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Abstract

Document retrieval in real-world scenarios
faces significant challenges due to diverse doc-
ument formats and modalities. Traditional text-
based approaches rely on tailored parsing tech-
niques that disregard layout information and are
prone to errors, while recent parsing-free visual
methods often struggle to capture fine-grained
textual semantics in text-rich scenarios. To
address these limitations, we propose Unveil,
a novel visual-textual embedding framework
that effectively integrates textual and visual
features for robust document representation.
Through knowledge distillation, we transfer
the semantic understanding capabilities from
the visual-textual embedding model to a purely
visual model, enabling efficient parsing-free
retrieval while preserving semantic fidelity. Ex-
perimental results demonstrate that our visual-
textual embedding method surpasses existing
approaches, while knowledge distillation suc-
cessfully bridges the performance gap between
visual-textual and visual-only methods, improv-
ing both retrieval accuracy and efficiency.

1 Introduction

Document retrieval for real-world applications re-
mains a challenging task due to the need to effec-
tively handle diverse document formats, includ-
ing text, images, charts, and complex visual lay-
outs. As shown in Figure 1, traditional document
retrieval predominantly relies on Optical Character
Recognition (OCR) to convert scanned or image-
based documents into machine-readable text. Sub-
sequently, approaches such as the lexical-based
BM25 (Robertson et al., 2009) and embedding-
based techniques like Dense Passage Retrieval
(DPR) (Karpukhin et al., 2020) are utilized to
model the semantic relevance between queries and
documents. However, OCR-dependent pipelines
come with significant limitations. They not only
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Figure 1: Comparison of document retrieval methods.
Traditional approaches parse text and use text encoders
for embeddings, while parsing-free methods directly
process document screenshots with visual language
models. Our visual-textual approach leverages both
modalities, effectively addressing diverse scenarios.

add computational overhead but also introduce po-
tential recognition errors. Furthermore, these ap-
proaches often miss crucial visual contextual ele-
ments, which are essential for comprehending doc-
ument content (Zhang et al., 2024; Faysse et al.,
2024; Ma et al., 2024a).

Recent research has shifted toward parsing-free
techniques that directly utilize visual inputs such
as document screenshots (Faysse et al., 2024; Ma
et al., 2024a; Zhou et al., 2024; Ni et al., 2021;
Lin et al., 2024; Lee et al., 2024b). These meth-
ods leverage Vision-Language Models (VLMs) and
Multi-Modal Large Language Models (MLLMs) to
process entire pages directly, preserving rich struc-
tural and graphical information (Cho et al., 2024;
Yu et al., 2024; Yao et al., 2024a). While these ap-
proaches circumvent the computational overhead
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and complexity associated with OCR, our empiri-
cal analysis reveals significant limitations in their
textual understanding capabilities. As shown in
Figure 2, our comparison of text-based and visual-
based methods across both text-rich scenarios (web-
page retrieval) and visual-rich scenarios (visual
document retrieval) reveals distinct performance
patterns. In visual-rich scenarios where layout
and graphical elements are crucial, these visual-
based methods outperform traditional text-based
approaches, highlighting their superior ability to
process spatial and structural information (Masry
et al., 2022; Tanaka et al., 2023; Tito et al., 2023).
However, when handling text-rich contexts, visual-
based methods struggle to capture semantic details
that text-based methods process effectively.

This observation underscores a fundamental
challenge: text-based methods excel in modeling
linguistic semantics but overlook crucial layout and
graphical details, while purely visual methods pre-
serve visual context but struggle with fine-grained
language understanding (Faysse et al., 2024; Zhang
et al., 2024; Ni et al., 2021; Ma et al., 2024a). To
address this limitation, we propose Unveil (Unified
Visual-Text Integration and Distillation), a novel
framework that bridges the gap between textual
and visual document understanding. Our approach
consists of two key components: First, we develop
a visual-textual embedding approach that integrates
both textual and visual inputs, leveraging the com-
plementary strengths of both modalities for compre-
hensive document representations. Second, we con-
duct knowledge distillation to transfer semantic un-
derstanding from the teacher model (visual-textual
embedding model) to the student model (purely
visual model), enabling enhanced text comprehen-
sion without OCR dependency during inference.
Specifically, we propose several techniques to fa-
cilitate this distillation process: (1) Representa-
tion Alignment: The student model is trained to
replicate the teacher model’s representations by
minimizing the distance between their query and
document representations. (2) Soft Label Distil-
lation: We utilize the teacher model to provide a
fine-grained label distribution for the student model.
(3) Adaptive Re-Weighting: We dynamically iden-
tify instances where discrepancies exist between
the teacher and student models, assigning higher
weights to these instances.

