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Abstract

Retrieval-augmented generation (RAG) has re-
vitalized Large Language Models (LLMs) by
injecting non-parametric factual knowledge.
Compared with long-context LLMs, RAG is
considered an effective summarization tool in
a more concise and lightweight manner, which
can interact with LLMs multiple times us-
ing diverse queries to get comprehensive re-
sponses. However, the LLM-generated histori-
cal responses, which contain potentially insight-
ful information, are largely neglected and dis-
carded by existing approaches, leading to sub-
optimal results. In this paper, we propose graph
of records (GoR), which leverages historical
responses generated by LLMs to enhance RAG
for long-context global summarization. In-
spired by the retrieve-then-generate paradigm
of RAG, we construct a graph by establishing
an edge between the retrieved text chunks and
the corresponding LLM-generated response.
To further uncover the intricate correlations be-
tween them, GoR features a graph neural net-
work and an elaborately designed BERTScore-
based objective for self-supervised model train-
ing, enabling seamless supervision signal back-
propagation between reference summaries and
node embeddings. We comprehensively com-
pare GoR with 12 baselines across four long-
context summarization datasets, and the results
indicate that our proposed method reaches the
best performance (e.g., 15%, 8%, and 19%
improvement over retrievers w.r.t. Rouge-L,
Rouge-1, and Rouge-2 on the WCEP dataset).
Extensive experiments further demonstrate the
effectiveness of GoR. Code is available at
https://github.com/ulab-uiuc/GoR

1 Introduction

Large Language Models (LLMs) have recently
achieved remarkable performance across sorts of
language modeling tasks (Achiam et al., 2023;

*Work done as an intern at University of Illinois at Urbana-
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AI@Meta, 2024). Among them, the long-context
global summarization task is of great importance,
which requires ultra-long context understanding
capabilities of LLMs (Li et al., 2024a; Liu et al.,
2024b). Current attempts to accomplish this
task mainly include long-context LLMs (Touvron
et al., 2023; GLM et al., 2024; Li* et al., 2023;
Tworkowski et al., 2023) and retrieval-augmented
generation (RAG) (Ram et al., 2023; Yu et al., 2023;
Trivedi et al., 2022; Jiang et al., 2023b; Asai et al.,
2023). In comparison with long-context LLMs
that expand their context window to accommodate
long-context inputs, RAG performs a cost-effective
retrieve-then-generate paradigm and provides a
few retrieved short text chunks from a long docu-
ment to LLMs. In a running RAG system, there are
usually a large number of historical user queries
and LLM-generated responses for a long document.
Nevertheless, these historical responses, which con-
tain informative task-related content, are mostly
neglected without sufficient utilization by current
RAG approaches.

Unfortunately, utilizing LLM historical re-
sponses for long-context global summarization
presents two major challenges. (1) Sophisticated
yet implicit correlations between historical re-
sponses and text. Given a long document, there
will inevitably be complicated correlations among
plentiful user queries (e.g., logical correlations),
which are further inherited by LLM-generated re-
sponses and the retrieved text chunks. However,
uncovering these correlations is non-trivial since
most text embeddings from language models (e.g.,
SBERT (Reimers and Gurevych, 2019)) or retriev-
ers (Karpukhin et al., 2020) concentrate on seman-
tic similarity, which faces degrading performance
in this case. (2) Lack of supervision signal. In
contrast with local (e.g., query-based) summariza-
tion (Zhong et al., 2021; Wang et al., 2022a) that
includes golden reference text as labels, global sum-
marization needs to be considered from the perspec-
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tive of the long document as a whole and only has
global reference summaries, which complicates the
direct backpropagation of effective, accurate, and
deterministic supervision signals to optimize the
model towards a few relevant text chunks.

Based on the above observations, we propose
graph of records (GoR), which utilizes and or-
ganizes LLM historical responses as a graph of
records for enhancing long-context global sum-
marization in RAG. In detail, we first leverage
LLMs to simulate some user queries conditioned
on arbitrary text chunks in a long document to
obtain historical responses under the paradigm of
RAG, and an edge is then created between the
retrieved text chunks and the LLM-generated re-
sponse to construct a graph of records. To learn
fine-grained correlations among nodes, we employ
a graph neural network and reuse the simulated
user queries with the corresponding source text
chunk as self-supervised training data. Intuitively,
we hope the node embeddings can be adaptively
learned to reflect the semantic and logical corre-
lations with a given query. Inspired by the well-
received BERTScore (Zhang et al., 2019) that quan-
tifies the semantic similarity between two para-
graphs of text, we rely on it to rank the nodes ac-
cording to their similarity with the self-supervised
label of a given simulated query. In this way, node
embeddings can benefit the indirect supervision sig-
nal from the self-supervised labels and be flexibly
optimized using a contrastive loss and a pair-wise
ranking loss based on the node rankings. In the ex-
periments, we adopt four long-context summariza-
tion datasets, and the results demonstrate the superi-
ority and effectiveness of our proposed method. For
example, we show that GoR outperforms retrievers
by 15%, 8%, and 19% w.r.t. Rouge-L, Rouge-1,
and Rouge-2, respectively, on the WCEP dataset.
We also provide detailed comparisons and insight-
ful analyses through extensive experiments, further
showcasing the effectiveness of our approach. Our
contributions are summarized as follows:

• We propose graph of records (GoR), which
utilizes and organizes LLM-generated his-
torical responses as a graph of records
to strengthen RAG for long-context global
summarization. We reveal that the fine-
grained correlations between LLM historical
responses and text chunks from long docu-
ments can be uncovered and utilized effec-
tively to improve RAG performance.

• We leverage a graph neural network and de-
sign a BERTScore-based objective to opti-
mize node embeddings, which can be adap-
tively learned in a self-supervised manner to
reflect the semantic and complex correlations
with input queries. Furthermore, the indirect
supervision signal from self-supervised labels
is crucial and conducive to the effective opti-
mization of node embeddings.

• We evaluate our proposed method on four
long-context summarization datasets, and the
results show that GoR outperforms several
competitive baselines by a significant margin.
Extensive experiments and detailed analysis
verify the superiority of GoR.

2 Graph of Records

In this section, we first present some necessary
backgrounds in Section 2.1. Then, we describe
our proposed method sequentially through three
sections, i.e., Graph Construction (Section 2.2),
BERTScore-based Objective for Self-supervised
Training (Section 2.3), and Retrieval from the
Graph for Summarization (Section 2.4).

2.1 Preliminaries
Retrieval-augmented Generation. Retrieval-
augmented Generation (RAG) (Ram et al., 2023)
can typically be summarized into the following two
processes. (1) Retrieval. Give a long document
which consists of several split text chunks C =

{ci}|C|
i=1 as retrieval corpus, RAG first employs a

retriever (e.g., Contriever (Izacard et al., 2021)) to
retrieve K text chunks that are most relevant to a
given query q based on semantic similarity. The
retriever typically embeds the query q and a text
chunk c from C using a query encoder Eq(·) and
a context encoder Ec(·), respectively, and quantify
their semantic similarity by the dot product opera-
tion described as Sim(q, c) = Eq(q)

T ·Ec(c). (2)
Generation. The retrieved text chunks are fed into
LLMs with the query q to obtain the final response
r. The whole process can be described as:

r = Generation(q, {c1, · · · , cK}),
{c1, · · · , cK} = Retrieval(q|C).

