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Abstract

Aligned representations across languages is
a desired property in multilingual large lan-
guage models (mLLMs), as alignment can im-
prove performance in cross-lingual tasks. Typ-
ically alignment requires fine-tuning a model,
which is computationally expensive, and siz-
able language data, which often may not be
available. A data-efficient alternative to fine-
tuning is model interventions — a method for
manipulating model activations to steer gener-
ation into the desired direction. We analyze
the effect of a popular intervention (finding ex-
perts) on the alignment of cross-lingual rep-
resentations in mLLMs. We identify the neu-
rons to manipulate for a given language and
introspect the embedding space of mLLMs pre-
and post-manipulation. We show that modify-
ing the mLLM’s activations changes its em-
bedding space such that cross-lingual align-
ment is enhanced. Further, we show that the
changes to the embedding space translate into
improved downstream performance on retrieval
tasks, with up to 2x improvements in top-1 ac-
curacy on cross-lingual retrieval.

1 Introduction

Large language models (LLMs) exhibit impressive
performance on a variety of tasks from text sum-
marization to zero-shot common-sense reasoning
(Raffel et al., 2020; Liu and Lapata, 2019; Bosselut
et al., 2019; Richardson and Heck, 2023) and are
increasingly deployed in a variety of fields ranging
from health to entertainment (Singhal et al., 2025;
Wu et al., 2023; Zhong et al., 2024). Despite these
capabilities, to ensure that deployed LLMs align
with human values, are non-toxic, and do not hal-
lucinate, they often must be adapted post-training
(Wei et al., 2024; Rodriguez et al., 2024; Ouyang
et al., 2022).

†Work completed during an internship at Apple
‡Equal contribution

Model interventions have emerged as data-
and compute-efficient tools for model adaptation,
whereby targeted updates are applied to model ac-
tivations after pre-training (Rodriguez et al., 2024;
Li et al., 2023; Rimsky et al., 2024). One such
method is finding experts (Suau et al., 2022, 2024)
which manipulates the activations of expert neu-
rons responsible for encoding a broadly defined
concept (e.g., a word or style of text) to steer model
generations into a desired direction. This approach
has been successfully used in a variety of domains,
ranging from achieving gender parity (Suau et al.,
2022), to reducing toxicity (Suau et al., 2024),
studying geopolitical biases (Faisal and Anasta-
sopoulos, 2023) and multilingual capabilities (Ko-
jima et al., 2024) in mLLMs.

While model interventions successfully control
model generations, prior work does not fully de-
tail their effects on model performance. Two ob-
servations are relevant. First, model intervention
methods increase perplexity on a fixed dataset post-
intervention (Suau et al., 2024) meaning that the
intervention introduces changes in how the model
represents language. Second, prior work (Kojima
et al., 2024) has shown that intervening on experts
for a given language not only increases the proba-
bility of the mLLM generating text in that language
but also leads to an improvement in prompt-based
translation performance, suggesting that the inter-
vention may increase the alignment between repre-
sentations of different languages.

In this work, we focus on representational
changes in mLLMs, with an emphasis on cross-
lingual alignment, for two reasons. First, gains in
mLLM performance are largely attributed to bet-
ter alignment of multilingual representations (Wu
et al., 2024; Lample et al., 2018). This has gen-
erated a lot of interest in improving multilingual
alignment (Chaudhary et al., 2020; Efimov et al.,
2023; Lample and Conneau, 2019; Liu et al., 2025).
Second, datasets with the same text in multiple lan-

2375



Figure 1: Following the intervention on expert neurons for Spanish, the LLM embeddings for text from different
languages cluster more closely together (left, see Section 4). As a result, this intervened model is better than the
unintervened model at cross-lingual retrieval where the task is to retrieve the correct translation of a sentence in a
query language (right, see Section 5).

guages are available for a variety of tasks, which
enables us to study the impact of the intervention
in a controlled way across multiple languages.

Specifically, we examine changes in the embed-
ding space of mLLMs introduced by the finding ex-
perts intervention and link these changes to down-
stream task performance (see Fig. 1). We hypoth-
esize that this intervention increases cross-lingual
alignment in mLLMs and present results support-
ing this hypothesis. Specifically, we find that the
intervention projects all languages into a new repre-
sentation space within the mLLM that is character-
ized by new properties, some of which are desirable
and some are not. On the downside, perplexity in-
creases post-intervention, indicating a degradation
in some aspects of the model’s language modeling
capability. However, the intervention also leads
to more aligned cross-lingual representations, as
evidenced by reduced distances between language
embeddings (Section 4). The increased alignment
translates into a performance gain on cross-lingual
retrieval with up to 2x improvement in top-1 accu-
racy (Section 5), while preserving within-language
similarity (Section 6).

2 Related Work

Model interventions. Model interventions are a
family of approaches that manipulate model ac-
tivations to control generations (Li et al., 2023;
Turner et al., 2024; Rodriguez et al., 2024). Suau
et al. (2022) propose a method to identify neurons
in pre-trained transformer models that are most
predictive of a particular concept (expert neurons)
and show that setting the activations of these ex-
perts to their mean value can induce the presence
of the target concept in model generations. Suau
et al. (2024) find the expert neurons for toxic lan-
guage and steer the LLM to generate less toxic text

by dampening these neurons, while Turner et al.
(2024) achieve detoxification by using a contrastive
prompt. Rimsky et al. (2024) propose a method to
control generations by leveraging the differences
in residual stream activations between pairs of pos-
itive and negative examples. In mLLMs, Kojima
et al. (2024) use this approach to produce more
target language tokens in open-ended generation.
However, prior work does not analyze the changes
these interventions introduce in the representational
space of mLLMs nor does it explore the impact of
the interventions on cross-lingual alignment.

Aligning multilingual representations in
mLLMs. Research on LLM representation
alignment falls into two broad categories: 1) Im-
proving model performance on downstream tasks
via post-training methods such as prompt-based
techniques (Huang et al., 2023; Tanwar et al.,
2023), fine-tuning, or continuous pre-training
(Zhang et al., 2023; Li et al., 2024). 2) Under-
standing where and how representation alignment
is achieved in mLLMs. For example, Wendler
et al. (2024) show that English-dominated mLLMs
like Llama-2 use English as a pivot language and
Zhao et al. 2024 systematically evaluate factors
contributing to successful cross-lingual transfer in
such models.

3 Methods

We seek to understand the impact of model inter-
ventions on the representational space of mLLMs
with a focus on cross-lingual alignment. We con-
sider three open-source mLLMs: Aya-8b (instruc-
tion fine-tuned) (Aryabumi et al., 2024), PolyLM-
13b (chat version) (Wei et al., 2023), and Bloom-
7b (base) (Scao et al., 2022). Since our aim is
to draw conclusions about cross-lingual alignment,
we want to make sure that we know what languages
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were seen in pre-training and include mLLMs for
which a detailed description of pre-training datasets
is available, excluding LLMs such as Mistral (Jiang
et al., 2023), Llama (Touvron et al., 2023), and
Gemma (Team et al., 2024). We begin by identify-
ing and intervening on the language experts in the
mLLMs and then study cross-lingual alignment in
the embedding space and downstream task perfor-
mance pre- and post-intervention.

