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Abstract
Model alignment methods like Direct Pref-
erence Optimization (Rafailov et al., 2024)
and Contrastive Preference Optimization (Xu
et al., 2024b) have enhanced machine trans-
lation performance by leveraging preference
data to enable models to reject suboptimal
outputs. During preference data construc-
tion, previous approaches primarily rely on
humans, strong models like GPT4 (OpenAI,
2023) or model self-sampling. In this study,
we first explain the shortcomings of this prac-
tice. Then, we propose Self-Supervised Pref-
erence Optimization (SSPO), a novel frame-
work which efficiently constructs translation
preference data for iterative DPO training. Ap-
plying SSPO to 14B parameters large lan-
guage models (LLMs) achieves comparable
or better performance than GPT-4o on FLO-
RES and multi-domain test datasets. We re-
lease an augmented MQM dataset in https:
//github.com/sunny-sjtu/MQM-aug.

1 Introduction
Enhancing the capabilities of open source large
language models (LLMs) (Bai et al., 2023; Tou-
vron et al., 2023; Jiang et al., 2023) in machine
translation has been extensively explored in pre-
vious research. ALMA (Xu et al., 2024a) and
Aya 23 (Aryabumi et al., 2024) reach top-tier
performance through continued pre-training on
large monolingual corpora and supervised fine-
tuning (SFT) on high-quality parallel translation
data. While SFT lacks a mechanism to prevent the
model from rejecting mistakes in translations (e.g.
mistranslation, over-translation), model alignment
methods like Reinforcement Learning from Hu-
man Feedback (RLHF) (Ouyang et al., 2022),
Direct Preference Optimization (DPO) (Rafailov
et al., 2024) and Contrastive Preference Optimiza-
tion (CPO) (Xu et al., 2024b) further improve ma-

*Work done during internship at Tongyi Lab.
†Rui Wang and Baosong Yang are co-corresponding au-

thors.

chine translation performance by leveraging pref-
erence data to enable models to reject suboptimal
outputs.

High-quality preference data is crucial for effec-
tive model alignment. Current approaches to con-
structing translation preference data typically rely
on human annotations (Xu et al., 2024c; Ramos
et al., 2024), model self-sampling (Yang et al.,
2024b) or stronger models (Xu et al., 2024b).

This practice faces three major challenges: (1)
high cost of querying humans or strong models (2)
distributional discrepancy between positive and
negative examples from different models, which
leads to training instability. (3) insufficient quality
contrast between self-sampled positive and nega-
tive examples, which weakens reward signals.

To address these challenges, we propose a self-
supervised framework for moderate-sized models
(∼14B parameters) that constructs high-quality
preference data without relying on stronger mod-
els or human annotations. Our key insight is to
equip LLMs with three core capabilities: trans-
lation generation, error annotation, and error
correction. This allows LLMs to utilize monolin-
gual data by translating, identifying potential er-
rors, and generating corrected versions. The qual-
ity gap between the initial and corrected transla-
tions naturally forms preference pairs for model
alignment. This method also supports contin-
uous improvement through an iterative refine-
ment process. After generating error annotations,
we further fine-tune the base model with these ex-
amples, creating a specialized error detector which
becomes increasingly sensitive to common transla-
tion mistakes made by the current model. This en-
hanced detector provides targeted supervision for
the DPO-aligned translation model. As the trans-
lation model improves via DPO training, the er-
ror detector adapts to new error patterns, progres-
sively enhancing overall translation quality.

Our contributions are summarized as follows:
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Figure 1: Overview of SSPO Framework. The process starts by training Model0 with three types of data: paral-
lel translation pairs, augmented MQM (Multidimensional Quality Metrics) annotations with error explanation and
suggested correction, and error correction samples leveraging MQM annotations for corrected translations. The
framework then iteratively improves through two paths: (1) SFT with self-generated MQM annotations and cor-
rections to get stronger Error detector ModelE (2) DPO with <intial translation, corrected translation> preference
pairs to get stronger Translator ModelT. Each iteration incorporates new monolingual data to expand domain
coverage. Deeper model colors indicate enhanced capabilities.

• We propose SSPO, a self-supervised mech-
anism that enables LLMs to iteratively
generate high-quality translation preference
data for DPO training. SSPO’s effec-
tiveness is validated across multiple lan-
guages, domains and models, achieving con-
sistent improvements in translation perfor-
mance without relying on external human
or model annotations.

• We identify a good strategy for composing
translation preference data, showing that inte-
grating model-generated preferences with ex-
ternal high-quality data (from human experts
or strong models) during DPO training yields
superior performance compared to using ei-
ther source alone.

• We release an augmented MQM annota-
tion dataset to boost LLMs’ performance in
translation-related tasks.

2 Self-supervised Preference
Optimization

SSPO is a paradiam designed to generate high-
quality translation preference data for iterative
preference optimization. Figure 1 provides
an overview of SSPO. We begin by describ-
ing the initialization of Model0, the foundation
of our framework.

2.1 Initialization of Model0
Training Set. Model0 is initialized using three
complementary types of training data: parallel
translation data, augmented MQM (Multidimen-
sional Quality Metrics) annotations, and error cor-
rection data.

MQM offers a detailed assessment of transla-
tion quality by identifying specific error types,
spans, and severity levels. For each error marked
in the MQM annotations, we prompt GPT-4o*

(OpenAI, 2024) for correction suggestions.
The error correction data is generated by

prompting GPT-4o with the source text, initial
translation, and MQM annotations to provide an
improved translation. We show our prompts for
training data construction in Appendix A.1.

Supervised fine-tuning with these data equips
Model0 with three key capabilities: translation
generation, error annotation and error correction.

Design Rationale. We decompose the seem-
ingly continuous chain of error annotation and cor-
rection into two separate tasks. This design is mo-
tivated by two key observations: (1) generating
accurate MQM annotations is the most challeng-
ing part, requiring deep understanding of transla-
tion errors and improvements. (2) the correction
process is straightforward, mainly applying MQM
annotations to the initial translation. This separa-
tion focuses our iterative refinement on enhancing

*We use gpt-4o-0806 available from the OpenAI API.
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the model’s error annotation capabilities, which
is more crucial for generating high-quality prefer-
ence data.

2.2 Self-Supervised Preference Data
Construction

Overview. As depicted in Figure 2, Model0 pro-
cesses monolingual input through three sequential
steps:

1. Translation Generation. For source text
x ∼ Di, Model0 generates an initial trans-
lation y = Model0(x). Di denotes the distri-
bution of monolingual texts in iteration i.

2. Error Annotation. The model then performs
error analysis by generating MQM-style an-
notations {e1, ..., en} = Model0(x,y). If no
errors are detected, it outputs "There is no er-
ror in the translation." and skips the correc-
tion step. Otherwise, each identified error ei
is detailed as a tuple {loci, sevi, expi, suggi}
compromising:

• loci: Erroneous text span.
• sevi: Error severity (major/minor).
• expi: Explanation for the error.
• suggi: Suggested improvement.

3. Error Correction. For translations contain-
ing errors, the model generates an improved
version: y′ = Model0(x,y, {e1, ..., en}).

