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Abstract

Retrieval-Augmented Generation (RAG) is
widely used to enhance Large Language Mod-
els (LLMs) by grounding responses in external
knowledge. However, in real-world applica-
tions, retrievers often return lengthy documents
with redundant or irrelevant content, confusing
downstream readers. While evidence retrieval
aims to address this by extracting key informa-
tion, it faces critical challenges: (1) inability
to model synergistic inter-dependencies among
evidence sentences, (2) lack of supervision for
evaluating multi-sentence evidence quality, and
(3) computational inefficiency in navigating
exponentially growing search spaces of candi-
date evidence sets. To tackle these challenges,
we propose ETS (Evidence Tree Search), a
novel framework that reformulates evidence
retrieval as a dynamic tree expansion process.
Our approach first constructs an evidence tree
where each path represents a candidate evi-
dence set, explicitly modeling inter-sentence
dependencies through context-aware node se-
lection. We then leverage Monte Carlo Tree
Search (MCTYS) to efficiently assess evidence
quality and introduce an Early-Terminating
Beam Search strategy to efficiently accelerate
the model inference. Extensive experiments on
five datasets demonstrate that ETS significantly
outperforms existing methods across different
readers. Our code and datasets will be released
to facilitate future research.

1 Introduction

Large Language Models (LLMs) (Taylor et al.,
2022; Chowdhery et al., 2022; Zhao et al., 2023a)
have demonstrated remarkable performance across
a wide range of downstream tasks (Xia et al.,
2024; Yamauchi et al., 2023; Imani et al., 2023;
Lewkowycz et al., 2022). Despite these advance-
ments, LLLMs are still prone to generating responses
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Figure 1: Illustration of Evidence Retrieval for RAG.
Given an input query, a long article is retrieved using a
search engine and segmented into sentences. The evi-
dence finder then performs a reward-guided tree search
to identify the optimal set of evidence, which is subse-
quently passed to the reader LLM for answer generation.

that include hallucinated facts or inaccurate infor-
mation (Ji et al., 2023; Shuster et al., 2021; Zhang
et al., 2023a), which undermines their reliability.
To mitigate this issue, Retrieval-Augmented Gen-
eration (RAG) has been introduced, which inte-
grates external knowledge into the generation pro-
cess (Ram et al., 2023; Shi et al., 2023; Rashkin
et al., 2021; Gao et al., 2022; Bohnet et al., 2022;
Menick et al., 2022).

In typical RAG systems, a user’s query is uti-
lized to retrieve relevant documents from external
sources, which are then fed into the reader LLM
to produce more accurate responses. However, in
real-world applications, imperfect retrievers often
return long documents, such as web pages, that may
contain substantial irrelevant content. Only specific
portions of these documents are relevant for answer-
ing the query. Directly using these lengthy docu-
ments in RAG systems poses several challenges:
readers may struggle with processing long texts,
and irrelevant content could distract the reader from
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generating the correct response. Therefore, evi-
dence retrieval plays a critical role in addressing
these issues by identifying and extracting the most
relevant evidence sentences from the retrieved doc-
uments before passing it to the reader.

However, evidence retrieval is a non-trivial task
due to several inherent challenges. First, rele-
vant evidence often comprises multiple interrelated
pieces of information. Traditional retrieval meth-
ods focus on modeling the relationship between
the query and each individual sentence, inherently
failing to capture the complex inter-dependencies
among evidence sentences. Second, assessing the
quality of evidence sets presents significant difficul-
ties due to the lack of explicit supervision signals.
Most RAG corpora only provide binary document-
level relevance labels, offering no direct feedback
on which specific sentence combinations optimally
support answer generation. Finally, the combinato-
rial explosion of candidate evidence sets in lengthy
documents creates an enormous search space, mak-
ing it computationally intensive to efficiently iden-
tify the optimal set of evidence.