(1)

Graph Neural Networks. Graph Neural Net-
works (GNNs) (Kipf and Welling, 2016) stand out
for their excellent representation learning ability
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on graph data. GNNs update node embeddings iter-
atively by aggregating messages from their neigh-
boring nodes. Generally, the l-th layer of GNNs
can be formalized as:

h(l)
v = AGG(l)

(
h(l−1)
v ,MSG(l)

(
{h(l−1)

u ,

u ∈ N(v)}; θlm
)
; θla

)
.

(2)

where h(l)
u ∈ Rdl is the embedding vector of nodes

u in layer l and the dimension is dl. MSG(l)(·)
is a message computation function parameterized
by θlm and AGG(l)(·) is a message aggregation
function parameterized by θla in layer l.

2.2 Graph Construction
In this section, we describe how to organize LLM
historical responses into a graph of records by sim-
ulating user queries.

Query Simulation. User queries play a very
critical role in the design of GoR since LLM his-
torical responses generated by lots of repetitive,
nonsense, or meaningless questions are inherently
not beneficial for summarization. One solution is
to use doc2query (Nogueira et al., 2019) to sim-
ulate queries for a long document, but the gener-
ated results inevitably suffer from simplicity and
rigidity due to the limited text generation capabil-
ities of T5 (Raffel et al., 2020). To this end, we
directly turn to LLMs for query simulation with
temperature sampling instead of greedy decoding
for generating meaningful, insightful, and diverse
questions. Specifically, we split a long document
into several text chunks C following the standard
procedure of RAG and prompt LLMs to generate a
query qs based on a randomly selected text chunk
cs. We repeat the above process until a certain num-
ber of non-duplicate queries are generated, which
are gathered in pairs with the corresponding text
chunks to form a corpus T = {(qs

i , c
s
i )}

|T|
i=1 for

further model training (Section 2.3).
Organize LLM Historical Responses into A

Graph. After obtaining simulated queries, we uti-
lize them to perform RAG on the long document.
LLM-generated responses during this process in-
clude informative and valuable understanding, sum-
marizing, and answering of retrieved text chunks
in the long document. Moreover, since there may
exist sophisticated correlations among simulated
queries, the text chunks and responses can inherit
these features and potentially assist in answering a
more comprehensive query, especially global sum-

marization that needs to be understood from a holis-
tic perspective. Nevertheless, it is a significant chal-
lenge to find correlations among complex and mas-
sive text at the linguistic level and the embeddings
from language models (e.g., SBERT (Reimers and
Gurevych, 2019)) or retrievers (Karpukhin et al.,
2020) focus on semantic similarity, which also suf-
fers from poor performance in this case. To this
end, we propose to break out of this dilemma by
organizing these historical responses into a graph.

Inspired by the retrieve-then-generate process of
RAG, we can connect the retrieved chunks to the
corresponding response generated by LLMs since
they are naturally relevant in content. Sequentially,
during the i-th round RAG, given the simulated
query qs

i , we expand the retrieval corpus C with
previously generated responses {r1, · · · , ri−1}
and then build an edge between each retrieved
chunk cj ∈ {c1, · · · , cK} and the newly gener-
ated LLM response ri, resulting in K edges con-
structed in each round. Note that we append the
responses generated by each round of RAG to the
retrieval corpus because they contain more refined
knowledge compared with the text chunks from
C and can help LLMs generate comprehensive re-
sponses in a self-evolving manner. Formally, the
i-th round RAG on simulated queries {qs

i}
|T|
i=1 can

be described as:

ri=Generation(qs
i ,{c1, · · · , cK}),

{c1, · · · , cK}=Retrieval(qs
i |C,{r1, · · · , ri−1}).

(3)

In this way, the LLM-generated responses serve
as bridges to connect the originally scattered text
chunks C so that the fine-grained and sophisticated
correlations among them can be better modeled and
explored. Furthermore, we can potentially lever-
age historical responses generated by LLMs and
enhance the quality of future LLM responses.

2.3 BERTScore-based Objective for
Self-supervised Training

So far, we have constructed a graph using LLM-
generated historical responses during RAG given
the simulated queries. The key in this section lies
in designing a reasonable and effective objective
function for model optimization. Considering that
some random walk (Grover and Leskovec, 2016)
or propagation-based (Zhu and Ghahramani, 2002)
algorithms are not differentiable, we turn to graph
neural networks (GNNs) for learning node embed-
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Figure 1: GoR model architecture. GoR randomly selects text chunks ci from long documents to feed into LLMs
for query simulation, which are saved as a self-supervised training corpus T and further used for graph construction
inspired by the retrieve-then-generate paradigm in RAG. For model training, GoR leverages GNNs to obtain node
embeddings and calculate their similarities to the query embedding. Finally, GoR features contrastive learning and
pair-wise ranking objectives based on the node ranking list Mi derived from BERTScore calculation.

dings, which are backpropagation-friendly. Intu-
itively, given a global summarization query q, our
ultimate optimization goal is to make the learned
node embeddings adaptively reflect the similarity
with the query embedding Eq(q) by taking the
complicated correlations among nodes into account.
However, in global summarization tasks, there are
essentially no text chunk indices as labels to in-
dicate which nodes are most relevant for a query
since it needs to consider the long document as
a whole. Another naive solution is to use global
reference summaries as labels, but there is a gap in
supervision signal backpropagation between them
and node embeddings because we still need to find
out which nodes are most relevant to them.

Therefore, inspired by BERTScore (Zhang et al.,
2019), which measures the semantic similarity be-
tween the reference and the generated text, we pro-
pose to use it to rank all nodes based on the sim-
ilarity with reference summaries. By this means,
BERTScore fills the gap in the backpropagation
so that node embeddings can benefit the indirect
supervision signal from the reference summaries.
Nevertheless, global reference summaries contain
broad information about long documents, making
them highly semantically relevant to many nodes,
which will confuse the model optimization direc-
tion and degrade the performance (we will discuss
it in Section 3.5).

Contrastive Loss Driven by BERTScore.

Based on the above observations, we directly reuse
the simulated queries T = {(qs

i , c
s
i )}

|T|
i=1 to serve

as self-supervised training data, in which the text
chunk csi is highly relevant to the query qs

i and
has more focused content. Given node embeddings
output by the last L-th layer of GNNs, for the i-th
query qs

i , we rank them according to the similar-
ity with the i-th text chunk csi and obtain a node
embedding ranking list Mi:

Mi = [h
(L)
+ ,h

(L)
1 , · · · ,h(L)

|C|+|T|], (4)

where h
(L)
+ stands for the node embedding with

highest similarity. Note that we utilize the context
encoder Ec(·) from the retriever to initialize node
embeddings for simplicity. Then, we regard h

(L)
+

as the positive while the rest in Mi as negative
samples to conduct contrastive learning using In-
foNCE (van den Oord et al., 2018), which brings
the query qs

i and the positive sample h(L)
+ closer in

the semantic embedding space. We formulate the
contrastive training objective as follows:

s(q,h) = exp
(
Eq(q)

⊤h/τ
)
, (5)

LCL=− 1

|T|

|T|∑

j=1

log
s(qs

j ,h
(L)
+ )

s(qs
j ,h

(L)
+ )+

|Mj−1|∑
i=1

s(qs
j ,h

(L)
i )

,

(6)
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where τ is the temperature coefficient. Note that in
the optimization pipeline of GoR, we conduct mini-
batch training on the graph level, and each graph
is associated with an independent self-supervised
training dataset T. We also leverage in-batch nega-
tives from other graphs since the nodes in them are
completely irrelevant content from other long doc-
uments (it is not shown in Formula 6 for brevity).