This process yields preference pairs ⟨y,y′⟩ for
preference optimization.

While these three capabilities are initially uni-
fied in Model0, they are later separated into
two specialized models: ModelT for Trans-
lation and ModelE for Error annotation and
correction. Specifically, for Iteri(i > 0)
and input x ∼ Di, ModelTi generates the
initial translation y = ModelTi (x). Then
ModelEi identified potential errors {e1, ..., en} =
ModelEi (x,y) and produces an improved version
y′ = ModelEi (x,y, {e1, ..., en}) if errors are de-
tected, forming a preference pair ⟨y,y′⟩.

Automatic Filtering & Domain Expansion. A
key advantage of our framework is its ability to uti-
lize diverse monolingual data across different do-
mains. In each iteration, we introduce new mono-
lingual texts from varied domains, where ModelT

generates translations and ModelE automatically

Error 1:

- Location: "After cutting and sticking it to the wound"
- Severity: Major
- Explanation: The phrase 'After cutting and sticking it to the wound' does not 

accurately convey the meaning of '? ? ? ? ? ? ? ? ? '. The original text 
implies that after properly cutting the material, it should be applied to the 
wound. The translation should emphasize the action of applying the cut 
material to the wound.

- Improvement: Change 'After cutting and sticking it to the wound' to 'After 
properly cutting it and applying it to the wound'.

Error 2:

- Location: "this wrapping method is very good"
- Severity: Major
- Explanation: The phrase 'this wrapping method is very good' does not fully 

capture the intended meaning of '? ? ? ? ? ? ? ? ? ? ? ? '. The original 
text emphasizes the effectiveness of the wrapping method in terms of 
coverage or protection. The translation should focus on the quality of the 
coverage provided by the wrapping method.

- Improvement: Change 'this wrapping method is very good' to 'the coverage 

provided by this wrapping method is excellent'.

Initial Translation

After properly cutting it and applying it to the wound, you will find that the 

coverage provided by this wrapping method is excellent!

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

Source Text

After cutting and sticking it to the wound, you will find that this wrapping 

method is very good!

Improved Translation

Error Annotation

Figure 2: Self-Supervised Preference Data Construc-
tion

screens for errors. Only translations with iden-
tified issues undergo improvement, creating se-
lected and high-quality preference pairs. This ap-
proach enables continuous domain knowledge ex-
pansion while ensuring efficient preference data
generation through automatic error filtering.

2.3 Preference Optimization
Following the construction of preference pairs, the
next step is to optimize the translation model using
these self-supervised preferences. Our method is
compatible with various preference optimization
techniques, such as DPO (Rafailov et al., 2024),
CPO (Xu et al., 2024b) and SimPO (Meng et al.,
2024). We choose DPO for its training stabil-
ity. Given our self-supervised preference dataset
Pi containing tuples of (x, yw, yl), where yw and
yl are the better and worse translations, respec-
tively, the final training objective integrates DPO
loss with SFT loss:

Lfinal = LDPO + α · LSFT, (1)

where the DPO loss and SFT loss are defined as:

LDPO(πθ;πref) = −E(x,yw,yl)∼Pi
[log σ

(β log
πθ(yw | x)
πref(yw | x) − β log

πθ(yl | x)
πref(yl | x)

)],
(2)

LSFT(πθ) = −E(x,yw)∼Pi
[log πθ(yw | x)]. (3)
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Here, πθ denotes the translation model ModelTi
being trained in the current iteration, πref is the
reference model ModelTi−1 from the previous iter-
ation. The parameter β is a temperature parameter
controlling the sharpness of the preference learn-
ing, and αsft adjusts the weight of SFT loss for
training stability. In our preference pairs, yw is the
improved translation y′ generated by ModelEi−1,
and yl is the original translation y from ModelTi−1.

2.4 Self-Training for Error Annotation

To maintain effective quality assessment as the
translation model improves through DPO, we en-
hance ModelE via self-training. The training data
DSFT comprises three components: (1) error anno-
tation pairs (x,y) → {e1, ..., en}, (2) error correc-
tion pairs (x,y, {e1, ..., en}) → y′, (3) error-free
pairs (x,y) → "No error". The last component
prevents over-criticism by helping the model rec-
ognize high-quality translations.

This self-training process enables ModelE to
maintain a balanced capability in identifying
genuine translation errors and recognizing high-
quality translations, ensuring effective quality as-
sessment for the enhanced translation model.

3 Experiment

We carry out comprehensive experiments to
demonstrate the effectiveness of SSPO in enhanc-
ing LLMs’ machine translation performance.

3.1 Data

We consider 10 translation directions in the paper:
da↔en, de↔en, fr↔en, id↔en, zh↔en. As il-
lustrated in Section 2.1, our training dataset con-
sists of three complementary components, detailed
data statistics can be found in Appendix A.2-A.4.

Translation Data. For en→de,fr→en,zh↔en,
we collect high-quality parallel translation pairs
from WMT News Task development and test sets
across multiple years. For other language pairs,
we sample from News Commentary v18.1 and Eu-
roparl v10.

Augmented MQM Annotations. For en→de
and zh→en, we collect original MQM-style error
annotations from WMT Metrics shared tasks in
2020,2021,2023 (Freitag et al., 2021, 2023). For
de→en, fr→en, we collect original MQM-style
error annotations from a bio-domain MQM dataset
(Zouhar et al., 2024). These data are augmented
following the steps in Section 2.1. We provide an

example of the augmented MQM annotations in
Appendix A.3.

Error Corrections. We construct error correc-
tion pairs by sampling from the MQM annotations
and manually correcting the identified errors with
GPT-4o.

Monolingual Data. We collect monolin-
gual data from open source internet then
conduct length and perplexity filtering (detailed
in Appendix A.5).

3.2 Models and Training

We apply SSPO to Qwen2.5-14B-Base (Yang
et al., 2024a) (14B parameters) and Mistral-Nemo-
Base-2407 (Jiang et al., 2023) (12B parameters).
The process begins with supervised fine-tuning on
our dataset to develop Model0, which functions
as both the initial translation model ModelT0 and
the error detection model ModelE0 . Each itera-
tion i involves three steps: (1) ModelTi generates
translations for monolingual inputs, (2) ModelEi
identifies errors and creates preference pairs for
DPO optimization of ModelTi+1, (3) ModelEi un-
dergoes self-training to produce ModelEi+1. We
adopt LoRA (Hu et al., 2021) in DPO and SFT
traing. Our prompts, training parameters and im-
plementation environments are provided in Ap-
pendix B.1.

3.3 Evaluation

Multi-domain Test sets. For zh→en direction,
we employ a 10-domain test suite (Table 1) to eval-
uate cross-domain generalization. Full test set de-
tails are in Appendix B.2.

Domain Count Domain Count

Industry 3,487 Finance 1,322
Talk 2,599 E-commerce 1,001
IT 2,293 Thesis 625
News 1,875 Biology 575
Literary 1,514 Science 503

Table 1: Distribution of test samples across different
domains for zh→en direction

Multi-lingual Test sets. We evaluate on
FLORES-200 test sets (Team et al., 2022) to
assess cross-lingual transferability. Full test set
details are in Appendix B.3.

