditional2 probabil-
ity distribution across it. It does inference by con-
structing a Viterbi grid derived from the directed
acyclic graph (DAG) representing all valid seg-
mentations of an input string s under the vocab-
ulary V . The DAG has |s| + 1 nodes (indexed
from 0 to |s|) with an arc from node i to node
j if and only if the token si:j (indexed exclusively,
i.e. si:j = sisi+1 . . . sj−1) exists in V . Figure 1
shows an example of such a DAG. There is a 1:1
correspondence between valid segmentations of the
string si1:i2 and paths in this graph from node i1
to node i2, and hence the set of all paths through
the full graph is isomorphic to the set of all valid
segmentations of s. ULM also assigns a weight
to each arc (i, j) equal to the unigram probability
P (si:j). This was generalised by He et al. (2020)
to the conditional probability P (si:j | s0:i).

In ULM, the k most probable paths through
this DAG, i.e. the k segmentations whose tokens
have the largest joint probability, can be obtained
in Θ(k2|s|2) time with a Viterbi grid taking only
Θ(k|s|) space. The tokeniser can then sample those
proportionally to their probabilities (optionally af-
ter a transformation like Eq.4), ignoring all other
valid segmentations. To consider more segmenta-
tions, one could use a k-worst sampler and/or in-
crease k, but sampling across all valid segmenta-
tions requires k = O(2|s|−1) time and space.

Rejection sampling One way to sample uni-
formly across all valid segmentations is to repeat-
edly sample uniformly across all segmentations,
rejecting the results until every token is in V . Un-
constrained sampling can be done by choosing seg-
mentation boundaries (e.g. §3.2) or token lengths
like Hiraoka and Iwakura (2024).3

Cognetta et al. (2024) do rejection sampling on
already-valid segmentations to make their distribu-
tion uniform. They first construct the segmentation
DAG described above in Θ(|s|2) time. To generate
a segmentation, they start at node 0 and iteratively
sample an outgoing arc without preference to get
to the next node, until node |s|. If node i has δo(i)

2This can be seen as an N -gram language model for the
trivial context-independent case N = 1, and the resulting
tokeniser is named after this unigram language model.

3Do note however that these authors don’t sample uni-
formly, and circumvent having to reject samples by generating
token embeddings on-the-fly using a character-BiLSTM.

outgoing arcs, then each path i = [i0, i1, . . . , im]
resulting from these local arc samples is a Markov
chain (Markov, 1907, §5) with probability

PMarkov(i) =
∏

i∈i

1

δo(i)
. (1)

To make sure every path is emitted with equal
probability, samples are only kept with probability
Paccept(i) = ε/PMarkov(i), where ε is a small con-
stant, chosen as big as possible4 without ever mak-
ing Paccept(i) > 1, meaning ε ≤ mini′ PMarkov(i

′).
Together, the probability of being emitted is that of
being sampled and then being accepted, which is
PMarkov(i) · Paccept(i) = ε regardless of the path i.

We prove in §A.1 that applying the same Marko-
vian sampling to ULM’s DAG produces a different
distribution than ULM’s joint. In §B, we fix that.

Multiplexing Cognetta et al. also multiplex be-
tween deterministic and stochastic tokenisation
with a global hyperparameter p. In the dual-route
paradigm of Hofmann et al. (cfr. §1), p can be seen
as the proportion of compositional learning that
happens in training, the rest being memorisation.

Shorter input Models such as CANINE (Clark
et al., 2022), Charformer (Tay et al., 2022) and
hourglass transformers (Nawrot et al., 2023) all
have provisions in place to reduce the amount of
tokens L passed to the bulk of the model, since
attention has time complexity Θ(L2). Task scores
do start to decrease when reducing the amount of
tokens too much (Schmidt et al., 2024).

Input augmentation As shown by Provilkov
et al. (2020), one benefit of subword regularisa-
tion is increased robustness to perturbed input (e.g.
text with spelling errors). There exist other input
augmentations that provide robustness to other per-
turbations: for example, the Morpheus system by
Tan et al. (2020) identifies nouns, verbs and ad-
jectives and adversarially perturbs their inflection,
such that the model gets used to correct word forms
with incorrect placements. To apply this augmen-
tation requires access to a part-of-speech tagger
trained on supervised data. This augmentation is
explicitly lossy, unlike subword regularisation.

Sampling for marginalisation Considering all
O(2|s|−1) segmentations is also done for marginal-
ising the loss of downstream models across segmen-
tations of their text input. He et al. (2020) achieve

4A safe choice is ε =
∏|s|−1

i=0
1

δo(i)
because no path can

visit more nodes than all nodes.

24230

this exactly with a Viterbi sum across all segmenta-
tions in Θ(|s|2) time by using characters as context.
With tokens as context, it is only possible to take
an approximative sum over fewer segmentations;
Cao and Rimell (2021) thus use importance sam-
pling, where the goal is to average estimates of the
marginal across several highly probable segmen-
tations. They sample non-uniformly according to
ULM probabilities, while Chirkova et al. (2023)
use the model being trained to come up with a
segmentation and its probability. Interestingly, al-
though marginalisation and regularisation are not
the same, Song et al. (2024) find that the former
only works when combined with the latter.

3 Distributional properties of segmentations

3.1 Uniform sampling causes binomiality

As argued in §1, the underlying goal of sampling
segmentations is actually to get a uniform distribu-
tion of their properties. Yet, basic properties like
the amount of tokens m in a segmentation, the
length of the individual tokens ℓ, and quantities
derived from m and ℓ, are not uniformly distributed
given a uniform distribution over segmentations.

Sampling a segmentation uniformly is equiva-
lent5 to doing |s| − 1 Bernoulli experiments, one
on each inter-character boundary, with p = 1

2 of
putting a boundary there. The amount of tokens is 1
more than the amount of segmentation boundaries,
and since the latter is binomially distributed, we
get m ∼ 1 + Binom(|s| − 1, 12).

Furthermore, token length ℓ is nearly geometri-
cally distributed with p = 1

2 in uniformly sampled
segmentations, which we prove in §A.3. When
ℓ ∼ Geom(12), tokens with length 1 appear twice
as much as tokens with length 2, which appear
twice as much as those with length 3, etc.

Figure 2 (in §E) illustrates these distributions
for a uniform sample across segmentations of one
word. It also shows the distribution of derived quan-
tities across a corpus, namely the characters-per-
token ratio R = |s|/m (Dagan et al., 2024) and the
ratio S = m−1

|s|−1 which we dub segmentality,6 being
exactly 0 for word-level tokenisers and exactly 1
for character-level tokenisers, unlike 1

R .

5We assume that the vocabulary is infinitely large here, to
get upper bounds in closed form.

6The distribution of R ∈ [1, |s|] can’t be expressed expli-
citly. We do know its expected value approaches 2 (§A.4). We
also know S ∈ [0, 1] and S ∼ 1

|s|−1
Binom(|s| − 1, 1

2
).

3.2 Rejection sampling is hard to skew

One way of sampling segmentations uniformly
with rejection sampling goes as follows: first pick a
random integer between 0 and 2|s|−1− 1, then con-
vert it to bits, and then overlay these as boundaries
on the |s|−1 inter-character positions (see also §C).
Keep retrying until all tokens exist in V . Since this
is equivalent to choosing |s| − 1 bits with p = 1

2
chance of a 1, it is possible to skew this rejection
sampler towards larger tokens by reducing p, the
proclivity to segment. Unfortunately, the amount
of retries T is geometrically distributed: let NV (s)
be the amount of valid segmentations of s given
V , then for p = 1

2 , the success rate of a sample
is pa = NV (s)/2

|s|−1 and the expected amount
of tries is E[T] = 1/pa = 2|s|−1/NV (s). This is
vulnerable to adversarial attacks: a malicious user
could input a nonsense string s which can only
be split into characters or very small tokens, and
hence NV (s) ≈ 1 and E[T] ≈ 2|s|−1, causing the
tokeniser to hang while it looks for a needle in a
haystack. Decreasing p only makes this worse.

The graph-based approach of Cognetta et al.
(2024) is not vulnerable to attacks,7 but is difficult
to consistently skew away from uniformity. This
is because (1) the uniformity comes not from the
graph but from the rejection step afterwards, and
(2) the probabilities inside the graph, 1

δo(i)
in Eq.1,

are entirely local with no awareness of the rest of
the graph. There is no signal that allows skewing
them with a consistent global effect.

4 GRaMPa tokeniser

We now introduce GRaMPa, a Graph-based seg-
mentation Randomiser that walks along a Markov
chain of Path counts through the graph described in
§2, and does so in one pass (i.e. without rejection).
We first show how this tokeniser samples segmen-
tations of a string uniformly, and then demonstrate
how to skew it to correct for the effects in §3.1.

4.1 Construction

GRaMPa starts by constructing a Viterbi grid con-
taining |s|+ 1 cells, representing the DAG nodes
(see Figure 1). Each cell j stores a path counter cj
and an initially empty list bj of backpointers rep-
resenting the DAG arcs, with one backpointer to
each cell i < j for which si:j ∈ V . To fill the grid,

7In fact, a nonsense string would have a graph with very
few arcs, a very high ε, and hence any sampled segmentation
would have a very high acceptance rate.

24231

Algorithm 1 GRaMPa Markov graph construction

1: function MAKEGRAPH(s, V , fτ , ℓmin)
2: c← ARRAY(|s|+ 1, 0)
3: b← ARRAY(|s|+ 1,[])
4: p← ARRAY(|s|+ 1,[])
5: c0 ← 1
6: for i ∈ 0 . . . |s| − 1 do
7: for j ∈ i+ 1 . . . |s| do
8: if j − i ≥ ℓmin or |bj | = 0 then
9: if si:j ∈ V then

10: cj ← cj + ci
11: bj ← APPEND(bj , i)
12: pj ← APPEND(pj , ci)

13: for k ∈ 0 . . . |pi| − 1 do
14: pi,k ← pi,k/ci
15: pi ← fτ (pi)
16: return (b, p)

GRaMPa walks from node i = 0 to node i = |s|.
When the walk arrives in node i, it is assumed8 that
(1) the current counter ci gives the exact amount of
paths that exist through the DAG from node 0 to
node i, and (2) the current list of backpointers bi is
complete. These two facts are then exploited:

1. For the nodes j > i that can be reached from
i, it is true that any path that arrives in i can be
extended to arrive in j. Hence, we increment
cj by ci and keep a backpointer to i in bj .

2. The fraction of paths that arrive in i through
one of its backpointers bi,k is given by cbi,k/ci.

Once finished, the grid cells are equivalent to this
first-order Markov model over the DAG nodes:

P (nodet−1 = i | nodet = j) =
ci
cj
1{si:j ∈ V }. (2)

Constructing the grid takes Θ(|s|2) in space and
time. Unlike ULM, GRaMPa needs to keep the
entire segmentation DAG in memory.

4.2 Sampling
Starting at node |s|, GRaMPa looks backwards and
iteratively samples a preceding node using the frac-
tion of paths that came in through that node as its
probability, until it reaches node 0 (see again Fig-
ure 1). Like all first-order Markov models, it only
sees the current and next node, yet the resulting
segmentation is globally valid and uniform, having

8More formally, this is an inductive hypothesis.

probability 1
NV (s) . The intuition behind why this

samples paths uniformly is that if we had a way to
pick a random path through the graph uniformly,
we would on average expect that path to arrive at
a node twice as much through one arc as another
if twice as many paths arrived through that one arc
as the other. A formal proof is given in §A.2.

Sampling this way takes exactly one O(|s|) pass.
This is contrary to rejection sampling, which has
no limit on the worst-case amount of passes it takes
before one is accepted, and as we show in §A.5,
the expected runtime of Cognetta et al. (2024)’s
rejection sampler scales superexponentially with |s|
in strings where all segmentations are valid (which
is all strings in the limit of an infinite vocabulary).

Algorithm 2 GRaMPa Markov graph sampling

1: function SAMPLEGRAPH(s, b, p)
2: t← []
3: i← |s|
4: j ← |s|
5: while j ̸= 0 do
6: k ← SAMPLE(pj)
7: i← bj,k
8: t← PREPEND(t, si:j)
9: j ← i

10: return t

4.3 Skewing
In §3, we saw that the most common amounts of
tokens produced by uniform sampling (m ≈ |s|

2)
are unfavourably large. Because GRaMPa’s graph
produces uniform samples by choosing inbound
arcs proportional to the amount of paths that come
in through them, we hypothesise a causal relation-
ship between the two: the fraction of excessively
long paths carried by an arc is bigger when it car-
ries more paths. To skew the uniform distribution
to more desirable segmentations, then, we should
choose arcs with higher path counts less.

We can do this by applying a smoothing trans-
formation across the Markov probabilities p⃗ of the
arcs coming into each node, and preferably one that
allows controlling the amount of smoothing with a
hyperparameter. One candidate for this is softmax
with temperature τ ∈ R+

0 , defined as

softmaxτ (p⃗) =
ep⃗/τ

||ep⃗/τ ||1
(3)

where all the operations are elementwise. Problem-
atically, there is no τ that represents the baseline,

24232

since every value for τ changes at least one element
of p⃗. Power normalisation, defined as

PNα(p⃗) =
p⃗α

||p⃗α||1
=

eln(p⃗
α)

||eln(p⃗α)||1
=

eα ln(p⃗)

||eα ln(p⃗)||1
= softmax1/α(ln(p⃗))

(4)
does not have this problem since PN1(p⃗) = p⃗. For
α ∈ (0, 1), or equivalently 1/α = τ ∈ (1,∞), this
makes arcs with lower path counts appear more sim-
ilar to those with higher path counts. They become
indistinguishable for τ → ±∞, where the DAG is
essentially unweighted. Finally, for α ∈ (−∞, 0)
and τ ∈ (−∞, 0), arcs with lower path counts are
explicitly chosen more than those with higher path
counts. Changing this local τ has a smooth global
effect (see Figure 5 in §E).

Note that although ULM (Kudo, 2018) also
works with a DAG and also applies a power nor-
malisation, it does so over a different set of proba-
bilities: GRaMPa applies it to the |s| sets of token
probabilities that reach each node, whereas ULM
applies it to the single set of k best path probabili-
ties after sampling them from the graph.

4.4 Soft token length minimum

We also propose a way to have each token in a seg-
mentation be at least ℓ characters long, but don’t
enforce this when it makes the segmentation impos-
sible. While constructing the grid, node i could al-
ways start checking for reachable nodes at j = i+ℓ
rather than j = i + 1. If at that moment there ex-
isted a node j < i + ℓ where no arcs had arrived
yet, no more opportunities would arise to add an
inbound arc to it. Meanwhile, arcs could still come
from that node j. This means that GRaMPa could
arrive at j while sampling backwards, but have no
arc to escape from it.

Instead, we not only check j = i+ ℓ for reach-
ability, but also those j < i + ℓ with no inbound
arcs yet. This way, if such a j is reachable at all,
it will end up with exactly one arc, namely the
longest arc shorter than ℓ reaching it. If now all
characters are in the vocabulary (which is possible
with a byte-mapping preprocessor), there can be no
unreachable nodes, meaning the in-degree and out-
degree of every node is guaranteed to be ≥1. This
prevents any dead-end sampling paths and ensures
at least one valid segmentation to exist.

The final algorithm for constructing the Markov
graph, including a skewing transformation fτ and a

Algorithm 3 Multiplexed GRaMPa tokenisation

1: function TOKENISE(s, fτ , ℓmin, p, T)
2: if RAND < p then
3: V ← GETVOCAB(T)
4: (b, p)← MAKEGRAPH(s, V, fτ , ℓmin)
5: return SAMPLEGRAPH(s, b, p)
6: else
7: return T (s)

minimum token length ℓmin, is given in Algorithm 1.
The sampler is in Algorithm 2.