3.1 Probing dataset construction

Following Kojima et al. (2024), we use the Flo-
res200 dataset (NLLB Team, 2022) to find the ex-
pert neurons for a particular target language (i.e.,
the language specifically targeted by the interven-
tion). Flores200 is a machine translation dataset
containing short paragraphs sampled from Wiki-
media1 and subsequently translated into 204 lan-
guages by skilled human translators. We limit our
investigations to the intervention on five target lan-
guages — English, German, French, Spanish, and
Japanese. These languages are well represented in
pre-training data of the models we are considering,
ensuring the existence of expert neurons.

3.2 Identifying expert neurons

Expert neurons for a given language are identified
following Suau et al. (2024), see Fig. 2. In this
approach, a concept of interest c (in our case, a
particular language) is defined by a set of exam-
ple sentences N = N+

c + N−
c , where N+

c is a
set of sentences that contain c and N−

c is a set of
sentences that do not contain c. The activations{
{zcm,i}Ni=1

}M

m=1
of every neuron m in the MLP

layers are obtained for inputs from both sets of
sentences. The activations zcm,i are used to predict
bc = {bci}Ni=1, where bci = 1i∈N+

c
. The exper-

tise of neuron m is then defined as the area under
the receiver operating curve (AUROC) of this bi-
nary classification task, indicating the extent to
which the activation of m correctly predicts the
presence of c. The requirement for a neuron to be
considered an expert for a given language is that
its performance as a classifier for the language is
above chance (AUROC>0.5). In practice, however,
we select only the top experts with the k highest
AUROC values (mean AUROC across all interven-
tion targets for Aya-8b is 0.97, Bloom-7b is 0.99,
PolyLM-13b is 0.83). We define intervention on
each expert m as setting the activations of this ex-

1https://commons.wikimedia.org/wiki/Main_Page

Figure 2: Illustration of the finding experts intervention.
First, the activations of all MLP neurons in response
to the positive and negative language examples are col-
lected. Next, these activations are used to predict the
target language label. The neurons with the highest AU-
ROC on this task are considered experts. Intervening
on the top k experts increases the probability of target
language generation in response to a neutral prompt.

pert to its average activation Ei{zcm,i}N
+
c

i=1 for the
probing set N+

c , see Section 3.3.
For each of the five languages under considera-

tion, we use the Flores200 dev split for the target
language as the positive set (N+

c ), and the dev
splits for the other four languages plus Chinese
as the negative set (N−

c ). We include Chinese to
increase variety in the character systems in the neg-
ative set but we do not consider it for the positive
set (N+

c ).

3.3 Intervening on expert neurons

For the intervention, we select the k neurons with
the highest expertise (i.e., highest AUROC). We
select the value for k that balances generating text
in the target language with a low perplexity on the
language-specific Wikipedia text. Specifically, for
each of the five languages, we sweep over expert
set sizes ranging from 100 to 5000. For each setting
of language and number of experts, we run free-
form generation to generate 256 sentences over
eight random seeds (for a total of 2048 sentences)
using the beginning of sentence (<BOS>) token as
the prompt. We perform generation with tempera-
ture=1 and top_p=0.92. We then use lang-id (Lui
and Baldwin, 2012) to measure the probability of
the text generated in the target language.

To calculate the perplexity of Wikipedia text in
the target language for the original and intervened
models, we use the Wikimedia dump from 2023-
11-013. Paragraphs of text shorter than 100 char-

2The other hyper-parameters are set to default for
transformers==4.41

3https://huggingface.co/datasets/wikimedia/wikipedia
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acters are removed and the remaining paragraphs
are concatenated together. Finally, a corpus of 10
million tokens is selected from the concatenated
paragraphs. The context length is set to the model’s
maximum input size (in tokens) and a stride (i.e.,
the context sliding window) of 512 tokens is used
to speed up the perplexity measurement. The ac-
tivation of the k neurons is set to their respective
mean value calculated over the positive sentences
(Suau et al., 2022).

For almost all target languages, the probabil-
ity of generating that language increases post-
intervention (Fig. 3, top), suggesting that the in-
tervention is successful. The only exception is
English in the Aya-8b model, where the interven-
tion reduces the likelihood of generating English.
We believe that the intervention steers the model
away from the default configuration, and English
is the default language for that model. Interest-
ingly, despite Bloom-7b’s training set containing
neither German nor Japanese, the intervention re-
sults in generating both languages with high prob-
ability. Our hypothesis is that the Bloom-7b pre-
training data contains some amount of German and
Japanese data that is large enough to enable expert
discovery and controlled generation.

Example generations for all models are provided
in App. B. Overall, all models tend to generate
target language tokens. For cases where the proba-
bility of target language generation is below 1, we
observe that some of the generated sentences are
in a language different from the target (typically
English) or contain non-language symbols such as
code. We do not see generations where the tokens
from different languages are mixed in the same
sentence, with an exception of some Aya-8b gener-
ations where the model starts out with an English
word or phrase and then continues with the target
language.

While we are successfully able to increase the
accuracy of target language generation through the
intervention, consistent with prior work (Suau et al.,
2024), we observe an increase in perplexity post-
intervention as the number of activated neurons
increases, see Fig. 3 (bottom), suggesting that ac-
tivating experts introduces changes into the model
representation. Thus, the choice of the number of
experts is a trade-off between inducing the desired
behavior and degrading the model. As a result, for
our analyses, we set k to 100 experts for Bloom-7b
and 2000 for PolyLM-13b and Aya-8b.

For brevity, we present the results for the inter-

vention on Spanish (randomly chosen) in the main
text. The results for the other languages are in the
respective appendices.

4 The intervention shifts the embedding
space increasing cross-lingual
alignment

We begin our investigation by quantifying the dif-
ferences induced by the intervention into the em-
bedding space. For this analysis, we intervene on
each of the five target languages discussed in Sec-
tion 3.3 and examine the effect of the intervention
on the representations of 22 languages (the union
of all languages present in the pre-training across
the three language models). We exclude Arabic
and Chinese from consideration due to the lack
of conformity in the scripts used4. Note that not
all of these languages are part of the pre-training
for every model under consideration; however we
present them for consistency (clearly indicating in
all figures if the languages were seen by the model
during the pre-training).

For each of the 22 languages, we embed the Flo-
res200 test set (1012 sentences per language) with
the original and intervened models’ last layer. To
characterize the changes in the embedding space,
we calculate two types of distances: (1) the pair-
wise cosine distance between the embeddings of
the 22 languages for the intervened and uninter-
vened spaces and (2) the cosine distance between
the mean of the embedding for each of the 22 lan-
guages and the medoid of each space (pre- and
post-intervention) (Table 1).

Our findings are as follows. The intervention
pulls the embeddings of all languages into a new
space rather than moving them closer to the em-
beddings of the target language in the unintervened
space (see App. C for sample visualizations of the
embedding space changes using UMAP (McInnes
et al., 2020) projections). The increase in perplex-
ity post-intervention discussed in Section 3.3 also
supports this finding.

The post-intervention embeddings for the differ-
ent languages are closer to each other compared

4Arabic data are represented in both the Arabic and Latin
scripts, while Chinese data are written using both Simplified
and Traditional scripts. The decision to exclude Arabic and
Chinese is motivated by prior work showing that a discrepancy
in the encoding can influence performance (Blaschke et al.,
2025) and several models under consideration do not provide
information on which encoding was used in the pre-training.
App. A contains the full list of languages and the language
codes.
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Figure 3: Language ID accuracy and Log perplexity for the intervention on five target languages. The x-axis shows
the number of activated experts (0 indicates the original model). Note that German and Japanese were not in training
data for Bloom-7b.

to the pre-intervention embeddings, as indicated
by the reduced pairwise cosine distances between
the languages. Specifically, the distances are re-
duced because the post-intervention embeddings
are pulled closer to the medoid of the embedding
space. As a result of the shift, all languages are
closer to the target post-intervention. We notice
that all distances under consideration are reduced
less post-intervention for PolyLM-13b compared to
the other models. We hypothesize that this relates
to the specific data distribution and training proce-
dure used for PolyLM-13b. Unfortunately, since
we do not have access to the data the three models
under consideration were trained on, we cannot test
this hypothesis in this work. We return to this point
in Section 9. Taken together, these findings suggest
that the intervention projects language embeddings
into a new space where they are more aligned. In
the following sections, we explore if this change
translates into downstream task performance.