Metrics. Following the arguments in CPO
Xu et al. (2024b), which demonstrates that
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human-written references are not always su-
perior to model outputs and advocates for
reference-free evaluation, we adopt reference-
free metrics for our evaluation. Specifically,
we use: (1) Unbabel/XCOMET-XXL, refered
as XCOMET (Guerreiro et al., 2023); (2)
Unbabel/wmt23-cometkiwi-da-xxl, re-
ferred as KIWI (Rei et al., 2023); and (3)
google/metricx-23-qe-xxl-v2p0, referred as
METRICX (Juraska et al., 2023).

3.4 Baselines
SoTA Models. We compare with state-of-the-
art open-source models including Unbabel’s Tow-
erInstruct (Alves et al., 2024b) and ALMA-13B-
R (Xu et al., 2024b) (trained with GPT-4 prefer-
ence data via CPO). For closed-source models, we
benchmark against GPT-4o-0806.

Pipelines. We evaluate our method against
three open-source preference data construction
pipelines on multi-domain zh→en test set. In-
stead of starting from Model0, these methods be-
gin with Model-Trans, trained on translation data
in our dataset solely for translation generation.
(1) Self-Sampling + XCOMET: Generate multi-
ple translations through model self-sampling, then
select highest and lowest scoring samples based
on XCOMET scores; (2) XCOMET + xTower:
Generate initial translations, identify errors using
XCOMET, then refine translations with xTower
(Treviso et al., 2024) (Unbabel’s 13B correction
model trained on GPT-4 annotated data) as pos-
itive examples; (3) XCOMET + Qwen2.5-Plus:
Similar to (2) but using Qwen2.5-Plus with 5-shot
prompting for error correction.

3.5 Multi-domain Results
Multi-domain Evaluation. We systematically
evaluate cross-domain generalization using Qwen-
2.5-14B-Base on zh → en direction. As shown
in Table 2, our iterative optimization achieves
consistent gains across all domains. The scores
shown are over all domains, with detailed domain-
specific results provided in Appendix B.4. These
improvements are largely due to the diverse nature
of our monolingual data, which enriches the model
with domain-specific knowledge.

Comparison with Open-source Pipelines. We
conduct comparative experiments to evaluate dif-
ferent preference data construction approaches.
Following Section 3.4, we first train Qwen-2.5-
14B-Base solely on translation data to obtain

Qwen-Trans, which serves as the initial translation
model for all pipeline methods. To ensure fair com-
parison, we use the same set of monolingual data
- specifically, the source sentences corresponding
to the 12,800 preference data pairs used in train-
ing our Qwen-ModelT1 .

Models
Metrics

KIWI XCOMET METRICX↓
Baseline Models
Qwen-Trans 79.32 90.28 4.6499
ALMA-13B-R 79.19 91.12 4.5454
TowerInstruct 78.92 90.22 4.7780
GPT-4o-0806 80.29 91.54 4.3310

Pipelines
Self-sampling + XCOMET 79.20 90.43 4.6686
XCOMET + xTower 79.85 92.93 4.2451
XCOMET + Qwen2.5-Plus 80.03 91.64 4.4125

Our Method
Qwen-Model0 79.42 90.37 4.6393
Qwen-ModelT1 80.38 92.40 4.2382
Qwen-ModelT2 80.67 92.66 4.2187

Table 2: Performance comparison on zh→en multi-
domain test sets. ↓ means lower is better.

Table 2 presents the results on reference-free
metrics. We summarize two key observations:

Integration of error-related data enhances
translation performance. Error annotation
and correction training data enhances translation
performance (Qwen-Model0 outperforms Qwen-
Trans). This improvement can be attributed to the
implicit translation knowledge embedded in error-
related data.

SSPO generate high-quality preference data.
Through a single iteration of SSPO, Qwen-
ModelT1 demonstrates significant improvements
compared to Qwen-Model0 (+0.96 KIWI, +2.03
XCOMET, -0.4 METRICX). Remarkably, it out-
performs GPT-4o-0806 across all metrics. In con-
trast, the self-sampling + DPO approach, which
relies on 14B model’s self-sampling for prefer-
ence data, shows limited effectiveness. Error
correction pipelines using xCOMET annotations
(XCOMET + xTower and XCOMET + Qwen2.5-
Plus) also demonstrate great improvements in
translation quality, but they show strong bias to-
wards XCOMET metrics.

We conduct additional LLM evaluation using
Claude-3.5* (Anthropic, 2023) to compare Qwen-
ModelT1 with the best-performing open-source
pipeline (XCOMET + xTower) through pairwise
comparison. To reduce position bias, we per-

*We use claude-3-5-20241022 available from An-
thropic API.
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form two rounds of evaluations with swapped
positions of candidate translations. Qwen-
ModelT1 outperforms xTower Pipeline with a
net win rate of 8.5%. Evaluation details are
listed in Appendix B.5.

3.6 Multi-lingual Results

We conduct 2 iterations of self-supervised op-
timization on Qwen2.5-14B-Base and Mistral-
Nemo-Base-2407 across 10 language directions.
For zh → en direction, we evaluate on our multi-
domain test sets, while for other language pairs,
we use the FLORES200 testset. Primary results
for xx→en and en→xx are shown in Figure 3. Fol-
lowing Section 3.3, we report reference-free met-
rics, full results are detailed in Appendix B.6. Key
findings are summarized below.

Progressive Performance Enhancement. Both
Qwen and Mistral models show consistent gains
across iterations, with ModelT2 outperforming
ModelT1 and ModelT1 outperforming Model0
across all language pairs. Notably, for xx→en di-
rection, both Qwen-ModelT2 and Mistral-ModelT2
achieve comparable or superior performance to
GPT-4o-0806. Although a performance gap re-
mains with GPT-4o-0806 in en → xx direction,
our approach still demonstrates substantial im-
provements (e.g. +0.62 KIWI, +0.37 XCOMET,
-0.0526 METRICX when Mistral-ModelT2 v.s.
Mistral-Model0). These consistent gains across
different translation directions validate the effec-
tiveness of our iterative optimization approach.

Asymmetric Performance Gains Across Direc-
tions. The improvement patterns differ between
xx → en and en → xx translations, primarily due
to the distribution of MQM annotation training
data. For xx → en, abundant MQM data enables
high-quality error detection in the first iteration,
leading to strong preference data and substantial
gains. However, the second iteration shows lim-
ited improvement due to a growing capability gap:
while ModelT1 achieves significant enhancement
through DPO training on high-quality preference
data, ModelE1 , trained solely on self-generated an-
notations, shows marginal improvement in error
detection. Thus it struggles to identify subtle er-
rors in increasingly better translations. Conversely,
for en → xx where MQM data is scarce, lim-
ited initial error detection capability leads to mod-
est improvements of ModelT1 . When ModelE1 is

trained on self-generated annotations, its error de-
tection capability improves moderately, still suf-
ficient to identify errors in ModelT1 ’s translations,
thus enabling further performance gains in the sec-
ond iteration.