Our framework offers a flexible retrieval system.
For text-rich scenarios that require precise seman-

Text–Based Method Visual–Based Method

Figure 2: Empirical analysis on retrieval performance
under text-rich and visual-rich scenarios.

tic nuances, the visual-textual model—which in-
corporates both textual and visual inputs—can be
employed. Alternatively, in scenarios where effi-
ciency or OCR-free processing is preferred, the
distilled visual-only model serves as a practical al-
ternative while maintaining comparable semantic
understanding. We validate our approach on 12
datasets encompassing both text-rich and visual-
rich scenarios. Experimental results indicate that
the visual-textual embedding model consistently
outperforms both text-based and visual-based meth-
ods. Furthermore, the distillation process effec-
tively reduces the gap between visual-textual and
visual-only approaches, enhancing retrieval accu-
racy and efficiency.

In summary, our contributions are as follows:

• We identify that existing text-based and visual-
based methods struggle to adapt across differ-
ent scenarios. To address this, we introduce
Unveil, a visual-textual embedding approach
that integrates textual and visual features for
comprehensive document understanding.

• We propose several knowledge distilla-
tion strategies to transfer the visual-textual
model’s robust textual understanding to a
purely visual model, enabling parsing-free re-
trieval without compromising accuracy.

• Extensive experiments demonstrate that our
visual-textual embedding method outperforms
existing text-based and visual-based meth-
ods. Additionally, the knowledge distillation
effectively reduces the gap between visual-
textual and visual-only approaches, enhancing
retrieval accuracy and efficiency.
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Figure 3: Unveil consists of: (a) a visual-textual embedding model that jointly processes document images and OCR
text, and (b) a purely visual model that operates on document images only. During training, knowledge distillation is
employed to transfer semantic understanding from the teacher (visual-textual) to the student (visual-only) model. At
inference time, the framework offers flexibility to choose between the two models based on efficiency requirements.

2 Methodology

Our proposed method seeks to bridge the gap be-
tween visual-textual and visual-only approaches.
Initially, Unveil learns a textual-visual embedding
model that leverages both OCR-derived text and
visual inputs. Subsequently, it distills the strong ca-
pacity of the visual-textual embedding model into
a purely visual model. The distilled visual model
thus retains the semantic richness characteristic of
visual-textual embeddings while achieving high
efficiency without the need for textual input.

2.1 Task Definition

Given a query q and a corpus C comprising vi-
sual documents {d1, d2, . . . , dn}, the task of multi-
modal document retrieval is to identify the k visual
documents most relevant to the query q. Relevance
is assessed using a similarity metric to measure
the similarity between the query and document em-
beddings. Here, a visual document represents a
complete information snippet (e.g., a web article or
a PPT page), while the query is purely textual.

2.2 Unveil Framework

As illustrated in Figure 3, Unveil comprises two
components: the teacher model (Visual-Textual
model) and the student model (Visual-Only model).
We initially train these models independently, fol-
lowed by knowledge distillation to produce a visual-
only model capable of robust document retrieval
without OCR reliance during inference.

Unified View of Retrieval Models Both the
visual-textual and visual-only models employ a

dual encoder architecture to model the similarity
between queries and documents. The key distinc-
tion lies in the input to the document encoder.