Auxiliary Pair-wise Ranking Loss. In the
above-described contrastive loss LCL, although
we impose constraints on positive and negative
samples, the ranking of negative samples them-
selves is not well utilized. Inspired by Lamb-
daRank (Burges, 2010), we further introduce an
auxiliary pair-wise ranking loss on the ranking list
Mi, which can be formulated as:

LRANK =
1

|T|

|T|∑

k=1

∑

h
(L)
i ,h

(L)
j ∈Mk

I
r(h

(L)
j )>r(h

(L)
i )

log

(
1 +

s(qs
k,h

(L)
j )

s(qs
k,h

(L)
i )

)
,

(7)

where r(·) denotes the ranking index (e.g.,
r(h

(L)
+ ) < r(h

(L)
1 )). Given h

(L)
i ,h

(L)
j ∈ Mk that

satisfies r(h
(L)
j ) > r(h

(L)
i ), the pair-wise rank-

ing loss will explicitly optimize in the direction
of Eq(q

s
k)

⊤h(L)
j < Eq(q

s
k)

⊤h(L)
i , thus imposing

stricter constraints to the pair-wise ranking.
Overall Training Objective. To sum up, the

overall training objective can be formulated as:

L = LCL + α · LRANK. (8)

where α ∈ [0, 1] is a hyper-parameter. It is worth
noting that GoR’s training costs are lightweight
since the only trainable module is GNNs, and no
human-crafted labels are needed.

2.4 Retrieval from the Graph for
Summarization

During the graph construction phase, we have al-
ready obtained a graph consisting of nodes that
represent both the text chunks c from the long doc-
ument and the responses r generated by LLMs
during the RAG process. These nodes collectively
form the retrieval corpus used by GoR during infer-
ence. After GNN training, each node is associated
with a learned embedding vector that captures not
only its semantic content but also its contextual

and structural relationships with other nodes in
the graph. These learned embeddings replace the
original text embeddings produced by conventional
retrievers (e.g., Contriever (Izacard et al., 2021)),
enabling the model to incorporate richer relational
information among document chunks, which is es-
pecially beneficial for the summarization task. Dur-
ing inference for global summarization, the process
begins with encoding the query into an embedding
using the same retriever. We then compute the
similarity (via inner product) between the query
embedding and all node embeddings in the graph.
The top-K most relevant nodes, comprising both
document chunks and LLM-generated responses,
are retrieved based on this similarity score. These
selected nodes, along with the query, are then fed
into the LLM to generate the final summary.

Overall, the retrieval process in GoR mirrors that
of standard dense retrievers, with the key distinc-
tion being the use of graph-enhanced node embed-
dings and the inclusion of generated responses in
the retrieval corpus. This approach allows GoR to
better exploit both content and structural cues for
improved summarization performance.

3 Experiments

3.1 Experimental Setup

Datasets. We evaluate our proposed method on
four long-context summarization datasets, i.e., Aca-
demicEval (Feng et al., 2024), QMSum (Zhong
et al., 2021), WCEP (Gholipour Ghalandari et al.,
2020), and BookSum (Kryściński et al., 2021).
Among them, AcademicEval collects scientific pa-
pers from arXiv for abstract writing, given the long
inputs of its main body. QMSum is a query-based
summarization dataset, and we only use “gen-
eral queries” for evaluating global summarization.
WCEP is a multi-document summarization dataset
about news events, while BookSum features long-
form narrative summarization. For metrics, we
adopt Rouge-1 (R-1), Rouge-2 (R-2), and Rouge-L
(R-L) (Lin, 2004) to assess the text alignment be-
tween the reference summaries and the predicted
content generated by GoR.

Implementation Details. Following the stan-
dard procedure of RAG, we adopt TokenTextSplit-
ter from LangChain to split each long document
into text chunks. Each chunk has a size of 256,
and the chunk overlapping is 32. We generate
30 queries for each long document using Mixtral-
8x7B-Instruct-v0.1 (Jiang et al., 2024), and the
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Model QMSum AcademicEval WCEP BookSum

R-L R-1 R-2 R-L R-1 R-2 R-L R-1 R-2 R-L R-1 R-2

Node2Vec 18.5 31.8 6.3 19.3 38.3 10.6 13.9 20.1 6.3 13.6 27.4 4.6

BM25 18.4 32.1 6.1 20.4 39.6 11.3 15.5 22.6 7.3 13.7 26.7 4.9
TF-IDF 18.3 31.2 6.3 19.5 38.0 10.6 15.3 22.3 7.3 13.6 26.6 4.9

Contriever 19.1 32.7 7.7 23.6 44.8 16.0 15.7 23.5 7.7 14.4 29.8 5.5
DPR 18.6 32.1 6.7 20.9 41.4 13.2 15.6 22.5 7.5 13.8 27.1 4.8

Dragon 19.2 33.5 7.7 23.5 43.8 15.1 14.6 21.8 6.8 13.7 27.2 4.8
SBERT 19.0 33.0 7.4 23.4 45.2 15.8 13.7 20.5 5.5 14.4 29.5 5.4

BM25+DPR 18.3 31.8 6.6 19.9 39.0 10.8 15.7 22.1 7.6 14.1 28.9 5.4

Gemma-8K 19.8 33.5 7.3 21.9 42.0 12.9 15.6 21.9 7.7 12.8 23.4 4.2
Mistral-8K 19.6 31.2 7.2 21.6 41.6 13.1 16.7 24.2 8.8 13.5 26.2 5.3

Full Context 19.4 33.1 6.8 21.5 41.1 12.5 14.4 21.0 7.1 14.4 28.9 5.9

Thought-R 19.0 33.9 7.6 22.0 42.6 13.2 15.2 22.4 7.4 14.2 29.5 5.7

GoR (Ours) 19.8 34.5 7.8 24.7 46.5 17.3 18.1 25.4 9.2 14.9 31.5 6.6

Table 1: Experimental results on QMSum, AcademicEval, WCEP, and BookSum datasets over long-context
global summarization tasks w.r.t. Rouge-L (R-L), Rouge-1 (R-1), and Rouge-2 (R-2). Note that the average
LLM input token length of GoR and retriever-based baselines is 6× 256 (≈1.5K). (BOLD indicates the best score)

temperature coefficient is set to 0.5 by default in
the query simulation stage. For RAG, we use Con-
triever (Izacard et al., 2021) for query and doc-
ument embedding and retrieve 6 text chunks by
default, which are fed into LLaMA-2-7b-chat (Tou-
vron et al., 2023) with greedy decoding to generate
predicted summaries. In the training stage, we
initialize the graph neural network as a two-layer
graph attention network (GAT) (Veličković et al.,
2017), with a 768-dim hidden dimension following
the default setting of most retrievers.