Cross-lingual Transfer of MQM Annotation
Ability. Despite our training data only contain-
ing MQM annotations for de↔en, fr→en, and
zh→en directions, the models successfully gener-
alize to other language pairs, effectively construct-
ing preference data that leads to improved trans-
lation performance. This phenomenon is also dis-
covered by Uhlig et al. (2025). We find this gen-
eralization ability is influenced by the model’s in-
herent linguistic capabilities: for language pairs
where the base model shows strong performance,
high-quality preference data can be generated even
without corresponding MQM data. This is exem-
plified by Mistral’s significant first-iteration im-
provements in da→en translation.

4 Analyses

We conduct extensive analyses to investigate three
critical aspects of our approach. First, we ex-
plore how the amount of monolingual data used
within a single iteration impacts the optimiza-
tion results, aiming to determine the optimal
data quantity for maximizing translation quality.
Second, we examine the impact of error cor-
rection strategies when generating preference
data, specifically comparing two approaches: cor-
recting all errors (both major and minor) in each
iteration versus a progressive strategy that focuses
on major errors in the first iteration and addresses
all errors in subsequent iterations. Third, we in-
vestigate whether incorporating external high-
quality preference data can further enhance
translation quality. We use Qwen2.5-14B-Base
and focus on zh → en direction. These analy-
ses aim to provide deeper insights into the mecha-
nisms and optimization strategies of our approach.
We analyze the evolvement of ModelE in Ap-
pendix C and provide an ablation study of our ap-
proach in Appendix D.

4.1 Impact of Monolingual Data Amount

In the first iteration of zh→en translation, we ob-
serve that model performance plateaus after train-
ing on 12,800 preference data pairs, with addi-
tional data yielding diminishing returns. To inves-
tigate the optimal data utilization strategy, we sys-
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Figure 3: Average results for en-xx and xx-en translation directions.

tematically partition the full dataset into 2, 3, 4
equal subsets for multi-iteration training. The key
question we want to address is whether to use all
available monolingual data in a single iteration un-
til performance saturates, or to distribute it across
multiple iterations for gradual improvement.

Results in Table 3 demonstrate clear superiority
of the single-iteration strategy. When we split the
12,800 samples into multiple portions, the cumula-
tive improvement after multiple iterations fails to
match the performance achieved by using all data
at once. This indicates that using the entire data
in a single iteration optimizes performance more
effectively than incremental updates with smaller
portions.

4.2 Impact of Error Correction Strategy
We try 3 different strategies. "Major-only" means
only correcting major errors, "Major&Half Mi-
nor" means correcting all major errors and random
50% of minor errors. "Major&Minor" means cor-
recting all erros.

We initially hypothesized that focusing on dif-
ferent types of errors in each iteration might be
beneficial, thus exploring various error correction
strategies. However, our experimental results sug-

Models Metrics

KIWI XCOMET METRICX↓
Model0 79.42 90.37 4.6393

Iter1-1 80.38 92.40 4.2382

Iter2-1 79.97 91.10 4.4276
Iter2-2 80.18 91.75 4.3570

Iter3-1 79.56 90.63 4.5566
Iter3-2 79.72 90.90 4.5167
Iter3-3 79.90 91.11 4.4798

Iter4-1 79.52 90.49 4.5972
Iter4-2 79.57 90.62 4.5590
Iter4-3 79.67 90.77 4.5468
Iter4-4 79.77 90.93 4.5090

Table 3: Performance comparison of different data uti-
lization strategies. Itern-k denotes the k-th step in the
n-iteration setting, where the 12,800 training samples
are split into n equal portions.

gest otherwise. In our first-round annotations,
we identified 15,879 major errors and 15,555
minor errors for 12,800 translations. The re-
sults demonstrate that partially or completely omit-
ting minor error corrections during preference
data construction leads to missed opportunities for
learning important translation patterns, resulting
in reduced performance. Therefore, we conclude
that correcting all errors in each iteration of prefer-
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Strategies Metrics

KIWI XCOMET METRICX↓
Major-only (Iter 1) 80.20 92.13 4.2573
Major&Minor (Iter 2) 80.39 92.42 4.2444

Major&Half Minor (Iter 1) 80.28 92.20 4.2457
Major&Minor (Iter 2) 80.42 92.44 4.2486

Major&Minor (Iter 1) 80.38 92.40 4.2382
Major&Minor (Iter 2) 80.67 92.66 4.2187

Table 4: Performance comparison of progressive error
correction strategies across iterations.

ence data generation is the optimal strategy.

4.3 Benefits of External Preference Data
We examine the impact of preference data compo-
sition on DPO effectiveness. For external prefer-
ence data, we leverage GPT-4o to generate correc-
tions for 12,800 sentences sampled from our aug-
mented MQM training annotations (distinct from
the correction data in Model0 training set). We
evaluate three strategies while maintaining a con-
stant total of 12,800 preference pairs: (1) self-
supervised preferences only, (2) external prefer-
ences only, and (3) an equal mixture of both
sources.

Data Composition Metrics

KIWI XCOMET METRICX↓
Self-supervised 0.8038 0.9240 4.2382
External 0.8032 0.9231 4.2416
Mixed (1:1) 0.8030 0.9288†‡ 4.2192†‡

Table 5: Comparison of preference data strategies: self-
supervised preferences, external preferences (human
annotations with GPT-4o corrections), and their equal
mixture. † indicates p < 0.05 compared to Self-
supervised; ‡ indicates p < 0.05 compared to External.

Results show that the balanced mixture strat-
egy achieves optimal performance with statisti-
cally significant improvements in XCOMET and
METRICX scores. This success stems from com-
bining two complementary sources: external data
provides high-quality reference signals, while self-
supervised preferences ensure training stability by
aligning with the model’s current capabilities. This
complementary combination proves more effec-
tive than using either source alone.

5 Related Works

5.1 Translation Error Detection and
Correction

In span-level error detection, neural mod-
els have proven effective in identifying er-

rors within machine translations, as demon-
strated by AUTOMQM (Fernandes et al.,
2023), InstructScore (Xu et al., 2023), and
XCOMET (Guerreiro et al., 2023). For error cor-
rection, recent advancements involve prompting
large language models (LLMs) to suggest new
translations, exemplified by TOWERAPE (Alves
et al., 2024a) and GPT-4 prompting (Raunak et al.,
2023). Ki and Carpuat (2024), Xu et al. (2024d)
and Treviso et al. (2024) integrate detailed error
feedback into post-editing prompts. Specifi-
cally, LLMRefine (Xu et al., 2024d) employs
"succinct explanations" of fine-grained errors to
guide models towards better translations through
iterative refinement. xTower (Treviso et al.,
2024) utilize error spans annotated by humans
or predicted by XCOMET, first explain these
errors then give refine translations. Inspired by
these works, we construct augmented MQM data
for training, enabling our ModelE to provide
error explanations and improvement suggestions
alongside identifying errors in a reference-free
mode. This approach increases the reliability of
the identified errors and reduces the difficulty of
error correction.