5 Cross-lingual retrieval performance
improves post-intervention

We now ask if the increased alignment post-
intervention translates to downstream task perfor-
mance. We use cross-lingual retrieval as our down-
stream task: Given a sentence (query) in one lan-
guage (query language), and a set of sentences
(candidates) in a different language (candidate lan-
guage), which of the candidates is a translation
(match)? Our main experiments are carried out on
the Flores200 test split (NLLB Team, 2022) as it
allows us to test cross-lingual retrieval across multi-
ple combinations of query and candidate languages.
As the dev split of the Flores200 dataset was used
to identify language experts, we also present re-
sults on the validation split of Tatoeba (Tiedemann,
2012) and the test split of BUCC-18 (Hu et al.,
2020) for an independent validation of our findings
(see App. H).

For each sentence, we compute pre- and post-
intervention embeddings by averaging over the last
hidden state of the mLLM, producing vectors with
dimensions matching the model’s hidden size. To
identify the closest matching sentence, we compute
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Model Language Distance (all languages) Distance to Medoid g Distance to Target
Pre Post Pre Post Pre Post

Aya-8b
Target – – 0.62±0.03 0.14±0.03 – –
Non-Target 0.72±0.00 0.19±0.04 0.58±0.01 0.12±0.01 0.77±0.01 0.2±0.01

Bloom-7b
Target – – 0.60±0.21 0.04±0.01 – –
Non-Target 0.72±0.00 0.17±0.06 0.5±0.03 0.11±0.01 0.78±0.03 0.13±0.01

PolyLM-13b
Target – – 0.72±0.04 0.43±0.09 – –
Non-Target 0.85±0.00 0.56±0.09 0.72±0.01 0.43±0.02 0.86±0.01 0.54±0.02

Table 1: Cosine distances between 22 languages under consideration, mean distance to the target of the intervention,
and the distance to the medoid of the embedding space are reduced post-intervention. Distance (all languages) refers
to pairwise cosine distance between the embeddings of 22 languages; distance to target refers to the distance between
the intervention target and the remaining 21 languages. Pre refers to pre-intervention and post to post-intervention.
Distances are means and standard errors of the mean over the five intervention targets.

(a) Bloom-7b (b) Aya-8b (c) PolyLM-13b

Figure 4: Top-1 retrieval accuracy for the intervention on Spanish for 22 languages in the Bloom-7b model (left),
Aya-8b (middle), and PolyLM-13b (right). The languages that are not in the training set for a given model are
marked in red.

cosine similarity between the query (e.g., in Span-
ish), and all candidates (e.g., in French). We select
the candidate with the highest cosine similarity as
the match, and then measure top-1 accuracy.

Top-1 retrieval accuracy improves post-
intervention for retrieval with the target
language. We first examine if the increased prox-
imity to the target language in the post-intervention
embedding space translates into top-1 retrieval
accuracy improvement when the target is used as
the retrieval query for the 22 candidate languages
under consideration.

We find that top-1 retrieval accuracy improves
post-intervention when using the target as the query
language (see Fig. 4 for the Spanish intervention
and App. E for the remaining four languages). This
finding is consistent across most target languages
and models. Candidate languages present in the
pre-training data generally demonstrate larger gains
post-intervention. The pattern of improvement dif-
fers based on the model. Specifically, for Aya-

8b a successful intervention results in consistent
improvements in top-1 accuracy for the majority
of candidate languages (median=32%; max=74%).
For Bloom-7b, top-1 accuracy gains are large (up
to 89%) for a small number of candidate languages,
with moderate improvements for other languages
(median=14%). For PolyLM-13b, the improve-
ments are small (median=0.5%; max=12%).

We note that accuracy gains post-intervention
steadily increase with increasing k activated ex-
perts from 100 to 2000 for Aya-8b and Bloom-7b,
after which the performance becomes language-
dependent — showing gains, drops, or no change
depending on the language, suggesting diminish-
ing returns or destabilization. We did not observe a
noticeable trend in PolyLM-13b across values of k
over multiple languages.

To better understand how the increased align-
ment in the embedding space influences cross-
lingual retrieval, we look at the mean pairwise co-
sine distances between the query and candidate
languages and explore how this correlates with
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Model Query language r(accpost, dpost) r(accpre, dpre) r(dpost, dpre) r(∆acc, dpre − dpost)

Aya-8b

es -0.51 [-0.88 -0.18] -0.89 [-0.98 -0.55] 0.48 [0.32 0.78] 0.86 [0.49 0.96]
fr -0.64 [-0.91 -0.45] -0.86 [-0.97 -0.57] 0.51 [0.27 0.89] 0.89 [0.84 0.97]
en -0.94 [-0.97 -0.85 ] -0.80 [-0.96 -0.34] 0.65 [0.44 0.92] 0.10 [-0.69 0.60]
de -0.89 [-0.96 -0.75] -0.87 [-0.98 -0.44] 0.33 [-0.74 0.76] 0.52 [0.12 0.95]
jp -0.02 [-0.62 0.34] -0.96 [-0.99 0.34] 0.27 [-0.18 0.62] 0.89 [0.30 0.99]

Bloom-7b

es -0.97 [-0.99 -0.95] -0.83 [-0.99 -0.54] 0.79 [0.71 0.98] 0.1 [-0.98 0.88]
fr -0.98 [-0.99 -0.94] -0.89 [-0.99 -0.38] 0.75 [0.62 0.99] 0.23 [-0.98 0.83]
en -0.89 [-0.99 -0.60] -0.89 [-0.99 -0.44] 0.97 [0.96 0.99] 0.23 [-0.90 0.86]
de -0.90 [-0.99 -0.74] -0.50 [-0.96 0.34] 0.95 [0.86 0.99] -0.72 [-0.97 0.22]
jp -0.90 [-0.99 -0.80] NA5 -0.48 [-0.90 0.97] 0.64 [-0.70 0.93]

PolyLM-13b

es -0.44 [-0.91 -0.38] -0.84 [-0.96 -0.65] 0.70 [0.44 0.91] 0.10 [-0.31 0.57]
fr -0.44 [-0.82 -0.35] -0.90 [-0.99 -0.62] 0.66 [0.20 0.93] 0.30 [-0.18 0.82]
en -0.86 [-0.98 -0.53] -0.84 [-0.98 -0.52] 0.99 [0.96 0.99] 0.28 [-0.33 0.62]
de -0.01 [-0.51 0.81] -0.95 [-0.99 -0.57] 0.15 [-0.56 0.57] -0.04 [-0.71 0.34]
jp -0.52 [-0.91 0.92] -0.96 [-0.99 0.00] 0.73 [0.56 0.96] 0.25 [-0.25 0.57]

Table 2: Pearson correlations (r) between top-1 retrieval accuracy (acc) and mean pairwise cosine distance in the
embedding space d. Subscripts indicate the space from which embeddings are sampled: pre = original model; post
= intervened model. Numbers in brackets represent bootstrapped 95% confidence intervals. Correlations that are
not statistically significant (p-values >0.05) are shown in gray.

retrieval accuracy. Table 2 shows average corre-
lations between post-intervention top-1 retrieval
accuracy (accpost) and mean query-candidate lan-
guage distance both pre- and post-intervention
(dpre, dpost), average correlations between dpre
and dpost, and average correlations between im-
provement in accuracy (∆acc = accpost − accpre)
and change in distance between pre- and post-
intervention embeddings (dpre − dpost). When cal-
culating averages, we only include candidate lan-
guages seen in pre-training for each model; we
note that the general pattern stays the same but
the correlations are somewhat weaker if all 22 lan-
guages are considered for all models. We find that
in this setting, when the query and intervention-
target language are the same, the distance between
query/target and match language is predictive of
top-1 cross-lingual retrieval accuracy in both pre-
and post-intervention spaces.