Baselines. To have a comprehensive evaluation,
we compare our proposed GoR with dozens of base-
lines, including (1) Random Walk based Node
Embedding (i.e., Node2Vec (Grover and Leskovec,
2016)), (2) Sparse Retriever (i.e., BM25 (Robert-
son et al., 2009) and TF-IDF (Ramos et al.,
2003)), (3) Dense Retriever (i.e., Contriever (Izac-
ard et al., 2021), DPR (Karpukhin et al., 2020),
Dragon (Lin et al., 2023), and Sentence-BERT
(SBERT) (Reimers and Gurevych, 2019)1), (4)
Hybrid Retriever (i.e., BM25+DPR with Recip-
rocal Rerank Fusion), (5) Long-context LLMs
(i.e., Gemma-8K (Team et al., 2024) and Mistral-
8K (Jiang et al., 2023a)), (6) Full Context (i.e.,
feeds all inputs to LLMs for summary generation2),
and (7) Thought Retriever (Thought-R) (Feng

1 We use all-MiniLM-L6-v2 as the backbone.
2 If the input length exceeds the context window limit, we

randomly sample continuous text spans of maximum length
multiple times to feed into LLMs and calculate the avg. result.

et al., 2024). Appendix A elucidates more details.

3.2 Main Results

We conduct comprehensive experiments on QM-
Sum, AcademicEval, WCEP, and BookSum
datasets compared with dozens of baselines to eval-
uate the long-context global summarization capa-
bilities of our proposed method. The results are
shown in Table 1.

GoR consistently outperforms retriever-based
methods. From Table 1, our proposed GoR beats
sparse retrievers, dense retrievers, and hybrid re-
trievers in every aspect. Thanks to the constructed
graph, which integrates text chunks from long doc-
uments and LLM historical responses into a whole,
node embeddings can better reflect the complicated
correlations with given queries, thus significantly
improving the retrieval performance of GoR. More-
over, the informative content of historical responses
may also enhance the summarization task.

GoR shows superiority over long-context
LLMs. We compare Gemma-8K and Mistral-8K
with a longer context window to accommodate
long-context inputs. However, longer inputs may
contain minor information, and long-context LLMs
struggle with this situation. In contrast, GoR can ef-
fectively differentiate key and topic-related content
in long texts using learned node embeddings and
achieve better results with shorter input lengths.

Additional Findings. (1) Node2Vec produces
unsatisfactory results, and the node embeddings
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QMSum AcademicEval WCEP BookSum

BM25 GoR BM25 GoR BM25 GoR BM25 GoR
38.7% 61.3% 30.0% 70.0% 70.4% 29.6% 35.5% 64.5%

TF-IDF GoR TF-IDF GoR TF-IDF GoR TF-IDF GoR
40.6% 59.4% 33.3% 66.7% 66.7% 33.3% 41.9% 58.1%

Contriever GoR Contriever GoR Contriever GoR Contriever GoR
51.6% 48.4% 53.3% 46.7% 48.1% 51.9% 54.8% 45.2%

Gemma-8K GoR Gemma-8K GoR Gemma-8K GoR Gemma-8K GoR
6.5% 93.5% 16.7% 83.3% 37.0% 63.0% 12.9% 87.1%

Mistral-8K GoR Mistral-8K GoR Mistral-8K GoR Mistral-8K GoR
12.9% 87.1% 40.0% 60.0% 37.0% 63.0% 22.6% 77.4%

Table 2: LLM Evaluation w.r.t. overall win rates on the QMSum, AcademicEval, WCEP, and BookSum
datasets. Note that there are very few test samples that contain some security-sensitive information that causes
DeepSeek-R1 to be unable to return valid evaluation information. We directly skip these samples.

cannot be optimized effectively since it is based
on a non-differentiable algorithm. (2) Although
Thought Retriever demonstrates competitive re-
sults, it is still inferior to GoR due to the lack of ex-
ploration of the correlations between retrieved text
chunks and LLM-generated responses. (3) Since
the context window length limit of LLMs is ex-
ceeded, “Full Context” truncates the long-context
input, thus losing some information that may be
important for global summarization, resulting in
suboptimal results.

Overall, GoR achieves the best results compared
with various baselines, demonstrating the effective-
ness of our proposed method.

3.3 LLM Evaluation

To enable a more comprehensive automatic eval-
uation of GoR, inspired by LLM-as-a-Judge (Gu
et al., 2024), we adopt DeepSeek-R1 (Guo et al.,
2025) to assess the summaries generated by GoR
and competitive baselines. Following (Edge et al.,
2024) and (Guo et al., 2024), we evaluate from
three perspectives: comprehensiveness, diversity,
and empowerment. The LLM is instructed to pro-
vide an overall judgment based on these criteria to
determine the better summary.

To reduce evaluation costs, we select represen-
tative and strong baselines for LLM evaluation on
the QMSum, AcademicEval, WCEP, and Book-
Sum datasets. Table 2 reports the overall win rates,
i.e., the proportion of summaries judged better un-
der pairwise comparison. Evaluation prompts are
provided in Appendix D.

From Table 2, we observe the following. (1)
GoR consistently outperforms other methods
across all datasets, demonstrating stronger com-

prehensiveness, diversity, and informativeness. (2)
Contriever performs comparably, with results close
to GoR. (3) Long-context LLMs like Gemma-8K
and Mistral-8K fall significantly behind, suggest-
ing that GoR’s graph-based retrieval yields more
relevant and refined content, especially when input
length is limited.

In summary, GoR delivers superior performance
in LLM evaluation compared to other baselines.

3.4 Ablation Study

To investigate how each component of GoR con-
tributes to its performance, we conduct an ablation
experiment, and the results are shown in Table 3.

From Table 3, we can draw several conclusions.
(1) Directly using the text embeddings from the
retriever without training leads to degraded perfor-
mance (i.e., w/o train), highlighting the effective-
ness of the learned node embeddings. (2) Both
the contrastive loss LCL and pair-wise ranking loss
LRANK significantly improve performance. The
pair-wise ranking loss imposes stricter ranking con-
straints on node embeddings, making effective use
of the indirect supervision signal from the self-
supervised reference summaries. (3) In-batch nega-
tives are crucial to the performance of contrastive
learning. Removing in-batch negatives (i.e., w/o
in-b neg) leads to a significant drop in results. (4)
Compared with self-supervised training, we utilize
global reference summaries as labels to conduct su-
pervised training (i.e., w/ sup), and the results are
significantly worse than the self-supervised setting.
We will further discuss it in Section 3.5.

In general, GoR’s reasonable module design en-
ables it to achieve superior performance.
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Variant WCEP BookSum

R-L R-1 R-2 R-L R-1 R-2

w/o train 15.3 22.4 7.4 13.7 27.7 4.7
w/o LCL 14.7 21.9 7.2 14.1 28.8 5.1

w/o LRANK 16.6 24.2 8.2 14.0 28.0 4.9
w/o in-b neg 17.2 24.9 8.8 13.3 26.3 5.2

w/ sup 15.5 22.8 7.3 13.8 29.0 5.2

GoR 18.1 25.4 9.2 14.9 31.5 6.6

Table 3: Ablation study on the WCEP and BookSum
datasets w.r.t. R-L, R-1, and R-2.

3.5 Discussions
Impact of the Number of Simulated Queries
During Training. Query Simulation is a crucial
stage in our method design, and we will examine
how the number of simulated queries used during
training affects learning performance. In particu-
lar, we explore this effect by gradually increasing
the number of simulated queries used in training.
We present the results in Figure 2. Overall, R-L
shows an upward trend as the number of simu-
lated queries increases. Nevertheless, since fewer
queries cover less relevant content from long docu-
ments, the curves of each dataset have some fluctu-
ations, indicating the occurrence of underfitting.

In general, 30 simulated queries can optimize
the model well across these four datasets, which
indicates that our proposed GoR is cost-effective.
Nevertheless, increasing the number of simulated
queries may still potentially further improve the per-
formance of the model. Due to budget constraints,
we will leave this for future work.
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Figure 2: Impact of the number of simulated queries
during training w.r.t. R-L. We show the results on the
QMSum and WCEP datasets.