4.5 Directionality

As described, GRaMPa constructs the DAG and
path counts from left to right, and samples from
right to left (R2L). The reverse, i.e. starting con-
struction on the right and sampling from the left
(L2R), also yields a uniform sampler when τ = 1.
When skewed with τ ̸= 1, these two implementa-
tions diverge. One effect is that wherever sampling
stops (the start of the string for R2L, the end for
L2R), a smaller token is expected since the largest
possible token size shrinks as sampling progresses.

4.6 Multiplexing

Finally, as mentioned in §1 and §2, downstream
performance might be improved further by promot-
ing a mixture of memorisation and composition.
This can be achieved by multiplexing two tokenis-
ers, using GRaMPa to stochastically tokenise each
word with a probability p and an existing determin-
istic tokeniser T otherwise. The multiplexing rate
p ∈ [0, 1] is then a hyperparameter of the tokeniser.
Algorithm 3 brings everything together.

5 Experiments

As previous work suggests that subword regularisa-
tion most significantly improves downstream per-
formance in low-resource scenarios (Kudo, 2018;
Cognetta et al. 2024; Song et al., 2024), we limit
both the model and dataset size in all experiments.

5.1 Model and data setup

Model We pre-train and fine-tune DeBERTa (He
et al., 2021) masked language models (MLMs) with
L = 6 layers and embedding size H = 512, fol-
lowing the results of Turc et al. (2019) showing
diminishing returns for bigger values. We also fol-
low them in using H/64 attention heads and 4H
hidden feed-forward neurons per layer.

24233

We limit the context length to 1024 tokens and
use 1024 relative positional embeddings, meaning
all tokens further apart than k = 1024

2 = 512 see
each other as if only 512 tokens apart. More hyper-
parameters are given in §D.

Pre-training We pre-train with the single-term
loss function of RoBERTa (Liu et al., 2019) with
a 15% token masking rate, on English data from
the SlimPajama corpus (Soboleva et al., 2023). To
simulate a data-scarce setting, we only use the first9

50k examples. We pack tokens of consecutive ex-
amples until they fill the context length (Zhao et al.,
2024) to avoid wastefully processing pad tokens.
We build on the HuggingFace transformers
library (Wolf et al., 2020) for training (see §7).

Fine-tuning We fine-tune on a subset of
sentence-level tasks in GLUE (Wang et al., 2019),
and on three token-level tasks: named-entity recog-
nition (NER) on CoNLL-2003 (Tjong Kim Sang
and De Meulder, 2003), and part-of-speech tagging
(PoS) and dependency parsing (DP) on UDen_ewt
(Silveira et al., 2014). For the sequence-level tasks,
we mean-pool the token embeddings and apply a
head consisting of an H ×H dense+tanh layer fol-
lowed by a dense+softmax layer. We use a simpler
dense+softmax head for PoS and NER (which need
less reasoning), applied respectively to the last and
first token of a word (Ács et al., 2021). For DP, we
use a biaffine head (Dozat and Manning, 2017).

We also test increased robustness to spelling er-
rors (as shown by Provilkov et al. (2020) in ma-
chine translation, even with no augmentation to the
pre-training data) with three extra fine-tuning ex-
periments for DP: training with or without spelling
errors, and testing with or without spelling errors.
We perturb each space-surrounded string with 15%
chance: then, like Provilkov et al., we select one
random character in the string, and then with equal
odds we (1) drop it, or pick a random lowercase
letter to (2) insert before it or (3) substitute it with.

5.2 Tokeniser setup

Preprocessing Each tokeniser is preceded by two
preprocessors P1 and P2 that progressively split
the input text into smaller pretokens. P1 applies
NFKC normalisation, then splits on (and removes)
whitespace, and isolates non-hyphen punctuation.
Then, P2 isolates English contractions, maps the

9Note that SlimPajama comes shuffled by default, so there
should be no difference between taking the first 50k examples
or a random sample without replacement of 50k examples.

resulting strings to their UTF-8 bytes represented
as characters, prefixes each string with a boundary
marker, and finally isolates digits and hyphens.

Vocabularies We construct two vocabularies of
size |V | = 32768 with the SentencePiece pack-
age (Kudo and Richardson, 2018): one with ULM
and one with BPE. We vocabularise on the first
3 000 000 examples of SlimPajama.

We don’t tune the vocabulary size, because this
would lead us too far. How much the segmentation
graphs change for smaller vocabularies is quantifi-
able and visualised in Figure 9 of §E.

Baselines Since Kudo (2018) and Provilkov et al.
(2020) show that stochastic ULM and BPE-dropout
outperform the deterministic variants, we use these
subword-regularised tokenisers as strong baselines.
For BPE-dropout, we use a dropout pd = 0.1 as
tuned on machine translation by Provilkov et al. For
ULM, we sample across the 64-best segmentations
like Kudo, and choose α = 0.15 for smoothing
ULM’s segmentation probabilities with Eq.4, as it
causes the regularisation rate, i.e. the fraction of
segmentations that differ from the maximally likely
one, to be balanced at 50% (see Figure 6).

GRaMPas We experiment with 3 different tem-
peratures (§4.3): τ = 1 to represent the uniform
case, τ = +5 for moderate skew, and τ = −10
for heavy skew.10 Figure 3 and Figure 4 show the
extent to which m and S change for these tempera-
tures. We combine each of these with a soft length
minimum (§4.4) of ℓmin = 1 and ℓmin = 2. We
use the L2R implementation (§4.5) as the last mor-
pheme in English words tends to be the smallest.

Multiplexing During model pre-training and
fine-tuning, each pretoken of P1 is tokenised (after
applying P2) by GRaMPa with probability p and
otherwise with the deterministic tokeniser from
which GRaMPa’s vocabulary was obtained (ULM
with k = 1 or BPE with pd = 0). We keep p fixed
for both cases, and match it to the regularisation
rate of the ULM baseline, so p = 0.5.

Although this is about 5× the regularisation rate
of the BPE-dropout baseline (which is p ≈ 0.11 for
pd = 0.1, according to Figure 6 in §E), Cognetta
et al. showed that with a BPE vocabulary, rais-
ing the rate of uniform sampling from p = 0.1 to
p = 0.25 increased performance. This suggests

10Counterintuitively, local uniformity causes global skew
and vice versa. Hence, because temperature in Eq. 4 is local,
the skew rises for τ being 0+ → +∞, is identical at +∞ and
−∞, and rises even more for −∞ → 0− (see Figure 8).

24234

Token-level Sequence-level
PoS NER DP SST-2 QQP MRPC RTE WNLI
Acc F1 UAS LAS UCM LCM Acc F1 Acc Acc Acc %̄ ∆̄

BPE

BPE-dropout pd = 0.1 95.3 81.1 81.6 77.2 49.4 39.4 89.9 74.4 69.1 53.4 46.5 68.85

GRaMPa

ℓmin = 1
τ = 1.0 92.5 78.8 79.7 73.8 44.7 34.2 83.5 72.0 69.9 53.4 50.7 66.66 -2.19
τ = 5.0 93.2 80.1 81.9 77.1 48.7 38.3 86.0 69.6 70.6 54.2 50.7 68.21 -0.64
τ = −10.0 93.3 78.8 79.9 74.9 46.6 37.0 84.1 69.1 68.4 43.0 50.7 65.97 -2.88

ℓmin = 2
τ = 1.0 94.6 81.0 85.4 81.4 53.9 44.8 85.2 75.4 69.6 52.0 49.3 70.25 +1.40
τ = 5.0 94.1 81.5 81.0 76.4 47.3 38.4 83.1 73.2 69.1 52.3 45.1 67.42 -1.43
τ = −10.0 93.1 79.8 78.8 73.7 46.5 36.2 83.0 73.2 70.1 54.9 50.7 67.27 -1.58

ULM

ULM k = 64 α = 0.15 92.7 79.3 82.1 77.3 49.1 39.8 82.6 68.1 69.9 53.4 50.7 67.71

GRaMPa

ℓmin = 1
τ = 1.0 93.1 76.8 83.1 78.4 48.7 39.6 86.4 70.7 68.9 53.4 49.3 68.03 +0.32
τ = 5.0 93.2 79.3 83.9 79.6 50.1 41.0 84.7 71.5 69.9 52.7 43.7 68.16 +0.44
τ = −10.0 92.7 77.6 84.0 79.8 50.3 41.6 84.7 72.2 68.6 50.5 53.5 68.69 +0.98

ℓmin = 2
τ = 1.0 94.7 80.9 86.0 82.4 54.5 45.4 87.4 74.4 69.4 50.5 47.9 70.31 +2.60
τ = 5.0 94.6 79.0 86.1 82.3 55.6 46.5 86.4 75.0 70.3 53.1 46.5 70.48 +2.77
τ = −10.0 94.3 80.6 85.7 82.2 54.5 45.6 83.7 77.6 69.4 51.3 50.7 70.51 +2.80

Table 1 – Fine-tuning results. Each row corresponds to a separate encoder-only transformer with DeBERTa architecture
pre-trained with an MLM objective on a 50k subset of the SlimPajama dataset, and then fine-tuned separately on each of
the downstream tasks, totalling 14× 8 = 112 fine-tuning runs (see §D.2 for details). Each row first shows the vocabulary,
inference algorithm, and hyperparameter values of the model’s tokeniser. We report overall accuracy for PoS, span F1 for
NER, and binary accuracy or F1 otherwise; for DP, we report the unlabelled and labelled attachment score of relations, as
well as unlabelled and labelled complete match rates of dependency trees (Li et al., 2024). All metrics range from 0% to
100%. Higher is better. ∆̄ is the average deviation across all tasks from the baseline model with the same vocabulary.

UAS LAS UCM LCM
tr/te tr/te tr/te tr/te tr/te tr/te tr/te tr/te tr/te tr/te tr/te tr/te tr/te tr/te tr/te tr/te %̄ ∆̄

BPE

BPE-dropout pd = 0.1 74.1 75.4 80.4 81.6 67.3 69.6 76.4 77.2 40.3 43.5 48.6 49.4 31.0 34.3 41.6 39.4 58.13

GRaMPa

ℓmin = 1
τ = 1.0 76.0 76.5 79.2 79.7 68.6 70.0 73.9 73.8 41.8 42.4 45.1 44.7 31.3 32.6 35.2 34.2 56.56 -1.57
τ = 5.0 77.1 79.5 83.0 81.9 70.0 73.5 78.3 77.1 41.7 45.1 49.5 48.7 30.7 35.0 39.7 38.3 59.32 +1.19
τ = −10.0 77.4 79.1 83.5 79.9 70.4 72.8 79.3 74.9 42.5 46.3 51.0 46.6 31.7 35.4 41.9 37.0 59.35 +1.21

ℓmin = 2
τ = 1.0 73.6 74.4 84.9 85.4 66.4 68.2 80.7 81.4 41.2 41.7 52.0 53.9 31.0 33.6 43.6 44.8 59.81 +1.68
τ = 5.0 73.2 76.5 78.6 81.0 66.0 70.8 73.5 76.4 39.9 44.2 46.0 47.3 29.4 35.2 37.0 38.4 57.09 -1.04
τ = −10.0 73.0 75.0 83.9 78.8 65.6 68.6 79.6 73.7 40.2 42.1 52.0 46.5 30.0 31.8 43.1 36.2 57.50 -0.63

ULM

ULM k = 64 α = 0.15 77.1 79.1 81.3 82.1 69.8 72.9 75.9 77.3 42.3 44.8 46.6 49.1 30.9 34.3 36.2 39.8 58.72

GRaMPa

ℓmin = 1
τ = 1.0 76.3 77.2 82.1 83.1 69.2 70.7 77.4 78.4 41.8 44.0 48.4 48.7 31.5 34.0 38.7 39.6 58.83 +0.11
τ = 5.0 78.0 80.1 83.2 83.9 71.0 74.5 78.6 79.6 43.9 45.9 49.4 50.1 33.1 36.1 39.4 41.0 60.48 +1.76
τ = −10.0 76.2 79.6 83.3 84.0 69.1 74.0 79.1 79.8 40.0 45.9 50.1 50.3 30.4 36.6 41.4 41.6 60.09 +1.36

ℓmin = 2
τ = 1.0 76.2 79.8 84.6 86.0 69.3 74.1 80.7 82.4 41.6 47.3 52.5 54.5 31.2 37.6 43.5 45.4 61.66 +2.94
τ = 5.0 78.8 81.6 84.8 86.1 71.8 76.3 81.1 82.3 43.3 48.1 53.4 55.6 32.5 37.6 44.4 46.5 62.76 +4.04
τ = −10.0 78.3 81.9 83.4 85.7 71.5 76.7 78.9 82.2 43.8 47.5 51.0 54.5 33.2 38.1 41.6 45.6 62.11 +3.39

Table 2 – Fine-tuning results on DP when applying LD1 typos to 15% of all words in the different splits of the dataset. A
red line under te means typos were applied to the validation and test set, while tr means typos were applied to the train set.

that raising it even higher may improve down-
stream performance even further. We hypothesise
that it is the low quality of BPE-dropout’s regulari-
sation that makes the optimal dropout rate one with
a low quantity of regularisation.

A note about Rényi efficiency Recent work by
Zouhar et al. (2023) proposed tuning tokeniser
hyperparameters for use in LMs by maximising
Rényi efficiency Eα of the vocabulary. Cognetta et
al. (2024, bis) found two somewhat contrived to-
kenisers whose hyperparameters caused Eα to rise
monotonically with worse modelling results, mak-
ing Eα an unsuitable objective to optimise them
properly. We argue below that this holds for all
our hyperparameters – a real-life case of needing a
tuning criterion orthogonal to Rényi efficiency.

6 Results

Table 1 shows results on downstream tasks. Table 2
shows results for DP after perturbing its texts. Ap-

pendix §E contains both tables in relative form.

6.1 Fine-tuning

Baselines As predicted, BPE-dropout shows it-
self to be a strong baseline. We hypothesise that this
may be due to it being 5× more deterministic than
all other tested tokenisers, with a regularisation rate
of ∼10% rather than 50%. This consistency makes
memorisation easier,11 perhaps causing the large
gap with the ULM baseline on some tasks. On PoS
and NER, both highly memorisable, BPE-dropout
is hardly ever outperformed, whereas it commonly
is for DP, which isn’t memorisable at the token
level. Especially notable is the unconventionally
higher regularisation rate of the tokenisers that beat
BPE-dropout, affirming our central hypothesis that
not all subword regularisation is of equal quality: a

11One interesting though expensive experiment would be
to make all tokenisers fully deterministic during the train-
ing phase of fine-tuning and/or the testing phase, rather than
varying the segmentation in p = 50% of words.

24235

BPE-dropout tokeniser with our regularisation rate
of p = 0.5 would have pd ≈ 0.37 (see Figure 6
in §E) which Provilkov et al. show to be subop-
timal, and yet on DP, using the same vocabulary,
GRaMPa with that regularisation rate outperforms
even the optimal BPE-dropout setting of pd = 0.1.

Vocabularies ULM-based GRaMPa models are
overall better than the BPE-based ones: they im-
prove more over their own baseline, tend to have a
higher average score, and on DP specifically, this
holds true even without controlling for τ and ℓmin.

Temperature Depending on the vocabulary, the
response to increasing τ varies. There’s no clear
trend in the BPE-based models, whereas with the
ULM vocabulary, higher τ is always better. This is
counter to our hypothesis w.r.t. temperature, but in
either case, the uniform model (ℓmin = 1, τ = 1.0)
is (one of) the worst, affirming our hypothesis that
skewing away from uniformity is better.

Minimum length There is a much clearer effect
with either vocabulary that higher ℓmin is better.
The reason is likely that in the uniform case, single-
character tokens dominate 50% of the token distri-
bution (cfr. §3.1). Raising τ merely attenuates this
domination of low-information tokens, whereas
raising ℓmin fully excludes them (when possible) in
favour of more semantically laden tokens.