For the visual-textual model’s document encoder,
we begin by employing OCR on each document im-
age di to derive a textual description ti. The docu-
ment image is then processed by the vision encoder
of the vision-language model to yield visual tokens.
The encoded visual latent embeddings are concate-
nated with a text prompt for input to the subsequent
language model: “<s><img> <description> What
is shown in this image?</s>”. In contrast, for the
visual-only model’s document encoder, the input
to the subsequent language model is: “<s><img>
What is shown in this image?</s>”. For both mod-
els, the input to the query encoder is the query
text. To aggregate sequence information using a
language model with uni-directional attention, fol-
lowing prior work (Ma et al., 2024a), we use the
embedding of the end-of-sequence token </s> from
the last hidden state as the representation. The
representation of the queries and documents are
calculated as follows:

q = VLM(q)[−1]

ds = VLM(<img>,<inst>)[−1]

dt = VLM(<img>,<desc>,<inst>)[−1]

(1)

where ds,dt denote the document representation
from the student and teacher, respectively.

The query-document similarity is measured us-
ing cosine similarity between their embeddings:

Sim(q,d) =
qT · d

∥q∥ · ∥d∥ (2)
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During training, our embedding model is opti-
mized using the InfoNCE loss (Oord et al., 2018):

Lhard = −
∑

d+∈D+

log
exp(Sim(q,d+))∑
d∈D exp(Sim(q,d)) (3)

After independently training both models, we
freeze the teacher model and leverage it to guide
the student model during knowledge distillation.

Representation Alignment To align the repre-
sentation of the student and teacher model, we de-
fine a representation alignment loss:

Lalign =
1

n

n∑

i=1

(∥dt − ds∥22 + ∥qt − qs∥22) (4)

where n is the number of query-doc pairs.
Minimizing Lalign encourages ds and qs to in-

herit the teacher’s textual representation abilities.
As training progresses, the student model learns
to encode in a manner reflecting both textual se-
mantics and visual features, despite never explicitly
encountering textual data during inference.

Soft Label Distillation The teacher model’s
score distribution conveys fine-grained similarity
information, unlike hard one-hot labels. We lever-
age this by aligning the student’s distribution with
the teacher’s: The label distribution of the student
model and the teacher model are defined as follows:

t = ∀
d∈D

exp(Sim(d,dt))∑
d′∈D exp(Sim(d,d′

t))
(5)

s = ∀
d∈D

exp(Sim(d,ds))∑
d′∈D exp(Sim(d,d′

s))
(6)

The soft label distillation loss is calculated as:

Lsoft = DKL(t/τ, s/τ) (7)

where τ is the temperature parameter.

Adaptive Re-Weighting Discrepancies between
student and teacher models on certain documents
can reveal student misinterpretations. We propose
focusing on these discrepancies by giving them
higher weights using KL Divergence:

wi =
exp(−DKL(ti, si)/τ)∑K

j=1 exp(−DKL(tj , sj)/τ)
(8)

where wi denotes the importance of document di.
Finally, the total loss combines both the align-

ment loss and soft label distillation loss:

Ltotal =
n∑

i=1

wi × (Li
align + Li

soft) (9)

Inference During inference, Unveil offers two in-
ference modes to cater to different needs regarding
performance and computational efficiency.

The first mode, Visual-Textual Mode, uses both
OCR text and document images to achieve opti-
mal retrieval performance. By combining rich vi-
sual features with extracted textual information,
it maximizes semantic understanding for scenar-
ios requiring high precision. The second mode,
Visual-Only Mode, relies solely on the distilled vi-
sual model without OCR dependency, maintaining
competitive accuracy through advanced visual rep-
resentations. This mode significantly reduces com-
putational overhead, making it ideal for efficiency-
critical applications.

3 Experiment Setup

We evaluate Unveil on two distinct multi-modal re-
trieval scenarios: visual document retrieval, which
emphasizes visual content, and web page retrieval,
which focuses on textual content.

3.1 Visual Document Retrieval

Dataset We employ question-document pairs
from various VQA datasets, each targeting dis-
tinct document types: MP-DocVQA (Tito et al.,
2023) for industrial documents, ArXivQA (Li
et al., 2024), ChartQA (Masry et al., 2022),
InfographicsVQA (Mathew et al., 2022), and
PlotQA (Methani et al., 2020) for different types of
figures, as well as SlideVQA (Tanaka et al., 2023)
for presentation slides. We adhere to the datasets’
original train-test splits, except for MP-DocVQA
and InfographicsVQA, where the validation split
is utilized as our evaluation set. We construct the
retrieval corpus by collecting the positive docu-
ments linked to each query from the training and
evaluation sets.