Supervised Training on Global Summariza-
tion Queries. To dive deeper into the differ-
ences between self-supervised and supervised train-
ing, we carry out additional experiments using
global reference summaries. Specifically, we uti-
lize global summarization queries and reference
summaries to serve as a training corpus under the

supervised setting. As there is only one global
summarization query for each long document, we
replicate it multiple times to match the quantity of
self-supervised training data, thus eliminating the
impact of the quantity difference. We present the
results on the BookSum dataset in Figure 3, and
the Entropy denotes the entropy of the similarity
distribution between queries and node embeddings.

From Figure 3, it is evident that in the self-
supervised setting, the loss is consistently lower
than in the supervised setting. This suggests that
the global reference summaries are highly corre-
lated with many nodes, causing most nodes to ex-
hibit a high semantic similarity with the global
query. As a result, this confuses the model’s opti-
mization direction. Additionally, the entropy curve
shows that the entropy in the supervised setting
is consistently higher than in the self-supervised
setting, indicating that the model struggles to se-
lect the most similar node. In contrast, the self-
supervised label, derived from a specific part of
a long document, contains more focused content,
effectively guiding the model’s optimization.
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Figure 3: Differences between self-supervised and
supervised training w.r.t. loss and entropy on the
BookSum dataset.

Inference Efficiency Analysis. To investigate
the inference efficiency of GoR, we conduct exten-
sive experiments on the WCEP dataset and present
the results w.r.t. the inference time per query in
Table 4. Note that since the LLM used in our exper-
iment is consistent, we ignore the inference time
brought by the LLM itself.

From Table 4, we can draw the following con-
clusion. (1) Since GoR’s only trainable module
is GNN, GoR’s inference efficiency is very high,
and almost no additional noticeable latency is in-
troduced. (2) Although GoR’s inference time is
longer than some baselines, it only increases by a
few hundred milliseconds. Considering the signifi-
cant performance improvement brought by GoR in
Table 1, this tiny time overhead is almost negligible
in practical applications.
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Baselines Node2Vec BM25 Contriever SBERT BM25+DPR Thought-R GoR (ours)

Inference
Time (s) 9.4 0.02 0.20 0.01 0.04 0.3 0.58

Table 4: Inference efficiency analysis w.r.t. inference time per query on the WCEP dataset.

4 Related Work

Long-context Summarization using LLMs. In
recent years, LLMs have shown impressive capa-
bilities in long-context modeling (Achiam et al.,
2023; AI@Meta, 2024; Team et al., 2024; Jiang
et al., 2024). Summarizing lengthy documents with
LLMs primarily involves two approaches: retrieval-
augmented generation (RAG) (Ram et al., 2023; Yu
et al., 2023) and long-context LLMs (GLM et al.,
2024; Li* et al., 2023; Tworkowski et al., 2023).
Long-context LLMs feature a large context win-
dow length to accommodate long-context inputs.
However, they may suffer from severe performance
degradation when accessing some local key details
in the middle of long contexts (Liu et al., 2024b).
Conversely, RAG emerges as a promising approach
for cost-effective long-context summarization. By
equipping with a retriever (Karpukhin et al., 2020;
Robertson et al., 2009), RAG can first perform a
relevance search based on user queries and then
feed the retrieved text into LLMs for summary. For
a recent example, GraphRAG (Edge et al., 2024)
conducts query-focused summarization by setting
up a graph index and detecting graph communities
for summary generation.

Nevertheless, most current RAG approaches still
focus on enhancing LLMs’ reasoning and question-
answering capabilities, which only require retriev-
ing locally relevant information (Trivedi et al.,
2022; Jiang et al., 2023b; Asai et al., 2023; Li et al.,
2023; Zheng et al., 2023). In comparison, our pro-
posed method stands out from these methods by
focusing on LLMs’ global summarization capabil-
ity of long-context inputs.

Graph-assisted Retrieval-augmented Lan-
guage Models. As one of the effective structures
for modeling data relations, graphs have recently
been used to enhance the performance of retrieval-
augmented language models on various QA tasks.
EtD (Liu et al., 2024a) features a graph neural
network (GNN) to traverse a knowledge graph
hop by hop to discover more relevant knowledge,
thus enhancing LLM generation quality. GNN-
RAG (Mavromatis and Karypis, 2024) learns to rea-

son over graphs using GNNs, and retrieves answer
candidates for a given question. PG-RAG (Liang
et al., 2024) constructs pseudo-graphs with a re-
trieval indexer by prompting LLMs to organize
document knowledge in a self-learning manner. G-
RAG (Dong et al., 2024) proposes to rerank docu-
ments by learning graph representation on abstract
meaning representation graphs, while GNN-Ret (Li
et al., 2024b) refines semantic distances between
documents and queries by modeling relationships
among related passages. ToG (Sun et al., 2023)
and KGP (Wang et al., 2024) treat LLMs as agents
to traverse and reason over knowledge graphs in
an iterative way, while RoG (Luo et al., 2023) first
generates plans for retrieval and then conducts rea-
soning. G-Retriever (He et al., 2024) transforms
retrieved knowledge subgraphs into graph embed-
dings by training a graph encoder and textualizes
subgraphs to serve as inputs of LLMs.

Different from the above, GraphRAG (Edge
et al., 2024) sets up a graph index for query-focused
summarization, which aligns more closely with our
approach. Compared with GraphRAG, which is
time-consuming and suffers from huge computa-
tional costs, GoR is lightweight and only draws
on a few LLM historical responses with efficient
training to achieve competitive performance.

5 Conclusion

In this work, we introduce a method named graph
of records (GoR) to improve long-context global
summarization in retrieval-augmented generation
by utilizing LLM-generated historical responses.
Intuitively, we establish connections between text
chunks retrieved from long documents and LLM-
generated historical responses to create a graph of
records. To uncover complex correlations between
these connections, we use a graph neural network
and develop a BERTScore-based objective for self-
supervised training, enabling seamless supervision
signal backpropagation between self-supervised
reference summaries and node embeddings. Our
experiments on four long-context summarization
datasets show that GoR significantly outperforms
various baselines, demonstrating its effectiveness.
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6 Limitations

Despite the superiority of our proposed method,
GoR has some limitations. (1) Due to a limited
budget, we only simulate and generate a small num-
ber of user queries, which may cause a bottleneck
in further model optimization. (2) The simulated
queries may not accurately reflect the real-world
distribution, as they do not account for the possi-
bility of users asking many meaningless questions.
Therefore, a filtering process may be necessary,
which we leave for future work.

To promote sharing and communication in the
academic community, we also share some insights
about simulated queries here. Given the power-
ful evaluation capabilities of LLMs, many works
utilize LLM-as-a-Judge and treat LLMs as evalua-
tors. Intuitively, in practical applications, we can
first use some simple rule-based filtering strategies
to preliminarily screen the meaningless questions
raised by users, and then use LLM-as-a-Judge to
evaluate the remaining questions and judge their
quality from multiple dimensions (such as diversity,
complexity, inspiration, etc.), which not only takes
into account performance but also ensures a certain
efficiency in real multi-user scenarios.
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Miłoś. 2023. Focused transformer: Contrastive train-
ing for context scaling. Preprint, arXiv:2307.03170.

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. 2018.
Representation learning with contrastive predictive
coding. arXiv preprint arXiv:1807.03748v2.