6.2 Robustness
With only 10% of words perturbed, the GRaMPa
models already diverge from the baselines. Again
the vocabularies behave distinctly: BPE tokens
seem less fit for dealing with typos than ULM to-
kens, perhaps since ULM has a larger variety of
small subwords (see Figure 7 in §E). All GRaMPa
models with ULM outperform the baseline, which
is stronger than BPE-dropout here. The most ro-
bust of those had longer tokens (Table 7) and less
segmentational entropy (Table 8), yet BPE-dropout
did too, making these insufficient predictors.

6.3 Rényi efficiency revisited
We now see that we could not have tuned
GRaMPa’s τ , ULM’s α, or the multiplexing p using
Rényi efficiency Eα. We know performance is not
monotonic in α (Kudo, 2018) and not in τ either
(§6.1), yet increasing τ and α causes a monotonic
skew away from uniformity in segmentations and
thus away from non-uniformity in token properties
(cfr. §3.1). The result is a monotonic increase in
Eα (see Figure 10 and Figure 11b in Appendix §E).

Additionally, for the typical BPE-dropout setting of
pd = 0.1, Eα is markedly higher (see Figure 11a)
than for ULM, whereas its models aren’t strictly
better; thus, Eα values aren’t absolute even for
identical vocabulary sizes, and cannot be compared
between tokeniser architectures. This is an issue
for multiplexing, because when multiplexing two
or more tokenisers, the setting with highest Eα will
simply be such that the tokeniser with highest indi-
vidual Eα is chosen 100% of the time, i.e. p = 0 or
p = 1. Hence, tuning p using Eα results in no mul-
tiplexing at all, whereas its benefits were outlined
above. For example, tuning p between determinis-
tic ULM and GRaMPa results in no determinism
at all (Figure 12b). On the off-chance that two to-
kenisers do hover around the same baseline Eα

(like in Figure 12a), it is mere coincidence, and Eα

being concave in p is meaningless.

7 Releases

A software implementation of GRaMPa is available
on GitHub as part of the HuggingFace-compatible
Tokeniser Toolkit (TkTkT) Python package:
https://github.com/bauwenst/TkTkT.

Model training experiments were set up using the
Language Modelling Tasks as Objects (LaMoTO)
Python package, partly developed for this work:
https://github.com/bauwenst/LaMoTO.

All tables and graphs were generated using the
Figures as Objects (Fiject) Python package:
https://github.com/bauwenst/fiject.

Lastly, the scripts needed to reproduce this paper
are found at https://github.com/bauwenst/
Experiments_GRaMPa.

8 Conclusion

We introduce GRaMPa, a stochastic tokenisation
algorithm that can sample valid tokenisations of a
string s uniformly in Θ(|s|2) time, thereby signifi-
cantly improving on rejection sampling. We argue
that stochastic tokenisers should take into account
not only the distribution of segmentations, but also
the distribution of the segmentations’ properties
like token length, which is systematically too low
when sampling uniformly. GRaMPa can be skewed
to prefer longer tokens using the temperature τ and
soft minimum length ℓmin hyperparameters. We
show that this results in improved downstream per-
formance on language modelling tasks, due to the
model seeing a mix of segmentation properties.

24236

https://github.com/bauwenst/TkTkT
https://github.com/bauwenst/LaMoTO
https://github.com/bauwenst/fiject
https://github.com/bauwenst/Experiments_GRaMPa
https://github.com/bauwenst/Experiments_GRaMPa

Limitations

Having shown the effectiveness of regularising
monolingual (English) MLMs through skewed uni-
form tokenisation sampling, a natural extension
would be to test its effectiveness in multilingual
MLMs and translation models. We suspect that
because multilingual tokenisers are even worse at
providing meaningful token boundaries than mono-
lingual ones, they already treat strings as little more
than characters (like GRaMPa), and thus teach the
model to compose better.

Due to computational constraints, we did not
tune the vocabulary size |V | = 32768 nor the
BPE/GRaMPa multiplexing rate p = 0.5, which
we based on ULM’s regularisation rate at α = 0.15
(chosen heuristically between the recommended
values of 0.1 and 0.2, and likely is not the optimal
value either). Therefore, GRaMPa’s performance
could likely be improved with a more extensive
hyperparameter search, but so could the stochastic
ULM baseline.

We found that increasing ℓmin from 1 to 2 usually
had a positive impact. This begs the question at
which ℓmin this upwards trend stops/reverses.

For practitioners who want to use GRaMPa, we
realise that we have introduced multiple hyperpa-
rameters. We recommend the hyperparameter set-
ting (VULM, τ = 5.0, ℓmin = 2). We recommend a
multiplexing rate p lower than 0.5 for tasks involv-
ing memorisation (e.g. PoS) and higher for tasks
involving fine-grained word comprehension.

We did not train in a high-resource setting – only
with 6-layer DeBERTa models on a 50k truncated
corpus. Nevertheless, the latter is still a realistic
setting, and it also served to prove that there exists
at least one setting in which GRaMPa is useful. We
leave the investigation of how GRaMPa (or another
skewing mechanism for uniform sampling) scales
to larger models and datasets to future work.

We did not test what happens when the stochas-
tic tokenisers are made deterministic at inference
time, e.g. by setting p = 0. As confirmed by
Bauwens and Delobelle (2024), using a different to-
keniser during fine-tuning than during pre-training
can boost performance, and indeed, it is conceiv-
able that the embeddings for that deterministic
inference are of higher quality due to the regu-
larisation at train time. For fair comparison, the
same could be done to the baseline tokenisers at
inference, such that effectively, two identical BPE
tokenisers and two identical ULM tokenisers are

compared but one with and one without regularised
token embeddings.

In the same line of reasoning, we could have
also tested the converse, fine-tuning the models
that were pre-trained with a deterministic tokeniser
using all the different stochastic tokenisers. Since
GRaMPa becomes more deterministic with increas-
ing ℓmin and τ , in the limit, it is just another
deterministic tokenisation algorithm, and thus it
is conceivable that swapping out e.g. BPE for a
BPE-based GRaMPa may have the same effect
as Bauwens and Delobelle (2024) saw for BPE-
knockout.

We also did not pre-train any models with p = 0
or p = 1, which would have led to an additional
14 models. In particular, since GRaMPa performs
best when multiplexed with deterministic ULM and
strongly outperformed a stochastic ULM baseline,
one could wonder if this actually implies that ULM
is best used with no regularisation. We suspect
not, since it was precisely the beneficial effect of
ULM’s regularisation as found by Kudo (2018) that
popularised ULM and subword regularisation in
the first place.

Although both tables with fine-tuning results
show visible trends, they were generated using only
5 hyperparameter grid samples per model-task pair.
To be more confident about the reported best, and
to really get the best out of each model, we could
have done more runs.

Finally, our theoretical results sometimes assume
an infinite vocabulary. Whilst tokenisers used in
some state-of-the-art models have vocabularies that
may easily exceed hundreds of thousands of sub-
words in size, an infinite vocabulary does not model
any of the intricate constraints that exist in the seg-
mentation graphs produced by finite vocabularies.

Author Contributions

DK conceived the path-based Markov model for
single-pass uniform sampling, and the proof for
non-deterministic complexity of previous work. TB
conceived the argument and methods for skewing,
implemented GRaMPa in Python, executed the ex-
periments, and wrote the bulk of the manuscript.
MdL helped iterating on the manuscript.

Acknowledgements

We would like to thank Marco Cognetta for his
open and cordial correspondence, as well as one of

24237

the anonymous reviewers for his/her particularly
humane and useful feedback.

TB is funded by a Bijzonder Onderzoeksfonds
(BOF) internal fund at KU Leuven, namely the C1
project fund with reference C14/23/096.

Most of the computational resources and ser-
vices used in this work were provided by the VSC
(Flemish Supercomputer Centre), funded by the Re-
search Foundation Flanders (FWO) and the Flem-
ish Government department EWI.

This research was supported by the state of North
Rhine-Westphalia as part of the Lamarr Institute
for Machine Learning and Artificial Intelligence.

References
Roy Bar-Haim, Ido Dagan, Bill Dolan, Lisa Ferro,

Danilo Giampiccolo, Bernardo Magnini, and Idan
Szpektor. 2006. The Second PASCAL Recognising
Textual Entailment Challenge. In Proceedings of the
second PASCAL challenges workshop on recognising
textual entailment, volume 1.

Thomas Bauwens. 2023. BPE-knockout: Systematic
review of BPE tokenisers and their flaws with appli-
cation in Dutch morphology. Master’s thesis, KU
Leuven.

Thomas Bauwens and Pieter Delobelle. 2024. BPE-
knockout: Pruning Pre-existing BPE Tokenisers
with Backwards-compatible Morphological Semi-
supervision. In Proceedings of the 2024 Conference
of the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies (Volume 1: Long Papers), pages 5810–5832,
Mexico City, Mexico. Association for Computational
Linguistics.

Luisa Bentivogli, Bernardo Magnini, Ido Dagan,
Hoa Trang Dang, and Danilo Giampiccolo. 2009.
The Fifth PASCAL Recognizing Textual Entailment
Challenge. In Proceedings of the Second Text Analy-
sis Conference, TAC 2009, Gaithersburg, Maryland,
USA, November 16-17, 2009. NIST.

Kaj Bostrom and Greg Durrett. 2020. Byte Pair Encod-
ing is Suboptimal for Language Model Pretraining.
In Findings of the Association for Computational
Linguistics: EMNLP 2020, pages 4617–4624, Online.
Association for Computational Linguistics.

Kris Cao and Laura Rimell. 2021. You should evalu-
ate your language model on marginal likelihood over
tokenisations. In Proceedings of the 2021 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing, pages 2104–2114, Online and Punta Cana,
Dominican Republic. Association for Computational
Linguistics.

Min-Te Chao and William Edward Strawderman. 1972.
Negative moments of positive random variables.

Journal of the American Statistical Association,
67(338):429–431.

Bobbie Chern, Persi Diaconis, Daniel M. Kane, and
Robert C. Rhoades. 2014. Closed expressions for
averages of set partition statistics. Research in the
Mathematical Sciences, 1(1):2.

Nadezhda Chirkova, Germán Kruszewski, Jos Rozen,
and Marc Dymetman. 2023. Should you marginalize
over possible tokenizations? In Proceedings of the
61st Annual Meeting of the Association for Computa-
tional Linguistics (Volume 2: Short Papers), pages 1–
12, Toronto, Canada. Association for Computational
Linguistics.

Jonathan H. Clark, Dan Garrette, Iulia Turc, and John
Wieting. 2022. Canine: Pre-training an Efficient
Tokenization-Free Encoder for Language Represen-
tation. Transactions of the Association for Computa-
tional Linguistics, 10:73–91. Place: Cambridge, MA
Publisher: MIT Press.

Marco Cognetta, Vilém Zouhar, and Naoaki Okazaki.
2024a. Distributional properties of subword regular-
ization. In Proceedings of the 2024 Conference on
Empirical Methods in Natural Language Processing,
pages 10753–10763, Miami, Florida, USA. Associa-
tion for Computational Linguistics.

Marco Cognetta, Vilém Zouhar, Sangwhan Moon, and
Naoaki Okazaki. 2024b. Two Counterexamples to
Tokenization and the Noiseless Channel. In Pro-
ceedings of the 2024 Joint International Conference
on Computational Linguistics, Language Resources
and Evaluation (LREC-COLING 2024), pages 16897–
16906, Torino, Italia. ELRA and ICCL.

Gautier Dagan, Gabriel Synnaeve, and Baptiste Roziere.
2024. Getting the most out of your tokenizer for pre-
training and domain adaptation. In Proceedings of
the 41st International Conference on Machine Learn-
ing, volume 235 of Proceedings of Machine Learning
Research, pages 9784–9805. PMLR.

Ido Dagan, Oren Glickman, and Bernardo Magnini.
2006. The pascal recognising textual entailment chal-
lenge. In Machine Learning Challenges. Evaluating
Predictive Uncertainty, Visual Object Classification,
and Recognising Tectual Entailment, pages 177–190,
Berlin, Heidelberg. Springer Berlin Heidelberg.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
Deep Bidirectional Transformers for Language Un-
derstanding. In Proceedings of the 2019 Conference
of the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

William B. Dolan and Chris Brockett. 2005. Automati-
cally constructing a corpus of sentential paraphrases.
In Proceedings of the Third International Workshop
on Paraphrasing (IWP2005).

24238

https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=33f25fae10da978fad3f48eb6bded2f733b28e92
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=33f25fae10da978fad3f48eb6bded2f733b28e92
https://bauwenst.github.io/cdn/doc/pdf/2023/masterthesis.pdf
https://bauwenst.github.io/cdn/doc/pdf/2023/masterthesis.pdf
https://bauwenst.github.io/cdn/doc/pdf/2023/masterthesis.pdf
https://doi.org/10.18653/v1/2024.naacl-long.324
https://doi.org/10.18653/v1/2024.naacl-long.324
https://doi.org/10.18653/v1/2024.naacl-long.324
https://doi.org/10.18653/v1/2024.naacl-long.324
https://tac.nist.gov/publications/2009/additional.papers/RTE5_overview.proceedings.pdf
https://tac.nist.gov/publications/2009/additional.papers/RTE5_overview.proceedings.pdf
https://doi.org/10.18653/v1/2020.findings-emnlp.414
https://doi.org/10.18653/v1/2020.findings-emnlp.414
https://doi.org/10.18653/v1/2021.emnlp-main.161
https://doi.org/10.18653/v1/2021.emnlp-main.161
https://doi.org/10.18653/v1/2021.emnlp-main.161
https://doi.org/https://doi.org/10.2307/2284399
https://doi.org/10.1186/2197-9847-1-2
https://doi.org/10.1186/2197-9847-1-2
https://doi.org/10.18653/v1/2023.acl-short.1
https://doi.org/10.18653/v1/2023.acl-short.1
https://doi.org/10.1162/tacl_a_00448
https://doi.org/10.1162/tacl_a_00448
https://doi.org/10.1162/tacl_a_00448
https://doi.org/10.18653/v1/2024.emnlp-main.600
https://doi.org/10.18653/v1/2024.emnlp-main.600
https://aclanthology.org/2024.lrec-main.1469
https://aclanthology.org/2024.lrec-main.1469
https://proceedings.mlr.press/v235/dagan24a.html
https://proceedings.mlr.press/v235/dagan24a.html
https://doi.org/https://doi.org/10.1007/11736790_9
https://doi.org/https://doi.org/10.1007/11736790_9
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://aclanthology.org/I05-5002
https://aclanthology.org/I05-5002

Timothy Dozat and Christopher D. Manning. 2017.
Deep biaffine attention for neural dependency pars-
ing. In International Conference on Learning Repre-
sentations.