5.2 Preference Data Construction for
Machine Translation

Preference data are triplets consisting of user
prompts, user-preferred responses, and non-
preferred responses. However, there has been lim-
ited exploration of how to construct such pref-
erence data specifically for machine translation
tasks. Xu et al. (2024b) constructed preference
data using GPT-4 (OpenAI, 2023) and gold ref-
erence for Contrastive Preference Optimization
(CPO). Yang et al. (2024b) generate preference
datasets using MBR decoding on Multilingual
Large Language Models (MLLMs) to favor higher-
ranked translations. Agrawal et al. (2024) collect
sentence-level quality assessments from profes-
sional linguists on LLMs’ translations and lever-
age automatic metrics to recover these preferences.
They then use this analysis to curate a dataset.
While effective, their approaches face the chal-
lenges discussed in Sec 1. To address these issues,
our work proposes a method to construct transla-
tion preference data at scale using monolingual
data, tailored to the model’s current capabilities,
which effectively enhances the model’s translation
ability.
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6 Conclusion

In this study, we initially explain the shortcomings
of previous approaches to constructing translation
preference data. Then, we propose SSPO, a self-
supervised mechanism that enables LLMs to itera-
tively generate high-quality translation preference
data for DPO training. Our analysis reveals that
combining self-generated preference data with ex-
ternal preference data in DPO training leads to
superior translation quality. We validate SSPO’s
effectivenes across multiple language piars, do-
mains and models, demonstrating consistent im-
provements in translation performance without re-
lying on external human or model annotations. Ap-
plying SSPO to 14B parameters large language
models (LLMs) achieves comparable or better per-
formance than GPT-4o on FLORES and multi-
domain test datasets.

Limitations

We primarily conducted experiments on medium-
sized models, while testing on larger or smaller
models might reveal different optimization dynam-
ics. Our study also observes relatively few iter-
ation rounds, and a longer-term study could pro-
vide deeper insights into the convergence patterns.
Additionally, while we employ multiple automatic
metrics, the lack of human evaluation means that
improvements in metric scores may not perfectly
align with actual translation quality as perceived
by readers.
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A Datasets Statistics

A.1 Prompts for Producing Error
Annotation and Correction Training
Data

Error Annotation. As shown in Figure 4, the
template includes 3 examples demonstrating vari-
ous types of errors and their corrections, followed
by the actual task structure. Each error analysis
includes location, severity, explanation, and im-
provement suggestions. For each language pair,
we carefully curate examples with diverse error
types and varying complexity levels to stimulate
the model’s error annotation capabilities.

Error Correction. When doing error correction,
we use 1-shot prompting in Figure 5. The exam-
ple should be relatively long with multiple types
of errors, serving to stimulate the model’s ability
to fully correct the translation.

A.2 Translation Data

Language Pair Quantity Source

da→ en 5000 Sample from Europarl v10
en→ da 5000 Sample from Europarl v10
de→ en 5000 Sample from News Commentary v18.1
en→ de 25227 WMT dev test
fr→ en 22074 WMT dev test
en→ fr 5000 Sample from news commentary v18.1
id→ en 5000 Sample from news commentary v18.1
en→ id 5000 Sample from news commentary v18.1
zh→ en 16587 WMT dev test
en→ zh 11050 WMT dev test

Table 6: Translation Data Statistics

A.3 MQM Data
Table 7 shows the source and distribution of the
orginal MQM data.

Language Pair Quantity Source

da→ en 0 \
en→ da 0 \
de→ en 3667 (Zouhar et al., 2024)
en→ de 7865 WMT Metrics Shared Task
fr→ en 3029 (Zouhar et al., 2024)
en→ fr 0 \
id→ en 0 \
en→ id 0 \
zh→ en 41943 WMT Metrics Shared Task
en→ zh 0 \

Table 7: MQM Data Statistics

Original MQM data contains severity, location
and specific category for each error. i.e. each error
e

original
i conatins loci, sevi, cati.

We augment MQM data by prompting GPT-
4o to produce explanation and correct sugges-
tions for each error. In this process, we in-
tentionally omitted the error type information
from the original MQM annotations to simplify
the data structure and reduce the complexity of
model learning. Each error e

augmented
i conatins

loci, sevi, expi, suggi.
Fig 6 shows an example of the augmented

MQM data.
Our augmentation manner implicitly incor-

porates a Chain-of-Thought (CoT) mechanism:
by requiring the model to first explain the error
(expi) before generating a correction suggestion
(suggi), we enforce a step-by-step reasoning pro-
cess. The model must understand the error
(e.g., semantic mismatch, grammatical flaw, or
cultural mistranslation) before proposing a fix,
mirroring the "diagnose-then-correct" workflow of
human experts. This idea is also used in the design
of xTower(Treviso et al., 2024).

A.4 Error Correction Data
We only construct zh → en and de → en error
since it is not a hard task.

Language Pair Quantity Source

zh → en 9322 GPT-4o prompting
de → en 9786 GPT-4o prompting

Table 8: Error Detection Data Statistics

A.5 Monolingual Data
We employ a two-stage dynamic filtering ap-
proach to curate high-quality monolingual data for
iterative training:

Length Filtering.

• Procedure: When generating preference
dataset P0 from D0 via Model0, we compute
the mean token count T̄0 of source sentences
in P0. This identifies the typical sentence
length where Model0 makes errors.

• Application: For ModelT1 ’s training, we sam-
ple monolingual sentences longer than T̄0 for
translation.

• Rationale: Longer sentences offer two advan-
tages: (i) they capture diverse linguistic phe-
nomena (e.g., discourse coherence, idiomatic-
ity), ensuring the model encounters challeng-
ing cases; (ii) they mitigate trivial corrections
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from short, error-free translations that offer
no training signal.

Perplexity (PPL) Filtering.

• Procedure: After length filtering, we com-
pute the perplexity of the remaining monolin-
gual corpus using the current iteration’s trans-
lation model (e.g., ModelT1 ). We retain sen-
tences with PPL ≤ µ+ 2σ, where µ denotes
the mean PPL and σ the standard deviation.

• Rationale: This threshold serves dual pur-
poses: (i) it excludes outliers such as overly
complex or noisy sentences beyond the
model’s current capability; (ii) it balances dif-
ficulty by ensuring sentences are challenging
yet interpretable, avoiding degenerate cases
such as garbled text.

B Experimental Details

Here we list additional experimental details for our
implementation and experiments.

B.1 Training Configurations

Here we detail our prompts, training parameters
and implementation environment.

B.1.1 Prompts

The followings are our prompts during model
training and inference.

Translation Generation Prompt
Translate the following {src_lang} text into {tgt_lang}.
{src_lang}: {src}

{tgt_lang}:

Error Annotation Prompt
Based on the {src_lang} source, identify the major and
minor errors in the {tgt_lang} translation. For each
error, please provide explanation and improvement.
{src_lang} source:{src}
{tgt_lang} translation:{trans}

Errors:

Error Correction Prompt
Given the {src_lang} source text, the initial {tgt_lang}
translation, and the list of identified errors with
explanations and suggested improvements, improve
the initial {tgt_lang} translation to make it accurate,
fluent, and true to the meaning and tone of the original
text.
{src_lang} source:{src}
Initial {tgt_lang} translation:{initial_trans}
Errors :{errors}

Improved Translation:

B.1.2 DPO Training
We use SWIFT framework (Zhao et al., 2024) with
the following parameter setting in Table 9. We use
8 80G A100 GPUs for 50 hours DPO training for
all our models.