Petar Veličković, Guillem Cucurull, Arantxa Casanova,
Adriana Romero, Pietro Lio, and Yoshua Bengio.
2017. Graph attention networks. arXiv preprint
arXiv:1710.10903.

Alex Wang, Richard Yuanzhe Pang, Angelica Chen, Ja-
son Phang, and Samuel R Bowman. 2022a. Squality:
Building a long-document summarization dataset the
hard way. arXiv preprint arXiv:2205.11465.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc
Le, Ed Chi, Sharan Narang, Aakanksha Chowdhery,
and Denny Zhou. 2022b. Self-consistency improves
chain of thought reasoning in language models. arXiv
preprint arXiv:2203.11171.

Yu Wang, Nedim Lipka, Ryan A Rossi, Alexa Siu, Ruiyi
Zhang, and Tyler Derr. 2024. Knowledge graph
prompting for multi-document question answering.
In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 38, pages 19206–19214.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. 2022. Chain-of-thought prompting elicits rea-
soning in large language models. Advances in neural
information processing systems, 35:24824–24837.

Felix Wu, Amauri Souza, Tianyi Zhang, Christopher
Fifty, Tao Yu, and Kilian Weinberger. 2019. Simpli-
fying graph convolutional networks. In International
Conference on Machine Learning, pages 6861–6871.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie
Jegelka. 2019. How powerful are graph neural net-
works? In International Conference on Learning
Representations.

Ling Yang, Zhaochen Yu, Tianjun Zhang, Shiyi Cao,
Minkai Xu, Wentao Zhang, Joseph E Gonzalez,
and Bin Cui. 2024. Buffer of thoughts: Thought-
augmented reasoning with large language models.
arXiv preprint arXiv:2406.04271.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran,
Tom Griffiths, Yuan Cao, and Karthik Narasimhan.
2024. Tree of thoughts: Deliberate problem solving
with large language models. Advances in Neural
Information Processing Systems, 36.

Zichun Yu, Chenyan Xiong, Shi Yu, and Zhiyuan Liu.
2023. Augmentation-adapted retriever improves gen-
eralization of language models as generic plug-in.
arXiv preprint arXiv:2305.17331.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q
Weinberger, and Yoav Artzi. 2019. Bertscore: Eval-
uating text generation with bert. arXiv preprint
arXiv:1904.09675.

Huaixiu Steven Zheng, Swaroop Mishra, Xinyun Chen,
Heng-Tze Cheng, Ed H Chi, Quoc V Le, and Denny
Zhou. 2023. Take a step back: Evoking reasoning via
abstraction in large language models. arXiv preprint
arXiv:2310.06117.

23791

https://arxiv.org/abs/1908.10084
https://arxiv.org/abs/1908.10084
https://arxiv.org/abs/2307.03170
https://arxiv.org/abs/2307.03170


Ming Zhong, Da Yin, Tao Yu, Ahmad Zaidi, Mutethia
Mutuma, Rahul Jha, Ahmed Hassan Awadallah, Asli
Celikyilmaz, Yang Liu, Xipeng Qiu, et al. 2021.
Qmsum: A new benchmark for query-based multi-
domain meeting summarization. arXiv preprint
arXiv:2104.05938.

Xiaojin Zhu and Zoubin Ghahramani. 2002. Learning
from labeled and unlabeled data with label propaga-
tion. ProQuest number: information to all users.

23792



A Experimental Details

A.1 Dataset
We present dataset statistics in Table 5. Due to the
limited budget, we randomly select training and
test samples for the training and test set and calcu-
late the average input and output token lengths us-
ing the LLaMA-2 tokenizer (Touvron et al., 2023)
(samples with short input lengths are filtered out).

We evaluate our proposed method on four long-
context summarization datasets, i.e., AcademicE-
val (Feng et al., 2024), QMSum (Zhong et al.,
2021), WCEP (Gholipour Ghalandari et al., 2020),
and BookSum (Kryściński et al., 2021).

• QMSum (Zhong et al., 2021). QMSum is a
query-based summarization dataset that fea-
tures lengthy meeting transcripts, specific
queries, and general queries. Specific queries
focus on query-based summarization, and gen-
eral queries are questions that summarize the
entire meeting transcript, such as “Summarize
the whole meeting.” We only use “general
queries” for evaluating global summarization.

• AcademicEval (Feng et al., 2024). Aca-
demicEval collects scientific papers from
arXiv for abstract and related work writing.
We use the abstract writing subset, which pro-
vides the main body of a paper as input and
generates the predicted abstract.

• WCEP (Gholipour Ghalandari et al., 2020).
WCEP is a multi-document summarization
dataset about news events, which requires
comprehensive consideration of the contents
of multiple documents.

• BookSum (Kryściński et al., 2021). Book-
Sum features long-form narrative summariza-
tion, which covers source documents from the
literature domain and includes highly abstrac-
tive human-written summaries.

A.2 Baselines
We present detailed descriptions of adopted base-
lines.

• Node2Vec (Grover and Leskovec, 2016).
Node2Vec generates node embeddings for
graphs by simulating biased random walks to
capture both local and global structural prop-
erties of nodes.

• BM25 (Robertson et al., 2009), TF-
IDF (Ramos et al., 2003). BM25 ranks
documents based on term frequency, inverse
document frequency, and document length
normalization, while TF-IDF evaluates the
importance of a term in a document relative
to a corpus by combining term frequency and
inverse document frequency.

• Contriever (Izacard et al., 2021),
DPR (Karpukhin et al., 2020), Dragon (Lin
et al., 2023), SBERT (Reimers and Gurevych,
2019). Contriever is a self-supervised dense
retriever that learns unsupervised document
embeddings for information retrieval, DPR
(Dense Passage Retriever) is a bi-encoder
model that retrieves relevant passages by
training on question-passage pairs, Dragon
is a dense retrieval model optimized through
diverse augmentation for generalizable dense
retrieval, and SBERT (Sentence-BERT) is a
modification of BERT that generates seman-
tically meaningful sentence embeddings for
tasks like similarity and clustering using a
siamese network structure.

• BM25+DPR. BM25+DPR with Reciprocal
Rerank Fusion is a hybrid retrieval method
that combines the strengths of BM25’s lexi-
cal matching and DPR’s dense embeddings
by reranking results from both models using
a reciprocal rank fusion strategy to improve
retrieval accuracy.

• Gemma-8K (Team et al., 2024), Mistral-
8K (Jiang et al., 2023a). Gemma-8K and
Mistral-8K are LLMs with relatively long con-
text window lengths.

• Full Context. We feed all inputs to LLMs for
summary generation. If the input length ex-
ceeds the context window limit, we randomly
sample continuous text spans of maximum
length multiple times to feed into LLMs and
calculate the average result.

• Thought-R (Feng et al., 2024). Thought Re-
triever (Thought-R) generates thoughts for a
series of simulated queries and appends them
to the retrieval corpus as high-level knowl-
edge.
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Dataset #Train #Test
Average Input
Token Length

Average Output
Token Length

QMSum (Zhong et al., 2021) 162 30 17K 0.1K
AcademicEval (Feng et al., 2024) 400 30 13K 0.3K

WCEP (Gholipour Ghalandari et al., 2020) 400 30 11K 0.05K
BookSum (Kryściński et al., 2021) 400 30 16K 1K

Table 5: Dataset statistics

A.3 Additional Explanation on Training
Objective

Given a graph that consists of document chunks
and response nodes, we expect that the learned
node embeddings h

(L)
v can adaptively reflect the

semantic similarity to a given query q. In other
words, we expect that we can select the node v
with the largest semantic similarity to q according
to the formula Sim(q,v) = Eq(q)

T ·h(L)
v . To this

end, we need to find out which node has the highest
semantic similarity with q and use this as a supervi-
sion signal for model optimization. Therefore, we
utilize BERTScore (Zhang et al., 2019) to obtain
a node ranking list Mi, which exactly serves as
supervision signals.