As discussed in Section 4, all language embed-
dings move closer to the target’s embeddings post-
intervention, which explains the gains in cross-
lingual retrieval accuracy. The distances in the
unintervened and intervened space are positively
correlated—language embeddings that are closer
to the target pre-intervention are also closer to the
target post-intervention. However, the magnitude
of the performance gain in the intervened space
does not correlate with the reduction in distance
between the match and target languages across the
two spaces, suggesting that the increased alignment
post-intervention cannot be simply explained by a

reduction in distances.

Top-1 retrieval accuracy improves post-
intervention for retrieval with the non-target
languages. In Section 4, we found that the
distances between almost all languages decrease
post-intervention—not just the distances to the
intervention target. We next examine if these
reduced cosine distances between languages
other than the intervention target translate into
improved top-1 retrieval accuracy when using
these languages as the query language. For
example, we study if intervening on Spanish
experts improves Dutch-English retrieval (in this
case, neither the query nor candidate language is
the intervention-target language).

We find that, perhaps surprisingly, improvements
observed when the query language is the interven-
tion target (see Fig. 4 and Table 2) carry over to
query languages other than the intervention-target
language (see Fig. 5 for the Spanish intervention
and App. F for the remaining four languages). For
example, the intervention on Spanish expert neu-
rons for Bloom-7b results in retrieval improve-
ment when English, French, and Portuguese are the
query language. The same intervention improves
retrieval when querying Hebrew with Persian or
when querying Czech with Greek in the Aya-8b
model and when querying Russian with Portuguese
in PolyLM-13b. These are examples of larger im-
provements, but many other languages follow the
same pattern with smaller gains. Generally, the
patterns in improvement are consistent with those
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(a) Bloom-7b (b) Aya-8b (c) PolyLM-13b

Figure 5: (Top-1 accuracypost-intervention −Top-1 accuracypre-intervention) for 22 languages after intervening on Spanish
expert neurons in the Bloom-7b model (left), Aya-8b (middle), and PolyLM-13b (right). The languages that are not
in the training set for a given model are marked in red.

seen when Spanish is the query language. Lan-
guages that are in the pre-training set have larger
accuracy gains. Bloom-7b has large improvements
for a small number of languages and no drops in
performance. Aya-8b has relatively large improve-
ments for a majority of languages but also has a
drop in performance for some. As noted previ-
ously, PolyLM-13b performance is uneven—the
improvement varies by language with languages
in the pre-training set generally having larger im-
provements.

6 Within-language similarity is preserved
post-intervention

As observed in Section 4, all languages move to-
ward the medoid of the embedding space post-
intervention, which raises the question of whether
language-specific similarities are preserved in the
new space. To answer this question, we evaluate
model’s performance on a paraphrase retrieval
task which tests whether a sentence in the inter-
vened space can be matched with its paraphrase
in the intervened space. We utilize the PAWS-X
dataset (Hu et al., 2020), which provides paired
sentences across seven languages, including all
five of our intervention targets. From the test
split, we retain only the paraphrase pairs, exclud-
ing non-paraphrases and sentences from other lan-
guages. This transforms our evaluation into a
within-language sentence retrieval task, where the
goal is to match each sentence with its paraphrase
from a pool of candidates for that language.

The paraphrase retrieval task reveals two key
findings about embedding spaces before and after
the intervention. First, the top-1 paraphrase re-
trieval accuracy remains largely unchanged after
the intervention (see Table 3), indicating that the
new embedding space preserves within-language

Model Top-1 Accuracy
(Pre) (Post) (Mixed)

Bloom-7b 0.80 0.80 0.33
Aya-8b 0.85 0.86 0.64
PolyLM-13b 0.52 0.56 0.41

Table 3: Top-1 accuracy results for the paraphrase re-
trieval task following the intervention on Spanish. The
results for other languages can be found in App. D. Pre
= both the query and candidate embeddings are from
the original model; Post = both the query and the candi-
date embeddings are from the intervened model; Mixed
= query is from the original model and candidates are
from the intervened model.

similarity. Second, when attempting retrieval be-
tween intervened and unintervened embeddings of
the same language — i.e., using the embeddings
from the unintervened model as the query and the
embeddings from the intervened model as candi-
date matches — accuracy drops significantly. This
decline supports the observation that the interven-
tion projects embeddings into a distinctly different
space from their original unintervened represen-
tations discussed in Section 4. This finding also
aligns with the increase in perplexity observed post-
intervention – the intervened space of a given lan-
guage is not the same space as the original space
of this language.

7 Intervention on random neurons does
not provide an improvement on
downstream tasks

In our analyses so far, we have attributed the
changes in the embedding space to the interven-

5The cosine distances between Japanese and other lan-
guages are identical in Bloom-7b in the unintervened space
and thus the correlation coefficient is not defined. This is likely
due to the fact that Japanese is not in Bloom 7b’s pre-training.
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tion on expert neurons. Before we conclude, we
consider an alternative possibility — that the expert
neurons do not play a role in increasing alignment
post-intervention, but instead alignment is achieved
by fixing the activations of a number of neurons in
a network. To address this, we assign the activation
levels of the language expert neurons used in prior
sections to the same number of neurons chosen ran-
domly in the network and repeat our analyses on
these models.

We find that intervening on random neurons pro-
duces markedly different results compared to acti-
vating language experts (see App. G). The embed-
ding space after the intervention on random neu-
rons does not have the same properties as described
in Section 4, which translates into the performance
on downstream tasks for all models. Specifically,
for the Aya-8b and PolyLM-13b top-1 cross-lingual
retrieval accuracy drops for all languages post-
intervention on random neurons compared to pre-
intervention. Interestingly, for Bloom-7b, there
is mostly no change for all target languages ex-
cept French, which surprisingly improves post-
intervention on random neurons. However, the
gains are significantly smaller compared to those
after intervening on French experts. Similar to the
intervention on language experts, within-language
paraphrase retrieval shows only small changes post-
intervention. When they occur, these changes tend
to be negative (i.e., the performance drops) after
intervening on random neurons and positive after
intervening on the actual language experts.

8 Conclusions

We present a novel analysis of the impact of the
finding-experts intervention on cross-lingual align-
ment in mLLMs. We find that intervening on
language experts projects model embeddings into
a new space where languages are more aligned
than in the original space but still preserve within-
language similarity. These findings provide an ex-
planation for the increase in perplexity observed
post-intervention in prior work (Suau et al., 2022).