Parameter Value

Training Type DPO with LoRA
DPO Config β=0.1, α=1.0
LoRA Config rank=128, α=16, dropout=0.1
Learning Rate 1e-5 (cosine schedule)
Sequence Length 1024
Optimization weight_decay=0.1, max_grad_norm=1.0

Table 9: DPO Training Configuration

B.1.3 SFT Training
We use Deepspeed framework (Rasley et al., 2020)
with the following parameter setting in Table 10.
We use 8 80G A100 GPUs for 100 hours training
for all our models.

Parameter Value

Training Type SFT with LoRA
Deepspeed Config zero_stage=0
LoRA Config rank=128, α=32, dropout=0.1
Sequence Length 1024
Learning Rate 1e-4(cosine schedule)
Optimization weight_decay=0.1, max_grad_norm=1.0

Table 10: SFT Training Configuration

B.2 zh→ en Multi-domain Test set
We collect multi-domain dataset from various
sources, as shown in Table 11

Domain Count Source

Industry 3,487 (Hu et al., 2024)
Talk 2,599 IWSLT 16,17
IT 2,293 (Hu et al., 2024)
News 1,875 WMT22 New Task Test Set
Literary 1,514 WMT24 Literary Task Test Set
Finance 1,322 (Fu et al., 2024)
E-commerce 1,001 (Hu et al., 2024)
Thesis 625 Sample from (Tian et al., 2014)
Biology 575 WMT Biodemical Translation Task
Science 503 Sample from (Tian et al., 2014)

Table 11: Distribution of test samples across different
domains for zh→en direction

B.3 Multi-lingual Test Set
B.4 Full Multi-domain Results
We show the detailed zh → en multi-domain re-
sults in Table 13.
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FLORES-200 Test Set

Source → Target Language Pair Size

da ↔ en Danish ↔ English 1,012
de ↔ en Germen ↔ English 1,012
fr ↔ en French ↔ English 1,012
id ↔ en Indonesian ↔ English 1,012
en → zh English → Chinese 1,012

Table 12: Test set composition from FLORES-200
across different language directions

B.5 Model Evaluation

Evaluation Prompt We use the following the
following prompt on Claude-3.5 to evaluate trans-
lation quality.

Translation Evaluation Prompt
Chinese Source: {src}
Translation 1: {trans1}
Translation 2: {trans2}

Please evaluate the translation quality from the
following aspects:
1. Accuracy: Whether the translation accurately
conveys the meaning of the original text.
2. Fluency: Whether the translation is natural and
idiomatic English.
3. Fidelity: Whether the translation is faithful to the
original without adding or omitting information.
4. Style and Tone: Whether the translation maintains
the style and tone of the original text.

After considering all these factors, please indi-
cate which translation is better:
Reply "1" if Translation 1 is better
Reply "2" if Translation 2 is better
Reply "0" if they are equally good

Please only reply with the number without any
explanation.

Evaluation Results As shown in Table 14,
Qwen-ModelT1 outperform xTower Pipeline in
both evaluation orders, reaching a net win rate of
8.5%.

B.6 Full Multilingual Result

Full results for xx → en are in Table 15. Full re-
sults for en → xx are in Table 16.

C Evolvement of ModelE

We focus on zh → en language pair (as our multi-
domain test set provides more representative re-
sults) and analyze the evolvement of ModelE from
three perspectives. We use Qwen series for our
analysis.

C.1 Error Rates During SSPO Iterations

We calculated the error rates identified during the
two iterations of SSPO training. As shown in Ta-
ble 18, the error rate decreases from 48.4% in

the first iteration to 37.0% in the second itera-
tion. This reduction can be attributed to the
improved translation quality of Qwen-ModelT1 .

C.2 MQM Pattern Error Detection

We evaluate ModelE’s error deetction perfor-
mance using the WMT22 zh → en MQM dataset,
which consists of 29,579 sentences. We em-
ploy Qwen-Model0, Qwen-ModelE1 , and Qwen-
ModelE2 as the error detection models to anno-
tate errors then calculate precision, recall, and F1
scores. We calculate by the following settings.
TP (True Positive): The model correctly identi-
fies errors or agrees with the test set that the trans-
lation is error-free.
FP (False Positive): The model predicts an error
where none exists.
FN (False Negative): The model fails to detect an
actual error.

Results in Table 18 reveals significant evolve-
ment for the error detection ability of ModelE :

• Substantial improvement in precision:
From 34.30% in Model0 to 51.90% in
ModelE2 (+17.60%), indicating a more accu-
rate understanding of "actual translation er-
ror."

• Steady growth in recall: From 50.28% in
Model0 to 61.09% in ModelE2 (+10.81%),
suggesting the model’s ability to identify a
wider range of translation errors.

• Overall improvement in F1 score: From
40.78% in Model0 to 56.12% in ModelE2
(+15.34%), reflecting a better balance be-
tween precision and recall.

We find that the training MQM data for Model0
is imbalanced, with error-containing samples sig-
nificantly outnumbering error-free ones. This
leads to over-predictions. The error annotation
datasets curated from our SSPO framework
is much more balanced, mitigates the over-
prediction issue and lead to more calibrated
predictions.

C.3 Multi-domain Error Detection And
Correction

We use Qwen2.5-14B-Instruct as the translation
model to generate initial translations on our multi-
domain Zh-En test set. We then apply Qwen-
Model0, Qwen-ModelE1 , and Qwen-ModelE2 to an-
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Domain KIWI XCOMET METRICX↓
Model0 ModelT1 ModelT2 Model0 ModelT1 ModelT2 Model0 ModelT1 ModelT2

E-commerce 63.90 64.89 65.12 77.68 84.86 85.53 6.6998 6.1222 6.0991
Industry 81.67 82.63 82.79 91.46 93.33 93.47 4.2090 3.6912 3.7428
IT 84.06 84.49 84.75 94.61 95.66 95.92 3.5555 3.2356 3.2253
Literary 72.96 74.66 75.01 86.04 88.23 88.49 5.8166 5.4268 5.3986
Science 86.13 86.60 86.98 96.55 97.06 97.26 3.5208 3.2702 3.2741
Thesis 79.43 80.24 80.37 88.97 90.86 90.95 4.0493 3.5893 3.6219
News 77.18 78.65 78.96 91.06 93.39 93.71 4.6709 4.1914 4.1423
Bio 83.70 84.75 84.93 91.61 93.06 93.28 4.0794 3.7218 3.7051
Talk 82.59 83.82 84.25 96.43 97.09 97.29 5.0868 4.7863 4.6798
Finance 82.56 83.07 83.35 89.32 90.42 90.73 4.7052 4.3470 4.2984

Table 13: Performance comparison across different domains and iterations on zh → en (Qwen-Model0, Qwen-
ModelT1 , Qwen-ModelT2 ).