Evaluation Following conventional assessment
approaches for VQA datasets, we apply Recall@10
and MRR@10 as evaluation metrics.

3.2 Web-Page Retrieval

Dataset Following (Ma et al., 2024a), we em-
ploy the Wiki-SS-corpus1 as our retrieval corpus.
This dataset is compiled from English Wikipedia
pages via URLs, with screenshots captured auto-
matically over four days, from May 20 to May 23,
2024. The corpus comprises 1,267,874 Wikipedia

1
https://huggingface.co/datasets/Tevatron/wiki-ss-corpus
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Model
ArxivQA ChartQA DocVQA InfoVQA PlotQA SlideVQA AVG

Rec MRR Rec MRR Rec MRR Rec MRR Rec MRR Rec MRR Rec MRR

Text-Based Models
BM25 42.30 32.48 56.69 43.66 86.38 73.56 83.19 69.03 50.48 33.18 91.16 76.65 68.37 54.76
GTR 40.82 31.17 56.55 43.50 74.19 57.09 84.95 67.82 44.87 28.83 90.43 74.82 65.30 50.54
BGE-Large 38.40 29.78 53.76 42.47 77.54 59.63 87.98 70.86 47.60 32.06 92.26 75.77 66.26 51.76
NV-Embed 44.92 35.13 52.09 43.04 80.26 60.50 91.84 77.05 47.67 31.55 93.90 78.83 68.45 54.35
MiniCPM 69.53 57.02 73.96 60.91 93.24 80.56 94.67 82.34 63.86 45.07 96.93 92.30 82.03 69.70

Visual-Based Models
SigLIP 50.50 35.57 66.16 47.62 54.55 34.86 68.08 47.40 52.82 25.89 87.22 78.06 63.22 44.90
ColPali 81.11 69.85 77.16 62.68 94.78 83.64 94.82 81.92 60.66 40.84 97.32 86.83 84.31 70.96
DSE 85.41 72.11 78.13 63.42 94.20 80.41 97.07 84.96 63.82 43.82 97.01 93.08 85.94 72.96
VisRAG 84.93 71.41 78.83 64.54 94.73 80.12 96.33 85.53 64.30 44.31 97.38 92.94 86.08 73.14

Hybrid Models
DSE 77.57 63.76 74.51 62.68 93.88 81.55 96.58 85.39 64.22 45.70 97.20 93.84 83.99 72.16
VisRAG 83.58 69.48 77.58 64.35 95.64 83.27 96.63 85.70 64.61 46.00 97.71 93.61 85.96 73.74

Unveil (Ours)
Visual-Textual 86.24 73.67 79.53 66.75 96.06 83.88 97.26 86.19 64.63 45.91 97.87 94.37 86.93 75.13
Visual-Only 86.23 73.27 80.36 66.40 95.74 82.53 97.61 86.39 64.82 46.16 97.61 93.75 87.06 74.75

Table 1: Overall performance on Visual Document Retrieval. The best retrieval performance is marked in bold.

screenshots. To reduce inference time, we sam-
ple 112,888 screenshots to serve our retrieval cor-
pus. For training, we use the Wiki-SS-NQ dataset2,
which is constructed by performing a BM25 search
for each question to retrieve positive documents,
thus forming query-document pairs.

Given the extensive use of the Wikipedia cor-
pus in open-domain QA tasks, we make evalu-
ation using several widely utilized QA datasets.
These include open-domain QA datasets such as
NQ (Kwiatkowski et al., 2019), TriviaQA (Joshi
et al., 2017), and WebQ (Berant et al., 2013), multi-
hop datasets like Wikihop (Yang et al., 2018) and
HotpotQA (Ho et al., 2020), as well as the ambigu-
ous dataset ASQA (Stelmakh et al., 2022).

Evaluation Consistent with previous practices
for evaluating the effectiveness of retrieval in QA
datasets, we use Recall@10 and MRR@10 as eval-
uation metrics. Specifically, a question is consid-
ered correctly answered if its retrieved documents
contain at least one answer from the answer list.

