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Abstract

Instruction-following capability has become a
major ability to be evaluated for Large Lan-
guage Models (LLMs) (Brown et al., 2020;
OpenAl, 2023; Bai et al., 2023). However,
existing datasets, such as IFEval (Zhou et al.,
2023; Zeng et al., 2024), are either predomi-
nantly monolingual and centered on English or
simply machine translated to other languages,
limiting their applicability in multilingual con-
texts. In this paper, we present an carefully-
curated extension of IFEval to a localized multi-
lingual version named Marco-Bench-MIF, cov-
ering 30 languages with varying levels of lo-
calization. Our benchmark addresses linguistic
constraints (e.g., modifying capitalization re-
quirements for Chinese) and cultural references
(e.g., substituting region-specific company
names in prompts) via a hybrid pipeline com-
bining translation with verification. Through
comprehensive evaluation of 20+ LLMs on our
Marco-Bench-MIF, we found that: (1) 25-35%
accuracy gap between high/low-resource lan-
guages, (2) model scales largely impact perfor-
mance by 45-60% yet persists script-specific
challenges, and (3) machine-translated data un-
derestimates accuracy by 7-22% versus local-
ized data. Our analysis identifies challenges
in multilingual instruction following, including
keyword consistency preservation and compo-
sitional constraint adherence across languages.
Our Marco-Bench-MIF will be made publicly
available to the community.

1 Introduction

Instruction-following datasets play a critical role in
evaluating and fine-tuning Large Language Mod-
els (LLMs) (Team, 2023; Hurst et al., 2024),
enabling them to better align with user intents.
Among these, IFEval (Zeng et al., 2024) has
emerged as a widely used benchmark for assess-
ing instruction-following capabilities. However,
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its monolingual nature restricts its utility in mul-
tilingual and cross-lingual applications, where
language-specific nuances and cultural contexts
must be considered. Existing datasets, including
IFEval and Multi-IF (Zhou et al., 2023; Zeng et al.,
2024), are either predominantly monolingual and
centered on English or simply machine-translated
to other languages, limiting their applicability in
multilingual contexts. Machine-Translated (MT)
data often fails to capture the linguistic and cultural
subtle differences required for accurate evaluation,
leading to underestimation of model performance
in multilingual settings.

The construction of a multilingual instruction-
following dataset should focus on adaptation of
instructions, prompts, and constraints to diverse
linguistic and cultural contexts. For example, tasks
involving capitalization, such as “change all letters
to uppercase” should be modified for non-Latin
scripts like Chinese and Greek, where such con-
straints are not applicable. Also tasks involving
specific grammatical structures, such as “use the
passive voice in your response”, should be care-
fully adapted for languages like Japanese and Turk-
ish, where passive constructions differ significantly
from English. Similarly, prompts containing cul-
turally specific references should be localized to
align better with the target language and culture.
For instance, the English prompt “Write a short
story about a child celebrating Thanksgiving with
their family” can be adapted for the Indian context
as “Write a short story about a child celebrating
Diwali with their family, including the rituals of
lighting diyas and sharing sweets.” This adapta-
tion not only preserves the instruction’s structure
but also ensures cultural relevance and linguistic
appropriateness.

To address this gap, we extend IFEval to a multi-
lingual version, encompassing 30 languages with
varying levels of localization. Our benchmark,
named Marco-Bench-MIF, is carefully curated to
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address linguistic constraints (e.g., modifying cap-
italization requirements for Chinese) and cultural
references (e.g., substituting region-specific com-
pany names in prompts). This is achieved through
a hybrid pipeline that combines automated transla-
tion with two-round human verification to ensure
quality and cultural relevance. Our localization
process involved a combination of automated and
manual methods. Initial translations and adapta-
tions focus on content-specific localization, such as
place names, events, and keywords. These outputs
were then subjected to rigorous human evaluation
and iterative refinement, including two rounds of
manual review to ensure quality. Despite these
efforts, challenges persisted, particularly in ensur-
ing prompt adherence and accurately translating
keywords. For example, in tasks requiring key-
word frequency constraints, such as “ensure the
word ‘sneaker’ appears at least 10 times”, trans-
lated keywords often required manual adjustment
to maintain semantic consistency.

Our comprehensive evaluation of 20+ LLMs
across 30 languages reveals critical insights into
multilingual instruction-following capabilities. We
observe that instruction-level accuracy consistently
surpasses prompt-level metrics by 10-20% across
all models, highlighting persistent challenges in
compositional instruction adherence. While model
scale strongly correlates with performance (70B+
models achieve 45-60% higher accuracy than 8B
counterparts), even smaller models like Qwen?2.5-
7B attain 64.42% strict instruction-level accuracy.
Proprietary models (GPT-4o0 (Hurst et al., 2024),
Claude3.5-Sonnet (Anthropic, 2024)) significantly
outperform open LLMs, with a 25-35% accuracy
gap in low-resource languages. The evaluation
exposes substantial cross-lingual disparities: per-
formance on high-resource languages (de, zh) is
75-85% accuracy versus 50-60% for low-resource
languages (yo, ne), with script-specific challenges
for some languages like Arabic (ar). Our anal-
ysis of localized versus machine-translated data
demonstrates 7-22% performance underestimation
using translated data, showing the necessity for
culturally-grounded evaluations. Our contributions
in this paper are summarised as follows:

1. We extend IFEval to a multilingual bench-
mark, Marco-Bench-MIF, covering 30 lan-
guages with fine-grained localization to ac-
count for linguistic and cultural diversity.

2. We propose a systematic framework for adapt-

ing prompts, instructions, and constraints to
diverse linguistic contexts, combining auto-
mated and manual localization methods, and
analyze the challenges encountered during
this process.

3. We conduct a comprehensive evaluation of
20+ LLMs on Marco-Bench-MIF, provid-
ing insights into multilingual instruction-
following capabilities, including the impact
of model scale, resource availability, and the
limitations of machine-translated data.

We believe this work represents a significant step
forward in enabling robust and culturally-aware
evaluation of LLMs instruction following ability
across languages.

2 Related Work

Instruction-following datasets have become essen-
tial for evaluating LLMs. Early works such as GPT-
3 (Brown et al., 2020) and GPT-4 (OpenAl, 2023)
demonstrated the importance of this ability. How-
ever, existing benchmarks, such as IFEval (Zeng
et al., 2024) and Multi-IF (He et al., 2024), are
either predominantly monolingual (English) or just
machine-translated data, limiting their applicabil-
ity to multilingual and culturally diverse contexts.
Localization and cultural adaptation are key chal-
lenges as instructions must align with linguistic
and cultural norms. For example, tasks involv-
ing capitalization are not relevant for non-Latin
scripts like Chinese or Arabic. Cultural and lin-
guistic appropriateness in LLM evaluation has also
been explored, studies (Liu et al., 2023; Romero
et al., 2024; Myung et al., 2024; Chiu et al., 2024)
highlighted the importance of cultural alignment
to ensure inclusivity and sensitivity in multilingual
and multi-cultural settings. However, few works
address the fine-grained challenges of adapting in-
structions for diverse languages and scripts. Man-
ual intervention and human evaluation remain crit-
ical for ensuring quality and accuracy in multilin-
gual datasets. Our work builds on these efforts
by extending IFEval to a multilingual benchmark
covering 30 languages. Unlike previous datasets,
our extension emphasizes fine-grained localization
to account for language-specific features and cul-
tural differences. This includes adapting tasks that
are not applicable to certain scripts and ensuring
instructions are contextually relevant.
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3 Marco-Bench-MIF Dataset
Construction

We extend the IFEval benchmark into multilingual
version through a systematic cross-lingual adap-
tation and a comprehensive pipeline. The frame-
work consists of three main stages: preprocessing,
translation localization, and post-processing. Our
approach preserves instruction constraints while
accommodating linguistic diversity across 30 lan-
guages from 6 major language families (Indo-
European, Sino-Tibetan, Afro-Asiatic, etc.). Each
language includes 541 instruction-response pairs,
carefully constructed to ensure consistency and fi-
delity.

