
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 23762–23779
July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

CRUXEVAL-X: A Benchmark for Multilingual Code
Reasoning, Understanding and Execution

Ruiyang Xu1,2,*, Jialun Cao3,*, Yaojie Lu1,†, Ming Wen4, Hongyu Lin1,
Xianpei Han1,2, Ben He1,2,†, Shing-Chi Cheung3, Le Sun1,2

1Chinese Information Processing Laboratory, Institute of Software, Chinese Academy of Sciences
2University of Chinese Academy of Sciences 3The Hong Kong University of Science and Technology

4Huazhong University of Science and Technology
{xuruiyang2022,luyaojie,hongyu,xianpei,sunle}@iscas.ac.cn

{jcaoap, scc}@cse.ust.hk mwenaa@hust.edu.cn benhe@ucas.edu.cn

Abstract
Code benchmarks such as HumanEval are
widely adopted to evaluate Large Language
Models’ (LLMs) coding capabilities. How-
ever, there is an unignorable programming lan-
guage bias in existing code benchmarks – over
95% code generation benchmarks are domi-
nated by Python, leaving the LLMs’ capabili-
ties in other programming languages such as
Java and C/C++ unknown. Moreover, coding
task bias is also crucial. Most benchmarks fo-
cus on code generation capability, while bench-
marks for code reasoning (given input, rea-
soning output; and given output, reasoning in-
put), an essential coding capability, are insuf-
ficient. Yet, constructing multi-lingual bench-
marks can be expensive and labor-intensive,
and codes in contest websites such as Leetcode
suffer from data contamination during training.
To fill this gap, we propose CRUXEVAL-X, a
multi-lingual code reasoning benchmark that
contains 19 programming languages. It com-
prises at least 600 subjects for each language,
along with 19K content-consistent tests in to-
tal. In particular, the construction pipeline of
CRUXEVAL-X works in a fully automated and
test-guided manner, which iteratively generates
and repairs based on execution feedback. Also,
to cross language barriers (e.g., dynamic/static
type systems in Python/C++), we formulated
various transition rules between language pairs
to facilitate translation. Our extensive evalu-
ation of 24 representative LLMs reveals the
correlation between language pairs. For ex-
ample, TypeScript and JavaScript show a sig-
nificant positive correlation, while Racket has
less correlation with other languages. More
interestingly, even a model trained solely on
Python can achieve at most 34.4% Pass@1 in
other languages, revealing the cross-language
generalization of LLMs.

1 Introduction

Large language models (LLMs) have shown ad-
*These authors contributed equally to this work.
†Corresponding authors.

-1

(C) Output Reasoning

def f(numbers: str) -> int:
for i in range(len(numbers)):

if numbers[:i+1].count('3') > 1:
return i

return -1

python

-1

Given the input and Python program,
reasoning the output of the program.

Input: "23157"

def f(numbers: str) -> int:
for i in range(len(numbers)):

if numbers[:i+1].count('3') > 1:
return i

return -1

python

"3"

Given the output and Python program,
reasoning the input of the program.

Output: -1

(B) Input Reasoning (D) Output Reasoning

#include<bits/stdc++.h>

long f(std::string numbers) {
for(int i = 0; i < numbers.length(); i++) {
if (std::count(numbers.begin(),

 numbers.begin()+i+1, '3') > 1) {
return i;

}
}
return -1;

}

C++

0

Given the input and C++ program,
reasoning the output of the program.
Input: "23157"

Generate Python program as described.

Write a Python function f that takes a string as
input and returns the index where the '3'
appears more than once, or -1 if it does not.

def f(numbers: str) -> int:
for i in range(len(numbers)):

if numbers[:i+1].count('3') > 1:
return i

return -1

python

(A) Code Generation

def f(numbers: str) -> int:
for i in range(len(numbers)):

if numbers[:i+1].count('3') > 1:
return i

return -1

python

"3"

Given the output and Python program,
reasoning the input of the program.

Output: -1

(B) Input Reasoning

Generate Python program as described.

Write a Python function f that takes a string as
input and returns the index where the '3'
appears more than once, or -1 if it does not.

def f(numbers: str) -> int:
for i in range(len(numbers)):

if numbers[:i+1].count('3') > 1:
return i

return -1

python

(A) Code Generation

(C) Output Reasoning

def f(numbers: str) -> int:
for i in range(len(numbers)):

if numbers[:i+1].count('3') > 1:
return i

return -1

python

-1

Given the input and Python program,
reasoning the output of the program.

Input: "23157"

(D) Output Reasoning

#include<bits/stdc++.h>

long f(std::string numbers) {
for(int i = 0; i < numbers.length(); i++) {
if (std::count(numbers.begin(),

 numbers.begin()+i+1, '3') > 1) {
return i;

}
}
return -1;

}

C++

0

Given the input and C++ program,
reasoning the output of the program.
Input: "23157"

Figure 1: Code generation vs. Code reasoning

vanced proficiency in various domains, includ-
ing code generation (Liu et al., 2024; Du et al.,
2024), defect detection (Yang et al., 2024a) and
program repair (Xia and Zhang, 2023; Zhong
et al., 2024; Hu et al., 2024). Benchmarks such
as HumanEval (Chen et al., 2021) and SWE-
bench (Jimenez et al., 2023) were introduced to
measure LLMs’ capabilities, providing insights
into LLMs’ strengths and weaknesses.