We also demonstrate that cross-lingual align-
ment in mLLMs can be improved through the
finding-experts intervention. Applying the interven-
tion to a single language boosts alignment across
most languages seen during training and results in
up to 2x improvement in top-1 retrieval accuracy.
Additionally, we show that the correlation between
cross-lingual alignment and cross-lingual retrieval

is high and statistically significant. We recom-
mend selecting one such language, the intervention-
target, to enhance overall alignment. Our results
show that this approach is most effective when the
model has been trained on both the intervention-
target language and the languages we aim to align.

We find that the three models we study show
markedly different patterns both in the changes to
the embedding space and downstream tasks. We
leave it to future to work to determine the causes of
these differences, though we hypothesize that they
are due to the pre-training differences.

9 Limitations

There are several limitations that need to be consid-
ered when interpreting our results.

We do not have access to training data or proce-
dure. The major limitation is that we are working
with pre-trained models and we have only limited
information on training data and procedure. Specif-
ically, for Bloom-7b and PolyLM-13b, we have the
information on the proportion of each language in
the pre-training set. For Aya-8b, only information
on which languages were seen in the pre-training
(but no proportions) is available.

PolyLM-13b is an outlier in our analyses.
PolyLM-13b emerges as an outlier in all of our anal-
yses. We have ruled out the nature of the discovered
experts as the primary factor. For example, we find
that while PolyLM-13b’s experts are on average
lower quality (lower AUROC) than the experts in
the other models, this does not fully account for
its performance since we find multiple instances
where PolyLM-13b and another model are matched
in expert quality but PolyLM-13b still underper-
forms the other model. We have also rejected the
hypothesis that the top experts in PolyLM-13b over-
lap across languages, rendering the intervention
less successful — we find essentially no overlap
among the top 2000 experts across five languages
in any model.

Our leading hypothesis is that the discrepancy
between PolyLM-13b and the other models arises
from differences in training data or procedures.
However, without access to training details—e.g.,
pretraining objectives, language distribution, data
volume, or curriculum—further analysis is lim-
ited. Future work should explore the effect of inter-
vention on alignment in a more controlled setting
where the models are trained from scratch on a
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publicly available dataset manipulating language
proportions in the training data to better understand
what is driving the difference.

We study the impact of only one intervention on
alignment. We have studied only one approach
out of a family of approaches to controllable gener-
ations (Rimsky et al., 2024; Suau et al., 2024; Ro-
driguez et al., 2024). Each approach in the family
comes with its differences – in the way the neurons
targeted by the intervention are discovered, how
the changes are introduced to the activations, how
many neurons are intervened on, etc. We do not
fully understand how these design decisions impact
the representation space. For example, it is possible
that some of these approaches are more beneficial
for alignment while others introduce changes that
are more beneficial for other tasks (or not at all).
The comparison of approaches is beyond the scope
of current work and we leave it for future investi-
gations.
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A List of languages studied

The following languages are considered in this
work:

# Language ISO 639-1 ISO 639-3

1 Thai th tha
2 Czech cs ces
3 German de deu
4 Greek el ell
5 English en eng
6 French fr fra
7 Hebrew he heb
8 Hindi hi hin
9 Indonesian id ind

10 Italian it ita
11 Japanese ja jpn
12 Korean ko kor
13 Dutch nl nld
14 Persian fa pes
15 Polish pl pol
16 Portuguese pt por
17 Romanian ro ron
18 Russian ru rus
19 Spanish es spa
20 Turkish tr tur
21 Ukrainian uk ukr
22 Vietnamese vi vie

Table 4: ISO 639-1 and ISO 639-3 Language Codes
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B Sample generations

Listing 1: Sample generations by the three models under consideration. 0 experts indicates an unintervened model.

Aya−8b wi th 0 e x p e r t s a c t i v a t e d :

Sample 1 :
The 49− year −old , who came back t o England f o r a second s p e l l w i th

t h e c l u b i n 2018 , has been i n c h a r g e o f t h e f i r s t team t h i s
s e a s o n f o l l o w i n g t h e d e p a r t u r e o f Garry Rowett . \ n \ n \ " I t ’ s been an
a b s o l u t e honour and p l e a s u r e f o r t h e l a s t two y e a r s . But I ’m back
home and I ’m l o v i n g i t , \ " he t o l d BBC WM. \ n \ n \ " The b i g g e s t t h i n g
f o r me and t h e c l u b i s t h a t we ’ ve done a g r e a t j o b . I t was a
g r e a t j o b a t Watford and a f a n t a s t i c j o b a t S toke .

Sample 2 :
[ a r ] \ n \ u0627 \ u0644 \ u0631 \ u0626 \ u064a \ u0633 :

\ u0627 \ u0644 \ u0633 \ u064a \ u062f \ u0643 \ u0648 \ u0631 \ u062a \ u064a
( \ u0643 \ u0631 \ u0648 \ u0627 \ u062a \ u064a \ u0627 ) \ n [ zh ]
\ n \ u4e3b \ u5e2d \ u f f 1 a
\ u79d1 \ u9c81 \ u7279 \ u5148 \ u751f ( \ u514b \ u7f57 \ u5730
\ u4e9a ) \ n [ en ] \ n P r e s i d e n t : Mr . K u r t o v i \ u0107 \ n [ e s ] \ n P r e s i d e n t e :
Sr . K u r t o v i \ u0107 [ b o s n i o ] [ c r o a t a ] \ n [ ru ] \ n \ u041f \ u0440
\ u0435 \ u0434 \ u0441 \ u0435 \ u0434 \ u0430 \ u0442 \ u0435 \ u043b \ u044c :
\ u0433 −\ u043d \ u041a \ u0443 \ u0440 \ u0442 \ u043e \ u0432 \ u0438 \ u0447
[ \ u0411 \ u043e \ u0441 \ u043d \ u0438 \ u044f \ u0438
\ u0413 \ u0435 \ u0440 \ u0446 \ u0435 \ u0433 \ u043e \ u0432 \ u0438
\ u043d \ u0430 ] \ n [ f r ] \ nPr

Sample 3 :
i m p o r t Reac t from \ " r e a c t \ " ; \ n i m p o r t { Link } from

\ " g a t s b y \ " ; \ n i m p o r t Image from \ " . / image \ " ; \ n i m p o r t S o c i a l M e d i a
from \ " . / s o c i a l −media \ " ; \ n i m p o r t { u s e T r a n s l a t i o n } from
\ " next − i 1 8 n e x t \ " ; \ n i m p o r t { G e t S t a t i c P r o p s } from
\ " n e x t \ " ; \ n \ n c o n s t Page : Reac t . FC = ( ) => { \ n c o n s t { t } =
u s e T r a n s l a t i o n ( ) ; \ n \ n r e t u r n ( \ n < d i v
className = \ " about −page − l a y o u t page − l a y o u t \ " > \ n < d i v
className = \ " page − t i t l e \ " > \ n <h1 >{ t ( \ " a b o u t . t i t l e \ " ) } </ h1 >\ n
<h2 >{ t ( \ " a b o u t . s u b t i t l e \ " ) } </ h2 >\ n </ div > \ n < d i v
className = \ " c o n t e n t − wrapper \ " > \ n < d i v
className = \ " about − c o n t e n t \ " > \ n < d i v
className = \ " about − s e c t i o n \ " > \ n < d i v className = \ " about − t e x t \ " > \ n
<h2 >{ t ( \ " a b o u t . a b o u t \ " ) } </ h2 >\ n
<p>{ t ( \ " a b o u t . a b o u t C o n t e n t \ " ) } </ p > \ n </ div > \ n < d i v
className = \ " about − s e c t i o n −image − c o n t a i n e r \ " > \ n <Image \ n
imageClassName = \ " about − s e c t i o n −image \ " \ n
imageName = \ " about −image \ " \ n wid th = \ " 4 0 0 \ " \ n h e i g h t = \ " 3 0 0 \ " \ n

Aya−8b wi th 2000 S p a n i s h e x p e r t s a c t i v a t e d :
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S u c c e s s f u l g e n e r a t i o n :
A l a o c i o s y a l o s desocupados no se l e s opr imen l a s l e y e s , n i s e

l e s abrumar con i m p u e s t o s y r e c o r t a r s u s b e n e f i c i o s , que es un
d e r e c h o de todo s e r humano y un d e b e r d e l que l o t e n g a que
e j e r c e r , pues con e l l o se c o n t r i b u y e a l p r o g r e s o de l a humanidad .
No hay que i n t e n t a r por n inguna p r e p o s i c i n h a c e r e l b i e n
h a c i e n d o d a o a l o s d e m s .