3.1 Preprocessing

The preprocessing stage involves categorizing and
filtering the original IFEval dataset to prepare it for
multilingual adaptation.

3.1.1 Constraint Categorization

We categorize the 541 English instruction-response
pairs based on two major dimensions:

* Cardinality: 1) Single-Constraint (SC): In-
structions with a single requirement. 2) Multi-
Constraint (MC): Instructions with two or
more interdependent requirements.

» Type: 1) Expressive Constraints (EC): Dictate
response structure or format. 2) Content Con-
straints (CC): Require specific information
inclusion.

This categorization ensures a systematic adap-
tation process, starting with simpler constraints
(SC+EC) before handling more complex ones
(MC+CC). Table 1 shows the distribution of con-
straint types in the English benchmark. This gradu-
ated approach reduces error propagation risks, with
simpler constraints (SC+EC) serving as anchors for
more complex cases (MC+CC).

3.1.2 Data Filtering

We filter the dataset to ensure high-quality in-
stances for multilingual adaptation, the main prin-
ciples are: 1). Removing ambiguous or overly
complex instructions 2). Balancing the distribution
of constraint types across languages 3). Ensuring
consistency in instruction-response pairs.

Cardinality Const. Comp. Count Prop. ECFreq. CC Freq.

e Pure EC 109 20.1% 109 0
Pure CC 161  29.8% 0 161
SC Subtotal 270 49.9% 109 161
EC-only 128 23.7% 128 0
MC CC-only 18 3.3% 0 18
EC+CC Hybrid 125 23.1% 125 125
MC Subtotal 271 50.1% 253 143
Total 541  100.0% 362 304

Table 1: Constraint Composition (Const. Comp.) analy-
sis of English benchmark (N=541)

3.2 Translation and Localization

After the pre-processing of the original instruction-
following data, we move forward to expand it to
multilingual via careful localization beyond sim-
ple translation. The translation localization stage
adapts the dataset to 30 languages while preserving
instruction constraints. Figure 1 show the amount
of examples and average length for the data in each
language.

3.2.1 Translation

The translation process involves: 1) Initial transla-
tion using Google Translate. 2) Bilingual checks
and manual corrections by professional translators.
3) Validation using LLMs for error correction. For
five typologically diverse languages (Arabic, Span-
ish, Malay, Yoruba, Chinese), we create parallel
corpus variants: machine-translated (MT) baselines
and culturally localized versions. For the remain-
ing 24 languages, we apply full cultural localiza-
tion to SC+EC instances and strategic sampling for
SC+CC and MC+EC cases.

3.2.2 Localization

Regarding further transforming the translated data
to culturally localized version, we employ a three-
step localization method:

* Lexical Substitution: Replace culture-
specific terms (e.g., names, locations) while
maintaining constraint positions.

* Topical Transposition: Adapt scenario con-
texts to culturally familiar domains without
altering constraint structures.

* Pragmatic Restructuring: Reformulate in-
structions using target-language rhetorical
conventions under fixed constraints.

Cultural localization is achieved through a pro-
cess guided by ten main sociolinguistic dimensions:
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Statistics of Our M-IFEval Dataset
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Figure 1: The number of examples and average prompt length for each language in our Marco-Bench-MIF dataset.

historical contexts, social customs, lifestyle pat-
terns, regional characteristics, geographical refer-
ences, natural landscapes, traditional crafts, culi-
nary traditions, entertainment forms, and national
identity markers. We employ advanced LLMs
perform constrained content regeneration across
randomly selected thematic categories, preserving
original task requirements while adapting cultural
references. Then we use consensus for three LLMs
to evaluate the localized outputs, any content receiv-
ing majority disapproval from three LLMs would
receive mandatory human re-evaluation.

3.3 Post-processing

The dataset refinement process employs a multi-
layered approach to ensure cross-lingual reliability
through three interlocking mechanisms. For error
reduction, we combine automated pattern detec-
tion with human check. The system specifically
targets six prevalent translation failure points: key-
words, exit statement, echo content, postscript con-
sistency maintenance, case sensitivity adherence,
and control of Latin character frequency in non-
Latin script languages. We employ an LLM that
generates initial outputs, which then undergo eval-
uation, with another LLM subsequently analyzing
failure cases to distinguish between model capabil-
ity limitations, instruction set defects, and evalua-
tion logic flaws. Human reviewers then prioritize
model-flagged cases for in-depth inspection of in-
struction adherence patterns and assessment code
validity.

The evaluation framework undergoes system-
atic localization across 30 languages through four

adaptation types: punctuation convention align-
ment, response language appropriateness verifica-
tion, multi-section coherence validation, and con-
strained output requirement checking. Language
selection balances regional prevalence, resource
availability, and orthographic diversity, ensuring
comprehensive coverage of global languages. This
refinement process establishes Marco-Bench-MIF
as a culturally-grounded benchmark for multilin-
gual isntruction following.

4 Evaluation on Marco-Bench-MIF

4.1 Evaluation Setup

Our evaluation follows IFEval’s protocols (Zhou
et al., 2023) with additional adjustments. Basically,
we prompt the LLMs with specific instructions
7 (can be multiple instructions) to get a response r,
we then analyze the response r to verify whether
the LLMs adhere the instruction ¢ we gave to it.
Specifically, we employ rule-based verification and
implement an additional one with text normaliza-
tion. The strict metric is defined as following:

) 1 if r satisfies 1,
Estrict(ra Z) = .
0 otherwise

and loose metric with text normalization is:

Eloose(rv Z) = \/ E(Tt(r)7 Z)

teT

where 7 indicating transformation operations (e.g.,
markdown removal, boundary adjustment) to re-
duce measurement variance while preserving in-
struction fidelity. If there is one text normalization
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can let 74 () meet the instruction ¢ then we think is
response is correct.

Moreover, within our evaluation methodology
we have both the prompt and instruction level ac-
curacy, which means:

Prompt-level Accuracy: This metric evaluates
the model’s ability to completely adhere to all ver-
ifiable instructions within a single prompt. For a
response to be considered correct, the model must
follow every instruction in its entirety, which is a
metric that considers the models’s ability for fol-
lowing multiple instructions together.