Recent studies (Cao et al., 2024a; Chai et al.,
2024; Chen et al., 2024) have spotted two signifi-
cant biases in current benchmarks. First, Program-
ming language bias. As pointed out by prior stud-
ies (Cao et al., 2024a; Chai et al., 2024; Chen et al.,
2021; Austin et al., 2021), Python dominates code
generation benchmarks with over 95% involvement.
Other programming languages (PLs) such as Java
and C/C++, despite their popularity and availabil-
ity, gain less exploration. Second, Coding task
bias. Most coding benchmarks focus on code gen-
eration tasks (i.e., giving descriptions in natural
language and generating the program, as shown in
Figure 1 (A)), while code reasoning (i.e., given

23762

the program, reasoning the input or output of the
program, as shown in Figure 1 (B - D)) is seldom
evaluated (Chen et al., 2024). A recent work in-
troduced a code reasoning benchmark (Gu et al.,
2024; Chen et al., 2024), while it is only in Python.
Figure 1 (C - D) shows that simply changing PLs
from Python to C++ can turn a correct reasoning
into an incorrect one. More discussion about this
task can be found in Appendx J.

However, constructing multi-lingual bench-
marks is not a trivial task. First, human anno-
tation can be expensive. As reported by recent
work (Chai et al., 2024), they spent a total of
$12,000 US dollars for human annotators, pro-
viding the working environment, free meals, sou-
venirs, and free GPT-4 interface usage to construct
their multi-lingual benchmark. Second, automated
translation does not perform well. The latest stud-
ies (Yin et al., 2024) show that even the best LLM
(i.e., ChatGPT) can only achieve an average of 64%
success translation rate, which is far from practice.
Rule-based translation (Cassano et al., 2023; Ling
et al., 2022) usually suffers from generalizability
issues, making them limited in handling prescribed
code structures. Additionally, multi-lingual solu-
tions from contest websites such as LeetCode and
Codeforces were included in most LLMs training
sources, thus suffering from data contamination
issues (Cao et al., 2024b).

To fill the above research gaps, we introduce
CRUXEVAL-X, a multi-lingual code reasoning
benchmark that contains 19 popular PLs, includ-
ing C++, Rust, Java, etc. , expanded from CruxE-
val (Gu et al., 2024), a code reasoning benchmark
written in Python. For each PL in CRUXEVAL-X,
there are at least 600+ functions.Additionally, there
are 500 samples that are fully aligned across all
PLs. In total, there are 12,660 subjects along with
19K test cases for input/output reasoning.

Noteworthy that the pipeline of constructing
CRUXEVAL-X works in a fully automated manner.
It first translates the test cases by transition rules
adapted from prior work (Cassano et al., 2023),
then iterates the generation-and-repair process in-
tensively. In particular, the transition rules are for-
mulated to cross the language barriers. For exam-
ple, Python employs a dynamically typed system
where types are determined at runtime, whereas
C++ uses a statically typed system requiring ex-
plicit type declarations at compile time. The rules
facilitate the translation of the test cases. Addi-
tionally, inspired by prior work (Yin et al., 2024;

Rozière et al., 2022), we employ a test-guided man-
ner (Rozière et al., 2022) to generate the translation
and iteratively repair the generated code using ex-
ecution feedback (e.g., compilation error, runtime
error) (Yin et al., 2024).

Through extensive experiments on 24 main-
stream LLMs, we observe several interesting find-
ings. First, in multiple PLs, the input reasoning and
output reasoning capabilities of LLMs are compara-
ble. Also, there is a noticeable correlation between
certain PLs (e.g., JavaScript and TypeScript show
a positive correlation, while Racket consistently
yields the worst results). More interestingly, we
observe that even if a model is only trained on
Python (e.g., phi-1 and phi-1.5), it still can reach a
16% ∼ 26% output reasoning success rate in other
PLs, compared with 25.6% in Python. The find-
ing indicates the cross-language generalization of
LLMs.

The contributions can be summarized as follows:
(1) We introduce CRUXEVAL-X, a multi-lingual
code reasoning benchmark that contains 19 popular
PLs. (2) We introduce an automated code transla-
tion pipeline that adopts a test-guided and iterative
generate-and-repair practice. (3) We evaluate 20+
LLMs and yield inspiring findings.

2 Benchmark Construction

In this section, we describe the construction process
of CRUXEVAL-X, illustrated in Figure 2, which
is adapted from CRUXEVAL. It can be divided
into three main steps. First, we translate function
signatures via mapping variable type annotations
(Step 1 in Figure 2). Then we employ a rule-based
approach to translate Python test cases into other
PLs (Step 2 in Figure 2). Finally, we integrate
multiple LLMs to translate code by iterating the
generation-and-repair process (Step 3 in Figure 2).

2.1 Step I. Function Signature Translation

To enhance the accuracy and standardization of
function translation results, we first translate the
function signatures and dependencies. Note that
Python does not require an explicit type annotation,
which may confuse the translation for the function
signature. For example, as shown in Figure 2 Step
I, the types of two input parameters (i.e., s1 and s2)
are unclear. So we extract the input variables from
the function signature using the syntax tree and
match them with the tests. Based on the variable
types in the tests, we annotate the input and output

23763

std::string f(std::string s1, std::string s2) {
return s1 + s2

}

C++ (Generated)

Test

int main() {
auto candidate = f;
assert(candidate(("c"), ("at")) == ("cat"));

}

#include<assert.h>
#include<bits/stdc++.h>

std::string f(std::string s1, std::string s2) {
return s1 + s2 ;

}

C++ (Function + Test Suite)

Function

Dependencies

def check(func):
assert func('c', 'at') == 'cat'

def test_check():
check(f)

Step I. Function Signature Translation

Generate

std::string f(std::string s1, std::string s2) {
return s1 + s2

}

C++ (Generated)