To address these challenges, as depicted in Fig-
ure 1, we propose ETS, a novel evidence retrieval
framework with Evidence Tree Search. To capture
the complex inter-dependencies among evidence
sentences, ETS models evidence retrieval as a dy-
namic tree expansion process, where each node
represents a sentence and every root-to-leaf path
constitutes a candidate evidence set. This hierar-
chical structure inherently captures inter-sentence
dependencies — during tree growth, new sentences
are selected based on accumulated contextual ev-
idence along the current path, enabling holistic
evaluation of sentence combinations’ collective rel-
evance to the query. In order to assess the qual-
ity of evidence sets, we introduce Monte Carlo
Tree Search (MCTS) (Silver et al., 2017) to guide
the exploration of potential evidence combinations.
Through iterative MCTS simulations, rewards de-
rived from reader correctness given the candidate
evidence set are back-propagated to update node
values, providing dense training signals for optimiz-
ing evidence selection. To combat the exponential
search space, we propose pruning the search space
using a value model trained on reward signals de-
rived from the evidence tree constructed through
MCTS annotation. By leveraging this model, the
framework efficiently narrows down the search
space, retaining only the most promising evidence
combinations. Additionally, to further reduce in-

ference latency, we introduce Early Terminating
during the expansion phase of beam search. This
technique terminates the generation of candidate
sentences early when a sentence prefix uniquely
identifies its position in the original context, signifi-
cantly improving computational efficiency without
compromising accuracy.
Our contributions are summarized as follows:

* We propose ETS, a tree-based framework that
enhances LLMs’ evidence-grounding through
a tree expansion process.

* We introduce MCTS to assess evidence qual-
ity and Early Terminating Beam Search to
reduce search space and improve selection ef-
ficiency.

» Extensive experiments on five datasets show
our method outperforms existing approaches
across different readers.

2 Background

In Retrieval-Augmented Generation (RAG), a re-
triever first retrieves relevant text evidence D from
a corpus C given a query ¢q. The retrieved evidence
is then used by a reader LLM to generate an an-
swer:

D = Retriever(q,C), A = Reader(q,D),
The retriever can be implemented using open-
source models (e.g., DPR (Karpukhin et al., 2020))
or commercial search engines (e.g., Google), while
the reader is typically a LLM.

In practice, retrievers often return lengthy docu-
ments (e.g., web pages or articles) instead of con-
cise evidence, making it difficult for the reader to
generate accurate answers. To address this, evi-
dence retrieval aims to identify and extract a subset
of key text spans, referred to as supporting evidence
T = {t1,...,tx} C D, that are most relevant to
answering the query ¢. This selection process can
be formalized as a mapping function f(-):

T =At1,....tx} = f(D).
In this work, we define f(-) as a tree expansion
process, where each node represents a sentence,

and the path from the root node to a leaf node
represents the selected evidence.
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Figure 2: Single iteration of MCTS Annotation. The iteration is repeated until the maximum number of iterations is

reached or no further nodes in the tree can be expanded.

3 Approach

3.1 Overview

Figure 3 presents an overview of our framework.
The process begins with the application of the
Monte Carlo Tree Search (MCTS) algorithm to con-
struct evidence trees for the queries in the training
dataset. From these trees, we extract both correct
and incorrect paths, which are subsequently uti-
lized to train the policy model and the value model,
respectively. During the inference phase, we in-
troduce an early terminating beam search mech-
anism. This approach efficiently minimizes the
search space and terminates the generation process
once the prefix uniquely identifies the evidence,
thereby optimizing computational efficiency and
accuracy. Next, we will first illustrate the process
of the MCTS annotation.

3.2 MCTS Annotation

Given an input query, a long article is retrieved
using a search engine and segmented into individ-
ual sentences, which serve as the initial candidate
set. However, due to the excessive length of the
article, the candidate set can become prohibitively
large, with many sentences being irrelevant to the
query. This not only increases the computational
complexity of MCTS but also introduces noise into
the labeling process. To address this issue, we intro-
duce a filtering mechanism that leverages the BGE
model (Xiao et al., 2023) to compute the similar-
ity between the query and each candidate sentence.
By retaining only the most semantically similar
sentences, we significantly reduce the candidate
set, thereby improving the overall efficiency and
accuracy of the annotation process.