Instruction-level Accuracy: This measure as-
sesses the model’s compliance with each individ-
ual instruction within a prompt. A response is
considered accurate on this level for the specific
instruction if the model successfully follows the
corresponding instructions provided, which is a
more fine-grained metric for instruction-level per-
formance.

4.2 Evaluated LLMs

We evaluate a diverse set of LLMs, encompassing
both proprietary and open-source systems. The pro-
prietary models include state-of-the-art systems in-
cluding GPT-40, Gemini, etc., while the open mod-
els include advanced LLMs with varying scales
and architectures:

Proprietary Models. The proprietary models
evaluated in this study include GPT (GPT-40, GPT-
40-Mini) (Hurst et al., 2024), Claude (Claude3.5-
Sonnet) (Anthropic, 2024), Gemini (Geminil.5-
Flash) (Team, 2023), and Qwen-Proprietary
(Qwen-Plus, Qwen-Max) (Bai et al., 2023).

Open Models. The open-source models include
Aya (Aya-23: 8B, 35B; Aya-Expanse: 8B,
32B) (Ustiin et al., 2024), Gemma (Gemma2: 9B,
27B) (Team et al., 2024), LLaMA (LLaMA3.1-
8B, LLaMA3.3-70B) (Dubey et al., 2024), Qwen
(7B, 14B, 72B) (Qwen et al., 2025), and Mistral
(Mistral-Large, Ministral-8B) (Jiang et al., 2023).
Additionally, we include EuroLLM-9B !

4.3 Experimental Results
4.3.1 Overall Results

The overall results of various LLMs on our
Marco-Bench-MIF dataset are shown in Table 2.
The evaluation results across 30 languages show

1https://huggingface.co/utter—project/
EuroLLM-9B-Instruct

Model Prompt (S) Prompt (L) Inst. (S) Inst.(L) Avg.
Ministral-8B 21.74 24.49 46.45 49.72 35.60
Aya23-8B 23.46 26.03 46.89 49.23 3640
LLaMA3.1-8B 25.48 28.36 48.98 51.66 38.62
EuroLLM-9B 32.02 3533 56.42 59.32  45.77
Aya23-35B 34.95 38.79 57.24 60.43 47.85
Aya-expanse-8B 35.44 40.49 57.82 61.63  48.84
Qwen2.5-7B 42.99 4743 64.42 68.02 55.72
Aya-expanse-32B 49.73 55.56 71.33 7520  62.96
Gemma2-9B 51.97 54.53 72.16 73.89 63.14
Qwen2.5-14B 53.86 58.41 71.20 7439  64.46
Gemma2-27B 58.86 61.35 77.21 78.78 69.05
Mistral-Large 62.66 67.16 79.02 81.96 7270
Qwen2.5-72B 64.84 69.80 80.80 83.96 74.85
LLaMA3.3-70B 67.42 70.32 80.43 82.25 | 75.11
Qwen-Plus 68.98 73.02 82.03 84.64 77.17
Qwen-Max 69.29 72.67 82.31 84.53  77.20
GPT-40-mini 68.79 73.02 82.42 85.07 77.33
Geminil.5-flash 71.40 75.88 84.17 86.95  79.60
GPT-40 71.43 75.89 84.49 87.13 79.73
Claude3.5-sonnet 73.61 76.77 85.62 87.71 80.93
Table 2: Overall results of various LLMs on

Marco-Bench-MIF with average accuracy, where the
best performane of open models and proprietary model

are marked in Red and Blue respectively.

several interesting insights into the multilingual
instruction-following capabilities of current LLMs.
First, a consistent trend across all models is that the
instruction-level accuracy is substantially higher
than the prompt-level accuracy (10-20%). This in-
dicates that although models may struggle to satisfy
all instructions simultaneously when evaluated as
a whole, they are often capable of executing indi-
vidual instructions correctly. This effect is more
obvious in smaller models like Ministral-8B (21.74
vs. 46.45 points difference), suggesting that com-
positional reasoning remains a key differentiator
between model scales. Furthermore, the difference
between strict and loose metrics underscores the
influence of text normalization. The loose met-
ric, which mitigates minor formatting or boundary
discrepancies, typically produces higher accuracy
scores than the strict metric (+3-5%). This sug-
gests that many models are close to correctly fol-
lowing instructions but occasionally falter due to
superficial deviations in formatting, which do not
fundamentally undermine the semantic intent of
their responses.