Gemma Team, Morgane Riviere, Shreya Pathak,
Pier Giuseppe Sessa, Cassidy Hardin, Surya Bhupati-
raju, Léonard Hussenot, Thomas Mesnard, Bobak
Shahriari, Alexandre Ramé, Johan Ferret, Peter
Liu, Pouya Tafti, Abe Friesen, Michelle Casbon,
Sabela Ramos, Ravin Kumar, Charline Le Lan,
Sammy Jerome, Anton Tsitsulin, Nino Vieillard,
Piotr Stanczyk, Sertan Girgin, Nikola Momchev,
Matt Hoffman, Shantanu Thakoor, Jean-Bastien Grill,
Behnam Neyshabur, Olivier Bachem, Alanna Wal-
ton, Aliaksei Severyn, Alicia Parrish, Aliya Ah-
mad, Allen Hutchison, Alvin Abdagic, Amanda
Carl, Amy Shen, Andy Brock, Andy Coenen, An-
thony Laforge, Antonia Paterson, Ben Bastian, Bilal
Piot, Bo Wu, Brandon Royal, Charlie Chen, Chintu
Kumar, Chris Perry, Chris Welty, Christopher A.
Choquette-Choo, Danila Sinopalnikov, David Wein-
berger, Dimple Vijaykumar, Dominika Rogozińska,
Dustin Herbison, Elisa Bandy, Emma Wang, Eric
Noland, Erica Moreira, Evan Senter, Evgenii Elty-
shev, Francesco Visin, Gabriel Rasskin, Gary Wei,
Glenn Cameron, Gus Martins, Hadi Hashemi, Hanna
Klimczak-Plucińska, Harleen Batra, Harsh Dhand,
Ivan Nardini, Jacinda Mein, Jack Zhou, James Svens-
son, Jeff Stanway, Jetha Chan, Jin Peng Zhou, Joana
Carrasqueira, Joana Iljazi, Jocelyn Becker, Joe Fer-
nandez, Joost van Amersfoort, Josh Gordon, Josh
Lipschultz, Josh Newlan, Ju-yeong Ji, Kareem Mo-
hamed, Kartikeya Badola, Kat Black, Katie Mil-
lican, Keelin McDonell, Kelvin Nguyen, Kiranbir
Sodhia, Kish Greene, Lars Lowe Sjoesund, Lau-
ren Usui, Laurent Sifre, Lena Heuermann, Leti-
cia Lago, Lilly McNealus, Livio Baldini Soares,
Logan Kilpatrick, Lucas Dixon, Luciano Martins,
Machel Reid, Manvinder Singh, Mark Iverson, Mar-
tin Görner, Mat Velloso, Mateo Wirth, Matt Davi-
dow, Matt Miller, Matthew Rahtz, Matthew Watson,
Meg Risdal, Mehran Kazemi, Michael Moynihan,
Ming Zhang, Minsuk Kahng, Minwoo Park, Mofi
Rahman, Mohit Khatwani, Natalie Dao, Nenshad
Bardoliwalla, Nesh Devanathan, Neta Dumai, Nilay
Chauhan, Oscar Wahltinez, Pankil Botarda, Parker
Barnes, Paul Barham, Paul Michel, Pengchong
Jin, Petko Georgiev, Phil Culliton, Pradeep Kup-
pala, Ramona Comanescu, Ramona Merhej, Reena
Jana, Reza Ardeshir Rokni, Rishabh Agarwal, Ryan
Mullins, Samaneh Saadat, Sara Mc Carthy, Sarah
Cogan, Sarah Perrin, Sébastien M. R. Arnold, Se-
bastian Krause, Shengyang Dai, Shruti Garg, Shruti
Sheth, Sue Ronstrom, Susan Chan, Timothy Jordan,
Ting Yu, Tom Eccles, Tom Hennigan, Tomas Ko-
cisky, Tulsee Doshi, Vihan Jain, Vikas Yadav, Vilobh
Meshram, Vishal Dharmadhikari, Warren Barkley,
Wei Wei, Wenming Ye, Woohyun Han, Woosuk
Kwon, Xiang Xu, Zhe Shen, Zhitao Gong, Zichuan
Wei, Victor Cotruta, Phoebe Kirk, Anand Rao, Minh
Giang, Ludovic Peran, Tris Warkentin, Eli Collins,
Joelle Barral, Zoubin Ghahramani, Raia Hadsell,
D. Sculley, Jeanine Banks, Anca Dragan, Slav Petrov,

Oriol Vinyals, Jeff Dean, Demis Hassabis, Koray
Kavukcuoglu, Clement Farabet, Elena Buchatskaya,
Sebastian Borgeaud, Noah Fiedel, Armand Joulin,
Kathleen Kenealy, Robert Dadashi, and Alek An-
dreev. 2024. Gemma 2: Improving Open Language
Models at a Practical Size. ArXiv:2408.00118.

Danilo Giampiccolo, Bernardo Magnini, Ido Dagan, and
Bill Dolan. 2007. The Third PASCAL Recognising
Textual Entailment Challenge. In Proceedings of the
ACL-PASCAL Workshop on Textual Entailment and
Paraphrasing, RTE ’07, page 1–9, USA. Association
for Computational Linguistics.

Godfrey Harold Hardy and Srinivasa Ramanujan. 1917.
Asymptotic Formulæ for the Distribution of Integers
of Various Types. Proceedings of the London Mathe-
matical Society, 2(1):112–132.

Pengcheng He, Xiaodong Liu, Jianfeng Gao, and
Weizhu Chen. 2021. DeBERTa: Decoding-enhanced
BERT with Disentangled Attention.

Xuanli He, Gholamreza Haffari, and Mohammad
Norouzi. 2020. Dynamic Programming Encoding
for Subword Segmentation in Neural Machine Trans-
lation. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pages
3042–3051, Online. Association for Computational
Linguistics.

Carl Friedrich Hindenburg. 1779. Infinitinomii dignita-
tum exponentis indeterminati historia leges ac formu-
lae. Dieterich.

Tatsuya Hiraoka. 2022. MaxMatch-Dropout: Subword
Regularization for WordPiece. In Proceedings of
the 29th International Conference on Computational
Linguistics, pages 4864–4872, Gyeongju, Republic
of Korea. International Committee on Computational
Linguistics.

Tatsuya Hiraoka and Tomoya Iwakura. 2024. Tokeniza-
tion Preference for Human and Machine Learning
Model: An Annotation Study. ArXiv:2304.10813
[cs].

Valentin Hofmann, Janet Pierrehumbert, and Hinrich
Schütze. 2021. Superbizarre Is Not Superb: Deriva-
tional Morphology Improves BERT’s Interpretation
of Complex Words. In Proceedings of the 59th An-
nual Meeting of the Association for Computational
Linguistics and the 11th International Joint Confer-
ence on Natural Language Processing (Volume 1:
Long Papers), pages 3594–3608, Online. Association
for Computational Linguistics.

Shankar Iyer, Nikhil Dandekar, and Kornél Csernai.
2017. First Quora Dataset Release: Question Pairs —
Quora. Online; accessed 15 October 2024.

Dayal Singh Kalra and Maissam Barkeshli. 2024. Why
Warmup the Learning Rate? Underlying Mechanisms
and Improvements. ArXiv:2406.09405 version: 1.

24239

https://openreview.net/forum?id=Hk95PK9le
https://openreview.net/forum?id=Hk95PK9le
https://doi.org/10.48550/arXiv.2408.00118
https://doi.org/10.48550/arXiv.2408.00118
https://dl.acm.org/doi/pdf/10.5555/1654536.1654538
https://dl.acm.org/doi/pdf/10.5555/1654536.1654538
https://ia600708.us.archive.org/view_archive.php?archive=/28/items/crossref-pre-1923-scholarly-works/10.1112%252Fplms%252Fs2-10.1.116.zip&file=10.1112%252Fplms%252Fs2-16.1.112.pdf
https://ia600708.us.archive.org/view_archive.php?archive=/28/items/crossref-pre-1923-scholarly-works/10.1112%252Fplms%252Fs2-10.1.116.zip&file=10.1112%252Fplms%252Fs2-16.1.112.pdf
https://openreview.net/forum?id=XPZIaotutsD
https://openreview.net/forum?id=XPZIaotutsD
https://doi.org/10.18653/v1/2020.acl-main.275
https://doi.org/10.18653/v1/2020.acl-main.275
https://doi.org/10.18653/v1/2020.acl-main.275
http://eudml.org/doc/203391
http://eudml.org/doc/203391
http://eudml.org/doc/203391
https://aclanthology.org/2022.coling-1.430
https://aclanthology.org/2022.coling-1.430
http://arxiv.org/abs/2304.10813
http://arxiv.org/abs/2304.10813
http://arxiv.org/abs/2304.10813
https://doi.org/10.18653/v1/2021.acl-long.279
https://doi.org/10.18653/v1/2021.acl-long.279
https://doi.org/10.18653/v1/2021.acl-long.279
https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs
https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs
https://doi.org/10.48550/arXiv.2406.09405
https://doi.org/10.48550/arXiv.2406.09405
https://doi.org/10.48550/arXiv.2406.09405

Donald Ervin Knuth. 2014. The Art of Computer Pro-
gramming, Volume 4A: Combinatorial Algorithms,
Part 1. Pearson Education.

Taku Kudo. 2018. Subword Regularization: Improving
Neural Network Translation Models with Multiple
Subword Candidates. In Proceedings of the 56th
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 66–75,
Melbourne, Australia. Association for Computational
Linguistics.

Taku Kudo and John Richardson. 2018. SentencePiece:
A simple and language independent subword tok-
enizer and detokenizer for Neural Text Processing.
In Proceedings of the 2018 Conference on Empiri-
cal Methods in Natural Language Processing: System
Demonstrations, pages 66–71, Brussels, Belgium. As-
sociation for Computational Linguistics.

Misha Lavrov. 2018. A procedure for sampling paths
in a directed acyclic graph — Mathematics Stack
Exchange. Online; accessed 7 October 2024.

Hector J. Levesque, Ernest Davis, and Leora Morgen-
stern. 2012. The Winograd schema challenge. In
Proceedings of the Thirteenth International Confer-
ence on Principles of Knowledge Representation and
Reasoning, KR’12, page 552–561. AAAI Press.

Yeshu Li, Danyal Saeed, Xinhua Zhang, Brian D.
Ziebart, and Kevin Gimpel. 2024. Moment distri-
butionally robust tree structured prediction. In Pro-
ceedings of the 36th International Conference on
Neural Information Processing Systems, NIPS ’22,
pages 12237–12252, Red Hook, NY, USA. Curran
Associates Inc.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
RoBERTa: A Robustly Optimized BERT Pretrain-
ing Approach. ArXiv:1907.11692 [cs].

Ilya Loshchilov and Frank Hutter. 2019. Decoupled
Weight Decay Regularization.

Andrey Andreyevich Markov. 1907. Rasprostra-
nen�e zakona bol~xih� qisel� na veliqiny,
zavis�w�� drug� ot� druga. Izvestiya Fiziko-
matematicheskogo obschestva pri Kazanskom uni-
versitete, 15(4):135–156.

Benjamin Minixhofer, Jonas Pfeiffer, and Ivan Vulić.
2023. CompoundPiece: Evaluating and Improving
Decompounding Performance of Language Models.
In Proceedings of the 2023 Conference on Empiri-
cal Methods in Natural Language Processing, pages
343–359, Singapore. Association for Computational
Linguistics.

Piotr Nawrot, Jan Chorowski, Adrian Lancucki, and
Edoardo Maria Ponti. 2023. Efficient Transform-
ers with Dynamic Token Pooling. In Proceedings
of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),

pages 6403–6417, Toronto, Canada. Association for
Computational Linguistics.

A. Yavuz Oruç. 2016. On number of partitions of an
integer into a fixed number of positive integers. Jour-
nal of Number Theory, 159:355–369.

Ivan Provilkov, Dmitrii Emelianenko, and Elena Voita.
2020. BPE-Dropout: Simple and Effective Subword
Regularization. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics, pages 1882–1892, Online. Association for
Computational Linguistics.

Craig W Schmidt, Varshini Reddy, Haoran Zhang, Alec
Alameddine, Omri Uzan, Yuval Pinter, and Chris
Tanner. 2024. Tokenization Is More Than Compres-
sion. In Proceedings of the 2024 Conference on
Empirical Methods in Natural Language Processing,
pages 678–702, Miami, Florida, USA. Association
for Computational Linguistics.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural Machine Translation of Rare Words
with Subword Units. In Proceedings of the 54th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1715–
1725, Berlin, Germany. Association for Computa-
tional Linguistics.

Natalia Silveira, Timothy Dozat, Marie-Catherine
De Marneffe, Samuel R Bowman, Miriam Connor,
John Bauer, and Christopher D Manning. 2014. A
Gold Standard Dependency Corpus for English. In
LREC, pages 2897–2904.

Daria Soboleva, Faisal Al-Khateeb, Robert Myers, Ja-
cob R Steeves, Joel Hestness, and Nolan Dey. 2023.
SlimPajama: A 627B token cleaned and deduplicated
version of RedPajama — Cerebras Blog.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D. Manning, Andrew Ng, and
Christopher Potts. 2013. Recursive deep models for
semantic compositionality over a sentiment treebank.
In Proceedings of the 2013 Conference on Empiri-
cal Methods in Natural Language Processing, pages
1631–1642, Seattle, Washington, USA. Association
for Computational Linguistics.

Haiyue Song, Francois Meyer, Raj Dabre, Hideki
Tanaka, Chenhui Chu, and Sadao Kurohashi. 2024.
SubMerge: Merging Equivalent Subword Tokeniza-
tions for Subword Regularized Models in Neural Ma-
chine Translation. In Proceedings of the 25th Annual
Conference of the European Association for Machine
Translation (Volume 1), pages 147–163, Sheffield,
UK. European Association for Machine Translation
(EAMT).

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014. Se-
quence to Sequence Learning with Neural Networks.
In Advances in Neural Information Processing Sys-
tems, volume 27. Curran Associates, Inc.

24240

https://books.google.de/books?id=IkuEBAAAQBAJ
https://books.google.de/books?id=IkuEBAAAQBAJ
https://books.google.de/books?id=IkuEBAAAQBAJ
https://doi.org/10.18653/v1/P18-1007
https://doi.org/10.18653/v1/P18-1007
https://doi.org/10.18653/v1/P18-1007
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/D18-2012
https://math.stackexchange.com/a/2676725
https://math.stackexchange.com/a/2676725
https://math.stackexchange.com/a/2676725
https://cdn.aaai.org/ocs/4492/4492-21843-1-PB.pdf
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://www.jehps.net/Novembre2006/Markov3pdf.pdf
https://www.jehps.net/Novembre2006/Markov3pdf.pdf
https://www.jehps.net/Novembre2006/Markov3pdf.pdf
https://doi.org/10.18653/v1/2023.emnlp-main.24
https://doi.org/10.18653/v1/2023.emnlp-main.24
https://doi.org/10.18653/v1/2023.acl-long.353
https://doi.org/10.18653/v1/2023.acl-long.353
https://doi.org/https://doi.org/10.1016/j.jnt.2015.06.023
https://doi.org/https://doi.org/10.1016/j.jnt.2015.06.023
https://doi.org/10.18653/v1/2020.acl-main.170
https://doi.org/10.18653/v1/2020.acl-main.170
https://doi.org/10.18653/v1/2024.emnlp-main.40
https://doi.org/10.18653/v1/2024.emnlp-main.40
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/P16-1162
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=920f120562fef3df07cc8ef87c61c8a8ceb797d1
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=920f120562fef3df07cc8ef87c61c8a8ceb797d1
https://www.cerebras.net/blog/slimpajama-a-627b-token-cleaned-and-deduplicated-version-of-redpajama
https://www.cerebras.net/blog/slimpajama-a-627b-token-cleaned-and-deduplicated-version-of-redpajama
https://aclanthology.org/D13-1170
https://aclanthology.org/D13-1170
https://aclanthology.org/2024.eamt-1.15
https://aclanthology.org/2024.eamt-1.15
https://aclanthology.org/2024.eamt-1.15
https://proceedings.neurips.cc/paper/2014/hash/a14ac55a4f27472c5d894ec1c3c743d2-Abstract.html
https://proceedings.neurips.cc/paper/2014/hash/a14ac55a4f27472c5d894ec1c3c743d2-Abstract.html

Samson Tan, Shafiq Joty, Min-Yen Kan, and Richard
Socher. 2020. It’s Morphin’ Time! Combating Lin-
guistic Discrimination with Inflectional Perturbations.
In Proceedings of the 58th Annual Meeting of the As-
sociation for Computational Linguistics, pages 2920–
2935, Online. Association for Computational Lin-
guistics.

Yi Tay, Vinh Q. Tran, Sebastian Ruder, Jai Gupta,
Hyung Won Chung, Dara Bahri, Zhen Qin, Si-
mon Baumgartner, Cong Yu, and Donald Metzler.
2022. Charformer: Fast Character Transformers via
Gradient-based Subword Tokenization.

Erik F. Tjong Kim Sang and Fien De Meulder.
2003. Introduction to the CoNLL-2003 Shared Task:
Language-Independent Named Entity Recognition.
In Proceedings of the Seventh Conference on Natu-
ral Language Learning at HLT-NAACL 2003, pages
142–147.