Mi = [h
(L)
+ ,h

(L)
1 , · · · ,h(L)

|C|+|T|] (9)

For contrastive loss in Equation 6, we regard
h
(L)
+ as the positive and [h

(L)
1 , · · · ,h(L)

|C|+|T|] as the
negatives to conduct contrastive learning (van den
Oord et al., 2018). For a given query q, the
contrastive learning objective will bring Eq(q)

and h
(L)
+ closer in the semantic embedding space

while increasing the distance between Eq(q) and
[h

(L)
1 , · · · ,h(L)

|C|+|T|] (the symbols are simplified
here for convenience of description).

Similarly, in Equation 7, we expect to impose
a stricter constraint on the learned node embed-
ding based on the node ranking list Mi. Although
Equation 6 shortens the semantic distance between
Eq(q) and h

(L)
+ , it does not take into account the

relative ranking between negative samples. For ex-
ample, the semantic similarity between Eq(q) and
h
(L)
1 is higher than that between h

(L)
2 . Formally,

given h
(L)
i ,h

(L)
j ∈ Mi that satisfies rank(h(L)

j ) >

rank(h
(L)
i ), Equation 7 will explicitly optimize in

the direction of Eq(q)
⊤h(L)

j < Eq(q)
⊤h(L)

i , thus
imposing stricter constraints to the pair-wise rank-
ing.

A.4 Additional Implementation Details
In the stage of graph construction, due to the num-
ber and randomness of the simulated queries, there
may be some isolated nodes, and we just keep them
in the graph with self-loop edges. During model
optimization, BERTScore is pre-computed for effi-
cient training.

In the training stage, we use the Adam optimizer
for model training and gradually decay the learning
rate from 1e-3 to 0 with the LambdaLR scheduler.
We present detailed hyper-parameters on QMSum,
AcademicEval, WCEP, and BookSum datasets in
Table 6. We implement our proposed method using
PyTorch and Deep Graph Library (DGL), and all
the experiments are conducted on a single RTX
3080 GPU. As for LLMs, we rely on API calling
from Together AI3 to obtain responses.

For metrics, we adopt Rouge-1 (R-1), Rouge-2
(R-2), and Rouge-L (R-L) (Lin, 2004) to assess the
text alignment between the reference summaries
and the predicted content generated by our pro-
posed method. If a global summarization query
has multiple reference summaries, we calculate the
Rouge-L/1/2 of the predicted summary and all ref-
erences, respectively, and take the maximum value
as the final evaluation result. We follow this setting
in all experiments, including the baseline evalua-
tion.

A.5 More Comparison Experiments
We conduct extensive experiments on GovRe-
port (Huang et al., 2021) and SQuALITY (Wang
et al., 2022a) datasets, and the results are shown
in Table 7, which demonstrate our proposed GoR
is still competitive among baselines on these two
datasets.

A.6 More Ablation Experiments
We conduct extensive ablation experiments on QM-
Sum (Zhong et al., 2021) and AcademicEval (Feng

3 https://www.together.ai/
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Datasets QMSum AcademicEval WCEP BookSum

#GAT Layers 2 2 2 2
#GAT Heads 4 4 4 4
Batch Size 32 32 32 32

Epoch 150 150 150 150
Learning Rate 1e-3 1e-3 1e-3 1e-3

Hidden Dimension 768 768 768 768
Dropout Rate 0.2 0.0 0.1 0.2

Loss Coefficient α 0.9 0.6 0.7 0.2

Table 6: Hyper-parameters

Model GovReport SQuALITY

R-L R-1 R-2 R-L R-1 R-2

Node2Vec 18.1 36.7 12.4 17.0 32.9 7.7

BM25 18.2 39.2 13.0 17.0 31.4 8.1
TF-IDF 18.1 39.2 12.8 17.0 31.4 8.1

Contriever 20.2 39.8 17.6 16.8 32.6 8.3
DPR 19.1 39.4 15.5 17.4 33.1 8.4

Dragon 19.6 38.2 16.0 16.2 29.6 7.5
SBERT 20.0 39.8 15.8 17.1 32.1 7.8

BM25+DPR 19.4 37.4 15.0 16.6 31.5 7.4

Gemma-8K 17.4 33.8 11.4 12.9 19.7 5.8
Mistral-8K 16.0 28.9 9.4 16.9 32.2 8.1

Full Context 18.4 39.1 13.8 17.8 34.0 8.8

Thought-R 20.4 40.3 17.0 17.3 32.0 8.0

GoR (Ours) 20.9 41.4 16.8 17.8 34.0 8.5

Table 7: Experimental results on GovReport and SQuALITY datasets over long-context global summarization
tasks w.r.t. Rouge-L (R-L), Rouge-1 (R-1), and Rouge-2 (R-2). Note that the average LLM input token length of
GoR and retriever-based baselines is 6× 256, which is about 1.5K. (BOLD indicates the best score)

et al., 2024) datasets, and the results are shown in
Table 8.

Variant QMSum AcademicEval

R-L R-1 R-2 R-L R-1 R-2

w/o train 18.2 33.0 7.6 23.3 45.0 15.5
w/o LCL 18.4 33.3 6.9 23.5 44.9 15.5

w/o LRANK 19.6 33.1 7.8 23.1 44.4 15.1
w/o in-b neg 19.8 34.7 7.8 24.5 46.4 16.5

w/ sup 18.1 32.3 6.9 21.4 43.3 13.9

GoR 19.8 34.5 7.8 24.7 46.5 17.3

Table 8: Ablation study on QMSum and AcademicE-
val datasets w.r.t. R-L, R-1, and R-2.

A.7 Impact of GNN Architectures

GNNs play a vital role in learning node embed-
dings. we explore various GNN architectures to

study their impact on learning node embeddings, in-
cluding GCN (Kipf and Welling, 2016), SGC (Wu
et al., 2019), GIN (Xu et al., 2019), and Graph-
SAGE (Hamilton et al., 2017). Our findings, il-
lustrated in Figure 4, show that GAT outperforms
the other architectures. This is because GAT con-
siders the significance of neighboring nodes when
updating node embeddings, allowing the model
to effectively capture essential information from
the nodes. Among the other architectures, Graph-
SAGE performs poorly due to its unstable neighbor
sampling mechanism.

Overall, GAT reaches the best results, which
shows that considering the importance of neighbor-
ing nodes is effective in mining complicated corre-
lations and is critical to improving performance.
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Figure 4: Impact of GNN architectures w.r.t. R-L, R-1, and R-2. The left figure shows results on the WCEP
dataset, while the right one shows results with the BookSum dataset.

A.8 Impact of the Number of Simulated
Queries During Training

We show additional results on the AcademicEval
and BookSum datasets in Figure 5.
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Figure 5: Impact of the number of simulated queries
during training w.r.t. R-L. We show the additional
results on the AcademicEval and BookSum datasets.