Code− s w i t c h g e n e r a t i o n :
I f an e l e l ca so d e l p r o y e c t o de Ley de F i n a n c i a m i e n t o , l o que hemos

escuchado d e l g o b i e r n o es que l o h a r n a e l n i v e l de 2005 o
i n c l u s o 2004 , que s e r a una d e s a t e n d e r de e l prob lema " , d i j o e l
s e n a d o r .

A n i v e l d e l Senado , l o s 75 miembros de e l Pa r l amen to , son 200 y se
r e q u i e r e n 2 / 3 d e l Senado p a r a l o g r a r e l q u r u m , l o que son 40 de
l o s que v o t e n a f a v o r de l a Ley de F i n a n c i a m i e n t o .

U n s u c c e s s f u l g e n e r a t i o n :
h i s i s t h e two a n o l e s (N e l e l en l a anop l de P o l e l e l en l a n i

1 y en l a n \ n P u b l i c a d o e l 23 de j u l i o de 2010 17 de j u l i o de 2011
por \ nEn l a s e c c i \ u00f3n de e l l i b r o de l a gu \ u00eda \ u201cP o p a
l i c . 1 ( 1 2 2 2 2 2 2 2 1 1 1 2 2 2 2

Bloom−7b wi th 0 e x p e r t s a c t i v a t e d

Sample 1 :
+ \ " ) \ " ; \ n } \ n \ n Q S t r i n g L i s t Q g s P r o j e c t : : e n t r y L i s t ( c o n s t Q S t r i n g

&scope , c o n s t Q S t r i n g &p a t h ) c o n s t \ n { \ n Q S t r i n g L i s t e n t r i e s ; \ n \ n
c o n s t QMap< QStr ing , Q g s P r o j e c t S e c t i o n > : : c o n s t _ i t e r a t o r i t =
m P r o j e c t S e c t i o n s . c o n s t F i n d ( scope ) ; \ n i f ( i t !=
m P r o j e c t S e c t i o n s . cons tEnd ( ) && i t path == p a t h ) \ n { \ n c o n s t
Q S t r i n g L i s t e n t r i e s F o r S c o p e = i t children . keys ( ) ; \ n f o r ( c o n s t
Q S t r i n g &e n t r y : e n t r i e s F o r S c o p e ) \ n { \ n e n t r i e s << e n t r y ; \ n } \ n
} \ n e l s e \ n { \ n c o n s t QMap< QStr ing ,
QgsPro jec tLaye rGroup > : : c o n s t _ i t e r a t o r g r o u p I t =
m Pr o j e c tL a ye r Gr o up s . c o n s t F i n d ( scope ) ; \ n i f ( g r o u p I t !=
m Pr o j e c tL a ye r Gr o up s . cons tEnd ( ) && g r o u p I t path == p a t h ) \ n

Sample 2 :
and </ s wi th t h e r e s t o f t h e s e n t e n c e . For example , t h e

s t r i n g& l t ;& l t ; b&g t ; Foo& l t ; / b&g t ;& l t /& g t ;& l t ; /& g t ;& l t ;
/& g t ;& l t ; /& g t ;& l t ; /& g t ;& l t ; /& g t ;& l t ; /& g t ;& l t ; /& g t ;& l t ;
/& g t ;& l t ; /& g t ;& l t ; /& g t ;& l t ; /
&g t ;& l t ; /& g t ;& l t ; /& g t ;& l t ; /& g t ;& l t ; /& g t ;& l t ; /& g t ;& l t ;
/& g t ;& l t ; /& g t ;& l t ; /& g t ;& l t ; /& g t ;& l t ; /& g t ;& l t ; /& g t ;& l t ;
/& g t ;& l t ; /& g t ;& l t ; /& g t ;& l t ; /& g t ;& l t ; /& g t ;& l t ; /& g t ;& l t ;
/& g t ;& l t ; /& g t ;& l t ; /& g t ;& l t ; /& g t ;& l t ; /& g t ;& l t ; /& g t ;& l t ;
/& g t ;& l t ; /& g t ;& l t ; /& g t ;& l t ; /& g t ;& l t ; /& g t ;& l t ; /& g t ;& l t ;
/& g t ;& l t ; /& g t ;& l t ; /& g t ;& l t ; /& g t ;& l t ; /& g t ;& l t ; /& g t ;& l t ; /
&g t ;& l t ; /& g t ;& l t ; /& g t ;& l t ; /& g t ;& l t ; /& g t ;& l t ; /& g t ;& l t ; /
&g t ;& l t ; /& g t ;& l t ; /& g t ;& l t ; /& g t ;& l t ; /& g t ;& l t ; /& g t ;& l t ;
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/& g t ;& l t ; /& g t ;& l t ; /& g t ;& l t ; /& g t ;& l t ; /& g t ;& l t ; /& g t ;& l t ; /

Sample 3 :
The same as my own p e r s o n a l , ’ ’ and t o ’ ’ The same as t h e o r i g i n a l ’ ’

f o r o t h e r s o u r c e s . In o t h e r words , t h e same as my own p e r s o n a l ,
my own p e r s o n a l , o r t h e o r i g i n a l have a l l been c o n s i d e r e d
e q u i v a l e n t r e s p o n s e s ( Tab le 3 ) . \ nAl though on ly 7.6% of t h e t o t a l
r e s p o n s e s t o q u e s t i o n 6 were r a t e d as ’ ’ o t h e r ’ ’ , t h i s t y p e o f
r e s p o n s e , which we w i l l t e rm ’ ’ o t h e r ’ ’ , i s o f t e n i n f a c t a
r e s p o n s e a b o u t t h e s o u r c e o f t h e i n f o r m a t i o n o r t h e a u t h o r ( s ) o f
a book ( e . g . , ’ ’ Th i s book was w r i t t e n by . . . ’ ’ o r ’ ’ Th i s was
from a book by . . . ’ ’ ) .