Iulia Turc, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. 2019. Well-read students learn better:
On the importance of pre-training compact models.
ArXiv:1908.08962 [cs].

Omri Uzan, Craig W. Schmidt, Chris Tanner, and Yuval
Pinter. 2024. Greed is all you need: An evaluation of
tokenizer inference methods. In Proceedings of the
62nd Annual Meeting of the Association for Compu-
tational Linguistics (Volume 2: Short Papers), pages
813–822, Bangkok, Thailand. Association for Com-
putational Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is All
you Need. In Advances in Neural Information Pro-
cessing Systems, volume 30. Curran Associates, Inc.

Alex Wang, Amanpreet Singh, Julian Michael, Fe-
lix Hill, Omer Levy, and Samuel R. Bowman.
2019. GLUE: A Multi-Task Benchmark and Anal-
ysis Platform for Natural Language Understanding.
ArXiv:1804.07461.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language processing.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38–45, Online. Association
for Computational Linguistics.

Yu Zhao, Yuanbin Qu, Konrad Staniszewski, Szymon
Tworkowski, Wei Liu, Piotr Miłoś, Yuxiang Wu, and
Pasquale Minervini. 2024. Analysing the impact
of sequence composition on language model pre-
training. In Proceedings of the 62nd Annual Meeting

of the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 7897–7912, Bangkok,
Thailand. Association for Computational Linguistics.

Giulio Zhou. 2018. Morphological Zero-Shot Neural
Machine Translation. Master’s thesis, University of
Edinburgh.

Vilém Zouhar, Clara Meister, Juan Gastaldi, Li Du,
Mrinmaya Sachan, and Ryan Cotterell. 2023. Tok-
enization and the Noiseless Channel. In Proceedings
of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 5184–5207, Toronto, Canada. Association for
Computational Linguistics.

Judit Ács, Ákos Kádár, and Andras Kornai. 2021. Sub-
word Pooling Makes a Difference. In Proceedings
of the 16th Conference of the European Chapter of
the Association for Computational Linguistics: Main
Volume, pages 2284–2295, Online. Association for
Computational Linguistics.

24241

https://doi.org/10.18653/v1/2020.acl-main.263
https://doi.org/10.18653/v1/2020.acl-main.263
https://openreview.net/forum?id=JtBRnrlOEFN
https://openreview.net/forum?id=JtBRnrlOEFN
https://aclanthology.org/W03-0419
https://aclanthology.org/W03-0419
http://arxiv.org/abs/1908.08962
http://arxiv.org/abs/1908.08962
https://doi.org/10.18653/v1/2024.acl-short.73
https://doi.org/10.18653/v1/2024.acl-short.73
https://papers.nips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://papers.nips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://doi.org/10.48550/arXiv.1804.07461
https://doi.org/10.48550/arXiv.1804.07461
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2024.acl-long.427
https://doi.org/10.18653/v1/2024.acl-long.427
https://doi.org/10.18653/v1/2024.acl-long.427
https://project-archive.inf.ed.ac.uk/msc/20183019/msc_proj.pdf
https://project-archive.inf.ed.ac.uk/msc/20183019/msc_proj.pdf
https://doi.org/10.18653/v1/2023.acl-long.284
https://doi.org/10.18653/v1/2023.acl-long.284
https://doi.org/10.18653/v1/2021.eacl-main.194
https://doi.org/10.18653/v1/2021.eacl-main.194

A Proofs

A.1 Segmentation graphs weighted with
unigram probabilities can’t be sampled
Markovianly and proportionally to the
joint unigram probability

Proof. Let the ni tokens that can extend a given
string s from character i = 0 . . . n − 1 onward
be called {ti,j}ni

j=1 with associated probabilities
{pi,j}ni

j=1 that need local renormalisation with de-
nominator Zi =

∑ni
j=1 pi,j to be sampled.

Now, imagine sampling the path that always
chooses the first outgoing token: it starts with t0,1
with a length we’ll call ℓ1, then chooses tℓ1,1 with
length ℓ2, then chooses tℓ1+ℓ2,1 with length ℓ3, then
tℓ1+ℓ2+ℓ3,1, ... until the lengths sum to |s|. The prob-
ability of the first step is p0,1/Z0, of the second is
pℓ1,1/Zℓ1 , of the third is pℓ1+ℓ2,1/Zℓ1+ℓ2 and so on.
In total, this path has a probability

P
(1)
Markov =

p0,1 · pℓ1,1 · pℓ1+ℓ2,1 . . .

Z0 · Zℓ1 · Zℓ1+ℓ2 . . .
(5)

of being sampled Markovianly. We now note that
the sequence of tokens {t0,1; tℓ1,1; tℓ1+ℓ2,1 . . .} has
a joint unigram probability equal to

P
(1)
LM = p0,1 · pℓ1,1 · pℓ1+ℓ2,1 . . . (6)

which is exactly the numerator in Eq.5. This is
promising: if PMarkov ∝ PLM with the same propor-
tionality constant for all paths (which would have
to be the sum of P (i)

LM across all segmentations i)
then we have proved the opposite case.

Yet, imagine a second path that starts with a
token of length k1 ̸= ℓ1, then a token of length
k2 such that k1 + k2 = ℓ1 + ℓ2, and beyond that
always takes the first token, overlapping with the
first path. This second path {t0,∗; tk1,∗; tℓ1+ℓ2,1 . . .}
has probability

P
(2)
Markov =

p0,∗ · pk1,∗ · pℓ1+ℓ2,1 . . .

Z0 · Zk1 · Zℓ1+ℓ2 . . .
(7)

which is also proportional to the joint unigram prob-
ability of the segmentation, namely

P
(2)
LM = p0,∗ · pk1,∗ · pℓ1+ℓ2,1 . . . (8)

yet the denominators of Eq.5 and Eq.7 differ in
their second factor Zℓ1 and Zk1 respectively, which
are constructed from an arbitrarily different subset
of the vocabulary and hence Zℓ1 ̸= Zk1 in general,
so the denominators differ. ■

This result also makes intuitive sense: the seg-
mentation graph can only return segmentations of
one specific string, and hence it samples across a re-
duced set of token sequences that together make up
100% of the possible segmentations. Meanwhile,
the joint probability (which is used by e.g. the ULM
tokeniser to find the most likely segmentation) ac-
tually models all token sequences, not just those
that concatenate to form the given string. These are
two different joint distributions.

A.2 Unskewed GRaMPa samples
segmentations uniformly

We prove the theorem for a forward-constructed
grid and hence backward decoding (R2L). An anal-
ogous proof exists for the L2R implementation.

Proof. Given a string s of n characters, let the path
count at node i = 0 . . . n in the lattice be called
ci ∈ N, where c0 = 1 and cn is the total amount
NV (s) of paths through the lattice and hence the
amount of valid segmentations of s. We now prove
that GRaMPa samples the NV (s) ≤ 2n−1 seg-
mentations uniformly, all having equal probability
1/NV (s) of occurring in the decoding process.

When GRaMPa finds itself in node i while de-
coding, it knows that ci paths arrive there and that
they came from the preceding nodes 0 . . . i − 1
according to

ci =
i−1∑

j=0

cj · 1{sj:i ∈ V }. (9)

It then samples a preceding node j from the reach-
able nodes with probability cj/ci (assuming no
skewing transformation). If j = 0, decoding ends.
Otherwise, another k < j is sampled with proba-
bility ck/cj . In the latter case, the joint probability
of both samples is

ck

@@cj
·@@cj
ci

=
ck
ci
. (10)

We now extend this argument: let the sequence of
all visited nodes be called {i0, i1, i2, . . . , iℓ}, with
i0 = 0 and iℓ = n, representing a segmentation of ℓ
tokens obtained through ℓ samples. The probability
of this segmentation is then

P =
ℓ∏

k=1

cik−1

cik
=

ci0
ZZci1
·ZZci1
ZZci2
· ... ·

HHHciℓ−2

HHHciℓ−1

·
HHHciℓ−1

ciℓ

=
ci0
ciℓ

=
c0
cn

=
1

NV (s)

(11)

which telescopes regardless of ℓ. ■

24242

A.3 Token lengths are distributed (almost)
geometrically across segmentations

Given is a string s of n characters. Assuming an
infinite vocabulary, there exist 2n−1 segmentations
for this string. Given a token length ℓ ∈ {1, ..., n},
we want to count how many tokens12 have this
length across all 2n−1 segmentations.13 Let this
number be called M(ℓ, n). We will first find an
explicit expression for M(ℓ, n), and then show that
the fraction of all tokens across all segmentations
that is taken up by tokens of length ℓ, i.e.

P (ℓ | n) = M(ℓ, n)
n∑

ℓ̃=1

M(ℓ̃, n)

(12)

approximates a (truncated) geometric distribution
for Bernoulli experiments with p = 1

2 . In other
words: tokens of length 1 appear twice as much as
tokens of length 2, which appear twice as much as
tokens of length 3, and so on. This then implies that
if we sample uniformly across segmentations, we
will see geometrically distributed token lengths.

Proof. We want to find the amount of tokens of
length ℓ that appear across all segmentations. This
is equivalent to counting how many tokens of
length ℓ appear in each segmentation, and summing
those counts.

If there are k tokens of length ℓ in a particular
segmentation, it contributes k to the total count.
Now, duplicate each such segmentation k times,
and call each one a "representative" of one of the to-
kens of length ℓ they contain. Put all representatives
for the same token (i.e. the same pair of boundary
indices) into a separate set. The sum of the sizes
of these sets is still M(ℓ, n). By now generating
these sets, we have turned counting tokens into
counting segmentations, which we already have an
expression for (2|s|−1).

Assume ℓ ̸= n for now. Consider the n− 1 inter-
character positions. A token of length ℓ is defined
by its starting boundary i and its ending boundary
i+ ℓ. Excluding the token whose starting boundary
lies before the string and the token whose ending
boundary lies after the string, we find all tokens of

12Not types. E.g.: for s = "ababc" and the segmentations
{ab/ab/c, a/b/ab/c}, we count 7 tokens total, despite using 2
types in the first, 4 types in the second, and 4 types together.

13This problem is related to counting how many sets of size
ℓ appear across all partitions of a set of n elements (Chern
et al., 2014), except in our case, we are restricted to forming
subsets from adjacent elements only.

length ℓ by sliding a window from inter-character
position i = 1 to i = n − 1 − ℓ, at which point
the ending boundary falls on the last inter-character
position i+ ℓ = n− 1.

Remember that segmentations are generated by
choosing whether or not a boundary goes on each
of the n−1 inter-character positions. When a token
of length ℓ starts at position i, that eliminates ℓ+ 1
choices: the two ends i and i+ℓ receive a boundary,
and all ℓ− 1 positions in between explicitly have
no boundary. Hence, n − 1 − (ℓ + 1) = n − 2 −
ℓ binary choices remain to be made. All 2n−2−ℓ

variations of these boundaries together form the
set of representatives for token (i, i+ ℓ). Since the
window had n− 1− ℓ different starting points, the
tokens it forms account for

(n− 1− ℓ) · 2n−2−ℓ (13)

representatives in total. We still have to account
for the two14 tokens we left out, which respec-
tively start and end on a non-inter-character po-
sition. Hence, for these two tokens, only ℓ choices
are eliminated rather than ℓ+ 1, leaving n− 1− ℓ
choices open and hence both have 2n−1−ℓ repre-
sentatives, giving

2 · 2n−1−ℓ = 4 · 2n−2−ℓ (14)

total. Adding Eq.13 and Eq.14, we finally get

M(ℓ, n) = (n− 1− ℓ) 2n−2−ℓ

︸ ︷︷ ︸
window

+4 · 2n−2−ℓ
︸ ︷︷ ︸

edges

(15)

given our assumption that ℓ ≤ n− 1. Note that at
ℓ = n− 1, the window has 0 positions and hence
only the second term contributes anything.

For the case where ℓ = n, i.e. the one token that
spans the entire string, the window argument breaks
down: Eq.13 suggests that a negative amount of
representatives is added by the window, whilst
Eq.14 alleges that 2−1 representatives are added at
both edges. Since the second term coincidentally
still adds the correct amount (namely 1), we just
need to ignore the first term for this one case, which
we can do by clipping it to 0. We get

M(ℓ, n) = max
{
0; (n−1−ℓ) 2n−2−ℓ

}
+4·2n−2−ℓ

= max{0;n−1−ℓ} 2n−2−ℓ + 4 · 2n−2−ℓ

= (4 +max{0;n− 1− ℓ}) 2n−2−ℓ

(16)
14There exist at least two tokens of all lengths ℓ ̸= n.

24243

which is exact for all token sizes ℓ ∈ {1, ..., n}.
The fact that this is strictly increasing given a con-
stant n and decreasing ℓ matches our intuition that
smaller tokens appear more across segmentations.

We now want to plug this expression into Eq.12.
To do so, we find a closed expression for the sum
in the denominator. To start, we note the follow-
ing: imagine we didn’t have the max in the above
equation, i.e. we made the approximation

M(ℓ, n) ≈ (4 + n− 1− ℓ) 2n−2−ℓ

= (n+ 3− ℓ) 2n−2−ℓ.
(17)

The only ℓ for which the latter is not exactly equal
to M(ℓ, n) is ℓ = n, where it is 3 · 2−2 = 0.75
rather than 1. Since Eq.12 sums exponentially in-
creasing values, this difference of 0.25 becomes
negligible and we use this simpler expression for
M(ℓ, n) instead. The summation becomes
n∑

ℓ=1

M(ℓ, n) ≈
n∑

ℓ=1

(n+3−ℓ) 2n−2−ℓ (18)

= 2n−2
n∑

ℓ=1

(n+ 3− ℓ) 2−ℓ (19)

= 2n−2

(
(n+ 3)

n∑

ℓ=1

2−ℓ−
n∑

ℓ=1

ℓ 2−ℓ

)

(20)

The first summation is a geometric series of the
form q, q2, q3, ... with q = 2−1 amounting to

n∑

k=1

qk = q
1− qn

1− q
= 1− 2−n. (21)

The second summation follows from taking the
derivative of Eq.21 w.r.t. q and some rearranging:

n∑

k=1

k qk =
q

1− q
(1− (n+ 1) · qn)

+

(
q

1− q

)2
(1− qn)

= (1−(n+1) 2−n) + (1−2−n)

= 2− (n+ 2) 2−n.

(22)

Putting these together,
n∑

ℓ=1

M(ℓ, n)

≈ 2n−2
(
(n+ 3)(1−2−n)−(2−(n+2) 2−n)

)

= 2n−2
(
(n+3)−(n+3)2−n−2+(n+2) 2−n

)

=
(
(n+ 1)− 2−n

)
2n−2.

(23)

We don’t simplify further, because this and Eq.17
both slot nicely into Eq.12:

P (ℓ | n) ≈ (n+ 3− ℓ) 2n−2−ℓ

((n+ 1)− 2−n)2n−2
(24)

=
n+ 3− ℓ

n+ 1− 2−n
2−ℓ (25)

≈ n+ 3− ℓ

n+ 1
2−ℓ (26)

=

(
1− ℓ− 2

n+ 1

)
2−ℓ. (27)

Despite the two approximations made, this is still
very close to being normalised across the token
lengths ℓ ∈ {1, ..., n}, and for very long strings
(n→∞), it is the geometric distribution of p = 1

2 :

lim
n→∞

P (ℓ | n) ≈ 2−ℓ =

(
1

2

)ℓ−1 1

2
(28)

=

(
1− 1

2

)ℓ−1 1

2
(29)

= (1− p)ℓ−1p (30)

The first factor in Eq.27 is only greater than 1 for
tokens of length ℓ = 1, meaning that slightly more
probability mass is allocated to the very smallest
tokens than a geometric distribution would. (This is
also necessary to keep the distribution normalised
when n < ∞.) The ℓ = 2 tokens follow the ge-
ometric distribution exactly. Tokens with ℓ ≥ 3
slightly undershoot the geometric distribution. ■

This result follows intuition too. If we sample
segmentations uniformly with no vocabulary con-
straint, there is a p = 50% chance of a token bound-
ary occurring between any two characters. We walk
through the string from left to right and perform
such i.i.d. Bernoulli experiments until we get a to-
ken boundary. The amount of experiments it takes
before this happens is geometrically distributed,
and is also equal to the length of the token delim-
ited on the right by that boundary. The length of
the second token follows the exact same procedure
except starting on the current boundary.