A.9 Supervised Training on Global
Summarization Queries

We show additional results on the WCEP dataset
in Figure 6.
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Figure 6: Differences between self-supervised and
supervised training w.r.t. loss and entropy. We show
the loss and entropy curve during training on the WCEP
dataset.

B Additional Related Work

Historical Response Utilization of LLMs. Little
work has been done on this under-explored topic.

Thought-retriever (Feng et al., 2024) saves the his-
torical responses of each user-LLM interaction as
high-level and informative thoughts to expand the
retrieval corpus for future user queries. However,
the intricate correlations among thoughts are ne-
glected, leaving room for further improvement.

Another line of work is the Chain-of-Thought
(CoT), which is similar to our approach in terms
of utilizing LLM historical responses and has been
regarded as an effective means to enhance the rea-
soning ability of LLM during inference time in
recent years. Few-shot CoT (Wei et al., 2022) and
zero-shot CoT (Kojima et al., 2022) elicit interme-
diate reasoning paths by prompting LLMs with sev-
eral demonstrations or just appending "Let’s think
step by step." Self-consistency (Wang et al., 2022b)
samples diverse reasoning paths and conducts a
majority vote to obtain the final answer. ToT (Yao
et al., 2024) and GoT (Besta et al., 2024) take a
further step by integrating a tree or graph structure
to manage its historical reasoning paths, enabling
more flexible reasoning and reflection of LLMs.
By memorizing the solution paradigms of various
queries into different templates, BoT (Yang et al.,
2024) pushes LLM’s reasoning ability to a new
level. Although the above-mentioned CoT-series
approaches improve the reasoning capabilities of
LLMs by utilizing chains of intermediate reasoning
responses, they usually concentrate on one specific
QA-type query and cannot generalize to and ben-
efit other queries. Moreover, only a small number
of historical reasoning responses are retained for
the final generation, while most of the rest are just
discarded.
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C Case Study

In this section, we provide a case study of GoR and
other baseline methods’ summarization.

The Summary Generated by GoR

An asteroid called 1999 KW4 will make a
close approach to Earth this weekend, with
its own small moon in tow. The asteroid
is estimated to be around 1.5 km wide and
will be roughly 3.2 million miles from Earth
at its closest point. NASA astronomers are
interested in studying the asteroid due to
its close proximity and the fact that it is
a binary system, meaning it has its own
moon. The last time the asteroid will make
a close approach to Earth will be in 2036.
Additionally, a recent study using data from
NASA’s Kepler Space Telescope suggests
that comets may have delivered water to
Earth, as the ratio of two types of water
molecules on comets matches that in Earth’s
oceans. The new algorithm used in the study
is more sensitive to small planets the size
of Earth and could help in the search for
Earth-like planets.

The Summary Generated by Contriever

Asteroid 2019 JH7 recently flew past Earth,
and NASA observed that the asteroid’s tra-
jectory falls under the "Earth Close Ap-
proach" category. The observations made
by NASA’s Jet Propulsion Laboratory (JPL)
in Pasadena, California, suggest that comets
could have delivered water to Earth. The
study found that the ratio of two types of
water molecules on the comet matches that
in the Earth’s oceans, which could imply
that comets delivered a large fraction of wa-
ter to the outer reaches of the solar system.
The observations made using data from the
SOFIA telescope suggest that all comets
could have a heavy-to-regular water ratio
similar to Earth’s oceans, which could imply
that comets delivered some water to Earth.
Previously, measuring this ratio was diffi-
cult, and ground and space telescopes could
only study this level of detail in comets
when they pass near Earth.

Reference Summary

Binary Aten asteroid (66391) 1999 KW4
and its minor-planet moon make their
closest-ever recorded flyby of Earth at 3.2
million miles away. The asteroid will ap-
proach even closer at 0.0155 AU (2,320,000
km) from Earth in 2036, and is the largest
asteroid to approach Earth until (4953) 1990
MU in June 2027.

From the above example, we can draw conclu-
sions. (1) GoR summarizes several keywords that
appear in the reference summary, such as “1999
KW4" and “3.2 million miles", etc., but Contriever
fails to extract this crucial information. (2) From a
global perspective, the summary generated by GoR
is more relevant and consistent with the reference
summary. However, the summary generated by
Contriever focuses too much on local details and
ignores the main idea of the original article.
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D LLM Prompts

In this section, we present LLM prompts used in
GoR, including user query simulation, RAG, and
LLM-as-a-Judge prompts.

D.1 LLM Prompts for User Query Simulation

Prompt for User Query Simulation

You are a great questioner of any text, and
are adept at asking valuable and insightful
questions. Your goal is to generate 1
summary question for the text provided
below. The generated summary question
should try to simulate the tone of human
questions as much as possible, and make
sure that the generated question must be
interrogative sentences and a summary
question. Important! Please make sure this
text must be a complete and non-redundant
answer to the generated summary question.
Please directly output the generated
summary question, do not output irrelevant
text.

DOCUMENT:
{document}

D.2 LLM Prompts for RAG

RAG Prompt

Refer to the following supporting materials
and answer the question with brief but
complete explanations.

SUPPORTING MATERIALS:
{materials}

QUESTION:
{question}

D.3 LLM Prompts for LLM-as-a-Judge

We construct LLM-as-a-Judge prompts follow-
ing (Edge et al., 2024) and (Guo et al., 2024) with
some minor changes.

LLM-as-a-Judge Prompt - Instruction

—Role—
You are an expert tasked with evaluating
two answers to the same question based on
four criteria: Comprehensiveness, Diversity,
and Empowerment.

—Goal—
You will evaluate two answers to the same
question based on four criteria: Compre-
hensiveness, Diversity, and Empowerment.

Comprehensiveness: How much detail does
the answer provide to cover all aspects and
details of the question?
Diversity: How varied and rich is the
answer in providing different perspectives
and insights on the question?
Empowerment: How well does the answer
help the reader understand and make
informed judgments about the topic?

For each criterion, choose the better answer
(either Answer 1 or Answer 2) and explain
why. Then, select an overall winner based
on these three categories.

23798



LLM-as-a-Judge Prompt - Input

Here is the question: {query}

Here are the two answers: Answer 1:
{answer1}; Answer 2: {answer2}

Evaluate both answers using the three
criteria listed above and provide detailed
explanations for each criterion.

Avoiding any potential bias and ensuring
that the order in which the answers were
presented does not affect your judgment.

Output your evaluation in the following
JSON format:

{{ "Comprehensiveness": {{ "Winner":
"[Answer 1 or Answer 2]", "Explanation":
"[Provide explanation here]" }},
"Diversity": {{ "Winner": "[Answer 1 or
Answer 2]", "Explanation": "[Provide ex-
planation here]" }},
"Empowerment": {{ "Winner": "[Answer
1 or Answer 2]", "Explanation": "[Provide
explanation here]" }},
"Overall Winner": {{"Winner": "[Answer
1 or Answer 2]", "Explanation": "[Summa-
rize why this answer is the overall winner
based on the three criteria]" }} }}

E Broader Impacts

In the era of LLMs, countless interactions take
place between users and these models on a daily ba-
sis, resulting in the generation of a vast amount of
historical responses. Our proposed method demon-
strates that these historical responses hold signifi-
cant potential and can be effectively leveraged to
further improve the quality of future responses gen-
erated by LLMs. By analyzing and reusing these
past outputs, we can not only refine and enhance the
overall performance of the models but also reduce
computational overhead. This approach highlights
the untapped value of historical data in optimiz-
ing response generation while making the process
more efficient and resource-friendly.
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