Syntax/Semantic Error Message
/tmp/tmperq_14a5.cpp: In function 'std::string
f(std::string, std::string)'
/tmp/tmperq_14a5.cpp:4:19: error: expected ';'
before '}' token
 4 | return s1 + s2
 | ^
 | ;
 5 | }
 | ~

Step III. Iterative Generation & Repair

```python
def f(s1:str, s2:str) -> str:

return s1+s2
```

```cpp
#include<assert.h>
#include<bits/stdc++.h>

std::string f(std::string s1, std::string s2) {

Please translate the following Python to C++.

Prompt

Template of Test Suite (C++)

int main() {
auto candidate = f;
assert(candidate( ) == ( ));

}

Pass

C++ (Test Suite)Python (Test Suite)

def f(s1:str, s2:str) -> str:
return s1+s2

Python (Function)

def f(s1, s2):
return s1+s2

Python (Function)

Step II. Test Suite Translation

Type Annotation
std::string f(std::string s1, std::string s2)

C++ (Function Signature)str -> std::string
int -> long
float -> float
bool -> bool
List -> std::vector
Dict -> std::map
Tuple -> std::tuple
None -> std::nullopt
Any -> std::any
...

Rules on Type Mapping (Python → C++)

Template of Dependencies (C++)

#include<assert.h>
#include<bits/stdc++.h> #include<assert.h>

#include<bits/stdc++.h>

int main() {
auto candidate = f;
assert(candidate(("c"),("at"))==("cat"));

}

Dependencies

Test Case

Run against Test Suite

Fail

Generate & Repair

std::string f(std::string s1, std::string s2) {
return s1 + s2

}

C++ (Generated)

D Scala

Apply to
all PLs

Figure 2: The pipeline of CruxEval-X construction.

variables in the function signature.
Then, we adopt the rules as prior work (Cassano

et al., 2023) to map the types from Python to other
PLs. In particular, we identify the data types in the
annotated Python signature (e.g., parameter types,
return types), mapping the types from Python to
other PLs according to the rules, then structuring
the signature in the corresponding PLs. Take the
example in Figure 2 Step I, the Python signature
def f(s1:str, s2:str) -> str is translated
into that in C++ (std::string f(std::string
s1, std::string s2). After translating the tests,
all 800 subjects in Python can be translated, as
shown in Table 1.

2.2 Step II. Test Suites Translation

We employ a test-guided approach to ensure the
correctness of the translation results, which neces-
sitates test cases in various PLs. Prior works (Athi-
waratkun et al., 2022; Cassano et al., 2023) pro-
vided various rules for mapping Python test cases
to other PLs. We adopt the mapping rules from
MutiPL-E (Cassano et al., 2023) to assist the tran-
sition of our test suites.

However, their rules have limited support for
type handling (e.g., they cannot handle a list with
hybrid types), Thus, to maximize the success rate,
we made two improvements to enhance the rules.
First, we enhance handling structured types such
as List and Dict. For example, when handling
C#, we add an equality function to check whether
two Dict types are equal. Second, when deal-
ing with variables that have complex types that

are not as well-supported in some other PLs, we
transform these variables into more generic types
without significantly altering the original func-
tion’s functionality. For example, we change type
List[Union(str, int)] into List(str) if the
function keeps the same functionality. A small
portion of the data that cannot be converted is dis-
carded. The result of Step II is shown in Table 1.
Further details can be found in the Appendix B.

2.3 Step III. Iterative Generation & Repair

After translating tests, dependencies, and signa-
tures, we employ multiple LLMs to iteratively
translate Python code into target PLs. Each LLM
performs two steps: generation and repair. Prob-
lems that pass all test cases are excluded from sub-
sequent iterations. Below, we will elaborate on
these two substeps in detail.

2.3.1 Generation

Relying on a single LLM’s limited generations of-
ten results in a low translation success rate (Yin
et al., 2024). To address this, we propose a multi-
round generation method that interacts with the
testing environment to determine whether to con-
tinue iterating.

Let A0 denote the number of correctly translated
codes, and U the total number of problems. For
unresolved problems, LLM M generates results
over multiple rounds. Let Ai represent the number
of correct results in the i-th round. The maximum
rounds is N . Early stopping occurs if the increase
in correct results compared to k rounds prior, Ai−k,

23764



falls below a threshold δ. The formula is as follows:

Ai = Correct(P (Oi | U −Ai−1;M)) +Ai−1

for i ∈ {1, 2, . . . , N}
Stop if (i >k) and (Ai −Ai−k < δ)

(1)
Here, Oi is the i-th round code generated from
P (Oi | U − Ai−1;M), and Correct(.) calculate