Bloom−7b wi th 2000 S p a n i s h e x p e r t s a c t i v a t e d

S u c c e s s f u l g e n e r a t i o n :
que t i e n e que v e r con e l tema de l a s a l u d me n ta l . Por \ u 0 0 f a l t i m o ,

se p r e g u n t a s i l a p e r s o n a que nos a t i e n d e t i e n e s u f i c i e n t e
e x p e r i e n c i a y s i ha s e g u i d o una f o r m a c i \ u00f3n e s p e c \ u 0 0 e d f i c a en
e s e t i p o de problem \ u 0 0 e 1 t i c a s . Al no t e n e r una r e s p u e s t a c l a r a a
e s t a s p r e g u n t a s , tendemos a r e c h a z a r e s e t i p o de c e n t r o s o no
u t i l i z a r l o s , por e jemplo , en c a s o s de c r i s i s o a n s i e d a d
ex t r ema . \ nPor todo e l l o , en e s t e c u r s o se p r e t e n d e o f r e c e r una
a p r o x i m a c i \ u00f3n g e n e r a l a l e s t a d o de l a c u e s t i \ u00f3n de l a
i n t e r v e n c i \ u00f3n p s i c o l \ u 0 0 f 3 g i c a en c r i s i s , t a n t o s i e s t a se
l l e v a a cabo d e n t r o de una i n t e r v e n c i \ u00f3n p s i c o l \ u 0 0 f 3 g i c a
como s i e s de t i p o a s i s t e n c i a l

U n s u c c e s s f u l g e n e r a t i o n :
no e x i s t e l a cadena de comando . \ nPero e s t o s i no me d e j a e j e c u t a r

nada . \ nEs toy t r a b a j a n d o con e l Windows 10 y cuando me pongo a
e j e c u t a r l o me d i c e : \ n \ " p r o c e s a no se e j e c u t a \ " \ nEl prob lema es
que cuando voy a e j e c u t a r e l e j e c u t a b l e . exe me da un e r r o r como
que no e x i s t e e l a r c h i v o . \ nLo que o c u r r e es que no puedo e j e c u t a r
nada . No q u i e r o h a c e r nada y no se que
h a c e r . \ n − \ n − \ n − \ n − \ n − \ n − \ n − \ n − \ n − \ n − \ n − \ n − \ n − \ n − \ n−
\ n − \ n − \ n − \ n − \ n − \ n − \ n − \ n − \ n − \ n − \ n − \ n − \ n − \ n − \ n − \ n − \ n−
\ n − \ n − \ n − \ n − \ n − \ n − \ n − \ n − \ n − \ n − \ n − \ n − \ n − \ n − \ n − \ n − \ n−
\ n − \ n − \ n − \ n − \ n − \ n − \ n − \ n − \ n − \ n − \ n − \ n − \ n − \ n − \ n − \ n−
\ n − \ n − \ n − \ n − \ n − \ n − \ n−

PolyLM −13b wi th 0 e x p e r t s a c t i v a t e d :

Sample 1 :
, \ u0437 \ u0432 \ u0456 \ u0434 \ u0442 \ u0438 , \ u0432 \ u0443

\ u043b \ u0438 \ u043a \ u0438 , \ u0440 \ u0456 \ u0437 \ u0430
\ u043d \ u0456 \ u0432 \ u0430 \ u043d \ u043d \ u0438 , \ u0456
\ u0441 \ u0442 \ u043e \ u0432 \ u0431 \ u0443 \ u0440 \ u0438
\ u0434 \ u0435 \ u0440 \ u0435 \ u0432 . \ u0426 \ u0456 \ u0434
\ u0435 \ u0440 \ u0435 \ u0432 \ u0430 \ u043f \ u043e \ u0432
\ u0438 \ u043d \ u043d \ u0456 \ u0431 \ u0443 \ u0442 \ u0438
\ u0440 \ u0456 \ u0432 \ u043d \ u043e \ u043c \ u0456 \ u0440
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\ u043d \ u043e \ u0440 \ u043e \ u0437 \ u0440 \ u0456 \ u0437
\ u0430 \ u043d \ u0438 \ u043c \ u0438 \ u0442 \ u0430 \ u0437
\ u0430 \ u0433 \ u043b \ u0438 \ u0431 \ u043b \ u0435 \ u043d
\ u0438 \ u043c \ u0438 , \ u0456 \ u0437 \ u0437 \ u0430 \ u043a
\ u0440 \ u0456 \ u043f \ u043b \ u0435 \ u043d \ u043d \ u044f
\ u043c \ u0432 \ u0441 \ u0435 \ u0440 \ u0435 \ u0434 \ u0438 \ u043d \ u0456

Sample 2 :
, \ u0441 256 −\ u043c \ u044f \ u041c \ u0431 \ u0430 \ u0439

\ u0442 \ u0430 \ u043c \ u0438 \ u043f \ u0430 \ u043c \ u044f
\ u0442 \ u0438 \ u04381 \ u0413 \ u0431 \ u043e \ u043f \ u0435
\ u0440 \ u0430 \ u0442 \ u0438 \ u0432 \ u043d \ u043e \ u0439
\ u043f \ u0430 \ u043c \ u044f \ u0442 \ u0438 . \ u0414 \ u043b
\ u044f \ u0432 \ u0432 \ u043e \ u0434 \ u0430 / \ u0432 \ u044b
\ u0432 \ u043e \ u0434 \ u0430 \ u0431 \ u044b \ u043b \ u0438
\ u0441 \ u043f \ u043e \ u043b \ u044c \ u0437 \ u043e \ u0432
\ u0430 \ u043d \ u0438 \ u043d \ u0442 \ u0435 \ u0440 \ u0444
\ u0435 \ u0439 \ u0441 USB 2 . 0 . \ n \ n <p>The s t u d y by r e s e a r c h e r s a t
t h e U n i v e r s i t y o f Tokyo found t h a t a s i n g l e dose o f p r o b i o t i c s
c o u l d s i g n i f i c a n t l y r e d u c e t h e i n f l a m m a t i o n a s s o c i a t e d wi th
s t r e s s i n t h e b r a i n . < / p > \ n \ n <p> Th i s h o t e l has a t o t a l o f 429
g u e s t rooms and 12 j u n i o r s u i t e s and 2 j u n i o r s u i t e s

PolyLM −13b wi th 2000 S p a n i s h e x p e r t s a c t i v a t e d :

S u c c e s s f u l g e n e r a t i o n :
, no l o conozco , pe ro por l o que he a c o r r i d o en l a t e l e e s muy

v i l l a n o y yo c r e o que es muy v a l i e n t e \ n p e ro e l que ha c o r r i d o e l
que ha c o r r i d o en l a t e l e no t i e n e nada que v e r con l o n u e s t r o \ n
pe ro yo c r e o que \ u0 0e 9 l ha hecho un g ra n cosa por e j emplo e l que
ha c o r r i d o que ha c o r r i d o por l a e s t e p a es una p a r t e de a r g e n t i n a
donde e s t a e l r i o de l a p l a t a \ n que va de e s t e p a a a r g e n t i n a \ n
a un grupo de amigos que e s t a b a n t r a b a j a n d o en l a ca mento y
e l l o s e s t a b a n pasando por e l de e s t e p a a l a e s t e p a \ n y e l l o s se
p e r c a t que l a que e s t a b a s pasando por e l l o s e r a un d e l r i o s a l a
de e s t e p a \ n y a e l l o s d e c i d i e r o n d a r l a v u e l t a y i r a nado

U n s u c c e s s f u l g e n e r a t i o n :
2 0 0 7 . \ n \ n < < 2005 >\ n < < < > >\ n \ n \ n < < <