During the search process, MCTS runs for mul-
tiple simulations. This process terminates when
the maximum iteration number is reached or no
paths can be expanded. For the ¢-th simulation, it

conducts four operations to expand the tree:

Selection During the i-th simulation of the
MCTS, the process begins with sg, which repre-
sents the input query. The algorithm then proceeds
to explore the tree by selecting nodes according
to the Upper Confidence Bound for Trees (UCT)
criterion (Rosin, 2011). This selection process is
mathematically represented as:

In Npa,rent (St)

UCT(st) =V(st) +w N (s0)

()
where w controls the balance between exploration
and exploitation. The node value V (s;) and its vis-
iting count N (s;) will be updated as the search pro-
gresses. Nparent (S¢) represents the visiting count
of the parent node of s;.

Expansion After selecting the node to be ex-
panded, the next step is to choose the most suitable
sentence from the candidate set. A straightforward
way to evaluate the quality of the evidence set is to
measure the likelihood of the reader generating the
correct answer when the evidence set is used as the
model input. To accelerate the labeling process, we
employ parallel expansion, where we concurrently
compute the likelihood of outputting the correct
answer after incorporating each candidate sentence
into the evidence set. This is expressed as:

R(st) = P(ylq, dt) (2)

where y represents the correct answer, and d; de-
notes the evidence set after adding the candidate
sentence s;. From these calculations, we select the
top M sentences that are most likely to lead to the
final correct answer as the expansion nodes.

Simulation The simulation phase aims to deter-
mine whether the current path can lead the reader
to generate the final correct answer. To achieve
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Figure 3: Overview of the proposed method: Given an input query, a long article is retrieved using a search engine
and segmented into individual sentences, which serve as the initial candidate set. Then the MCTS algorithm
constructs evidence trees for the input query from which correct and incorrect paths are extracted to train the policy
and value models. During inference, the early terminating beam search minimizes the search space and terminates
generation once the generated prefix uniquely identifies a sentence in the candidate set.

this, for each node, we construct the evidence set
by concatenating the sentences from the root node
to the current node. The reader then answers the
question based on this evidence set. If the reader
provides the correct answer, indicating that suffi-
cient evidence has been identified, the reward is set
to 1. Otherwise, the reward is defined as the like-
lihood of the reader outputting the correct answer
based on the evidence set.

Backpropagation At the end of the ¢-th simula-
tion, each edge along the path from the leaf node
s¢ to the root undergoes a backward pass update.
The updates to their values and visiting counts are
executed according to the following rule:

N(St) < N(St)-f— 1

(3)

Vi(st) « V(s) + (R(st) = V(st)

L
N(St)
where N (s;) represents the visiting count of node
s¢, and V' (s¢) denotes its value.

3.3 Model Training

In our framework, the policy model 7y is initial-
ized with a pre-trained LLM. We extend this model
to derive the value model V;, by adding an auxil-
iary linear layer with a Sigmoid activation func-
tion. This layer operates alongside the traditional
softmax layer responsible for token prediction, as
illustrated in the rightmost panel of Figure 3. This
design ensures that the policy model and the value
model share the majority of their parameters, pro-
moting parameter efficiency and joint optimization.

To construct the training signals for the policy
model and the value model, we sample solution
paths from the tree constructed through multiple
rounds of MCTS. These paths are denoted as x™
(correct solutions) and x~ (incorrect solutions). We

then apply a multi-task loss function to jointly up-
date both models:

T(x)
L=—logmo(xTla) +B- D [Vslst) = V(s)lI” 4

t=1

Here, the first term represents the negative log-
likelihood loss for next-token prediction in correct
solutions, which guides the policy model to gener-
ate accurate predictions. The second term captures
the loss in value prediction for both correct and
incorrect solutions, ensuring the value model pro-
vides reliable estimates of expected rewards at each
node. T'(x) denotes the number of steps in the so-
lution path x, and f is a tunable hyperparameter
that controls the weight of the value loss term.

3.4 Model Inference

After obtaining the trained policy model, it can
be directly used to generate grounding evidence.
However, this iterative generation process has two
limitations: it fails to fully explore the evidence
space, and the generation can be slow due to the
large input length. To address these issues, we pro-
pose an early terminating beam search mechanism,
which efficiently explores the evidence space while
bypassing unnecessary decoding steps.