the correct results. To leverage diverse LLMs’
strengths, we use GPT-3.5-Turbo for initial genera-
tion (see Table 1, “w/o Iter”) and DeepseekCoder-
33B-Instruct for further generation. This pipeline
improves upon single-LLM generation, as demon-
strated in our final results. (see Table 1, “w/ Iter”)

2.3.2 Repair
Simply generating code will still result in many
errors that LLMs cannot solve. Therefore, after
the generation step of each LLM, we provide them
with error messages for error correction. Multiple
iterative error correction is costly with limited ben-
efits. (Chen et al., 2023), so we only perform error
correction once after each LLMs.

After GPT3.5-Turbo generation, we directly pro-
vide the LLM with the erroneous code along with
the error messages for correction. After the Iter-
ating Generation of DeepseekCoder-33B-Instruct,
since the untranslated code can produce numerous
incorrect code snippets after multiple rounds of it-
eration, which may contain the same errors. We
first use simhash to deduplicate the erroneous code
and then proceed with error correction on the dedu-
plicated code. The error correction in each phase
uses the LLM used in that phase.

2.3.3 Multiturn Repair Based on Overlap
After completing the steps above, we first calculate
the intersection of correctly answered questions in
different PLs. To our surprise, there were only 333
questions that all PLs answered correctly. However,
563 problems have been successfully translated cor-
rectly by at least 16 PLs. Upon analyzing the ques-
tions our LLM failed to solve, we find that each PL
has its difficulties in translating from Python. For
example, in Julia, the index for arrays and other
collection types starts from 1, which differs from
Python. The details of the difficulties can be found
in Appendix C.

Based on these observations, we conduct final
generation and iterative error correction on the
questions that are correctly translated by more than
15 PLs. Due to the small amount of data, we

utilized GPT-4o for generation and error correc-
tion. During the generation process, we provide
the LLM with three corresponding typical exam-
ples based on the difficulties we find. The overlap
is increased to 462 after repair of GPT-4o.

We manually refined 38 questions that GPT-4
nearly solved, expanding our dataset to 500 entries.
We determined that 500 entries are sufficient to
distinguish the effectiveness of the LLMs. There-
fore, we use these 500 entries as our CRUXEVAL-
X benchmark. The final result of our pipeline is
shown in Table 1 under the column “w/ Iter”. The
experimental setups and prompts can be found in
Appendix D, and detail statics of our benchmark is
shown in Appendix I.

2.4 Quality Analysis

After constructing the dataset, we evaluate the
benchmark’s quality from four perspectives. First,
Accuracy: We use a test-guided approach to ensure
that each data point passes test cases, guaranteeing
correctness. Second, Reliability: We build on the
high-quality CRUXEVAL dataset, ensuring prob-
lems avoid randomness or multi-threading, enhanc-
ing reliability. Third, Data Leakage: We compare
with Stack v2 (67.5TB of GitHub data), finding
only 0.8% overlap, indicating minimal leakage risk.
Fourth, Data Bias: We assess potential bias by gen-
erating evaluation data with other LLMs using the
same method as described above. Results show
no significant advantage for any LLM on its own
generated data. The possibel reason is the distinct
tasks in generation and evaluation phases. Detailed
results and analysis are in Appendix A.

3 Experiments

3.1 Experiment Setup

LLMs for evaluation We selected 24 LLMs
across 4 types for evaluation, including gen-
eral LLMs (GPT-3.5-Turbo, GPT-4o-mini, GPT-
4o (Brown et al., 2020; Achiam et al., 2023),
Llama3 (AI, 2024), Qwen2 (Yang et al., 2024b),
phi-3-instruct (Abdin et al., 2024)), multilin-
gual code1 LLMs (Deepseekcoder-V2 (Zhu
et al., 2024), Deepseekcoder-V1 (Guo et al.,
2024), CodeLlama (Roziere et al., 2023), Star-
coder (Li et al., 2023a), Starcoder2 (Lozhkov
et al., 2024), CodeQwen1.5-Chat (Bai et al.,
2023)), instruction-tuned multilingual LLMs

1In this paper, “multilingual” refers to multiple program-
ming languages.

23765



Languages Step I Step II Step III
w/o Iter w/ Iter

C# (cs) 800 774 380 670
C++ (cpp) 800 800 549 733
D (d) 800 754 95 629
GO (go) 800 752 293 699
Java (java) 800 774 541 698
JavaScript (js) 800 800 634 743
Julia (jl) 800 774 410 680
Lua (lua) 800 800 582 741
Perl (pl) 800 799 591 728
PHP (php) 800 800 622 755
R (r) 800 800 542 699
Racket (rkt) 800 800 264 681
Ruby (rb) 800 800 658 748
Rust (rs) 800 754 449 690
Scala (scala) 800 799 462 712
Shell (sh) 800 763 528 674