Another observation is the trend in performance
as model capacity increases, we observe a strong
correlation between model scale and performance,
with larger models (70B+ parameters) achieving
45-60% higher absolute accuracy than 8B LLMs.
However, this scaling effect is not as obvious as it is
in prompt-level for instruction-level metrics, where
even smaller models like Qwen2.5-7B achieve
64.42% strict accuracy, suggesting that basic in-
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Model ar bn cs de el en es fr he hu id it ja kk ko ms ne nl pl pt o ru swW th tr uk ur vi yo zh  Avg
Ministral-8B 218 23.1 338 546 324 530 534 522 303 339 368 500 437 238 338 332 157 419 345 510 326 49.0 241 235 320 335 173 335 206 53.0 357
Aya23-8B 503 262 37.5 457 339 443 437 451 437 237 37.6 462 453 137 419 325 225 381 420 459 347 404 219 362 308 407 274 443 159 39.6 364
LLaMA3.1-8B 242 397 406 510 321 714 554 539 310 362 447 497 298 26.1 238 41.6 221 458 379 53. 331 320 359 360 270 221 460 163 335 379
LLaMA3-8B 287 231 51.8 505 462 708 63.1 588 318 484 549 552 252 292 243 417 174 596 35. .5 541 371 302 248 47.1 307 190 304 164 298 39.7
Qwen2-7B 50.6 43.6 441 543 372 579 558 569 298 349 495 555 535 290 493 407 342 514 461 557 421 514 305 513 41.6 443 420 498 190 59.6 454
EuroLLM-9B 59.2 314 487 637 510 635 63.1 622 349 456 402 607 517 240 508 373 256 53.1 532 602 472 571 246 344 434 495 290 387 217 599 462
Aya23-35B 59.0 33.1 504 60.6 494 60.0 57.0 593 575 338 51.7 592 587 189 540 449 316 514 515 583 464 51.6 27.6 399 479 499 369 568 16.1 523 475
Aya-expanse-8B  61.7 344 545 62.1 51.8 651 647 633 587 315 518 625 563 182 546 435 118 557 542 602 494 560 31.9 407 473 535 399 555 210 635 492
LLaMA3-70B 41.6 333 700 578 67.1 820 765 705 39.0 682 721 639 354 46.1 317 581 283 746 443 693 694 502 41.1 323 648 434 335 382 289 405 524
LLaMA3.1-70B 324 619 592 68.1 49.1 81.6 69.0 644 579 592 587 648 446 459 312 585 497 61.1 529 646 613 454 528 506 508 38.6 386 618 289 448 53.6
Qwen2.5-7B 554 569 589 636 494 737 678 688 350 535 66.6 680 602 357 512 59.5 435 627 525 69.0 61.9 606 329 573 509 562 434 605 198 705 555
Aya-expanse-32B 74.6 499 665 753 658 743 739 729 708 538 675 751 720 324 698 648 415 69.1 665 739 622 693 398 520 645 66.1 562 66.6 19.1 754 62.7
Gemma2-9B 67.6 590 637 734 61.1 744 726 725 653 609 662 720 629 425 425 66.0 575 687 614 724 625 672 625 624 598 636 602 64.0 30.1 688 62.8
Qwen2.5-14B 702 673 625 724 61.0 834 747 753 394 597 685 741 709 433 667 647 597 684 581 759 660 69.5 451 702 574 650 634 685 213 748 639
Qwen2-72B 740 689 720 79.6 657 804 794 805 390 652 746 799 742 442 692 716 564 750 658 792 728 748 484 707 606 667 67.6 725 195 78.0 67.5
Gemma2-27B 709 647 682 745 668 810 768 760 71.8 69.1 70.7 746 663 573 692 679 66.1 735 648 732 667 712 687 649 688 668 64.1 673 343 732 683
Mistral-Large 752 652 773 834 712 819 820 823 713 736 772 825 736 492 765 730 63.6 798 687 798 734 757 546 693 71.7 71.8 687 754 178 783 715
LLaMA3.3-70B 619 (790 757 823 702 905 846 83.0 785 754 778 836 768 642 625 788 738 808 687 810 768 722 733 750 702 547 [73.7 778 [375 742 738
Qwen2.5-72B 778 762 799 825 754 857 847 835 514 738 (825 818 76.1 590 [742 783 722 80.7 675 8.0 770 782 559 747 749 756 68.8 789 276 818 740
GPT-40-mini 79.7 78.1 770 841 758 849 832 817 803 776 765 817 800 700 792 773 763 815 695 833 762 775 766 802 752 753 776 810 514 815 777
Qwen-Max 81.8 757 810 858 735 874 841 850 774 782 839 856 810 66.7 809 80.9 698 819 749 841 802 815 668 812 803 777 783 812 397 80.6 782
Qwen-Plus 842 776 842 873 756 895 877 876 726 786 848 859 813 639 812 822 732 840 735 860 823 799 60.1 803 795 782 759 838 248 837 783
GPT-40 81.2 79.7 797 842 79.0 87.8 842 855 809 786 829 843 794 748 793 794 788 848 73.0 850 79.6 786 793 789 792 781 798 8L 59.1 83.6 80.0
Geminil.5-flash 849 782 80.7 856 778 895 842 860 813 78.6 834 851 778 664 793 838 787 831 726 842 780 804 B80.0 79.6 788 78.8 786 835 605 81.6 80.0
Claude3.5-sonnet  82.4 ' 81.5 809 844 793 903 870 873 823 827 852 849 802 756 822 824 802 849 745 850 81.0 809 813 81.0 833 780 806 822 623 824 815
Avg 62.1 563 640 707 599 762 723 718 565 59.0 659 70.7 623 448 584 617 50.0 67.7 586 708 63.1 63.6 49.7 579 599 585 537 632 292 658 60.8

Table 3: Overall results for our evaluated LLMs divided by language,

where the best performane of open models

and proprietary model are marked in Red and Blue respectively.
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Figure 2: Results of LLMs on Arabic (Ar) and Chi-
nese (Zh) data divided by categories.

struction understanding can be achieved at that
scales. Moreover, proprietary LLMs all exhibit
strong performance against open LLMs, which
demonstrates the superiority of these models and
that there is still large room for improvement for
open models.

4.3.2 Results per Language

We split the evaluation results by the language
in our Marco-Bench-MIF dataset, the results are
shown in Table 3. The results show three critical
patterns in multilingual instruction following capa-
bility of LLMs. First, the performance of LLMs
is largely depended on the availability of the lan-
guage resources: High-resource European (de, fr)
and East Asian languages (zh, ja) achieve 75-85%
accuracy across top models, while low-resource
languages (yo, ne, kk) performance is at 50-60%
even for Claude3.5-sonnet. This 25-35 point gap
persists across difference LLM scales, suggesting
that current state-of-the-art LLMs still struggle for
low-resource languages at instruction-following.

Second, script-specific capabilities signifi-
cantly impact performance. Most LLMs exhibit
15-20 point disparities between languages using the
same script family (e.g., Romance languages es/pt
vs. Romanian ro), indicating character-level encod-
ing challenges. Right-to-left scripts (ar, he) show
particular sensitivity, with LLaMA3.3-70B scoring
78.5 in Hebrew versus 54.7 in Urdu (ur) despite
similar pretraining data sizes. We see an interest-
ing point from the results that while multilingual-
specialized models like Aya-expanse-32B achieve
best-in-class performance for mid-resource lan-
guages (hi:56.2, sw:39.8), general-purpose models
like Qwen2.5-72B outperform them in 22/30 lan-
guages through scale advantages. We identify three
language response types: 1). Scale-sensitive lan-
guages (ru, tr) where 70B models achieve almost
20 point gains over 8B LLMs 2). Model-dependent
languages (he, ja) showing 15-30 point variations
between equally-sized models 3). Extremely-hard
languages (yo, kk) where even GPT-40 scores less
than 60% accuracy Moreover, cross-lingual inter-
ference patterns appear in related language pairs.
For Turkic languages, Turkish (tr) performance
strongly predicts Kazakh (kk) accuracy (r=0.89),
suggesting models transfer capabilities within lan-
guage families. However, this correlation does not
hold for Slavic languages, where Ukrainian (uk)
shows unexpectedly low scores relative to Russian
(ru) across all models.

We further plot the categorized results on two
languages with different scripts (Latin vs non-
Latin) of our Marco-Bench-MIF, results shown
in Figure 2. There are some interesting findings
and patterns. Closed-source models like Qwen-
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Figure 3: Comparison between the performance (aver-
age accuracy of Strict and Loose mode for both instruc-
tion and prompt-level) of various LLMs on the localized
data vs machine-translated data.

Max and GPT-40 maintain robust performance
across both languages (less than 5% relative dif-
ference in detectable_content), we observe sig-
nificant language-specific degradation in smaller
open-source models - particularly for structural
constraints like startend (A=28% for Qwen2-7B
between zh/ar). Chinese processing shows stronger
format preservation (avg. 89% vs. 82% in de-
tectable_format) while Arabic models better han-
dle language identification (94% vs. 91% avg.),
suggesting script-specific pattern learning biases.
The non-Latin script challenge emerges clearly
in change_case tasks, where all models show 12-
15% performance drops for Arabic compared to
Chinese, revealing limitations in script-invariant
processing. We identify a critical cross-lingual
transfer gap: Mistral-Large achieves 87%/94%
detectable_content for ar/zh respectively, while
LLaMA3-70B shows dramatic variance (35% vs.
95%), indicating inconsistent multilingual gen-
eralization. Punctuation handling proves most
language-agnostic (A<3% for top models), sug-
gesting structural linguistic features rather than
script properties dominate this capability. Our
findings emphasize that effective multilingual in-
struction following requires separate optimization
beyond simple vocabulary extension, particularly
for combinatorial constraints in right-to-left scripts
(A=19% for combination tasks ar vs. zh).