Order Win Tie Loss

xTower Pipeline v.s. Qwen-ModelT1 3,870 5,444 6,477
Qwen-ModelT1 v.s. xTower Pipeline 4,747 6,371 4,673

Table 14: LLM evaluation results between Qwen-
ModelT1 and xTower Pipeline

notate errors and refine the translations. We com-
pare the translation quality and the number of ma-
jor and minor errors detected by each model.

Results in Table 19 shows that translation qual-
ity improves consistently across all metrics from
Model0 to ModelE2 . Besides, error annotation
becomes more precise, as later models identify
fewer errors yet achieve better translations. This
suggests that ModelE are learning to generalize
across domains, identifying more meaningful er-
rors and reducing over-prediction.

D Ablation Study

D.1 Necessity of Model Separation

As depicted in Fig 1, SSPO algorithm separates
the initial model Model0 into two specialized mod-
els: ModelE for error detection and ModelT for
translation generation. To validate this design,
we conducted a controlled experiment by training
a hybrid model Qwen-ModelE+T

1 that combines
both capabilities, using the same DPO training
data from the first iteration.

Table 20 compares the performance of three
models on the zh→en multi-domain test set. The
results show a clear performance hierarchy: Qwen-
ModelT1 outperforms Qwen-ModelE+T

1 , which in
turn surpasses Qwen-Model0. While the hybrid
model improves upon the baseline, it falls short of
the specialized translation model.

This performance gap stems from the conflict-
ing optimization objectives: DPO for translation
versus SFT for error correction. Training a sin-
gle model for both tasks risks catastrophic for-
getting, where improving one capability degrades
the other. Therefore, separating Model0 into task-
specific models (ModelE and ModelT ) proves es-
sential for optimal performance.

D.2 Effectiveness of DPO Training
To validate the effectiveness of our DPO process,
we use the positive example in our preference data
to SFT Qwen-Trans (the model trained solely on
the translation data in A.2) and get Qwen-Trans-
SFT1. We compare its performance with our
Qwen-ModelT1 . This experiment is carried out on
zh→ en direction with the preference data used in
the first iteratioin.

Results in Table 21 demonstrate that our method
outperforms SFT method.

E Potential Risks

This paper presents work whose goal is to advance
the field of Machine Translation and Large Lan-
guage Model. We used open-source data and mod-
els to do machine translation tasks without other
intend. We don’t include offensive information in
our data. We think we don’t have risks include
potential malicious or unintended harmful effects
and uses.
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da→en de→en fr→en
Models

KIWI XCOMET METRICX↓ KIWI XCOMET METRICX↓ KIWI XCOMET METRICX↓
TowerInstruct 90.80 94.05 4.8012 89.31 90.50 5.0228 88.86 89.14 5.0336
GPT-4o-0806 93.49 96.96 4.4658 91.46 96.77 2.2697 92.27 95.69 4.7092
Qwen-Model0 92.46 95.36 4.6772 91.19 96.33 2.3186 92.23 95.26 4.8869
Qwen-ModelT1 92.70 95.73 4.6444 91.41 96.52 2.2997 92.66 95.71 4.7578
Qwen-ModelT2 93.38 96.81 4.5120 91.63 96.78 2.2801 92.83 95.89 4.6820
Mistral-Model0 91.15 94.14 4.7889 91.36 96.67 2.3068 92.12 94.81 4.9447
Mistral-ModelT1 92.87 96.44 4.5971 91.58 96.82 2.2710 92.31 95.09 4.7447
Mistral-ModelT2 93.05 96.69 4.5230 91.73 96.98 2.2523 92.54 95.43 4.6980

id→en zh→en Avg.
Models

KIWI XCOMET METRICX↓ KIWI XCOMET METRICX↓ KIWI XCOMET METRICX↓
TowerInstruct 85.06 83.06 5.8541 78.92 90.22 4.7780 86.59 89.39 5.0979
GPT-4o-0806 89.39 96.27 4.7982 80.29 91.54 4.3310 89.38 95.45 4.1148
Qwen-Model0 89.48 96.16 4.8467 79.42 90.37 4.6393 88.96 94.70 4.2737
Qwen-ModelT1 89.49 96.43 4.7885 80.38 92.40 4.2382 89.33 95.36 4.1457
Qwen-ModelT2 89.65 96.58 4.7120 80.67 92.66 4.2187 89.63 95.74 4.0810
Mistral-Model0 89.23 96.02 4.8796 79.16 90.31 4.7038 88.6 94.39 4.3248
Mistral-ModelT1 89.28 96.13 4.8100 79.91 92.77 4.4024 89.19 95.45 4.1650
Mistral-ModelT2 89.41 96.32 4.7290 80.29 93.08 4.3354 89.40 95.7 4.1075

Table 15: Performance comparison on xx→en translation across different language pairs.

en→da en→de en→fr
Models

KIWI XCOMET METRICX↓ KIWI XCOMET METRICX↓ KIWI XCOMET METRICX↓
TowerInstruct 86.69 94.81 1.3383 86.19 98.17 0.8424 90.79 96.43 1.1191
GPT-4o-0806 92.11 97.53 0.9415 87.06 98.33 0.8053 90.88 96.57 1.1087
Qwen-Model0 75.37 92.73 1.4860 85.04 97.94 0.8839 89.35 95.53 1.2164
Qwen-ModelT1 83.24 92.99 1.5154 85.13 98.04 0.8772 89.87 95.73 1.2060
Qwen-ModelT2 84.62 93.53 1.3920 85.32 98.18 0.8630 90.36 96.01 1.1680
Mistral-Model0 88.44 96.08 1.1123 86.61 98.41 0.8076 90.23 96.08 1.1450
Mistral-ModelT1 89.13 96.21 1.0786 86.84 98.39 0.7931 90.16 96.21 1.1407
Mistral-ModelT2 89.65 96.49 1.0230 87.21 98.54 0.7800 90.58 96.44 1.1190

en→id en→zh Avg.
Models

KIWI XCOMET METRICX↓ KIWI XCOMET METRICX↓ KIWI XCOMET METRICX↓
TowerInstruct 84.48 92.23 1.7846 86.19 90.66 1.5572 86.87 94.46 1.3283
GPT-4o-0806 90.43 95.97 1.2112 86.90 91.57 1.4737 89.48 95.99 1.1081
Qwen-Model0 87.45 94.12 1.4011 85.60 91.19 1.5656 84.56 94.3 1.3106
Qwen-ModelT1 88.26 94.49 1.4094 85.89 91.49 1.4094 86.48 94.55 1.2835
Qwen-ModelT2 88.73 94.82 1.3680 86.35 91.72 1.3720 87.08 94.85 1.2326
Mistral-Model0 87.45 93.86 1.4874 85.62 90.40 1.5505 87.67 94.97 1.2206
Mistral-ModelT1 87.35 93.95 1.4808 85.88 90.64 1.5212 87.87 95.08 1.2029
Mistral-ModelT2 87.79 94.23 1.4350 86.21 90.98 1.4830 88.29 95.34 1.1680

Table 16: Performance comparison on en→xx translation across different language pairs.