Assuming a string is long enough (large n), the
fact that the last token cannot extend past the last
character has negligible influence on the length
distribution of each token, and hence token lengths
are geometrically distributed.

24244

A.4 Expected value of characters-per-token
approaches 2 in uniform sampling

Let s be a string whose segmentations are sampled
uniformly, resulting in a random amount of tokens
m. Define the characters-per-token ratio

R =
|s|
m

. (31)

We know m ∼ 1 + Binom(|s| − 1, 12) as shown
in §3.1, assuming an infinite vocabulary. We now
prove that lim

|s|→∞
E[R] = 2.

Proof. Let X = m− 1, i.e. the random part of m,
then R is of the form

R = (n+ 1) · 1

1 +X
(32)

with n = |s| − 1 and X ∼ Binom(n, p), making

E[R] = (n+ 1)E
[

1

1 +X

]
. (33)

The latter factor is known (Chao and Strawderman,
1972) to be

E
[

1

1 +X

]
=

1− (1− p)n+1

(n+ 1)p
. (34)

for binomial variables X , so substituting back into
Eq.33 we get

E[R] =XXXX(n+ 1)
1− (1− p)n+1

XXXX(n+ 1) p

=
1

p

(
1− (1− p)n+1

) (35)

and since we know n = |s| − 1 and p = 1
2 ,

E[R] = 2 ·
(
1− 1

2|s|

)
(36)

where the second factor is 1 when |s| → ∞. ■

A.5 Non-deterministic complexity of Cognetta
et al. (2024) rejection sampling

Cognetta et al. (2024) present a non-deterministic
algorithm to uniformly sample string segmenta-
tions using rejection sampling by Lavrov (2018). A
description of this algorithm is given in §2.

For a string of n characters, their algorithm
requires Θ(n2) in space and time to construct
the directed acyclic graph (DAG) G representing
valid segmentations. Then, each sampling pass
takes O(n) time and succeeds with probability

Paccept(G, i) = ϵ(G)/PMarkov(G, i), where ϵ(G)
is a lower bound on Paccept(G, ·) for the worst-case
path. This lower bound can be computed as

ϵ(G) =
|s|−1∏

j=0

1

δo(j)
, (37)

which is the probability PMarkov(G, iwc) of sam-
pling the path iwc that visits every node.

In general, Paccept(G, i) depends both on G
and on the path i currently being sampled.
For a fixed G, we can consider rejection sam-
pling as a sequence of independent trials Xj ∼
Bernoulli(Paccept(G, ij)), where the sampled path
ij is drawn from a non-uniform discrete distri-
bution over paths i. Each path ij is drawn with
probability PMarkov(G, ij). The sequence of tri-
als is a generalisation of a geometric process
with a success rate p, where now p is itself vari-
able across trials. Nevertheless, we still want to
know the expected15 number of trials. Suppose
that we know the expected success rate E[P] =
Ei⊂G [Paccept(G, ·)]. It can be shown that the ex-
pected number of trials until the first success T is
given by 1/E[P].

Proof. Let T be the number of trials until the first
success. Then we can decompose E[T] as

E[T] = Paccept(G, i1)E[T | T = 1]

+ (1− Paccept(G, i1))E[T | T > 1]),
(38)

corresponding to two cases: if the first sampled path
is accepted, then T = 1, and if it is not accepted,
in which case T > 1. Then, taking the expectation
over paths for the first trial Ei1⊂G , we obtain

Ei1⊂G [E[T]] = Ei1⊂G
[
Paccept(G, i1)E[T | T = 1]

+ (1− Paccept(G, i1))E[T | T > 1])
]

E[T] = E[P]E[T | T = 1]

+ (1− E[P])E[T | T > 1])

E[T] = E[P] + (1− E[P])(1 + E[T]),
(39)

which simplifies to

0 = 1− E[T]E[P] (40)

and thus E[T] = 1/E[P]. ■

The total expected time complexity is then

Θ(n2) + E[T]O(n) = Θ(n2) +
O(n)

E[P]
. (41)

15I.e.: the average, across all paths in G.

24245

To compute the expectation E[P] over both DAGs
and paths, we must specify a distribution over
DAGs. We do not attempt a full analysis, but in-
stead consider only the special case of the fully
connected DAG on n+ 1 nodes Gfull correspond-
ing to an infinite vocabulary. This is a DAG for
which the j-th node has edges to all subsequent
nodes from j + 1 to n+ 1. In this case, we get

E[P] := ϵ(Gfull)E
[

1

PMarkov(Gfull, i)

]
, (42)

since ϵ is a graph-dependent constant that does not
depend on the path. It is given by the probability
of the least likely path, which for Gfull is the path
going through all nodes. At the j-th node, there are
δo(j) = n − j outgoing edges, of which exactly
one goes to the j + 1-th node. Therefore,

ϵ(Gfull) =
n−1∏

j=0

1

δo(j)
=

n−1∏

j=0

1

n− j
=

1

n!
. (43)

The expected value of 1/PMarkov(Gfull, i) is the
size of the domain of paths, which we now prove.

Proof. For any discrete stochastic variable X with
probability mass pX(x), domain D and support
D′ = {x ∈ D | p(x) > 0}, and any function
g : D → D, the law of the unconscious statistician
says

E[g(X)] =
∑

x∈D′
g(x) pX(x). (44)

When we choose 1/pX(x) as g(x), we then get

E
[

1

pX(X)

]
=
∑

x∈D′

1

pX(X)
pX(x)

=
∑

x∈D′
1 = |D′|.

(45)

The expected value in the right-hand side of Eq.42
ranges over the distribution of paths before the re-
jection process, i.e. paths i distributed according to
PMarkov(i). Hence, we can apply this result. ■

Since all segmentations are possible in Gfull, we get

Ei⊂Gfull

[
1

PMarkov(Gfull, i)

]
= 2n−1. (46)

Plugging Eq.43 and Eq.46 into Eq.42, we obtain
the expected success rate E[P] = 2n−1/n! for a
fully connected DAG. The expected number of
samples until a success is thus

E[T] =
n!

2n−1
. (47)

Finally, inserting this result into Eq.41 yields the
expected time complexity of tokenising a string
of length n with Cognetta et al. (2024)’s rejection
sampler given an infinite vocabulary:

Θ(n2) +O

(
n!

2n−1

)
·O(n) = O

(
(n+ 1)!

2n−1

)
.

(48)
In contrast, GRaMPa requires Θ(n2) in space and
time to construct the DAG and O(n) for a single
pass that is guaranteed to return a valid segmenta-
tion. The mean- and worst-case runtimes therefore
scale like Θ(n2), regardless of the vocabulary.

B Uniform rejection sampling for any
unigram distribution

In §A.1, we proved that sampling Markovianly
from a segmentation graph weighted by token prob-
abilities that only satisfy global normalisation, i.e.

∑

t∈V
P (t) = 1 (49)

gave rise to a differently shaped distribution than
the joint distribution in a unigram language model,
the latter being the product of the probabilities of
the resulting tokens t = [t1, t2, t3, . . .]

PLM(t) =

|t|∏

i=1

P (ti). (50)

The fundamental reason for this mismatch was that
we couldn’t get the local renormalisation constants
Zi to match up in Eq.5 and Eq.7,

PMarkov(t) =

|t|∏

i=1

P (ti)

Zi
. (51)

Rejection sampling can resolve this mismatch by
introducing a binary acceptance variable A and
sampling from PMarkov(t | A = 1), which we do
by sampling a t and then randomly deciding which
of the two subsets (A = 1 or A = 0) we are in on
this try. If we are in A = 1, then we can return it.

Proof. According to Bayes’s law,

P (t | A = 1) =
P (A = 1 | t)P (t)

P (A = 1)

= c1 · P (A = 1 | t)P (t)

(52)

for some c1 ∈ [0, 1] independent of t. Define the
acceptance rate depending on t’s Markov path:

PMarkov(A = 1 | t) = 1

c2

|t|∏

i=1

Zi (53)

24246

for some c2 independent of t. This then means

PMarkov(t | A=1) = c1 ·PMarkov(A=1 | t)PMarkov(t)

=
c1
c2

|t|∏

i=1

P (ti)

@@Zi
@@Zi

=
c1
c2
PLM(t) ∝ PLM(t)

(54)
and thus segmentations are returned from this sam-
pler at the same relative proportions as the language
model joint unigram probability would dictate. ■

Since 1 ≥ Zi ≥ P (ti) > 0, the product in Eq.53 is
very small. Because this equation gives the accep-
tance rate, it being small implies many rejections
and many retries. To avoid this, we should make c2
as small as possible whilst respecting the fact that
0 ≤ PMarkov(A = 1 | t) ≤ 1. It is above 0 as long
as c2 > 0. It is under 1 as long as

∀t : 1

c2

|t|∏

i=1

Zi ≤ 1 ⇐⇒ ∀t : c2 ≥
|t|∏

i=1

Zi (55)

so c2 must be at least as big as the biggest product,
i.e.

c2 ≥ max
t

|t|∏

i=1

Zi (56)

and since we want c2 to be as small as possible,

c2 = max
t

|t|∏

i=1

Zi. (57)

In other words: c2 in Eq.53 is the largest prod-
uct of normalising denominators that can be en-
countered when walking through the segmentation
graph, along one of the NV (s) ≤ 2|s|−1 paths t.

Luckily, this can be computed in Θ(|s|2) time
with a Viterbi maximiser like the one used by ULM,
except rather than taking and comparing products
of token probabilities, we take and compare prod-
ucts of denominators Zi.

C Length-ordered composition keys
(LOCKs) to sort segmentations

In order to visualise a skew towards segmenta-
tions with fewer, larger tokens in a tokeniser’s
output distribution for a string s of n characters,
we need to be able to place a given segmentation
[i0, i1, i2, . . . , iℓ] on a horizontal axis without ex-
plicitly generating and sorting the exponentially
many segmentations on the axis – because it takes
an intractably large amount of space and time, re-
spectively O(2n−1) and O(2n+2n−1 log 2n−1) =
O(n 2n) – and in such a way that segmentations
with fewer, larger tokens are concentrated on one
side of the axis and those with more, smaller tokens
appear on the other. We can do this with a suitable
function that maps each segmentation to a unique
integer between 0 and 2n−1 − 1.

C.1 Bit-ordered

One example of a function that does this, works like
as follows. Since a segmentation is entirely defined
by the n − 1 binary choices of whether to put a
token boundary at each inter-character position (1)
or not (0), encoding those decisions into a binary
string gives a unique (n− 1)-bit number that can
be converted to a decimal integer between 0 and
2n−1 − 1. The problem with this function is that
it orders segmentations very poorly: for example,
the two very distinct segmentations a/bcdef and
ab/c/d/e/f correspond to respectively 100002 = 16
and 011112 = 15, which are next to each other.

C.2 Length-ordered

We propose instead a function f to bijectively map
segmentations to integers in {0, 1, . . . , 2n−1} such
that the results are ordered first by the token amount,
then by the ordered token lengths, and haphazardly
(but uniquely) after that (since it is desirable for the
order to not prefer one segmentation over another
if they have the same list of token lengths).

We represent the segmentations as ordered lists
of token lengths: e.g., the segmentations τ1 =
a/bcdef and τ2 = ab/c/d/e/f become t1 = (1, 5)
and t2 = (2, 1, 1, 1), respectively.

Formally, we ensure three ordering rules be-
tween any two distinct segmentations τ1 and τ2.
Let t1 and t2 be the ordered lists of their token
lengths. Then f(τ1) < f(τ2) if and only if

1. |t1| < |t2|, or

2. |t1| = |t2|, sort(t1) < sort(t2), or

3. |t1| = |t2|, sort(t1) = sort(t2), g(t1) < g(t2)

24247

where sorting is ascending, lists of equal length
are compared element-by-element until a pair is
not equal, and g is a function that doesn’t gener-
ate unique outputs for all lists, but does generate
unique outputs for lists containing the same ele-
ments. That is, g(t) is a bijection between the per-
mutations of sort(t) and

MN(t) =

(|t|
c1, c2, . . . , ck

)
=

|t|!
c1!c2! · · · ck!

(58)

unequal integers, where c1, c2, . . . , ck are the
counts of the k unique elements of t.16 Though
not necessary, we require that those unequal inte-
gers are 0 . . .MN(t)− 1.

The above three rules define a total order and
could be enforced by sorting with a three-tiered
sorting key (k1, k2, k3). To compute f without
explicitly sorting using this key, we need to
compute how many segmentations would be
ordered under (k1, k2, k3). In other words: how
many have a first key under k1 (how many
segmentations exist with fewer tokens) and how
many with the same first key (same amount of
tokens) have a second key under k2 (how many
permutations exist for sorted lists that also sum to
n but are elementwise smaller), and we’ll need an
implementation of g. More formally, for the set
G of all possible token length lists of the string,

f1(t) = #{u ∈ G : |u| < |t|} (59)

f2(t) = #{u ∈ G : |u| = |t| ∧ sort(u) < sort(t)} (60)

f3(t) = #{u ∈ G : |u|= |t| ∧ sort(u) = sort(t) (61)

∧ g(u) < g(t)}
should be computed as part of

f(τ) = f1(t) + f2(t) + f3(t). (62)

We call the resulting identifier a length-ordered
composition key (LOCK), because it defines sorting
keys over the integer compositions of the number n
(i.e. the ordered lists of integers greater than 0 that
sum to n). Below, we show that we can compute
the functions f1, f2 and f3 efficiently.

C.2.1 f1: Compositions with fewer integers
Given a composition of length |t| for n, we need to
know the amount of compositions for n that have
m = 1, 2, . . . , |t|−1 integers. Mapping back to seg-
mentations for a moment: having m tokens means
having chosen m− 1 token boundaries among the

16The denominator avoids permutations of equal elements.

n− 1 possible locations, and there are
(
n−1
m−1

)
ways

to do this. Hence, the first term in f is

f1(t) =

|t|−1∑

m=1

(
n− 1

m− 1

)
(63)

= 2n−1 −
(
n− 1

|t| − 1

)
2F1(1, |t| − n; |t|;−1)

where 2F1(a, b; c; z) is the Gaussian hypergeomet-
ric function.

C.2.2 f2: Permutations of lower-order
partitions

Sorted compositions are called integer partitions.
They represent equivalence classes across the inte-
ger compositions. For segmentations, this means
ab/c/def and a/bcd/ef, having token lengths [2,1,3]
and [1,3,2] respectively, belong to the same equiv-
alence class represented by the partition [1,2,3],
unlike a/bcde/f which still has three tokens but in-
stead belongs to the lower-order class represented
by the partition [1,1,4].

The function f2(t) is the number of composi-
tions of n into |t| integers that, after sorting into
ascending order with sort, are strictly smaller than
sort(t), comparing elements left to right. The rea-
son we choose to order partitions this way and no
other way (e.g. comparing right to left, or some
other procedure) is that we want the left side of the
LOCK axis to represent segmentations that become
more common when GRaMPa is skewed more.
When τ → ±∞, all nodes in the segmentation
DAG have a uniform distribution across their arcs,
exactly like PMarkov in Eq.1, and it can be proved
that if you pick the most probable path from each
of the equivalence classes above, ordering them
from most to least probable is the same as ordering
them by comparing their elements left-to-right.