4.3.3 Responding in Specific Language

We study an interesting aspect of multilingual in-
struction following capability - let LLMs respond
in specified language. This sub-task directly re-

Model
Open Models(< 10B)

Response Language

LLaMA3.1-8B 58.34
Aya23-8B 65.57
Ministral-8B 66.03
Aya-expanse-8B 75.56
Qwen2.5-7B 78.95
EuroLLM-9B 79.19
Gemma2-9B 91.82
Open Models (> 10B)
Aya23-35B 68.88
Qwen2.5-14B 79.69
Gemma2-27B 91.88
Aya-expanse-32B 95.69
LLaMA3.3-70B 82.38
Qwen2.5-72B 91.02
Proprietary Models
Mistral-Large 90.67
Qwen-Plus 92.22
Qwen-Max 93.20
Claude3.5-sonnet 94.03
Geminil.5-flash 94.08
GPT-40-mini 95.09
GPT-40 95.43

Table 4: Results of the Response Language instruction
(average accuracy of Strict and Loose mode).

flects the text generation capability of LLMs in
various language. The results are shown in Ta-
ble 4. Results show that multilingual-enhanced
LLMs: Aya-expanse outperform proprietary mod-
els regardless of size, with the Aya-expanse-32B
variant (95.69) surpassing most proprietary sys-
tems. This demonstrates the effectiveness of tar-
geted multilingual enchancement. Gemma models
(both 9B and 27B) also achieve comparable perfor-
mance (91+) to top proprietary models. We can see
that even top LLMs like GPT-40 and Claude still
can not fully follow the instruction that respond in
specified language (5% wrong outputs).

4.3.4 Effect of Translated and Localised Data

We also conduct experiments investigating the ef-
fects of localized data versus machine-translated
data, the results are shown in Figure 3. The re-
sults clearly demonstrate that evaluations based
exclusively on MT data can be misleading. In
high-resource languages such as Arabic and Chi-
nese, the differences appear minimal, but for low-
resource languages like Yoruba the gap is more
larger (prompt-level: avg 22.13% localized vs.
19.77% MT). For example, the performance of
Claude3.5-sonnet in Yoruba is largely underesti-
mated by 7.1% when evaluated using MT data.
These discrepancies indicate that MT-data can not
precisely capture the full complexity of instruction
following—especially when it comes to culturally
and linguistically fine-grained inputs. As task com-
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Input Instruction

Open Models

Proprietary Models

Chinese:

E— 0 B P
i, EARMEAFLAEE, ~a
VP AEMES - (Tell a joke containing the
words "Thursday" and "merge" in Swahili only, no

other languages allowed.)

Aya-expanse-32B:

Sijambo, ni sehemu ambako tu-
napokaa tuck kulaungiana mikosi ya
juma la saba na juma la nne... (Hello,

it’s a place where we stay to merge the mis-

fortunes of Saturday and Thursday...)

GPT-4o:

it 2 BB ER LRSI B
HBIVAES N THE, MEHLE
ZIFERMEART ! (Why can’t Thursday
and Friday merge? Because on Thursday you're

still working hard, but on Friday you’ve already

correct started celebrating the weekend!)
wrong
Spanish: LLaMA3.3-70B: Claude-3.5:

Reescribe la frase: ’Lancé mi copla al
viento de Levante’. Escribe toda tu re-
spuesta entre comillas dobles. (Rewrite the
phrase: I threw my verse to the Levante wind’.

Write your entire answer in double quotes.)

"Dejo que mi cancion se escuche lle-
vada por el viento de Levante" (1 let my
song be heard carried by the Levante wind)
wrong

"Al viento de Levante arrojé mi copla" (To
the Levante wind I threw my verse)
wrong

Malay:

Boleh buat jadual lawatan 5 hari ke Istana
Maimoon yang mengandungi tepat 3 titik
peluru dalam format senarai menurun den-
gan huruf kecil dan nota di akhir bermula
dengan P.S.? (Can you make a 5-day visit sched-
ule to Maimoon Palace containing exactly 3 bullet
points in a descending list format with lowercase let-

ters and a note at the end starting with P.S.? Please

Qwen2.5-72B:

Pulau Riau emas terbit

Laut lebar burung terbang

Rindang kelapa berjajar

Harapan bersama di Nusantara (Riau
Island golden sunrise / Wide sea birds flying /
Palm trees in rows / Hope together in Nusan-
tara)

wrong

Geminil.5-flash:

Pulau Bintan indah sekali

Lautnya biru pasir putih

Harta budaya Melayu asli

Tersebar luas di Nusantara (Bintan Island is
beautiful / Blue sea white sand / Original Malay
cultural heritage / Spread widely in Nusantara)
wrong

answer in English.)

Table 5: Examples of multilingual instruction-following capabilities across different models. English translations

are provided in italics below each non-English text.

plexity increases, the inadequacy of MT data be-
comes even more evident, suggesting that localized
data is crucial for a precise evaluation of LLMs’
instruction-following abilities.

4.4 Case Study

We demonstrate some test cases and model out-
puts from our Marco-Bench-MIF dataset in Table 5.
The three representative cases provide some con-
crete observation of LLMs behavior when facing
localized multilingual instructions. The Chinese-
Swahili joke generation exposes fundamental lan-
guage switching limitations, where GPT-40 de-
faults to Chinese despite explicit instructions, while
Aya-expanse-32B successfully maintains Swahili
output through specialized multilingual embed-
dings. Both LLaMA3.3-70B and Claude-3.5 fail
the Spanish rewriting task’s structural requirement
(strict quote enclosure), demonstrating that format-
ting constraints remain under-addressed in current
multilingual training paradigms. The Malay sched-
ule generation reveals deeper instruction compre-
hension failures - proprietary models generate ir-
relevant poetry instead of bullet-point schedules,
suggesting overfitting to frequent Malay literary
patterns rather than practical task requirements.
These failures persist across model scales and archi-
tectures, indicating systemic gaps in non-English
instruction following that correlate with training
data priorities rather than model capacity. The

cases highlight three underdeveloped capabilities
of LLMs: 1) cross-lingual constraint propagation,
2) non-English structural formatting, and 3) culture-
specific task understanding.

5 Conclusion

Our work presents Marco-Bench-MIF, a compre-
hensive multilingual instruction-following bench-
mark covering 30 languages with localized adap-
tations. Through extensive evaluation, we iden-
tify key challenges in multilingual instruction fol-
lowing, including formatting fragility, composi-
tional reasoning limits, and structural-task dis-
parity. Our results demonstrate that while large-
scale models achieve strong performance in high-
resource languages, significant gaps remain for low-
resource languages and complex structural con-
straints. These findings highlight the need for more
robust evaluation frameworks that account for lin-
guistic diversity and task complexity. Specialized
models like Aya-expanse-32B in certain multilin-
gual instructions suggests that targeted architec-
tural improvements can complement scaling strate-
gies. However, the persistent performance gaps in
low-resource languages and fine-grained cultural-
related tasks indicate that data quality and diversity
remain critical bottlenecks. Future research will
focus on expanding Marco-Bench-MIF to include
more languages particularly those with unique ty-
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pological features, will provide a more compre-
hensive understanding of multilingual instruction-
following capabilities. We also plan to include
more instruction types to better reflect real-world
scenarios.