Early Terminating Beam Search Specifically,
given the input query and the long article, the pol-
icy model is used to generate multiple candidate
sentences. Since the generation target originates
directly from the source text, once the generation
prefix is determined, the generated prefix can be
used to locate the corresponding text in the source
article. This allows us to skip decoding intermedi-
ate tokens, significantly speeding up the process.
The value model is then employed to evaluate the
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Model 2WikiMulti HotpotQA MusiQue MultiField Qasper AVG
EM F1 EM F1 EM F1 EM F1 EM F1 EM F1
Qwen2.5-14B-Instruct-1M
BM25 32.00 30.08 39.50 38.32 1350 12.09 25.33 3990 16.00 16.30 2527 27.34
BGE-base-en 37.50 37.01 40.50 38.45 19.50 1998 2733 44.07 21.50 23.74 29.27 32.65
LLM-Embedder 36.00 3691 39.50 36.56 20.50 20.21 26.67 4592 2550 2697 29.63 33.31
ChatGLM3-6B  32.50 30.90 30.00 31.59 14.00 15.03 16.00 33.61 21.50 23.14 22.80 26.85
Qwen2.5-7B 40.50 37.20 46.00 4259 18.50 18.67 24.00 41.50 22.50 23.74 3030 32.74
GLM-4-9B 3750 37.25 4350 4428 25.00 24.85 28.67 42.05 19.00 18.94 30.73 33.47
Qwen2.5-14B 35.00 32.11 42.00 4042 2200 22.06 22.67 41.07 2500 27.06 29.33 3254
Qwen2.5-32B 4250 36.39 43.00 41.81 18.50 19.01 19.33 32.66 15.00 1538 27.67 29.05
Qwen2.5-72B 41.00 38.09 43.00 43.68 19.50 21.96 24.67 37.07 13.50 14.60 2833 31.08
CFIC-7B 45.00 42.52 4550 39.06 27.50 26.06 28.67 4594 26.00 2792 3453 36.30
ETS-7B 58.00 56.23 51.00 51.26 39.50 39.85 29.33 48.38 27.00 29.02 40.97 44.95
Qwen2.5-72B-Instruct
BM25 31.00 28.59 42.00 4045 1200 14.62 2333 3996 1650 20.52 2497 28.83
BGE-base-en 41.00 40.83 43.50 4298 19.50 19.79 28.67 46.02 2450 27.23 3143 3537
LLM-Embedder 40.00 40.36 41.50 41.56 21.00 21.65 27.33 45.11 27.50 30.10 3147 35.75
ChatGLM3-6B  41.50 33.19 39.50 35.39 15.00 1532 13.33 32.13 1850 22.08 25.57 27.62
Qwen2.5-7B 44.00 43.25 46.50 4450 20.50 22.09 24.00 41.14 20.50 27.26 31.10 35.65
GLM-4-9B 4350 38.55 48.00 44.10 25.50 27.13 28.67 4595 21.00 2493 3333 36.13
Qwen2.5-14B 43.00 41.21 43.00 4242 23.00 2542 21.33 40.19 22.00 27.10 3047 3527
Qwen2.5-32B 52.00 41.37 47.00 4423 21.50 2290 18.00 35.68 17.50 23.31 31.20 33.50
Qwen2.5-72B 53.00 38.79 47.50 4277 23.50 2550 22.67 3990 1550 21.58 3243 33.71
CFIC-7B 54.00 43.67 53.00 48.46 30.50 31.26 2933 46.83 29.00 30.81 39.17 40.21
ETS-7B 60.50 54.82 60.50 57.72 40.00 40.84 30.00 47.87 31.00 3491 4440 47.23

Table 1: Main experiment results on five QA datasets across two reader LLMs. The best results are in bold. The
AVG column shows the average EM and F1 scores across all datasets.

quality of the expanded sentences, retaining only
the most valuable nodes. This process is iterated
until the maximum depth is reached or no further
paths can be expanded. Finally, the answer with
the highest value is selected as the output.

4 Experiments

4.1 Datasets and Metrics

We conduct experiments on five datasets from
LongBench (Bai et al., 2023), including 2Wiki-
MultihopQA (Ho et al., 2020), HotpotQA (Yang
et al., 2018), MuSiQue (Trivedi et al., 2022), Mul-
tiFieldQA (Bai et al., 2023), and Qasper (Dasigi
etal., 2021). Following the LongBench benchmark,
we use the EM score and F1-score as evaluation
metrics. For further details on LongBench, please
refer to Bai et al. (2023). The statistical information
of all datasets is provided in Table 4.