We are not aware of a closed-form expression
for f2(t), so we proceed as follows: if we knew the
partitions representing the equivalence classes pre-
ceding the class to which t belongs, we could apply
Eq.58 to get the size of each class and sum the
results. For knowing partitions to be feasible, two
things must be true: the amount of partitions to gen-
erate must never explode (even for the last-ranked
partition), and the work required per generated par-
tition also must never explode.

The amount of integer partitions of n scales with
O
(
1
n exp(

√
n)
)

(Hardy and Ramanujan, 1917), but
fortunately, it is still quite moderate for n < 45,

24248

which is more than enough for tokenising words.17

An iterative algorithm to generate integer par-
titions of length |t| in exactly the order we want,
and one at a time (allowing early stopping), was
described by Hindenburg (1779, pp. 74–76) and
rephrased by Knuth (2014, section 7.2.1.4, Algo-
rithm H and Theorem H). For clarity, however,
we reimplement it recursively in Algorithm 4.
The time complexity of this algorithm scales
as the amount of partitions it outputs, namely
O
(

1
n−|t| exp(

√
n− |t|)

)
(Oruç, 2016). In practice

the algorithm performs well. E.g.: it takes 2 ms on
a single Intel i7 core to find all sorted lists of token
lengths (partitions) of k = 20 tokens that sum to
n = 40 characters, out of the 68.9 billion unsorted
such lists (compositions).

Algorithm 4 Generating the integer k-partitions
(sorted k-compositions) of n in lexicographic order

1: function PARTITIONSK(n, k, PREFIX=[])
2: if k = 0 then
3: yield PREFIX

4: else
5: if k = 1 then
6: L← n
7: else if LENGTH(PREFIX) > 0 then
8: L← LAST(PREFIX)
9: else

10: L← 1
11: U ← ⌊n/k⌋
12: for s ∈ L, . . . , U do
13: for p ∈ PARTITIONSK(n−s, k−1,
14: APPEND(PREFIX, s)) do
15: yield p

C.2.3 f3 : Lower-order permutations of the
same partition

Finally, let’s define g(t), a bijection from a per-
mutation of a list sort(t) with possible duplicate
elements to a unique integer identifier.

Start at permutation identifier 0. First do a pass
through the list counting how many of each unique
element is present. Then walk through a second
time, from left to right, keeping track of how many
of each unique element is yet to be encountered
on this walk. Then, at each position i with value
t[i], find which of the remaining elements are lower

17For some sense of scale: n = 37 has just over 20 000
integer partitions, of which we only need a fraction since we
only care about those with length |t|. Meanwhile, this n has
237−1 = 68.7 billion integer compositions.

than t[i], and for each such element e, we use Eq.58
to count how many permutations could have been
formed with the remaining elements if, rather than
having t[i] at position i, we had e there and still had
t[i] available. Because e < t[i], we know for sure
that all permutations that have e in position i are
ordered below the current permutation and hence
occupy that many permutation identifiers already,
so we bump the current identifier by at least that
amount. At the end of the walk, whatever number
we arrive at is unique for the given permutation.
Call this number g(t). A pseudocode implementa-
tion is given in Algorithm 5.

For f3(t), we wanted to know the amount of
permutations whose identifier precedes t. Since the
identifiers are integers starting at 0 with no gaps
in between, the amount of identifiers under g(t) is
just f3(t) = g(t).

Algorithm 5 Counting multiset permutations pre-
ceding t in lexicographic order

1: function g(t)
2: n← |t|
3: ▷ CTR is a dict mapping t[i] to their counts

4: CTR ← COUNTUNIQUE(t)
5: (a1, . . . , ak)← SORTASC(CTR.KEYS)
6: g ← 0
7: for i ∈ {1, . . . , n} do
8: for a ∈ (a1, . . . , ak) do
9: if a < t[i] and CTR(a) > 0 then

10: CTR(a)← CTR(a)− 1
11: ▷ MN is given by Eq. 58

12: g ← g+MN(n−i, CTR.VALS)
13: CTR(a)← CTR(a) + 1
14: CTR(t[i])← CTR(t[i])− 1
15: return g

24249

D Experimental Setup

D.1 Hardware
Vocabularisation with SentencePiece was done on
an Intel Xeon Platinum 8360Y (2.4 GHz) with peak
memory usage being about 50 GiB for BPE and
260 GiB for ULM.

Pre-training the 14 DeBERTa models to 512
batches was done with one GPU each. Half were
trained on an NVIDIA A100 SXM4 (80 GiB), the
other half on an NVIDIA H100 HBM3 (80 GiB).
Each pre-training run took about a day on the A100
and about half a day on the H100. Experimental
runs amounted to about 4 extra days on one A100.

Fine-tuning was also done on a mixture of A100s
and H100s. The precise mixture is shown in Table 3,
although we didn’t track steps 1–4 in §D.2 (the 5
shortened hyperparameter tuning runs preceding
each reported fine-tuning run). Considering one
H100 as equivalent to two A100s, the total compute
spent was at least 20 A100 GPU days.

A100 H100 A100-eq. total
hours days hours days hours days

pretraining 259.48 10.81 79.22 3.30 417.92 17.41
finetuning 27.35 1.14 19.00 0.79 65.35 2.72
all 286.82 11.95 98.22 4.09 483.27 20.14

Table 3 – Minimal GPU time spent on this paper.

D.2 Hyperparameters
Pre-training We use the pre-training hyperpa-
rameters in Table 4. The masking rate is taken from
BERT (Devlin et al., 2019). The context length was
chosen to be twice that of RoBERTa (Liu et al.,
2019) because of the finding that uniform sampling
doubles the amount of tokens produced by the to-
keniser. The device batch size was chosen because
after including the model and optimiser, it held the
VRAM usage of the GPUs at a constant 94% given
packed examples. The effective batch size (i.e. the
amount of examples between gradient descents)
was chosen equal to that of DeBERTa (He et al.,
2021) and because it is the best-performing size
in the RoBERTa paper. The validation interval and
validation set size were chosen based on timing
benchmarks (§D.3) such that respectively (1) no
more than 4 hours would pass without evaluation
and checkpointing, and (2) evaluation would take
no more than about 10% of the total compute.

The learning rate schedule was chosen to not
decrease after reaching its peak because reducing
the size of gradient updates is exactly the purpose

Hyperparameter Value
Device batch size 27 = 128 ex

Effective batch size 211 = 2048 ex/bs
Validation set size 214 = 16384 ex

Context length 210 = 1024 tk/ex
Validation interval 26 = 64 bs

Warmup batches 28 = 256 bs
Peak learning rate 1× 10−3

Learning rate schedule Fixed w/ warmup
Stopping criterion Convergence or 512 bs

Masking rate 15%
Tied embeddings yes

AdamW decay rate 0.01
AdamW (β1, β2) (0.9, 0.999)

Layers 6
Embedding size 512

FFNN size per layer 2048
Att. heads per layer 8

DeBERTa k 512

⇒ Base model size: 39 362 560 parameters

Table 4 – DeBERTa pre-training hyperparameters

of an adaptive momentum-based optimiser, which
is AdamW (Loshchilov and Hutter, 2019) with de-
fault hyperparameters in our case. We use much
fewer warmup batches than the aforementioned pa-
pers because we expect to train for no more than
two days; we take this number from Kalra and
Barkeshli (2024) who found it to be the minimal
number needed for stable training.

The maximum number of batches in the stop-
ping criterion, namely 512, was selected due to a
server outage in pre-training, causing some runs to
terminate early at that value.

Hyperparameter Value
Warmup batches {50, 100, 500, 1000}

Effective batch size {16, 32, 64, 128, 256, 512}
Learning rate {1e-6, 5e-6, 1e-5, 5e-5,

1e-4, 5e-4, 1e-3}
AdamW decay rate {0.01, 0.02, 0.03, 0.04, 0.05,

0.06, 0.07, 0.08, 0.09, 0.10}

Table 5 – DeBERTa fine-tuning hyperparameter domains

Fine-tuning All fine-tuning experiments pro-
ceeded as follows, using the following method for
hyperparameter search: for a given task T and a
pre-trained modelM0,

1. Take 5 samples of the form h = (w, b, r, λ)
from the grid in Table 5.

24250

2. For each sample h: fine-tuneM0 on T with
hyperparameters h, evaluating and check-
pointing after every 214

5 examples or 1 epoch
(whichever is smaller), stopping if either (1)
validation loss Lv hasn’t decreased for 5 eval-
uations in a row or (2) 214 examples have been
seen. Finally, keep the checkpoint with lowest
Lv and call itMh

1 .

3. For each sample h: evaluate Mh
1 on a task-

dependent downstream metric mT .

4. Select the best sample h∗ according to the
best value of mT , which in our case is always
better when bigger.

5. Fine-tuneM0 on T with hyperparameters h∗,
evaluating and checkpointing after every 214

examples or 1 epoch (whichever is smaller),
stopping if either (1) mT hasn’t decreased for
5 evaluations in a row or (2) 219 examples
have been seen. Call the resulting fine-tuned
modelM2.

6. EvaluateM2 on the test set and report that.

D.3 Benchmarks
During pre-training, processing 1 effective batch
(from tokenisation to gradient descent) took the
models 2m30s with the baseline tokenisers (20
minutes per evaluation, 160 minutes between eval-
uations) and 3m45s with the GRaMPa tokenisers
(30 minutes per evaluation, 240 minutes between
evaluations).

D.4 Dataset sizes
Table 6 shows the sizes of the different partitions of
the datasets used in the experiments. SlimPajama
was truncated to the first 50k in training.

Since the test set for all the GLUE datasets has
no publicly available labels, we replace it by taking
a random sample (stratified by label value) out of
the train set equal in size to the validation set. This
is better than splitting the validation set, since it is
usually the case in GLUE that the train and test set
are abundant whilst the validation set is very lean.

Dataset Train Validation Test
SlimPajama18 50000 20000 –
CoNLL-2003 14041 3250 3453

UDen_ewt 12543 2002 2077
QQP 323416 40430 40430

SST-2 66477 872 872
MRPC 3260 408 408

RTE 2213 277 277
WNLI 564 71 71

Table 6 – Dataset sizes used in our fine-tuning experi-
ments. The non-GLUE datasets are due to respectively
Soboleva et al. (2023) (SlimPajama), Tjong Kim Sang
and De Meulder (2003) (CoNLL-2003) and Silveira et al.
(2014) (UDen_ewt). The GLUE tasks are due to respec-
tively Iyer et al. (2017) (QQP), Socher et al. (2013)
(SST-2), Dolan and Brockett (2005) (MRPC), Dagan
et al. (2006); Bar-Haim et al. (2006); Giampiccolo et al.
(2007); Bentivogli et al. (2009) (RTE), and Levesque
et al. (2012) (WNLI).

18The training set for vocabularisation was 3 000 000 exam-
ples rather than the 50 000 for pre-training. The validation set
was used only to compute the Rényi entropy and the regulari-
sation rate of the BPE and ULM tokenisers.

24251

E Supplementary figures

1 2 3 4 5 6 7 8 9 1011121314151617181920212223242526272829

Amount of tokens

0

2

4

6

8

10

12

14

F
ra

ct
io

n
of

sa
m

p
le

s
[%

]

(a) Amount of tokens m ∼ 1 + Binom(|s| − 1, 1
2
)

1 2 3 4 5 6 7 8 9 10 11

Token length

0

10

20

30

40

50

F
ra

ct
io

n
of

to
ke

n
s

ac
ro

ss
sa

m
p

le
s

[%
]

(b) Token length ℓ ∼ Geom(1
2
)

1 2 3 4 5 6 7 8 9

Characters-per-token ratio

0

5

10

15

20

25

30

F
ra

ct
io

n
of

w
or

d
s

[%
]

(c) Characters-per-token ratio R

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Segmentality S (word tokens → character tokens)

0

1

2

3

4

5

6

7

8

F
ra

ct
io

n
of

w
or

d
s

[%
]

(d) Segmentality S

Figure 2 – Different distributional views for a uniform segmentation distribution with infinite vocabulary. The top two
plots aggregate 100 000 samples from the segmentations of a string with |s| = 29. The bottom plots were generated across
the words in the 20k SlimPajama validation set.

1 2 3 4 5 6 7 8 9 1011121314151617181920212223242526272829

Amount of tokens m

0

5

10

15

20

25

30

F
ra

ct
io

n
of

sa
m

p
le

s
[%

]

τ = 1.0

τ = 5.0

τ = −10.0

Figure 3 – Same histogram as Figure 2a for different
skewing temperatures of GRaMPa.

−102 −101 −100 0 100 101 102

Temperature

0.00

0.05

0.10

0.15

0.20

0.25

0.30

S
eg

m
en

ta
lit

y

mean

std

Figure 4 – Evolution of the mean and standard deviation
of segmentality S (see §3.1) w.r.t. GRaMPa temperature
τ , measured across the 20k SlimPajama validation set.

24252

0.0 0.5 1.0 1.5 2.0 2.5

Segmentation key (LOC) ×108

10−2

10−1

100

F
ra

ct
io

n
of

sa
m

p
le

s
[%

]

(a) τ = 1.0

0.0 0.5 1.0 1.5 2.0 2.5

Segmentation key (LOC) ×108

10−2

10−1

100

F
ra

ct
io

n
of

sa
m

p
le

s
[%

]

(b) τ = 1.025

0.0 0.5 1.0 1.5 2.0 2.5

Segmentation key (LOC) ×108

10−2

10−1

100

F
ra

ct
io

n
of

sa
m

p
le

s
[%

]

(c) τ = 1.05

0.0 0.5 1.0 1.5 2.0 2.5

Segmentation key (LOC) ×108

10−2

10−1

100

F
ra

ct
io

n
of

sa
m

p
le

s
[%

]

(d) τ = 1.1

0.0 0.5 1.0 1.5 2.0 2.5

Segmentation key (LOC) ×108

10−2

10−1

100

F
ra

ct
io

n
of

sa
m

p
le

s
[%

]

(e) τ = 1.15

0.0 0.5 1.0 1.5 2.0 2.5

Segmentation key (LOC) ×108

10−2

10−1

100

F
ra

ct
io

n
of

sa
m

p
le

s
[%

]

(f) τ = 1.2

Figure 5 – Progressively stronger skew in the frequency distribution of segmentations with increasing GRaMPa temperature
τ . The horizontal axis enumerates the domain of possible segmentations of a string. The histograms were generated by
taking 100 000 samples from GRaMPa each time from a word of length |s| = 29, and then binning the 228 = 268 435 456
LOC keys for the possible segmentations (see §C) into adjacent spans of 512 bins. Since an infinite vocabulary was used,
the histograms hold for any string of the same length.

24253

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Dropout rate p

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
W

or
d

re
gu

la
ri

sa
ti

on
ra

te
vs

.
cl

as
si

c
B

P
E

|V | = 32770

(a) BPE-dropout

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0

Normalisation power α

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

W
or

d
re

gu
la

ri
sa

ti
on

ra
te

vs
.

ar
gm

ax
U

L
M

|V | = 32770

(b) Stochastic ULM with k = 64

Figure 6 – Regularisation rate (i.e. fraction of produced segmentations that differ from the one deterministic segmentation)
of BPE and ULM w.r.t. their temperature-like hyperparameter in the SlimPajama 20k validation set.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Characters

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

F
ra

ct
io

n
of

vo
ca

b
u

la
ry

ty
p

es
[%

]

BPE

ULM

Figure 7 – Distribution of the length of the 32k subword
types in our two SlimPajama-3M vocabularies.

−0 1 +∞−∞ 5−10

τ →

Figure 8 – Skewing away from uniformity (τ = 1) to-
wards segmentations with longer tokens (redder) over-
layed on the GRaMPa temperature τ ∈ R axis. The gap
from 1 → 0+ covers all skewing in the opposite direction
(i.e. shorter tokens becoming even more common).