2019 \ u5e7412 \ u670813 \ u65e5 \ u f f 0 c \ u7531 \ u81f3 \ u3002 , . . \ n \ n \ n
< < < > > < <\ n \ n . . \ n \ n \ n < < < > > \ n . \ n \ n < < < > >\ n
_ ( Nombre de l a c a n c i \ u00f3n ) \ n \ n E s t e es un e j emplo de
c \ u 0 0 f 3 d i g o que se podr \ u00eda u t i l i z a r en J a v a S c r i p t , p a r a c r e a r
un b o t \ u00f3n con un s o n i d o . \ n ‘ ‘ ‘ j a v a s c r i p t \ n f u n c t i o n
p l a y B t n ( nombre ) { \ n v a r s o n i d o ; \ n v a r cadena ; \ n sound = new
Audio ( ) ; \ n cadena = s o n i d o . P l ay ( ) ; \ n sound . c u r r e n t T i m e = 0 ; \ n
s o n i d o . l oop = t r u e ; \ n s o n i d o . s r c = cadena ; \ n s o n i d o . volume = 1 ; \ n
s o n i d o . a u t o p l a y = t r u e ; \ n s o n i d o . onended = ( ) => { \ n
sound . c u r r e n t T i m e = 1 ; \ n } \ n } \
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C Sample visualizations of the embedding space changes

We project the multidimensional embeddings of the 22 languages under consideration into a two-
dimensional space using UMAP (McInnes et al., 2020) to visualize how the embedding space changes.
Sample visualizations for the changes to the embedding space pre- and post-intervention on Spanish are
shown in Fig. 6.
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(b) Aya-8b
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(c) PolyLM-13b

Figure 6: UMAP embeddings for 22 languages in the Bloom-7b model (left), Aya-8b (middle), and PolyLM-13b
(right). The embeddings post-intervention are marked with ‘*’ for each language. The dots represent individual
sentences in the pre-intervention space; the crosses represent individual sentences in the post-intervention space.
The languages that are not in the training set for a given model are marked in red. The colors of the point clouds
identify individual languages and do not carry meaning.
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D Paraphrase retrieval accuracy for four intervention-target languages

Model Language Top-1 Accuracy
(Pre) (Post) (Mixed)

Bloom-7b

en 0.80 0.80 0.71
fr 0.80 0.80 0.26
de 0.72 0.75 0.22
ja 0.47 0.59 0.07

Aya-8b

en 0.87 0.87 0.56
fr 0.83 0.83 0.75
de 0.82 0.82 0.62
ja 0.70 0.76 0.55

PolyLM-13b

en 0.55 0.53 0.48
fr 0.52 0.50 0.44
de 0.50 0.55 0.39
ja 0.57 0.57 0.32

Table 5: Top-1 accuracy results for the paraphrase retrieval task for four intervention languages. Pre= both the query
and the candidate embeddings are from the original unintervened model; Post= both the query and the candidate
embeddings are from the intervened model; Mixed = query embedding is from the original model and the candidates
are from the intervened model.
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E Top-1 cross-lingual retrieval accuracy for four intervention-target languages (query
language is the same as the intervention target)

Figure 7: Top-1 retrieval accuracy for 22 languages in the Bloom-7b model. The language of the intervention is
provided in the caption to each subfigure. The languages that are not in the training set for a given model are marked
in red.

Figure 8: Top-1 retrieval accuracy for 22 languages in the Aya-8b model. The language of the intervention is
provided in the caption to each subfigure. The languages that are not in the training set for a given model are marked
in red.
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Figure 9: Top-1 retrieval accuracy for 22 languages in the PolyLM-13b model. The language of the intervention
is provided in the caption to each subfigure. The languages that are not in the training set for a given model are
marked in red.
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F Top-1 cross-lingual retrieval accuracy for four intervention-target languages (query
language is different from the intervention target)

Figure 10: (Top-1 accuracypost-intervention − Top-1 accuracypre-intervention) for Bloom-7b. The language of the interven-
tion is provided in the caption to each subfigure. The languages that are not in the training set are marked in red.

Figure 11: (Top-1 accuracypost-intervention −Top-1 accuracypre-intervention) for Aya-8b. The language of the intervention
is provided in the caption to each subfigure. The languages that are not in the training set are marked in red.
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Figure 12: (Top-1 accuracypost-intervention − Top-1 accuracypre-intervention) for PolyLM-13b. The language of the
intervention is provided in the caption to each subfigure. The languages that are not in the training set are marked in
red.
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G Results for the interventions on random neurons

G.1 Top-1 paraphrase retrieval accuracy after the intervention on random neurons

Model Language
Accuracy

Pre Post mixed

Bloom-7b

en 0.80 0.80 0.78
es 0.80 0.79 0.62
fr 0.80 0.71 0.00
de 0.72 0.72 0.62
ja 0.47 0.45 0.35

PolyLM-13b

en 0.55 0.55 0.51
es 0.53 0.53 0.48
fr 0.53 0.54 0.50
de 0.50 0.54 0.45
ja 0.60 0.58 0.23

Aya-8b

en 0.87 0.81 0.00
es 0.85 0.73 0.01
fr 0.83 0.70 0.01
de 0.82 0.70 0.00
ja 0.70 0.44 0.00

Table 6: Top-1 accuracy results for the paraphrase retrieval task for five intervention languages for the intervention
on random neurons. Pre= both the query and the candidate embeddings are from the original unintervened model;
Post= both the query and the candidate embeddings are from the intervened model; Mixed = query embedding is
from the original model and the candidates are from the intervened model.
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G.2 Top-1 Retrieval accuracy for interventions on random neurons

Figure 13: Top-1 retrieval accuracy for 22 languages in the Bloom-7B model with the intervention on 100 random
neurons. The language of the intervention is provided in the caption to each subfigure. The languages that are not in
the training set are marked in red.

Figure 14: Top-1 retrieval accuracy for 22 languages in the Aya-8B model with the intervention on 2000 random
neurons. The language of the intervention is provided in the caption to each subfigure. The languages that are not in
the training set are marked in red.
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Figure 15: Top-1 retrieval accuracy for 22 languages in the PolyLM-13b-chat model with the intervention on 2000
random neurons. The language of the intervention is provided in the caption to each subfigure. The languages that
are not in the training are marked in red.
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H Cross-lingual retrieval results on BUCC-18 and Tatoeba

Model
Language

Top-1 Accuracy
Pre Post

Tatoeba

Aya-8B

es 0.114 0.415
fr 0.087 0.251
de 0.119 0.444
jp 0.034 0.307

Bloom-7B

es 0.008 0.551
fr 0.011 0.434
de 0.006 0.032
jp 0.002 0.043

PolyLM-13B

es 0.082 0.178
fr 0.067 0.130
de 0.029 0.171
jp 0.000 0.040

BUCC-18

Aya-8B
fr 0.012 0.073
de 0.017 0.332

Bloom-7B
fr 0.000 0.287
de 0.000 0.02

PolyLM-13B
fr 0.006 0.286
de 0.008 0.281

Table 7: Top-1 retrieval for the intervetion on five target languages for Tatoeba and BUCC-18. Pre= original model;
Post= intervened model.

I Computational budget

All experiments were run on 8 A100(80GB) GPUs. The total approximate running time for 90 GPU/hours
Aya-8B, 120 GPU/hours for PolyLM-13B, and 110 GPU/hours for Bloom-7B.

J License and Attribution

All datasets used in this work are supported by public licenses. PAWS-X, Tatoeba, BUCC are part of
the XTREME benchmark licensed under Apache; Flores200 is licensed under Creative Commons. The
pre-trained models used in this work are also supported by public licenses Bloom-7B (RAIL 1.0), Aya-8B
(Creative Commons), and PolyLM-chat-13B (Apache).
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