4.2 Baselines

In this study, we benchmark our method against
the following three categories of baselines:

Retrieval-Based Methods Retrieval-based meth-
ods typically segment lengthy documents into
smaller passages and use retrieval techniques to
prioritize relevant passages. For a fair compari-
son, we use sentences as the retrieval unit and em-
ploy BM25 (Yang et al., 2017), BGE-base-en-v1.5
(Xiao et al., 2023), and LLM-Embedder (Zhang
et al., 2023b) as retrieval models. The highest-
ranking sentences are selected as input context for
the reader to support QA tasks.

Extraction-Based Methods For extraction-
based methods, we evaluate state-of-the-art long-
context models, including ChatGLM3-6B-128K
(GLM et al., 2024), Qwen2.5-7B-Instruct-1M
(Team, 2025), GLM-4-9B-Chat-1IM (GLM
et al., 2024), Qwen2.5-14B-Instruct-1M (Team,
2025), Qwen2.5-32B-Instruct (Team, 2024), and
Qwen2.5-72B-Instruct (Team, 2024). These
models refine lengthy documents into concise text
evidence, which serves as context for the reader
LLM to support QA tasks.
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Learning-Based Methods Unlike the above
methods, which use off-the-shelf models, learning-
based methods fine-tune models specifically for
the task of evidence retrieval to improve perfor-
mance. We implement the current state-of-the-art
model, CIFC (Qian et al., 2024), following its open-
sourced code and data.

To ensure fairness, all models provide a compa-
rable volume of textual evidence for the reader.

4.3 Implementation Details

During the MCTS annotation process, the
Qwen2.5-7B-Instruct-1M model is utilized as the
reader. The maximum number of iterations is con-
figured to 20. Following Chen et al. (2024), the
parameter w, 3 is set to 1.4 and 0.1, respectively.
For the training dataset, we sample 6,000 correct
paths and 6,000 incorrect paths. The policy model
is initialized using the Qwen2.5-7B-Instruct-1M.
Training involves fine-tuning the model for two
epochs with a batch size of 1 and a learning rate of
1 x 1075, utilizing 8 NVIDIA A100 80GB GPUs.
To evaluate the generalizability of our approach, we
employ two additional reader models: Qwen2.5-
14B-Instruct-1M and Qwen2.5-72B-Instruct. We
intend to open-source the code to facilitate the re-
producibility of our methodology. For more imple-
mentation details, please refer to Appendix B.

4.4 Main Results

In this section, we present the experimental re-
sults on five QA datasets using Qwen2.5-14B-
Instruct-1M and Qwen2.5-72B-Instruct as the read-
ers. Based on the results shown in Table 1, we can
have the following observations:

First, our method consistently outperforms base-
lines across all datasets and readers, demonstrat-
ing its effectiveness. Notably, with Qwen2.5-14B-
Instruct-1M as the reader, our approach achieves
a 22% relative average improvement over the best-
performing baseline. By modeling evidence re-
trieval as a tree expansion process, we enable the
policy model to thoroughly explore the sentence
space, significantly enhancing performance.

Second, among the baselines, smaller retrieval
models such as BGE-base-en exhibit strong per-
formance compared to extraction-based methods,
aligning with findings from Qian et al. (2024). This
is attributed to the retrieval method’s ability to pre-
cisely compare query-sentence relevance, whereas
extraction-based methods may overlook specific
sentences, leading to information loss.

0.6 ours 7 Ours
w/o Beam Search w/o Early Termination

0.5 Iy

5
m -
0.4 3

0.3 1

2WikiMulti HotpotQA MusiQue
(a) Remove Beam Search

2WikiMulti HotpotQA MusiQue
(b) Remove Early Termination

Figure 4: We conduct an ablation study by removing
beam search and early termination. The latency is calcu-
lated using the latency of our method as the basic unit.

Third, the performance gap between Qwen2.5-
14B-Instruct-1M and Qwen2.5-72B-Instruct is rel-
atively small despite their substantial difference in
parameter sizes. This underscores the effectiveness
of our policy model, which alleviates the reader’s
burden by precisely identifying relevant evidence.
As a result, users can choose smaller reader mod-
els without sacrificing model performance. This
finding is particularly impactful, as it highlights
the potential to substantially reduce inference costs
while maintaining high-quality results.