3.3 Implementation Details

Our framework involves initially training both a
teacher and a student model independently, fol-
lowed by knowledge distillation. Throughout both
stages, models are fine-tuned using in-batch nega-
tives for two epochs, with a batch size of 16 and
a learning rate of 2e-5 on 8 NVIDIA A100 80GB
GPUs. We initialize the models with MiniCPM-V

2
https://huggingface.co/datasets/Tevatron/wiki-ss-nq

2.0 (OpenBMB, 2024; Yao et al., 2024a). Addi-
tional details regarding the training and document
parsing are provided in Appendices B and C.

3.4 Baselines

We compare our method with the following re-
trieval approaches:

• Text-Based Models: This category encom-
passes BM25, a well-known lexical model, as
well as advanced text embedding models such
as BGE-Large-en-v1.53(Xiao et al., 2023),
GTR-T5-Large4(Ni et al., 2021), NV-Embed-
v15(Lee et al., 2024a), and MiniCPM6(Yao
et al., 2024b), which has been fine-tuned for
dense text retrieval.

• Visual-Based Models: This includes
SigLIP7(Zhai et al., 2023), a model in the
CLIP style for vision tasks; ColPali(Faysse
et al., 2024), a multi-vector retrieval model; as
well as DSE (Ma et al., 2024a) and VisRAG
(Yu et al., 2024), which are state-of-the-art
visual embedding models.

• Hybrid Models: We also create hybrid mod-
els by interpolating similarity scores from the
retrieval results of visual-based retriever like

3
https://huggingface.co/BAAI/bge-large-en-v1.5

4
https://huggingface.co/sentence-transformers/gtr-t5-large

5
https://huggingface.co/nvidia/NV-Embed-v1

6
openbmb/MiniCPM-V-2

7
https://huggingface.co/HuggingFaceM4/

siglip-so400m-14-980-flash-attn2-navit
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Model
NQ TriviaQA WebQ Wikihop HotpotQA ASQA AVG

Rec MRR Rec MRR Rec MRR Rec MRR Rec MRR Rec MRR Rec MRR

Text-Based Models
BM25 61.33 40.01 72.67 56.35 64.07 41.73 36.02 23.98 48.93 33.64 70.50 48.07 58.92 40.63
GTR 66.84 52.22 57.41 40.70 73.13 55.96 25.14 15.11 38.23 25.04 79.66 64.28 56.74 42.22
BGE-Large 68.39 54.22 61.03 44.36 73.97 56.99 26.65 16.74 42.55 29.05 80.67 66.46 58.88 44.64
NV-Embed 69.97 54.61 68.84 52.04 75.10 55.77 31.62 19.48 45.63 31.78 82.12 68.96 62.21 47.11
MiniCPM 75.23 60.04 77.44 63.56 75.76 59.26 39.10 25.44 50.93 36.11 83.24 69.47 66.95 52.31

Visual-Based Models
SigLIP 59.57 41.45 53.25 34.08 58.33 39.09 22.30 13.93 31.63 18.89 67.82 47.11 48.82 32.42
ColPali 68.78 53.18 60.70 44.82 73.57 56.50 27.59 16.97 40.77 27.43 81.68 66.47 58.85 44.23
DSE 71.70 55.90 73.07 55.61 71.67 54.30 35.03 21.70 45.53 30.43 78.66 62.21 62.61 46.69
VisRAG 72.17 56.20 72.37 55.55 71.38 53.96 34.13 20.46 45.60 31.06 79.78 63.72 62.57 46.83

Hybrid Models
DSE 73.80 59.56 76.18 61.74 73.79 57.98 37.17 23.88 48.20 34.25 81.34 67.03 65.08 50.74
VisRAG 73.80 59.73 75.84 61.22 74.14 57.84 36.13 23.16 48.67 34.81 81.79 68.36 65.06 50.85

Unveil (Ours)
Visual-Textual 75.80 61.86 78.75 64.68 75.81 60.02 40.57 26.23 52.40 36.62 84.13 70.40 67.91 53.30
Visual-Only 72.20 57.30 74.64 59.07 73.84 55.84 35.50 22.23 48.13 32.95 80.11 65.31 64.07 48.78

Table 2: Overall performance on Web-Page Retrieval. The best retrieval performance is marked in bold.