Limitations

Our work has several limitations that highlight
directions for improvement. First, while our
Marco-Bench-MIF covers 30 languages, it under-
represents languages with non-Latin scripts (e.g.,
Ethiopic, Cherokee) and dialectal variations (e.g.,
Arabic dialects), which limits investigation into
instruction with more diverse scripts. Second,
our cultural localization focuses on surface-level
adaptations (e.g., date formats) with a few fine-
grained cultural pragmatics (e.g., politeness strate-
gies in Japanese), potentially missing more deeper
instruction-following failures. Moreover, while we
mitigated translation artifacts through human eval-
uation, residual biases from automated localization
(e.g., GPT-4’s tendency to formal register) may still
exist in certain languages. Finally, our evaluation
focuses on static prompts rather than interactive in-
struction refinement, limiting insights into models’
ability to recover from errors in dynamic conversa-
tions.

Ethics and Broader Impact

In developing Marco-Bench-MIF, a multilingual
instruction-following benchmark covering 30 lan-
guages, we prioritize ethical considerations in
dataset creation, model evaluation, and broader so-
cietal impacts. Our localization process combines
automated translation with human verification to
ensure cultural sensitivity and linguistic appropri-
ateness, avoiding stereotypes or misrepresentations.
The dataset will be made publicly available with
detailed documentation to ensure transparency and
reproducibility, while clear usage guidelines will
mitigate potential misuse, such as deploying LLMs
in harmful applications. We also recognize the envi-
ronmental impact of computational resources used
in this work and advocate for energy-efficient meth-
ods in NLP research. We are committed to responsi-
ble Al development and have taken steps to ensure
fairness, inclusivity, and respect for human con-
tributors. Human annotators and translators were
compensated fairly and provided informed consent,
with their privacy and rights upheld throughout the
project.
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Model no_comma end_checker quotation
Aya23-8B 28.08 26.80 25.61
Ministral-8B 41.15 2791 21.66
LLaMA3.1-8B 44.73 32.77 28.88
EuroLLM-9B 41.64 38.30 37.75
Aya-expanse-8B 24.57 44.06 54.68
Aya23-35B 46.21 40.92 56.38
Qwen2.5-7B 67.33 46.22 56.09
Aya-expanse-32B 46.75 52.54 74.00
Gemma2-9B 68.67 63.92 64.34
Qwen2.5-14B 67.03 69.16 68.05
Mistral-Large 86.48 70.62 64.68
Gemma2-27B 87.84 66.92 78.92
GPT-40-mini 87.44 72.00 85.26
Qwen2.5-72B 87.80 73.39 83.86
Qwen-Plus 90.36 72.44 83.09
Qwen-Max 91.84 73.50 81.75
GPT-40 86.50 75.23 89.42
LLaMA3.3-70B 92.07 82.16 83.27
Geminil.5-flash 93.23 77.90 89.73
Claude3.5-sonnet 95.56 77.89 94.12

Table 6: Format style Instruction Following Results

Eli Collins, Joelle Barral, Zoubin Ghahramani, Raia
Hadsell, D. Sculley, Jeanine Banks, Anca Dragan,
Slav Petrov, Oriol Vinyals, Jeff Dean, Demis Hass-
abis, Koray Kavukcuoglu, Clement Farabet, Elena
Buchatskaya, Sebastian Borgeaud, Noah Fiedel, Ar-
mand Joulin, Kathleen Kenealy, Robert Dadashi,
and Alek Andreev. 2024. Gemma 2: Improving
open language models at a practical size. Preprint,
arXiv:2408.00118.

Zhiyuan Zeng, Jiatong Yu, Tianyu Gao, Yu Meng, Tanya
Goyal, and Danqi Chen. 2024. Evaluating large lan-
guage models at evaluating instruction following. In
The Twelfth International Conference on Learning
Representations.

Jeffrey Zhou, Tianjian Lu, Swaroop Mishra, Sid-
dhartha Brahma, Sujoy Basu, Yi Luan, Denny Zhou,
and Le Hou. 2023. Instruction-following evalu-
ation for large language models. arXiv preprint
arXiv:2311.07911.

Ahmet Ustiin, Viraat Aryabumi, Zheng-Xin Yong, Wei-
Yin Ko, Daniel D’souza, Gbemileke Onilude, Neel
Bhandari, Shivalika Singh, Hui-Lee Ooi, Amr Kayid,
Freddie Vargus, Phil Blunsom, Shayne Longpre,
Niklas Muennighoff, Marzieh Fadaee, Julia Kreutzer,
and Sara Hooker. 2024. Aya model: An instruction
finetuned open-access multilingual language model.
Preprint, arXiv:2402.07827.

A Appendix

A.1 Results per Category

Format Style: Models exhibit formatting fragility,
with comma/quote adherence showing 40-60 point
gaps between small and large models. Special-
ized architectures (Aya-expanse-32B:74% quota-

tion) outperform general models of similar size
(Gemma2-9B:64.34%), suggesting targeted train-
ing improves stylistic precision. Claude3.5’s
94.12% quotation accuracy demonstrates propri-
etary models’ edge in text surface constraints.
Content Constraints: Complex multi-instruction
tasks (repeat_prompt:56.66-95.56%) reveal com-
positional reasoning limits. While all models
struggle with numerical placeholders (<=95.36%),
open-source models show particular weakness
in frequency counting (Gemma2-27B:67.8% vs
Claude3.5:82.8%). The 35-point spread in forbid-
den_words detection highlights fundamental dif-
ferences in constraint understanding architectures.
Structure: JSON formatting proves most discrimi-
natory (Claude3.5:95.1% vs Qwen2.5-7B:63.3%),
exposing syntax-semantics decoupling. While all
models achieve >90% on constrained_response,
multi-section generation (81.04% max) remains
challenging, suggesting current architectures prior-
itize content over structural fidelity. Length: Posi-
tional counting (nth_paragraph_first_word) shows
severe scale sensitivity—8B models average 17.9%
vs 70B+ at 76.3%. Word/paragraph limits reveal
inverted patterns: Qwen2.5-72B outperforms GPT-
40 in word counts (73.27% vs 67.62%), indicating
counting mechanisms vary significantly across ar-
chitectures. Language: Proprietary models lead re-
sponse_language accuracy (95.43% max), but spe-
cialized open models (Aya-expanse-32B:95.69%)
close the gap through linguistic focusing. The
26-point spread between similarly-sized models
(Gemma2-9B:91.82% vs EuroLLM-9B:79.19%)
underscores the impact of multilingual pretraining
strategies.