4.5 Discussion

Ablation Study During inference, we propose
early terminating beam search to accelerate the
process while ensuring comprehensive exploration
of the sentence space. To evaluate its impact, we
systematically remove beam search and early ter-
mination, conducting experiments on the 2Wiki-
MultihopQA, HotpotQA, and MusiQue datasets.
The results are shown in Figure 4.

Removing beam search significantly degrades
performance, as the model fails to fully explore
the sentence space, leading to suboptimal evidence
retrieval. In contrast, removing early termination
substantially improves latency, as the model can
uniquely identify the location of the original sen-
tence early in the decoding process, eliminating the
need to decode subsequent tokens. Additionally,
as the input length increases across the datasets,
the inference latency grows significantly. How-
ever, with early termination, the additional latency
caused by longer inputs is minimal, demonstrating
its effectiveness in long-input scenarios. These re-
sults highlight the importance of both components
in balancing performance and efficiency.

Hyperparameter Study In our method, beam
search is employed to efficiently explore the
sentence space, with two key hyperparam-
eters—Expansion Size B; and Beam Size
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Size HotpotQA 2WikiMulti MusiQue
EM F1 EM F1 EM F1
Expansion Size B
1 49.00 50.72 55.00 5398 29.00 29.63
2 5050 5041 60.50 56.80 3550 34.80
3 51.00 51.26 58.00 56.23 39.50 39.85
4 5500 5530 59.50 5821 39.00 38.70
5 53.00 5528 61.00 60.52 37.00 36.74
Beam Size Bs
1 49.00 51.76 56.00 5421 32.50 33.33
2 5050 51.68 61.00 58.88 3550 36.20
3 51.00 51.26 58.00 56.23 39.50 39.85
4 5150 52.86 61.50 59.65 32.50 33.37
5 51.00 51.76 60.50 57.91 31.00 32.37

Table 2: Hyperparameter study. We tune the parameters
using Qwen2.5-14B-Instruct-1M as the reader.

Bs—vplaying a crucial role. To investigate their
impact on model performance, we conduct experi-
ments on the 2WikiMultihopQA, HotpotQA, and
MusiQue datasets, tuning these parameters within
the range of 1 to 5.

Expansion size indicates the number of sen-
tences expanded at each layer while beam size
refers to the number of sentences retained at each
layer during the search process. The results reveal
a consistent pattern: performance peaks when the
beam size or expansion size is set to approximately
4. Values smaller or larger than this threshold lead
to a decline in performance. This is primarily be-
cause a larger beam size or expansion size offers
the model a broader scope to explore potential sen-
tences, increasing the likelihood of identifying the
most relevant and optimal candidates. However,
when these values exceed a certain threshold, the
model encounters challenges in effectively ranking
and selecting the best sentences from the expanded
pool. This inefficiency arises because the increased
search space introduces more noise and less rel-
evant candidates, making it harder for the model
to discern the best options. Additionally, increas-
ing these values incurs higher computational costs,
highlighting the need for a balanced configuration.

Effect of Input Length In this section, we ana-
lyze the effect of input length on model perfor-
mance. Specifically, we vary the input length
across {5000, 10000, 30000, 50000, 70000} and
observe the resulting performance changes, com-
paring our method with using the full article as
grounding evidence.

As shown in 5, both models exhibit a perfor-

54 60

) 51 58
o
348 56
—
Y45 54
Ours Full Ours Full
42 52

5k 10k 30k 50k 70k 5k 10k 30k 50k 70k
Input Length Input Length

(a) Qwen2.5-14B-Instruct-1M  (b) Qwen2.5-72B-Instruct

Figure 5: Effect of input length. We vary the input
length and observe the performance change.

mance decline as input length increases. However,
our method consistently outperforms the full-article
input approach. While the performance of the
full-article method drops significantly, our method
shows only a slight decrease, demonstrating its
robustness. This is because long-context models
struggle to effectively capture the interaction be-
tween the query and the entire sentence set as input
length grows. Our method addresses this challenge
by modeling the process as node expansion, where
the policy model is guided to thoroughly explore
the sentence space at each step, ensuring robust
performance even with longer inputs.