DSE and VisRAG and with text-based retriev-
ers MiniCPM (Ma et al., 2024b).

To ensure a fair comparison, all methods, except
for widely used text-based methods, are trained
on in-domain datasets. Moreover, for the text-
based methods, we trained MiniCPM on in-domain
datasets to ensure a fair comparison.

4 Experimental Results

4.1 Main Result

In this section, we present experiments in both
visual document retrieval and web page retrieval
scenarios. Based on the results shown in Tables 1
and 2, several observations can be made:

First, text-based and visual-based models each
exhibit unique advantages in different scenarios.
For example, in web page retrieval, the text-based
method MiniCPM significantly outperforms visual-
based models. Conversely, in visual document re-
trieval, visual-based approaches excel. This high-
lights that these models cannot achieve superior
performance across both scenarios. Interestingly,
the simple lexical method BM25 outperforms more
powerful dense retrieval models like BGE-Large.
This can be attributed to the fact that text within
these visual documents is often fragmented and se-
mantically incoherent. In such cases, string match-
ing might be a more effective solution.

Second, hybrid models yield intermediate re-
sults, which is understandable given that, in web-
page retrieval, the scores generated by text-based

Methods DocVQA InfoVQA

Rec MRR Rec MRR

Ours 95.74 82.53 97.61 86.39
-w/o Adaptive Re-Weighting 95.64 82.45 97.41 86.20
-w/o Representation Alignment 95.26 81.49 97.21 85.89
-w/o Soft Label Distillation 94.94 80.89 96.68 85.06
-w/o Distillation 94.20 80.41 97.07 84.96

Table 3: Ablation Study. We experiment by gradually re-
moving all components and observing the performance.

models might be adversely affected by the less
accurate scores from visual-based models, which
leads to performance inferior to that of text-based
models alone. This demonstrates that merely merg-
ing the outputs of the two models does not inher-
ently enhance performance. Additionally, these
models necessitate inference from both models,
which increases the inference cost.

Third, our method Unveil, specifically the visual-
textual variant, consistently achieves the highest
performance across all retrieval scenarios, confirm-
ing its effectiveness in integrating information from
both modalities for improved outcomes. Further-
more, the distilled visual-only version exhibits su-
perior performance compared to both text-based
and visual-based models and can even achieve per-
formance comparable to the teacher model while
requiring no text input. This is mainly because
our distillation framework can effectively transfer
comprehensive knowledge to the student model.

23940



NQ TriviaQA WebQ

Length Rec MRR Rec MRR Rec MRR

0 71.70 55.90 73.07 55.61 71.67 54.30
512 72.73 57.53 75.94 60.93 73.55 57.00
1024 73.70 57.73 76.81 61.41 72.81 56.79
2048 74.43 59.68 78.11 63.81 74.33 58.46
3096 75.27 60.83 78.71 63.87 76.11 59.09

Table 4: Performance of teacher model using different
input text lengths.

4.2 Ablation Study
In this section, we evaluate the effectiveness of
each component by incrementally removing them
and observing the changes in performance. “w/o
Representation Alignment” and “w/o Soft Label
Distillation ” refer to the removal of representation
alignment and soft label distribution loss, respec-
tively, following the removal of the adaptive re-
weighting. “w/o distillation” represents the visual
model before distillation.

As shown in Table 3, removing each component
results in performance degradation, confirming the
effectiveness of each component. Specifically, we
find that removing the representation alignment
loss leads to significant degradation in model per-
formance. This is because token representation
contains the most valuable information about the
query and document, and forcing the visual model
to produce representations similar to the visual-
textual model is the most direct way to learn from
it. Additionally, removing the soft label distillation
also results in performance degradation, primarily
because the teacher provides a soft label that helps
the student model discern fine-grained differences
between documents within the same batch.

4.3 Analysis
Impact of Text Length In this section, we ana-
lyze the impact of text length on the performance
of the teacher model. Specifically, we gradually
increase the text length from 0 to 3096 and observe
the changes in performance.

As shown in Table 4, the model performance im-
proves as the context length increases. This is ex-
pected because longer texts can provide more use-
ful information about the image. However, longer
contexts also incur additional inference costs, high-
lighting the importance of distilling the strong ca-
pabilities of the visual-textual teacher model into a
visual-only student model. Additionally, we ob-
serve a saturation phenomenon in performance.