Swift (swift) 800 796 415 654
TypeScript (ts) 800 774 592 726

Table 1: The result of each step, The portion within
parentheses in the “Language” column represents the
abbreviations for various languages. Due to the con-
straints of page size, these abbreviations are used to
better display certain charts or tables.

(Deepseekcoder-instruct-V1 (Guo et al., 2024),
WizardCoder (Luo et al., 2023), CodeLlama-
Python, CodeLlama-Instruct (Roziere et al., 2023)),
and single or few-language code LLMs (Code-
Gen (Nijkamp et al., 2022), phi-1 (Gunasekar et al.,
2023), phi-1.5 (Li et al., 2023b)).
Evaluation task We adopt the task settings from
prior work (Gu et al., 2024), dividing the tasks
into output reasoning and input reasoning. For
any PLs dataset, we provide the code along with
the corresponding input or output in the test cases.
Input reasoning is predicting the input based on
the output. Output reasoning is predicting the
output based on the input. Each problem contains
a test case, which follows the CRUXEVAL. The
search space for test cases is exponential in nature,
ensuring that LLMs do not know the answer to the
problem in advance.
Evaluation method. We use pass@1 (Kulal et al.,
2019; Chen et al., 2021) to evaluate both tasks.
We set the temperature to 0 and employ greedy
decoding for generation as prior work (Cao et al.,
2024a). For closed-source LLMs, we use gpt-3.5-
turbo, gpt-4o-mini, and gpt-4o from OpenAI’s API.

3.2 Overall Result

Table 2 shows Pass@1 evaluation results of various
LLMs arranged in descending order of the LLMs’
parameter size. We can see that: 1) CRUXEVAL-

X is challenging for all tested LLMs. Even GPT-
4o can only achieve Pass@1 around 70%. Notably,
the result of the open-source LLMs Deepseekcoder-
V2 is better than GPT-4o-mini, with an average
Pass@1 of 62.8% on input reasoning and 65.0%
on output reasoning. Furthermore, the average
results show that across different types of PLs,
LLMs exhibit similar capabilities in input and out-
put reasoning, consistent with prior observations in
Python (Gu et al., 2024). 2) Single-programming-
language model (e.g., phi-1) and few-language
models (e.g. CodeGen-muti) demonstrate unex-
pected generalization capabilities on unseen lan-
guage tasks. During evaluation, we introduced
few-language LLMs (CodeGen-multi, trained on
six PLs) and single-language LLMs (phi-1.5 and
phi-1, trained only on Python). Despite this, they
achieved similar results across 19 PLs. Notably,
phi-1, trained solely on Python, scored 11.8%
Pass@1 on Python input prediction and 23.6% on
Perl. We will provide a more detailed analysis of
this phenomenon in the Analysis section.

4 Analysis

4.1 Key Factors for LLM Code Reasoning

To get more insight into what factors in code af-
fect LLMs’ code reasoning ability, we explore six
factors (e.g., average number of input variables,
average input length) and statistics their correla-
tion with correct/incorrect reasoning. The results
are shown in Figure 3. Each column of the box
plot displays the distribution of 19 PLs. In particu-
lar, the columns “Num of Input Variable”, “Num
of Variable Type” are counted by averaging the
number of types of input parameters in method
signatures, “Input/Output Length” is the average
string length of the input/output. For instance, in
the test case where f(’a’, 123) == {’a’: 1},
the input length is 6, and the output length is 8.
“Whether Have Complex Type” checks whether
there are List, Dict, Tuple, Set types in input
and output. “Execution Steps” calculates the aver-
age execution steps in Python bytecode operations,
following prior work (Gu et al., 2024).

From Figure 3 ( A - C ), we can see that the num-
ber/types of input variables have little impact on
the code reasoning, especially Sub-figure B, which
shows that the reasoning capability is slightly bet-
ter when more types of variables are involved. A
more counter-intuitive observation is made from
Figure 3 ( D - E ). They indicate that the reasoning

23766



Input Reasoning Performence

Models Size cs cpp d go java js jl lua pl php py r rkt rb rs scala sh swift ts

GPT-4o - 70.2 64.6 71.6 75.4 69.8 73.2 67.0 73.0 70.2 74.8 70.6 74.4 67.4 72.0 73.6 65.4 70.6 74.2 74.0
GPT-4o-mini - 58.8 52.2 60.6 62.0 57.2 59.6 56.2 63.4 57.4 61.0 59.6 60.4 51.2 61.6 61.2 52.6 57.2 63.4 61.2
GPT-3.5 Turbo - 52.2 39.2 50.2 53.4 55.4 50.0 47.0 53.2 47.6 52.2 51.6 48.6 45.4 49.6 53.0 54.2 47.6 58.2 48.4
Deepseekcoder-V2 236B 63.8 57.0 66.6 64.0 64.8 67.0 58.4 62.0 61.4 64.2 64.0 65.8 58.0 63.2 63.6 58.2 62.4 62.6 66.6
Qwen2-Instruct 72B 52.0 54.2 49.6 55.4 50.0 51.6 51.0 51.2 47.8 55.2 52.4 53.2 47.8 54.4 57.2 50.6 52.4 51.6 52.0