4.6 Case Study

In this section, we compare the evidence retrieval
results of different methods using the MusiQue
dataset. Based on the examples shown in Table 3,
several observations can be made:

First, both the retrieval-based method BGE-base-
en and the extraction-based method Qwen2.5-72B
fail to accurately locate the relevant grounding text,
leading to the generation of irrelevant information
for downstream tasks. Although CFIC-7B can iden-
tify the location of the grounding text, it lacks the
necessary background information, making it diffi-
cult for the reader to deduce the correct answer. In
contrast, both GPT-4 and our method successfully
identify two critical entities: Adam Smith and the
University of Cambridge. However, our method
distinguishes itself by offering a more detailed and
comprehensive grounding text. Specifically, our
approach provides a clearer explanation of the rela-
tionship between Adam Smith and the Lectures on
Jurisprudence, which is crucial for understanding
the context. This enhanced clarity and depth of
information make it significantly easier for read-
ers to deduce the correct answer, as the grounding
text not only identifies the relevant entities but also
elaborates on their connections in a way that is both
informative and accessible. Given the large param-
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Query: Who gives out the prize named after the author of Lectures on Jurisprudence?

Answer: University of Cambridge

BGE-base-en: Lectures on Jurisprudence, also called Lectures on Justice, Police, Revenue and Arms (1763) is a collection of
Adam Smith’s lectures... The prize winner receives a monetary award and will complete a lecture tour within the UK.

Qwen2.5-72B: The prize - named after Scottish philosopher and economist Adam Smith - was originally established in 1891
and awarded triennially for the best submitted essay on a subject of the writer’s choice..

CFIC-7B: "A library of his scholarly works, notes, and correspondences is held by the University of Cambridge. The Nobel
Prize was not awarded between 1940 and 1942 due to the outbreak of World War II.

GPT-4: The Adam Smith Prizes are prizes currently awarded for the best overall examination performance and best dissertation
in Part IIB of the Economics Tripos ... at the University of Cambridge.

ETS-7B: Lectures on Jurisprudence, also called Lectures on Justice ... is a collection of Adam Smith’s lectures... The Adam
Smith Prizes are prizes currently awarded for the best overall examination ... at the University of Cambridge.

Table 3: Examples of evidence retrieval on dataset MusiQue. The text colored with teal refers to the key information

related to the user query.

eter size gap between GPT-4 and our method, we
believe our approach demonstrates strong perfor-
mance at a minimal computational cost.

5 Related Work

5.1 Retrieval-Augmented Generation

Despite significant progress, Large Language Mod-
els (LLMs) still produce responses that contain
hallucinated facts and inaccuracies (Ji et al., 2023;
Shuster et al., 2021; Zhang et al., 2023a), undermin-
ing their overall reliability. To address this issue,
Retrieval-Augmented Generation (RAG) has been
introduced as a method to integrate external knowl-
edge and enhance the accuracy of model responses
(Ram et al., 2023; Shi et al., 2023; Rashkin et al.,
2021; Gao et al., 2022; Bohnet et al., 2022; Menick
et al., 2022).

Among existing approaches, some studies pro-
pose retrieving information only once at the begin-
ning of the generation process (Shi et al., 2023;
Wang et al., 2023b; Zhang et al., 2023c; Yu et al.,
2023a,c). Other works (Qian et al., 2023; Yu
et al., 2023b) suggest retrieving information mul-
tiple times throughout the generation process, of-
fering greater flexibility in determining when and
what to retrieve. For example, Jiang et al. (2023) ad-
vocate for retrieval only when the generation model
produces low-confidence tokens, while Ram et al.
(2023) recommend refreshing retrieved documents
every n tokens, a method shown to outperform sin-
gle retrieval approaches. Additionally, Wang et al.
(2023a); Asai et al. (2023); Zhao et al. (2023b) pro-
pose retrieving information only when the LLM
determines it is necessary, further improving re-
trieval efficiency.

5.2 [Evidence Retrieval in RAG

While RAG has demonstrated strong performance,
it faces challenges when dealing with lengthy and
complex retrieved documents. To address this limi-
tation, techniques like chunking and retrieval have
been developed to improve passage relevance. For
instance, Mao et al. (2021) introduced a chunking
and retrieval method to enhance evidence selec-
tion, while Guu et al. (2020); Lin et al. (2023) pro-
posed jointly training the retriever and generator
to improve knowledge utilization and contextual
understanding.