(a) Before Distillation (b) After Distillation

Figure 4: The visualization of document embeddings.

Specifically, there is a significant performance in-
crease when the text length grows from 0 to 512,
but the improvement becomes less pronounced as
the length increases from 2048 to 3096. Therefore,
selecting an intermediate text length might offer a
good balance between effectiveness and efficiency.

Visualization of Embeddings In this section, we
analyze the effects of the distillation process by
visualizing the document representations of the
student and teacher models before and after dis-
tillation. Specifically, we sample 200 documents
from the ChartQA dataset and apply t-SNE to these
document representations.

As shown in Figure 4, the representations of the
student model become much more aligned with
those of the teacher model after distillation, con-
firming the effectiveness of the representation align-
ment technique. Additionally, the cosine similarity
between the student and teacher models also in-
creases. Consequently, after distillation, the student
model is able to achieve performance similar to that
of the teacher model without incurring additional
computational costs from input text.

4.4 Case Study

In this section, we analyze the effectiveness of
the visual-textual model versus the visual-only
model through several cases from the DocVQA
and PlotQA datasets.

As illustrated in Figure 5, the visual-textual
model demonstrates superior retrieval accuracy
compared to its visual-only counterpart. The key
distinction lies in their ability to capture semantic
information: while the visual-only model primarily
relies on visual patterns, potentially missing crucial
textual context, the visual-textual model leverages
both modalities to form a comprehensive under-
standing of the document content. This enhanced
semantic comprehension directly translates to more
accurate retrieval results.
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Question: What is the purpose of the 
"RF" block in the…
Answer: To provide a hypothesis

Question: Based on the points 
for Globular Clusters…
Answer: C

Figure 5: Case Study. We sample several cases from the DocVQA and PlotQA datasets to compare the performance
of the visual-only method and the visual-textual method. The keywords that match between the questions and the
content of the images are highlighted in red.

5 Related Work

5.1 Multi-modal Document Retrieval

In multi-modal document understanding, models
integrate visual and textual data to enhance infor-
mation extraction. MPLUG-DocOwl (Ye et al.,
2023) introduces a modular multimodal large lan-
guage model for OCR-free document understand-
ing, leveraging both visual and textual content.
MPLUG-DocOwl2 (Hu et al., 2024) extends this
approach by focusing on high-resolution compres-
sion for multi-page documents. VISTA (Zhou
et al., 2024) offers a method for visualized text em-
bedding, enabling efficient multi-modal retrieval
across document types. Unified multi-modal repre-
sentations, such as in (Lee et al., 2024b), combine
text and image features for improved retrieval and
understanding. Document parsing challenges are
also addressed by recent work on structured infor-
mation extraction (Zhang et al., 2024), which fo-
cuses on methods for extracting and understanding
document structures.

5.2 Multi-modal RAG

Multi-modal retrieval-augmented generation
(RAG) models combine retrieval and generative
techniques, leveraging both textual and visual
information to enhance document processing
tasks. VisRAG (Yu et al., 2024) uses vision-based

retrieval to improve generative tasks such as
document summarization by combining visual
and textual content. M3DocRAG (Cho et al.,
2024) extends RAG to multi-page, multi-document
settings, improving the generation of summaries
and answers by incorporating information from
multiple document sources. M-Longdoc (Chia
et al., 2024) introduces a retrieval-aware tuning
framework that enhances the understanding
of super-long documents by selecting relevant
document segments for generation. Colpali
(Faysse et al., 2024) applies vision-language
models with retrieval for more efficient document
retrieval, thereby boosting the quality of generation
tasks. MM-Embed (Lin et al., 2024) proposes a
unified framework for multimodal retrieval with
LLMs, optimizing retrieval and generation for
multi-modal documents.