CodeLlama-Python 34B 38.8 40.0 39.2 39.0 41.4 45.8 44.8 45.0 43.2 48.0 46.8 42.2 38.8 44.0 44.2 43.0 44.6 45.0 44.0
CodeLlama-Instruct 34B 44.6 48.4 43.8 46.0 44.4 52.6 50.4 49.4 46.0 52.0 51.2 48.4 42.4 48.2 48.6 48.0 46.2 49.4 53.2
CodeLlama 34B 40.4 44.6 45.6 41.2 39.0 50.0 49.0 47.0 46.6 48.8 49.8 47.6 39.8 46.6 46.8 44.6 44.4 50.0 48.6
WizardCoder-V1.1 33B 44.8 25.4 46.4 47.6 48.4 45.6 49.2 48.8 44.6 50.0 50.0 45.0 42.4 49.2 48.2 48.2 45.4 51.0 46.4
Deepseekcoder-instruct 33B 46.0 43.6 49.8 49.0 46.8 48.8 47.0 50.0 46.8 52.0 51.8 48.2 41.6 52.0 48.4 47.0 48.2 52.2 49.6
Deepseekcoder-base 33B 41.2 42.8 43.2 45.6 43.8 46.0 47.6 47.4 47.2 48.6 49.2 50.6 42.8 47.4 46.8 44.0 46.4 48.2 45.0
Starcoder2 15B 41.4 43.8 51.6 45.2 42.6 44.0 48.2 44.6 44.8 49.8 46.6 45.8 45.0 49.0 46.6 37.0 47.4 52.2 46.2
WizardCoder-V1.0 15B 29.2 30.0 30.6 28.6 29.6 33.0 34.8 33.6 36.2 36.8 33.2 33.4 36.4 33.6 33.0 29.0 35.0 34.0 32.4
Starcoder 15B 28.2 30.0 33.0 33.2 33.4 35.2 34.4 31.6 34.0 36.4 34.8 33.4 36.6 35.0 34.8 27.4 37.0 30.8 33.2
phi-3-instruct 14B 31.8 26.0 38.8 36.4 37.2 42.4 36.2 37.2 35.6 41.2 43.4 39.2 24.4 36.0 36.8 38.0 33.6 41.2 42.8
Llama-3-Instruct 8B 37.0 36.4 35.0 38.6 36.2 38.4 39.6 40.0 36.2 36.6 38.4 42.2 24.2 35.8 37.6 38.0 31.6 42.2 38.2
CodeQwen1.5-Chat 7B 42.8 42.0 43.0 46.4 44.6 43.8 42.2 42.8 41.6 44.8 43.0 43.4 38.2 43.6 42.0 39.4 46.6 45.8 43.6
CodeLlama-Instruct 7B 38.6 36.0 38.4 38.4 38.2 39.6 42.2 43.4 36.4 40.4 41.0 41.0 38.8 41.6 37.6 42.6 39.6 40.2 41.0
CodeLlama-hf 7B 36.4 36.2 36.8 34.6 36.4 36.6 40.2 39.6 36.0 39.4 40.2 40.0 36.6 39.2 35.4 37.8 36.8 39.2 38.8
Deepseekcoder-instruct 6.7B 35.0 37.0 35.6 40.4 35.0 36.6 39.2 38.8 39.4 42.2 38.2 42.0 37.2 40.2 37.4 36.8 42.8 40.8 34.2
Deepseekcoder-base 6.7B 38.8 42.4 41.2 43.2 40.4 43.6 42.6 42.8 41.6 46.4 41.4 46.2 43.0 44.6 41.6 40.8 44.8 43.4 41.8
CodeGen-multi 6B 28.8 25.4 6.2 25.6 36.2 25.2 17.4 24.4 38.4 22.8 22.6 27.2 16.2 6.4 18.8 31.0 48.6 32.4 25.2
phi-1_5 1.3B 29.2 16.0 13.2 25.8 26.8 9.8 30.4 26.6 17.8 26.6 25.8 8.4 6.6 1.4 25.2 30.4 34.4 26.6 30.8
phi-1 1.3B 0.2 7.0 9.6 3.6 2.8 17.0 19.0 17.4 23.6 9.2 11.8 9.4 11.2 6.8 5.4 1.8 19.8 14.0 14.0

Average 40.4 38.3 40.8 42.4 41.7 43.1 43.1 43.9 42.5 45.0 44.1 43.2 38.0 41.7 42.7 41.1 44.3 45.4 43.8

Output Reasoning Performence

Models Size cs cpp d go java js jl lua pl php py r rkt rb rs scala sh swift ts

GPT-4o - 75.0 74.8 71.4 77.0 73.2 77.6 73.6 74.8 74.0 75.4 75.4 72.0 70.8 74.0 74.4 71.8 71.6 76.0 76.4
GPT-4o-mini - 63.0 63.0 61.4 63.4 54.0 61.8 57.8 60.0 57.4 64.2 61.6 59.6 56.6 61.2 61.8 61.2 56.2 63.0 61.2
GPT-3.5 Turbo - 54.2 43.2 56.0 53.2 43.6 56.2 54.2 54.6 51.8 55.2 57.2 49.4 48.0 56.4 54.6 56.4 51.0 57.8 53.6
Deepseekcoder-V2 236B 66.6 66.2 63.4 68.0 67.6 65.4 64.8 63.6 63.0 67.4 66.8 63.0 62.2 65.2 65.8 63.2 58.8 67.8 66.4
Qwen2-Instruct 72B 51.2 50.2 51.6 53.6 38.2 52.0 51.0 49.0 45.8 50.8 51.2 45.0 46.8 50.8 51.0 51.0 45.6 50.4 53.2
CodeLlama-Python 34B 41.4 44.8 45.6 41.8 41.4 45.4 45.2 42.8 43.6 43.8 43.8 42.4 38.6 42.8 46.6 43.8 42.0 44.4 44.8
CodeLlama-Instruct 34B 44.4 46.2 45.8 46.8 40.6 47.4 45.6 42.8 44.0 44.8 44.0 40.2 38.2 44.2 46.4 43.8 40.6 45.2 45.0
CodeLlama 34B 44.6 47.8 44.2 45.2 38.4 47.0 45.8 42.8 43.8 46.4 46.4 38.8 38.4 45.4 47.2 47.4 43.8 47.6 47.4
WizardCoder-V1.1 33B 47.0 46.8 45.8 44.2 50.8 50.0 47.0 46.0 45.2 51.4 49.6 44.0 42.4 48.2 47.8 45.0 44.4 48.0 49.8
Deepseekcoder-instruct 33B 52.0 51.4 49.0 48.8 53.2 55.0 50.4 50.4 50.0 53.0 52.2 48.2 46.6 52.8 50.6 48.0 49.4 52.8 53.6
DeepseekCoder-base 33B 48.2 50.0 46.0 48.6 49.2 51.4 46.8 48.0 48.4 52.0 49.8 45.2 46.4 49.0 46.2 47.6 46.0 49.2 51.2
Starcoder2 15B 46.0 47.4 47.2 49.0 48.4 50.0 49.2 44.8 49.4 48.4 48.4 47.2 45.0 51.0 48.8 45.2 45.8 49.6 48.6
WizardCoder-V1.0 15B 25.2 30.0 30.6 33.2 26.8 33.6 30.2 30.2 31.0 33.0 34.0 31.6 29.6 32.8 31.2 31.2 29.8 34.2 34.0
Starcoder 15B 20.4 31.6 31.8 31.0 18.4 33.4 32.2 31.8 29.8 32.6 32.6 30.0 29.2 33.4 32.6 30.0 30.2 33.0 33.0
phi-3-instruct 14B 34.2 37.6 39.0 31.0 34.2 41.6 41.2 34.4 35.8 37.8 42.4 36.6 24.6 42.2 37.4 36.2 37.2 41.4 43.0
Llama-3-Instruct 8B 32.0 30.8 31.2 31.4 25.0 35.0 31.4 34.0 29.6 27.0 33.6 27.2 28.0 31.8 34.4 33.8 32.0 36.4 33.8
CodeQwen1.5-Chat 7B 37.8 40.2 40.2 40.6 35.4 43.6 42.6 40.4 39.6 43.0 41.4 38.2 39.0 44.6 42.0 35.0 38.2 43.8 42.2
CodeLlama-Instruct 7B 32.2 35.6 34.4 35.0 24.4 38.2 35.2 32.2 34.2 36.0 35.4 32.0 29.6 37.0 37.4 33.0 33.0 34.6 38.8
CodeLlama-hf 7B 32.6 34.4 33.8 33.4 28.4 38.0 35.2 34.4 35.2 38.0 34.4 32.6 30.8 34.8 36.8 33.4 31.0 35.0 38.2
Deepseekcoder-instruct 6.7B 34.8 41.8 40.4 39.4 32.8 47.6 42.6 38.8 42.0 43.8 43.6 40.8 39.2 43.2 41.8 40.6 37.8 43.2 44.0