Our analysis reveals three main limitations in
multilingual instruction following: (1) Structural-
task disparity where models handle content gener-
ation better than formatting/structural constraints,
(2) Scale-task decoupling as certain capabilities
(positional awareness) require extreme scaling
while others (basic translation) plateau early, and
(3) Architecture-task alignment where model spe-
cialization (multilingual vs general-purpose) cre-
ates 15-30 point performance variations indepen-
dent of scale. The results suggest current bench-
marks underestimate cross-task capability vari-
ance, necessitating more granular evaluation frame-
works.
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Model repeat_prompt two_responses number_placeholders postscript existence forbidden_words frequency letter_frequency
Aya23-8B 6.86 10.02 44.66 61.18 44.86 68.70 41.00 47.19
EuroLLM-9B 7.86 32.25 41.33 75.39 54.95 66.73 46.53 48.60
Ministral-8B 14.15 19.32 51.42 71.69 42.50 85.39 43.96 46.60
LLaMA3.1-8B 14.73 33.59 46.51 56.31 48.15 82.90 47.15 58.84
Aya23-35B 33.99 27.75 54.39 78.48 57.90 69.10 51.56 46.97
Aya-expanse-8B 20.77 16.42 60.90 88.63 68.45 68.73 58.85 50.79
Qwen2.5-7B 34.59 59.75 63.13 84.48 68.45 76.74 53.91 50.37
Aya-expanse-32B 28.44 45.16 70.68 93.55 77.30 73.84 68.95 52.30
Gemma2-9B 47.89 60.76 73.50 95.40 67.70 87.23 58.86 51.28
Qwen2.5-14B 43.07 77.59 77.65 90.79 73.20 82.21 66.81 57.95
Gemma2-27B 55.08 87.33 83.13 67.77 70.15 87.68 67.80 53.75
Qwen2.5-72B 54.98 81.67 89.64 94.94 81.50 87.47 74.66 54.49
Mistral-Large 56.15 82.92 84.75 95.71 81.50 89.69 78.44 55.82
Qwen-Plus 55.89 83.16 87.42 93.87 85.79 85.86 79.87 55.14
Qwen-Max 55.93 85.30 88.81 90.01 84.88 89.25 77.36 55.84
GPT-40-mini 68.32 88.33 78.57 98.30 80.80 89.16 75.96 48.54
LLaMA3.3-70B 61.47 88.17 95.26 92.64 81.10 92.38 81.90 61.52
Geminil.5-flash 70.80 91.78 95.36 98.25 76.65 87.76 79.33 55.11
GPT-40 74.84 90.47 92.29 98.91 82.80 91.08 82.50 51.99
Claude3.5-sonnet 56.66 93.62 94.61 96.07 85.08 95.80 82.80 64.28

Table 7: Content constraints Instruction Following Results

Model constrained_response  json_format multiple_sections number_bullet_lists number_highlighted_sections title
Ministral-8B 61.20 36.23 36.29 24.07 59.92 46.49
Aya23-8B 67.16 52.89 30.19 27.96 57.31 32.63
LLaMA3.1-8B 68.80 17.05 46.85 34.40 68.91 70.94
EuroLLM-9B 72.80 43.38 51.72 36.52 66.34 72.86
Aya23-35B 78.80 60.13 36.86 46.06 68.17 72.33
Aya-expanse-8B 74.80 62.35 44.27 45.09 92.26 56.12
Qwen2.5-7B 90.40 63.30 4543 52.90 77.00 88.12
Gemma2-9B 84.20 50.59 54.28 66.65 87.00 84.55
Aya-expanse-32B 73.80 81.17 60.57 55.03 92.60 74.50
Qwen2.5-14B 89.20 71.77 71.70 58.70 78.58 92.87
Gemma2-27B 83.80 68.48 66.86 69.02 89.92 85.20
Mistral-Large 83.20 85.77 72.86 62.44 94.00 89.95
Qwen2.5-72B 91.60 71.41 75.15 69.74 92.93 95.25
Qwen-Plus 90.86 81.68 79.40 70.87 88.47 92.51
LLaMA3.3-70B 90.00 73.65 77.72 81.48 93.93 88.33
Geminil.5-flash 89.43 86.39 69.80 78.48 93.28 95.84
Qwen-Max 93.28 83.27 81.03 71.43 92.14 94.61
GPT-40-mini 92.29 88.22 83.27 73.35 92.03 93.07
GPT-40 91.14 87.46 84.09 73.50 95.42 96.23
Claude3.5-sonnet 92.86 95.10 81.04 76.77 91.80 97.31

Table 8: Structure Instruction Following Results
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Model nth_paragraph_first word number_paragraphs number_sentences number_words
Ministral-8B 10.50 12.36 59.53 52.97
Aya23-8B 13.76 19.56 59.36 51.91
EuroLLM-9B 20.83 24.87 56.54 54.57
LLaMA3.1-8B 20.65 2991 57.65 68.77
Aya-expanse-8B 26.66 37.40 54.03 62.37
Qwen2.5-7B 19.50 46.15 60.23 59.59
Aya23-35B 34.16 36.66 57.45 61.15
Aya-expanse-32B 51.17 58.23 56.38 60.25
Gemma2-9B 52.83 60.92 60.38 52.50
Gemma2-27B 52.34 63.73 61.46 55.12
Qwen2.5-14B 40.16 68.02 64.03 67.34
Mistral-Large 60.66 69.42 64.77 61.25
Geminil.5-flash 56.90 87.52 65.75 70.14
Qwen-Max 72.03 81.92 67.45 64.02
GPT-40-mini 81.66 78.95 61.54 63.61
Qwen-Plus 69.41 83.34 69.04 66.05
Qwen2.5-72B 72.01 75.50 67.38 73.27
GPT-40 81.78 86.00 62.80 67.62
Claude3.5-sonnet 82.38 89.27 72.52 59.65
LLaMA3.3-70B 69.49 89.05 73.73 75.22
Table 9: Length Instruction Following Results
Model ar_local ar_mt es_local es_mt ms_local ms_mt yo_local yo_mt zh_local zh_mt
Ministral-8B 7.85 7.50 39.30 36.70 25.40 26.35 12.10 12.60 39.25 34.65
LLaMA3.1-8B 1045 11.10 4270 4730  35.60 39.65 9.35 11.35 19.60  20.15
Aya23-8B 37.15 34.10 28.95 31.95 25.80 25.00 10.35 8.95 26.15 20.50
LLaMA3-8B 13.25 11.85 50.55 56.45 35.60 39.55 9.45 11.35 12.50 13.85
Qwen2-7B 34.55 34.85 41.40 45.05 32.65 34.55 10.80 10.20 46.60 44.60
EuroLLM-9B 4545  40.65 50.50  48.85 29.65 27.45 14.05 11.85  46.85  41.55
Aya23-35B 47.15 44.55 44.00 46.20 38.85 37.80 11.35 10.45 38.80 45.70
LLaMA3.1-70B 19.70  20.15 59.65 59.60 52.65 55.05 21.05 13.50 31.15 32.80
LLaMA3-70B 2530  21.70 67.85 70.95 52.30 55.05 21.05 13.50 22.60 18.05
Aya-expanse-8B 5035  48.05 53.60 49.70  37.80 38.40 14.90 12.55 5240  51.60
Qwen2.5-7B 42.05 37.70 57.95 63.10 54.25 50.95 13.05 10.70 59.85 58.70
Gemma2-9B 55.95 53.80 62.85 65.30 59.70 63.40 21.55 19.05 57.85 55.35
Aya-expanse-32B  65.05 61.75 64.25 63.60 58.15 55.90 14.05 14.35 65.70 65.20
Qwen2.5-14B 61.10 56.85 67.15 7090  60.90 60.55 14.70 1135 6560  66.35
Gemma2-27B 60.20  57.40 68.10 69.40 61.45 67.90 27.90 22.65 63.40 59.05
Qwen2-72B 64.80  60.10 71.70 70.95 65.90 70.05 12.10 10.60 69.60 67.20
Mistral-Large 66.55 63.95 75.70 76.25 68.00 71.40 11.35 10.70 69.85 66.90
LLaMA3.3-70B 50.75 48.05 79.50  78.85 76.10 71.60 29.95 20.80  66.55  62.75
Qwen2.5-72B 69.80 66.55 79.20  80.95 74.10 76.15 19.60 17.00  74.65  73.10
Qwen-Plus 78.25 75.75 83.00 82.70 78.50 75.25 17.45 12.45 77.30 77.20
Qwen-Max 75.40 71.80 78.20 81.25 77.65 75.40 31.65 21.25 73.15 74.70
GPT-40-mini 7190 71.25 77.25 78.30 72.95 75.75 44.85 48.45 74.50 72.35
GPT-40 7420 7290 7835 7940 7495 80.10 51.75 56.85  77.15  73.40
Geminil.5-flash 79.10  71.55 78.30 79.20 80.30 79.85 53.30 53.40 74.60 72.05
Claude3.5-sonnet 7590  75.40 81.85 81.50 78.65 80.90 55.45 48.35 75.40 72.30
Avg 5129  48.77 63.27 64.58 56.31 57.36 22.13 19.77 55.24 53.60