5000 10000 15000 20000 25000 30000

Truncated vocabulary size |V ′|

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

F
ra

ct
io

n
of

se
gm

en
ta

ti
on

s
lo

g
2
(N

V
′ (
s)

)/
lo

g
2
(N

V
(s

))

BPE

ULM

(a) relative to using our |V | = 32k vocabularies

5000 10000 15000 20000 25000 30000

Truncated vocabulary size |V ′|

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

F
ra

ct
io

n
of

se
gm

en
ta

ti
on

s
lo

g
2
(N

V
′ (
s)

)/
lo

g
2
(N

V
fu

ll
(s

))

BPE

ULM

(b) relative to using an infinite vocabulary

Figure 9 – Fraction of the maximal log-amount of segmentations that are available in the GRaMPa segmentation graph
w.r.t. increasing vocabulary size |V ′|, averaged over all words in the SlimPajama 20k validation set.

24254

1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

Temperature τ

0.25

0.26

0.27

0.28

0.29

0.30

0.31

0.32

0.33

0.34

0.35
R

én
yi

effi
ci

en
cy

b
ou

n
d

s

Hα/dH0e
Hα/H0

dHαe/H0

(a) ℓmin = 1 and BPE vocabulary

1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

Temperature τ

0.20

0.21

0.22

0.23

0.24

0.25

0.26

0.27

0.28

0.29

0.30

R
én

yi
effi

ci
en

cy
b

ou
n

d
s

Hα/dH0e
Hα/H0

dHαe/H0

(b) ℓmin = 1 and ULM vocabulary

Figure 10 – Rényi efficiency Eα (α = 2.5) w.r.t. non-multiplexed (p = 1.0) GRaMPa temperature τ .

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

BPE dropout probability pd

0.20

0.25

0.30

0.35

0.40

0.45

0.50

R
én

yi
effi

ci
en

cy
b

ou
n

d
s

Hα/dH0e
Hα/H0

dHαe/H0

(a) BPE-dropout rate pd

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

ULM normalisation power α

0.20

0.25

0.30

0.35

0.40

0.45

0.50

R
én

yi
effi

ci
en

cy
b

ou
n

d
s

Hα/dH0e
Hα/H0

dHαe/H0

(b) ULM(k = 64) normalisation power α

Figure 11 – Rényi efficiency Eα (α = 2.5) w.r.t. non-multiplexed non-GRaMPa tokeniser hyperparameters.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Multiplexing p

0.35

0.40

0.45

0.50

0.55

0.60

0.65

R
én

yi
effi

ci
en

cy
b

ou
n

d
s

Hα/dH0e
Hα/H0

dHαe/H0

(a) ℓmin = 2 and τ = 1.0, multiplexed with BPE

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Multiplexing p

0.30

0.35

0.40

0.45

0.50

0.55

0.60

R
én

yi
effi

ci
en

cy
b

ou
n

d
s

Hα/dH0e
Hα/H0

dHαe/H0

(b) ℓmin = 2 and τ = 1.0, multiplexed with ULM(k = 1)

Figure 12 – Rényi efficiency Eα (α = 2.5) w.r.t. GRaMPa multiplexing rate p.

24255

m S ℓ R
mean std mean std mean std mean std

BPE

BPE
pd = 0.0 1.27 1.08 0.05 0.18 4.19 2.62 4.65 2.58
pd = 0.1 1.41 1.16 0.10 0.24 3.79 2.57 4.39 2.60

GRaMPa

ℓmin = 1
τ = 1.0 3.42 2.21 0.54 0.32 1.56 0.86 1.74 0.80
τ = 5.0 2.85 1.89 0.44 0.33 1.87 1.29 2.19 1.39
τ = −10.0 2.59 1.75 0.40 0.34 2.06 1.58 2.49 1.79

ℓmin = 2
τ = 1.0 2.25 1.50 0.25 0.23 2.37 1.23 2.58 1.21
τ = 5.0 2.14 1.45 0.23 0.23 2.50 1.48 2.78 1.54
τ = −10.0 2.09 1.43 0.22 0.23 2.56 1.61 2.88 1.70

ULM

ULM
k = 1 α = 1.0 1.24 0.78 0.04 0.13 4.30 2.64 4.64 2.58
k = 64 α = 0.15 2.17 1.45 0.29 0.32 2.45 2.03 3.11 2.28

GRaMPa

ℓmin = 1
τ = 1.0 3.55 2.30 0.57 0.33 1.50 0.85 1.72 0.89
τ = 5.0 2.82 2.00 0.44 0.36 1.89 1.46 2.39 1.74
τ = −10.0 2.46 1.83 0.38 0.37 2.17 1.87 2.86 2.21

ℓmin = 2
τ = 1.0 1.86 1.51 0.16 0.24 2.87 1.84 3.41 1.92
τ = 5.0 1.78 1.45 0.15 0.23 3.00 2.03 3.57 2.10
τ = −10.0 1.74 1.42 0.14 0.23 3.06 2.12 3.65 2.19

Table 7 – Mean and standard deviation for segmentation properties of the tokenisers used in this paper (see §3.1) on the
20k SlimPajama validation set. m is averaged across (space-separated) words, ℓ is averaged across produced tokens, and
both R = |s|/m and S = (m− 1)/(|s| − 1) are macro-averaged across words. m and S can be viewed as unnormalised
and normalised fertility. ℓ can be viewed as the micro-average version of R. Note: Unlike Table 1, the GRaMPa tokenisers
shown here are without multiplexing with a deterministic tokeniser. The values as seen by the models of Table 1 lie halfway
between each deterministic tokeniser’s mean and each GRaMPa tokeniser’s mean (since they were multiplexed with
p = 0.5). For example, when multiplexing GRaMPa(ℓmin = 1, τ = 5.0) with ULM, its mean m is 1

2
(1.24+2.82) = 2.03.

H�m
1 /H

�m
0 H1/H0 RR�m max(C,U) C U

mean std mean std mean std mean std mean std mean std

BPE

BPE
pd = 0.0 0.00 0.00 0.00 0.00 0.00 0.00 16.33 17.38 16.24 17.45 1.00 0.00
pd = 0.1 48.36 34.49 22.39 16.42 11.13 7.16 44.62 38.38 44.33 38.70 3.32 1.51

GRaMPa

ℓmin = 1
τ = 1.0 97.12 3.20 96.75 3.20 79.48 17.78 94.69 9.85 87.20 25.15 25.17 28.56
τ = 5.0 92.68 5.84 91.42 6.40 74.29 15.84 89.40 15.86 83.10 27.44 21.53 23.36
τ = −10.0 88.55 8.39 85.95 10.31 69.34 13.39 84.31 21.11 79.39 29.72 18.15 18.43

ℓmin = 2
τ = 1.0 32.65 24.99 44.89 21.95 58.21 30.40 34.41 14.19 32.11 16.26 6.71 8.66
τ = 5.0 31.94 24.29 43.80 21.24 55.81 28.63 34.20 14.15 32.07 16.32 6.50 7.89
τ = −10.0 31.30 23.69 42.81 20.65 54.09 27.38 33.99 14.21 32.02 16.39 6.29 7.26

ULM

ULM
k = 1 α = 1.0 0.00 0.00 0.00 0.00 0.00 0.00 18.93 17.39 18.87 17.46 1.00 0.00
k = 64 α = 0.15 83.56 12.38 73.64 14.63 51.29 16.52 82.35 25.73 80.33 30.03 12.00 11.14

GRaMPa

ℓmin = 1
τ = 1.0 97.46 3.06 97.10 3.06 76.87 17.80 95.59 9.14 89.99 22.41 21.09 26.52
τ = 5.0 92.33 7.24 88.72 8.92 66.45 15.37 89.90 16.67 85.43 25.72 17.36 20.60
τ = −10.0 87.50 12.19 79.87 16.21 57.73 14.54 83.95 23.64 80.77 29.36 13.81 15.36

ℓmin = 2
τ = 1.0 12.71 20.15 20.20 22.90 30.93 34.13 25.30 16.40 24.35 16.99 3.19 5.15
τ = 5.0 12.53 19.80 19.60 22.16 28.84 31.54 25.26 16.38 24.35 16.99 3.14 4.84
τ = −10.0 12.36 19.49 19.03 21.50 27.45 29.97 25.20 16.37 24.34 17.00 3.08 4.54

Table 8 – Mean and standard deviation for properties of the distribution of segmentations produced by the tokenisers used
in this paper (again without multiplexing, as in Table 7). To generate segmentation distributions, we use the first 10%
(2k) of examples in our SlimPajama validation set, split those into space-separated words, and then for each tokeniser, we
filter out the words that have only one possible segmentation and sample the tokeniser M = 100 times for the others. For
each word’s segmentation distribution, we compute the Shannon efficiency (i.e. the percentage of the maximal possible
Shannon entropy H0 that is achieved by the actual Shannon entropy H1, where H0 = log2(min{M,NV (s)}) corrects
for the fact that M samples may not be able to cover the entire domain and hence even in the uniform case have entropy
H1 = log2(M) < log2(NV (s)) = H ′

0) of respectively the distribution without the most likely segmentation (Hm—
1 /H

m—
0)

and the entire distribution (H1/H0). We also compute the regularisation rate w.r.t. that most likely segmentation (i.e. the
percentage of segmentations that are not that segmentation) RRm—. Finally, we count the amount of unique segmentations u
produced for a string and then compute their coverage C = u/NV (s) of the domain, the uniqueness U = u/M of the
samples, and the maximum of the two (which measures uniqueness for distributions that could have never been covered fully
with M samples, and coverage for those that could, since max{C,U} = max{u/NV (s), u/M} = u/min{NV (s),M}).

24256

Token-level Sequence-level
PoS NER DP SST-2 QQP MRPC RTE WNLI
Acc F1 UAS LAS UCM LCM Acc F1 Acc Acc Acc %̄ ∆̄

BPE

BPE-dropout pd = 0.1 95.27 81.13 81.64 77.18 49.40 39.38 89.91 74.42 69.12 53.43 46.48 68.85

GRaMPa

ℓmin = 1
τ = 1.0 -2.74 -2.32 -1.98 -3.34 -4.67 -5.20 -6.42 -2.39 +0.74 +0.00 +4.23 66.66 -2.19
τ = 5.0 -2.08 -1.06 +0.26 -0.12 -0.72 -1.06 -3.90 -4.83 +1.47 +0.72 +4.23 68.21 -0.64
τ = −10.0 -1.96 -2.32 -1.70 -2.33 -2.84 -2.41 -5.85 -5.32 -0.74 -10.47 +4.23 65.97 -2.88

ℓmin = 2
τ = 1.0 -0.63 -0.14 +3.75 +4.25 +4.53 +5.44 -4.70 +0.99 +0.49 -1.44 +2.82 70.25 +1.40
τ = 5.0 -1.18 +0.32 -0.59 -0.74 -2.07 -0.96 -6.77 -1.24 +0.00 -1.08 -1.41 67.42 -1.43
τ = −10.0 -2.14 -1.30 -2.82 -3.52 -2.94 -3.23 -6.88 -1.24 +0.98 +1.44 +4.23 67.27 -1.58

ULM

ULM k = 64 α = 0.15 92.74 79.26 82.10 77.25 49.11 39.77 82.57 68.08 69.85 53.43 50.70 67.71

GRaMPa

ℓmin = 1
τ = 1.0 +0.33 -2.45 +0.98 +1.19 -0.39 -0.19 +3.78 +2.60 -0.98 +0.00 -1.41 68.03 +0.32
τ = 5.0 +0.50 +0.06 +1.81 +2.35 +1.01 +1.25 +2.18 +3.47 +0.00 -0.72 -7.04 68.16 +0.44
τ = −10.0 -0.03 -1.69 +1.86 +2.53 +1.20 +1.83 +2.18 +4.16 -1.23 -2.89 +2.82 68.69 +0.98

ℓmin = 2
τ = 1.0 +1.93 +1.66 +3.87 +5.15 +5.44 +5.58 +4.82 +6.35 -0.49 -2.89 -2.82 70.31 +2.60
τ = 5.0 +1.87 -0.26 +3.98 +5.06 +6.45 +6.74 +3.78 +6.88 +0.49 -0.36 -4.23 70.48 +2.77
τ = −10.0 +1.52 +1.39 +3.62 +4.93 +5.39 +5.87 +1.15 +9.53 -0.49 -2.17 +0.00 70.51 +2.80

Table 9 – Results of Table 1 expressed relative to the two baselines (in grey).

UAS LAS UCM LCM
tr/te tr/te tr/te tr/te tr/te tr/te tr/te tr/te tr/te tr/te tr/te tr/te tr/te tr/te tr/te tr/te %̄ ∆̄

BPE

BPE-dropout pd = 0.1 74.10 75.37 80.44 81.64 67.32 69.62 76.41 77.18 40.25 43.48 48.63 49.40 31.01 34.33 41.55 39.38 58.13

GRaMPa

ℓmin = 1
τ = 1.0 +1.91 +1.10 -1.23 -1.98 +1.24 +0.42 -2.51 -3.34 +1.54 -1.11 -3.56 -4.67 +0.29 -1.69 -6.36 -5.20 56.56 -1.57
τ = 5.0 +2.98 +4.11 +2.61 +0.26 +2.69 +3.86 +1.86 -0.12 +1.49 +1.64 +0.87 -0.72 -0.29 +0.63 -1.83 -1.06 59.32 +1.19
τ = −10.0 +3.26 +3.75 +3.09 -1.70 +3.06 +3.22 +2.85 -2.33 +2.21 +2.79 +2.36 -2.84 +0.67 +1.11 +0.34 -2.41 59.35 +1.21

ℓmin = 2
τ = 1.0 -0.48 -0.96 +4.46 +3.75 -0.90 -1.43 +4.34 +4.25 +0.96 -1.73 +3.42 +4.53 +0.00 -0.72 +2.02 +5.44 59.81 +1.68
τ = 5.0 -0.92 +1.11 -1.88 -0.59 -1.36 +1.14 -2.92 -0.74 -0.34 +0.72 -2.60 -2.07 -1.64 +0.87 -4.53 -0.96 57.09 -1.04
τ = −10.0 -1.07 -0.37 +3.46 -2.82 -1.74 -1.07 +3.24 -3.52 -0.10 -1.40 +3.37 -2.94 -0.96 -2.50 +1.54 -3.23 57.50 -0.63

ULM

ULM k = 64 α = 0.15 77.11 79.13 81.34 82.10 69.78 72.88 75.94 77.25 42.32 44.82 46.61 49.11 30.91 34.33 36.16 39.77 58.72

GRaMPa

ℓmin = 1
τ = 1.0 -0.80 -1.90 +0.81 +0.98 -0.56 -2.17 +1.45 +1.19 -0.53 -0.82 +1.83 -0.39 +0.63 -0.34 +2.50 -0.19 58.83 +0.11
τ = 5.0 +0.84 +0.97 +1.82 +1.81 +1.17 +1.62 +2.65 +2.35 +1.54 +1.06 +2.84 +1.01 +2.21 +1.73 +3.27 +1.25 60.48 +1.76
τ = −10.0 -0.88 +0.46 +1.94 +1.86 -0.64 +1.09 +3.13 +2.53 -2.31 +1.11 +3.51 +1.20 -0.53 +2.26 +5.25 +1.83 60.09 +1.36

ℓmin = 2
τ = 1.0 -0.96 +0.72 +3.30 +3.87 -0.52 +1.17 +4.79 +5.15 -0.72 +2.46 +5.87 +5.44 +0.24 +3.27 +7.32 +5.58 61.66 +2.94
τ = 5.0 +1.72 +2.44 +3.50 +3.98 +2.00 +3.37 +5.13 +5.06 +0.96 +3.32 +6.84 +6.45 +1.59 +3.27 +8.23 +6.74 62.76 +4.04
τ = −10.0 +1.15 +2.77 +2.02 +3.62 +1.72 +3.77 +2.98 +4.93 +1.49 +2.65 +4.38 +5.39 +2.26 +3.80 +5.44 +5.87 62.11 +3.39

Table 10 – Results of Table 2 expressed relative to the two baselines (in grey).

24257