6 Conclusion

In this paper, we identify that current text-based
and visual-based methods lack adaptability across
different scenarios. To overcome this, we introduce
Unveil, a visual-textual embedding approach that
integrates text and visual document features for en-
hanced semantic grounding. Our knowledge distil-
lation technique transfers robust textual understand-
ing from the visual-textual model to a purely visual
model, allowing for parsing-free retrieval without
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sacrificing accuracy. Empirical results show that
our visual-textual embedding method surpasses ex-
isting text-based and visual-based approaches. Ad-
ditionally, the knowledge distillation bridges the
gap between visual-textual and visual-only models,
improving retrieval accuracy and efficiency.

Limitations

In this paper, we propose a multi-modal document
retrieval framework that leverages both visual and
textual information. We acknowledge a limita-
tion in our approach: the visual-textual embedding
model relies on textual inputs, necessitating OCR
parsing of documents. This requirement can intro-
duce additional computational overhead and may
affect processing time, especially when dealing
with large volumes of documents or when OCR
accuracy is variable.
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A Dataset Statistics

Settings NQ TriviaQA WebQ HotpotQA 2WikiMultihopQA ASQA
(Kwiatkowski et al., 2019) (Joshi et al., 2017) (Berant et al., 2013) (Yang et al., 2018) (Ho et al., 2020) (Stelmakh et al., 2022)

Task Open-domain QA Open-domain QA Open-domain QA Multi-hop QA Multi-hop QA Ambiguous QA
Test Data 3,610 11,313 2,032 7,405 12,576 895
Metrics Recall@10, MRR@10

Table 5: Statistics and experimental settings of different tasks/datasets.

Settings ArXivQA ChartQA MP-DocVQA InfoVQA PlotQA SlideVQA
(Li et al., 2024) (Masry et al., 2022) (Tito et al., 2023) (Mathew et al., 2022) (Methani et al., 2020) (Tanaka et al., 2023)

Task Arxiv Figures Charts Industrial Documents Infographics Scientific Plots Slide Decks
Test Data 8,640 718 1,879 2,046 11,307 1,640
Metrics Recall@10, MRR@10

Table 6: Statistics and experimental settings of different tasks/datasets.

B Training Details

Training Data In web page retrieval, we utilize 49,095 training pairs of query and positive documents.
In visual document retrieval, we utilize 122,752 training pairs of query and positive documents.

Training Process We conducted full parameter fine-tuning during both stages. In the first stage, both
student model and teacher were fine-tuned for 2 epochs with a learning rate of 2e-5 and a batch size of
16. In the second stage, the teacher model was frozen and the student was fine-tuned for 2 epochs with a
learning rate of 2e-5 and a batch size of 16.

Model Inference After fine-tuning on the web page retrieval dataset, we tested the model on all the
open-domain datasets, including open-domain QA datasets such as NQ (Kwiatkowski et al., 2019),
TriviaQA (Joshi et al., 2017), and WebQ (Berant et al., 2013), multi-hop datasets like Wikihop (Yang
et al., 2018) and HotpotQA (Ho et al., 2020), as well as the ambiguous dataset ASQA (Stelmakh et al.,
2022).

After fine-tuning on the visual document retrieval dataset, we tested the model on all the visual document
datasets, including MP-DocVQA (Tito et al., 2023) for industrial documents, ArXivQA (Li et al., 2024),
ChartQA (Masry et al., 2022), InfographicsVQA (Mathew et al., 2022), and PlotQA (Methani et al., 2020)
for different types of figures, as well as SlideVQA (Tanaka et al., 2023).

C Document Parsing

Following (Yu et al., 2024), we use PaddlePaddle OCR (PPOCR) (Du et al., 2020) for document parsing.
The process involves several stages:

1. Text Detection: A text detection model identifies text regions within the document and generates
bounding boxes around them.

2. Orientation Classification: These detected regions are processed by a classification model to correct
any orientation issues, such as rotation or flipping.

3. Text Recognition: A recognition model extracts the textual content from the corrected bounding
boxes, returning the recognized text along with confidence scores. Only results with confidence
scores above 0.6 are retained, and the bounding box coordinates, along with the recognized text, are
stored for further processing.

Throughout this process, we apply a Layout Preserving policy. This approach maintains the original
document structure by ordering the text boxes based on their spatial positions. Spaces and line breaks are
dynamically inserted to reflect horizontal and vertical gaps between text regions. This ensures that the
extracted text mirrors the original document layout, preserving its formatting in the final output.

23945