Table 10: Prompt Accuracy results on Marco-Bench-MIF for specific languages.
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Model ar_local ar_mt es_local es_mt ms_local ms_mt yo_local yo_mt zh_local zh_mt
Aya23-8B 6345 6255 5840 4275 3920 3820  21.40 1840  53.10 4835
LLaMA3.1-8B 3795 3750 68.15 5785  47.70 52.00 2335 2625 4730 4935
Ministral-8B 3580 3510 6750 5045 @ 41.10 43.85 29.15 2880  66.70  64.70
LLaMA3-8B 4425 4295 7565 69.30  47.80 51.95 2340 2605 47.05  46.00
Aya23-35B 70.80  70.00 69.95 57.15  51.00 5040  20.85 19.60 6580  68.80
LLaMA3.1-70B  45.05 4680 7840 6730  64.30 6520  36.80 31.30 5845  59.60
Qwen2-7B 66.60 6620 7020 57.75  48.70 5200 2725 2150 7250 7135
EuroLLM-9B 7290 6840 7560 6120 4495 44.45 2940 2650  73.05  69.75
Aya-expanse-8B  73.10  71.70 7585 6325 4925 51.10  27.00 2450 7460  74.30
LLaMA3-70B 57.85 5475 85.10 8120  63.95 65.25 36.75 3135 5845 5355
Qwen2.5-7B 68.65 6545 7770 7135  64.65 64.95 2660 2555 8125  79.10
Qwen2.5-14B 7935 7665 8220 7655  68.40 66.60  27.85 2420 8395  83.65
Aya-expanse-32B 8420  81.35 8355 7550  71.50 69.25 2425 2340  85.05  84.00
Gemma2-9B 79.30 7650 8240 7630 7225 75.05 3875 3475  79.80 7775
Qwen2-72B 83.25 8035 87.15 79.05 7740 79.00 2685 2475 8635 8425
Gemma2-27B 81.55 7875 8550 79.60  74.30 7770 4070  36.15 8290  79.20
Mistral-Large 8375 8275 8825 8330  78.05 80.85 2425 2405 8670  84.45
LLaMA3.3-70B  73.15 71.05 89.65 8395  81.60 79.00 4515 3645 8185  78.85
Qwen2.5-72B 85.80 8370 9025 87.05  82.50 83.55 3560 3515  88.85  87.60
Qwen-Plus 90.15 8830 9240 88.65 8590 8370 3210  29.00 90.15  89.50
Qwen-Max 8825 86.00 90.00 87.05 84.15 83.60 4775 3970  88.10  88.40
GPT-40-mini 8750 86.15 89.20 8470  81.70 8330  58.05 6520 88.45  87.00
Geminil.5-flash ~ 90.75  86.55 90.10 8630  87.20 86.50 6775  67.65 88.65  86.50
GPT-40 88.15 8670  90.15  86.60  83.80 87.00 6650 7120  90.00  88.00
Claude3.5-sonnet  88.95 88.10 9220 8735  86.20 87.85 69.15 6325 8945  87.60
Avg 72.82 7097 8142 73.66  67.10 68.09 3627 3419 7634  74.86

Table 11: Instruction Accuracy results on Marco-Bench-MIF for specific languages.

A.2 Detailed Results of Performance on

Localised Data vs MT Data

From the results in Table 10 and Table 11, we can
see that the performance of most LLMs on local-
ized data consistently outperforms MT data across
all languages and model scales, but the gap varies
significantly by language family. For high-resource
languages like Spanish (es), the difference is mini-
mal (prompt-level: 63.27% vs 64.58%), while low-
resource languages like Yoruba (yo) show substan-
tial disparities (prompt-level: 22.13% vs 19.77%).

Furthermore, our evaluation results show crit-
ical limitations in using machine-translated data
for evaluating multilingual instruction-following
capabilities. Localized data exposes significant
gaps in LLMs’ ability to handle culturally and
linguistically fine-grained instructions, which are
often overlooked in MT data as translated could
contain unexpected errors making it hard for
LLMs to understand the instruction. For exam-
ple, in Yoruba (yo), localized data shows a 7.1%
higher prompt-level accuracy than MT data for
Claude3.5-sonnet, highlighting that MT evalua-
tions underestimate model performance especially
in low-resource languages. The divergence be-
tween localized and MT results increases with
task complexity. While MT data performs com-
parably for simple constraints (e.g., Spanish es
instruction-level: 73.66% MT vs 81.42% local-

ized), it fails to capture the challenges of cultur-
ally adapted multi-instruction prompts (e.g., Ara-
bic ar prompt-level: 51.29% localized vs 48.77%
MT). This suggests that MT benchmarks overesti-
mate LL.Ms’ ability to follow instructions in more
complex multilingual scenarios. We found that
model scale also affects the performance of LLMs:
smaller models (e.g., Aya23-8B) show inconsis-
tent localization benefits (ar: +0.9% prompt-level,
-20.65% instruction-level), while larger models
(e.g., Claude3.5-sonnet) demonstrate more stable
gains (yo: +7.1% prompt-level, +5.9% instruction-
level). This suggests that scale amplifies local-
ization advantages, particularly for low-resource
languages. The evaluation results underscores the
need for localized instruction-following data to pre-
cisely assess LLMs’ instruction-following capabili-
ties
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