However, chunking can often be suboptimal, as
determining the appropriate granularity for chunk-
ing is a challenging task. Improper chunking can
disrupt the semantic coherence of the document,
leading to less accurate evidence selection. Other
approaches (Ratner et al., 2022; Xu et al., 2023)
focus on adapting large language models to process
longer contexts by training them on extended text
lengths. For example, Chen et al. (2023) extended
the context size of LLMs via parameter-efficient
fine-tuning. Qian et al. (2024) proposed a chunking-
free method to identify relevant evidence for user
queries. Similarly, FILCO (Wang et al., 2023b) fil-
ters the input context with a context-filtering model.
Despite these advancements, these methods often
struggle to model the complex interactions between
sentences in long contexts and may fail to accu-
rately pinpoint the grounding evidence.

6 Conclusion

In this paper, we propose ETS, a novel framework
that enhances evidence retrieval in RAG systems.
By modeling evidence retrieval as a tree expansion
process and leveraging MCTS and Early Terminat-
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ing Beam Search, ETS effectively addresses the
challenges of complex evidence interdependencies,
lack of supervision signals, and large search spaces.
Our extensive experiments demonstrate that ETS
outperforms existing methods.

Limitations

In this paper, we propose a tree expansion method
for evidence retrieval. We acknowledge two limita-
tions of our method. First, The MCTS annotation
requires multiple simulations, which can result in
additional labeling costs. Second, due to resource
constraints, we conduct experiments using only
Qwen2.5-7B-Instruct-1M as the model backbone.
We leave experiments with larger model backbones
for future work.
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A Dataset Statistics

Settings 2WikiMultihopQA HotpotQA MuSiQue MultiFieldQA Qasper

(Ho et al., 2020) (Yang et al., 2018)  (Trivedi et al., 2022) (Bai et al., 2023)  (Dasigi et al., 2021)
Task Multi-doc QA Multi-doc QA Multi-doc QA Single-doc QA Single-doc QA
Train Data 5,000 5,000 5,000 0 0
Test Data 200 200 200 200 200
Average Length 29,495 56,446 69,269 28,947 23,640
Metrics EM, F1 EM, F1 EM, F1 EM, F1 EM, F1

Table 4: Statistics and experimental settings of different tasks/datasets.

B Training Details

Dataset Construction We sample 5000 queries from the training data of 2WikiMultihopQA, HotpotQA,
and MuSiQue datasets and conduct the MCTS annotations. We then sample 6,000 correct paths and 6,000
incorrect paths, and the correct paths are used to train the policy model, while both paths are used to train
the value model.

Training Process The policy model is initialized using the Qwen2.5-7B-Instruct-1M. Training involves
fine-tuning the model for two epochs with a batch size of 1 and a learning rate of 1 x 1079, utilizing 8
NVIDIA A100 80GB GPUs. During inference, the expansion size and the beam search size are set to 3.

C Model Sources
¢ BGE-base-en-v1.5: https://huggingface.co/BAAI/bge-base-en-v1.5
e LLM-Embedder: https://huggingface.co/BAAI/llm-embedder
¢ ChatGLM3-6B-128K: https://huggingface.co/THUDM/chatglm3-6b-128k
e Qwen2.5-7B-Instruct-1M: https://huggingface.co/Qwen/Qwen2.5-7B-Instruct-1M
¢ GLM-4-9B-Chat-1M: https://huggingface.co/THUDM/glm-4-9b-chat-1m
* Qwen2.5-14B-Instruct-1M: https://huggingface.co/Qwen/Qwen2.5-14B-Instruct-1M
e Qwen2.5-32B-Instruct: https://huggingface.co/Qwen/Qwen2.5-32B-Instruct
e Qwen2.5-72B-Instruct: https://huggingface.co/Qwen/Qwen2.5-72B-Instruct

D Prompts

Extraction Prompt

Extract sentences from the following documents to answer the question. Do not alter the content of the sentences.
Documents: {background}

Question: {query}
Relevant Sentences:

Answering Prompt

Use only the information from the following documents to answer the question with one short phrase.
Documents: {background}

Question: {query}
Output:
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