Deepseekcoder-base 6.7B 41.2 46.2 43.2 42.8 42.6 44.8 46.0 41.0 40.4 41.8 44.8 42.8 43.0 42.6 42.0 43.2 40.6 47.6 45.4
CodeGen-multi 6B 21.4 23.6 25.0 26.4 21.6 22.8 22.8 23.8 20.4 25.2 24.8 23.4 17.8 24.0 25.2 22.0 22.2 25.0 21.4
phi-1_5 1.3B 16.0 26.0 24.8 22.6 15.8 23.0 23.6 21.2 22.0 22.2 25.6 21.8 16.8 19.6 22.0 21.6 17.6 25.6 25.2
phi-1 1.3B 5.8 9.0 13.2 14.8 4.6 20.8 19.2 15.8 15.6 18.6 22.4 17.6 10.4 18.0 16.4 11.0 16.4 19.2 19.0

Average 40.3 42.4 42.3 42.6 37.9 45.1 43.1 41.6 41.3 43.8 44.2 40.4 38.3 43.5 43.4 41.5 40.1 44.6 44.6

Table 2: The result of each LLM in CRUXEVAL-X. Each result is shaded with a background color from blue to
white based on the Pass@1. The bluer, the larger. Deepseekcoder-V2 is a MOE LLM; the parameter activated
during inference is 21B. All results are tested on 500 aligned data.

capability is negatively correlated with the length
of input/output strings.

Furthermore, regarding input reasoning capabil-
ity, the more input variables, the more challenging
it is for LLMs to reason about the correct inputs,
thus the worse the input reasoning performance
(Sub-figures A and D).

4.2 Cross-language Generalization Ability

To investigate the cross-language generalization
ability of LLMs, we investigate the reasoning abil-

ity of phi-1 and phi-1.5, which are trained on En-
glish and Python only. To get a better understand-
ing, we analyze the capability in terms of syntax
and semantics in 9 PLs because they provide clear
error messages to distinct syntactic/semantic errors.

4.2.1 Syntactic Correctness

For a LLM trained on single PL, ensuring syntactic
correctness is crucial for its generalization to other
programming languages. For example, in a Racket
language test case, the expected output might be

23767



Input
(Correct)

Input
(Error)

Output
(Correct)

Output
(Error)

1.35

1.40

1.45

1.50

1.55

1.60

1.65

(A) Number of Input Variables

Input
(Correct)

Input
(Error)

Output
(Correct)

Output
(Error)

1.35

1.40

1.45

1.50

1.55

1.60

1.65
(B) Number of Variable Type

Input
(Correct)

Input
(Error)

Output
(Correct)

Output
(Error)

0.28

0.30

0.32

0.34

0.36

0.38

0.40

0.42
(C) Whether Have Complex Type

Input
(Correct)

Input
(Error)

Output
(Correct)

Output
(Error)

15

16

17

18

19

(D) Input Length

Input
(Correct)

Input
(Error)

Output
(Correct)

Output
(Error)

9.0

9.5

10.0

10.5

11.0

(E) Output Length

Input
(Correct)

Input
(Error)

Output
(Correct)

Output
(Error)

65

70

75

80

85

90

95

100
(F) Execution Steps

Correct Error

Figure 3: Key factors for LLM code reasoning capabil-
ity.

"(list 5 8 1 3 0)", but the LLM incorrectly predicts
"[5,8,1,3,0]", leading to a compilation error. Fig-
ure 4 shows the number of syntactic-correct cases
made by these two LLMs in both tasks. It is clear
that Python has the highest syntactic correctness
in both tasks, followed by Go and TypeScript. On
the contrary, C++, C#, and Java witness the most
syntactic errors for these LLMs. Interestingly, even
though phi-1 and phi-1.5 have not trained on PLs
other than Python, they can still achieve an average
of 49.1% and 72.0% syntactically correctness rate
in other PLs, respectively, compared with 97.0%
and 98.7% achieved on Python. It indicates the
cross-language generalizability of LLMs.

4.2.2 Semantic Correctness

Beyond syntactic correctness, semantic correctness
poses higher requirements, i.e., passing the tests.
The results are shown in the last two rows in Ta-
ble 2. In particular, phi-1.5 reaches 25.8% input rea-
soning performance on Python, while on other PLs,
an average of 19.0% can also be reached. The ob-
servation further consolidates the cross-language
generalizability of LLMs.

4.2.3 Cross-NL and Cross-PL Generalization

From Figure 4 and Table 2, there is a noticeable
increase from phi-1 to phi-1.5 (an average of 10.7%
vs. 21.7% on input reasoning, and 15.1% vs. 21.7%
on output reasoning). According to the descrip-
tion (Abdin et al., 2024), phi-1.5 is further fine-
tuned with more synthetic texts in natural lan-
guage (NL). Considering the dramatic improve-
ment in code reasoning, it is highly likely that the
improvement in NL reasoning positively impacts
code reasoning.

cs cpp d go java py rs scala ts
0.0

0.2

0.4

0.6

0.8

1.0
(A) Input Reasoning

cs cpp d go java py rs scala ts
0.0

0.2

0.4

0.6

0.8

1.0
(B) Output Reasoning

phi-1.5 phi-1

Figure 4: The syntax accuracy of each LLM.

4.3 Programming Language Correlation
To further investigate the correlations between
these 19 PLs in CRUXEVAL-X, we calculate each
PL pair’s correlation (i.e., cosine similarity, ranging
from -1 to 1), visualized in Figure 5. In particular,
for each PL, we flatten the results of LLMs as a