Iteration #Monolingual #Erroneous #Error-free Error Rate

1 (Qwen-Model0 annotate Qwen-Model0) 39880 19290 20590 48.4%
2 (Qwen-ModelE1 annotate Qwen-ModelT1 ) 25533 9465 16088 37.0%

Table 17: Error rates during actual SSPO iterations. #Monolingual represents the total number of monolingual
sentences processed in each iteration. #Erroneous shows the count of sentences identified as containing translation
errors. #Error-free indicates the number of sentences identified to have acceptable translations without errors.
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# Example1
## Question
source: ’It is particularly satisfying that Ruby has produced a female calf - these are vital for the
development of the breeding programme and Stella will eventually move to another collection to
hopefully become a successful mother herself.’
translation: Es ist besonders befriedigend, dass Ruby ein weibliches Kalb hervorgebracht hat - diese
sind für die Entwicklung des Zuchtprogramms von entscheidender Bedeutung - und Stella wird schlielich
in eine andere Kollektion wechseln, um hoffentlich selbst eine erfolgreiche Mutter zu werden".
errors: There is a Major error at "Kollektion". There is a Minor error at "Bedeutung -". There is a
Minor error at "-". There is a Minor error at "".
This is an English-to-German translation error annotation task. Only the location and severity of
errors are provided. Please analyze each error by considering the context in the translation field
and the English source text, and provide explanations and improvement suggestions that conform to
German grammar, conventions and idiomatic usage.

## Answer
[{

"location": "Kollektion",
"severity": "major",
"explanation": "The term ’Kollektion’ is not appropriate for referring to a group or place where

animals are kept or bred. In the context of animal breeding programs, ’Sammlung’ or ’Zuchtbestand’
would be more suitable.",

"improvement": "Change ’Kollektion’ to ’Sammlung’ or ’Zuchtbestand’."
},
{

"location": "Bedeutung -",
"severity": "minor",
"explanation": "The use of a dash here is not typical in German writing and may disrupt the

sentence structure. A comma or simply ending the sentence would be more appropriate.",
"improvement": "Replace the dash with a comma or end the sentence after ’Bedeutung’."

}]

# Example2
...

# Example3
...

# Your task
## Question
source: {source}
translation: {translation}
errors: {errors}
This is an English-to-German translation error annotation task. Only the location and severity of
errors are provided. Please analyze each error by considering the context in the translation field
and the English source text, and provide explanations and improvement suggestions that conform to
German grammar, conventions and idiomatic usage.

## Answer

Figure 4: Prompt template for en → de translation error annotation. The template demonstrates various error
types including terminology misuse, punctuation errors, and grammatical issues, with detailed explanations and
improvements for each error.

Model Precision Recall F1 TP FP FN

Qwen-Model0 0.3430 0.5028 0.4078 18473 35381 18267
Qwen-ModelE1 0.5119 0.5935 0.5497 22638 21588 15505
Qwen-ModelE2 0.5190 0.6109 0.5612 22954 21270 14623

Table 18: Error detection results on WMT22 zh → en MQM test set.
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## Question
Given the English source text, the initial German translation, and the list of identified errors with
explanations and suggested improvements, improve the initial German translation to make it accurate,
fluent, and true to the meaning and tone of the original text.

English source: Google is marking its own birthday today with a doodle. The doodle features a photo
of a 90s’ style computer with Google search page and date stamp for September 27, 1998, surrounded by
confetti in Google colours. A smaller doodle with number 21 as candles, as a part of Google logo,
shows on the search results page. The search giant was founded 21 years ago in 1998 by Larry Page and
Sergey Brin, then students at Stanford University in California. September 27 is, however, not
Google’s actual birthday.

Initial German translation: Google feiert heute seinen eigenen Geburtstag mit einem Doodle. Das
Doodle zeigt ein Foto eines Computers im Stil der 90er mit Google-Suchseite und Datumsstempel für den
27. September 1998, umgeben von Konfetti in Google-Farben. Ein kleineres Doodle mit der Nummer 21
als Kerzen als Teil des Google-Logos zeigt sich auf der Suchergebnisseite. Der Suchriese wurde 1998
vor 21 Jahren von Larry Page und Sergey Brin, damals Studenten an der Stanford University in
Kalifornien, gegründet.

Errors: [{
"location": "90er",
"severity": "minor",
"explanation": "While ’90er’ is commonly used, it should be followed by ’Jahre’ to fully convey

the meaning of ’90s’ style.",
"improvement": "Change ’90er’ to ’90er Jahre’ for clarity."

},
{

"location": "gegründet.",
"severity": "minor",
"explanation": "The final sentence about September 27 not being Google’s actual birthday is

missing.",
"improvement": "Add ’Der 27. September ist jedoch nicht Googles eigentlicher Geburtstag.’ at the

end."
}]

Improved Translation: Google feiert heute seinen eigenen Geburtstag mit einem Doodle. Das Doodle
zeigt ein Foto eines Computers im Stil der 90er Jahre mit Google-Suchseite und Datumsstempel für den
27. September 1998, umgeben von Konfetti in Google-Farben. Ein kleineres Doodle mit der Nummer 21 als
Kerzen als Teil des Google-Logos zeigt sich auf der Suchergebnisseite. Der Suchriese wurde 1998 vor
21 Jahren von Larry Page und Sergey Brin, damals Studenten an der Stanford University in Kalifornien,
gegründet. Der 27. September ist jedoch nicht Googles eigentlicher Geburtstag.

# Your task
Given the English source text, the initial German translation, and the list of identified errors with
explanations and suggested improvements, improve the initial German translation to make it accurate,
fluent, and true to the meaning and tone of the original text.

English source: {source}
Initial German translation: {translation}
Errors: {errors}
Improved Translation:

Figure 5: Prompt template for translation improvement task. The template shows how to analyze translation errors
and make improvements while maintaining accuracy and fluency in German. The example demonstrates handling
of missing content and stylistic refinements.

Model KIWI XCOMET METRICX↓ #Major #Minor

Qwen2.5-14B-Instruct 78.52 90.54 4.8249 \ \
Qwen-Model0 Refine 78.53 91.28 4.7158 7906 11927
Qwen-ModelE1 Refine 79.00 91.64 4.6537 4340 3856
Qwen-ModelE2 Refine 79.21 91.82 4.6329 4832 3319

Table 19: Error annotation and improvement results of different ModelE on the initial translations generated by
qwen2.5-14b-instruct for the zh→en multi-domain test set.
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Figure 6: An example of the augmented MQM data. Compared to the orginal MQM data, wo add explanations for
each error and provide improvement suggestions.

Model KIWI XCOMET METRICX↓
Qwen-Model0 79.42 90.37 4.6393
Qwen-ModelE+T

1 80.01 91.50 4.4495
Qwen-ModelT1 80.38 92.40 4.2382

Table 20: Performance comparison of model separation strategy.

Model KIWI XCOMET METRICX↓
Qwen-Trans-SFT1 80.22 91.56 4.3690
Qwen-ModelT1 80.38 92.40 4.2382

Table 21: Performance comparison between Qwen-Trans-SFT1 and Qwen-ModelT1 . The best results are in bold.

23934