feature vector and calculate the cosine similarities
for each pair of PLs.

Overall, Figure 5 shows that the correlation be-
tween PL pairs is generally similar, with an av-
erage of 0.7+ cosine similarities. Among all PL
pairs, JavaScript and TypeScript correlate the
most strongly (0.87 and 0.91 on both tasks). It
indicates that the code reasoning capabilities on
different PLs are highly correlated. Also, the cor-
relation in output reasoning is slightly higher than
in input reasoning, with an average of 0.79 vs. 0.75.

It is also noteworthy that Racket has the most
minor correlation with all the other PLs. It may be
because of its distinct syntax. A case study can be
found in Listing 3.

cs cp
p d go

ja
va js jl

lu
a pl

ph
p py r

rk
t rb rs

sc
al

a sh
sw

ift ts

cs
cpp

d
go

java
js
jl

lua
pl

php
py

r
rkt
rb
rs

scala
sh

swift
ts

Input Reasoning

cs cp
p d go

ja
va js jl

lu
a pl

ph
p py r

rk
t rb rs

sc
al

a sh
sw

ift ts

cs
cpp

d
go

java
js
jl

lua
pl

php
py

r
rkt
rb
rs

scala
sh

swift
ts

Output Reasoning

0.675

0.700

0.725

0.750

0.775

0.800

0.825

0.850

0.725

0.750

0.775

0.800

0.825

0.850

0.875

0.900

Figure 5: The correlation between PL pairs.

4.4 Case Study
After identifying the phi-series-LLMs (i.e., phi-1,
phi-1.5) exhibit cross-language generalization and
the correlation across PLs, we further analyze the
predictions of phi-1.5 to get a deeper understanding.
We noticed that out of the 128 correct instances in
Python by phi-1.5, 61.7% (79/128) are also correct
in PHP, while only 39.8% (51/128) are correct in

23768



Racket. Therefore, we use one example in these
three PLs to understand its rationale.

Listing 1: Subject-164 (Python)
1 def f(lst: List[int]) -> List[int]:
2 lst.sort()
3 return lst [0:3]
4 # input: [5, 8, 1, 3, 0]
5 # phi -1.5 answer: [0, 1, 3]

Listing 2: Subject-164 (PHP)
1 <?php
2 function f($lst) {
3 sort($lst);
4 return array_slice($lst , 0, 3);
5 }
6 // input: array(5, 8, 1, 3, 0)
7 // phi -1.5 answer: array(0, 1, 3)

Listing 3: Subject-164 (Racket)
1 (define (f lst)
2 (define sorted -list (sort lst <))
3 (take sorted -list 3))
4 ;; input: (list 5 8 1 3 0)
5 ;; phi -1.5 answer: (list 5 8 1)

4.4.1 Analysis on Subject 164
Listing 1-3 demonstrates an instance where phi-1.5
generalizes Python (Listing 1)’s reasoning capabil-
ities to other languages. From a grammar structure
perspective, their respective function definitions,
indentation formats, and the functions they invoke
exhibit significant differences. However, overall,
PHP and Python share a more similar structure,
both utilizing sort for sorting and return for re-
turning output values. Therefore, phi-1.5 is able
to generalize its code reasoning abilities to PHP,
but fails to comprehend the sorting command in
Racket, leading to incorrect predictions.

Upon analyzing these 128 questions, we observe
that excluding those where the output could be
directly derived from the input, such as assert
f("zej","owc") == "zej", which accounted for
approximately 40% of the cases, there are still nu-
merous examples demonstrating that phi-1.5 has
developed a certain level of cross-language capabil-
ities. From these examples, we can observe that the
multilingual generalization capability of the model
is positively correlated with the grammar struc-
tural similarity between languages. Even Racket, a
language significantly different from others, main-
tains certain logical similarities in aspects such as
function definitions, loops, and conditional branchs.

This is a key reason why Phi-1.5 can achieve con-
siderable effectiveness across multiple languages.
More case studies can be found in appendix K.

5 Related Work

Multi-Task Code Benchmark. Recently, there
has been an increasing number of tasks related to
code that are used to evaluate the various capabili-
ties of LLMs in the field of coding, including code
generation (Chen et al., 2021; Austin et al., 2021),
code repair (Jimenez et al., 2023; Tian et al., 2024),
and code description (Chai et al., 2024). However,
datasets that assess the reasoning abilities of code
are relatively limited, and the currently proposed
reasoning datasets are confined to the Python lan-
guage (Gu et al., 2024; Chen et al., 2024). In this
work, we expand the Python language reasoning
dataset CRUXEVAL (Gu et al., 2024) to encom-
pass 19 PLs, thereby addressing the deficiency in
reasoning datasets at the multilingual level.
Multi-Language Code Benchmark. Multilingual
evaluation datasets are important for assessing the
comprehensive coding capabilities of code LLMs.
In the early stages, multilingual code datasets were
mainly used for code translation tasks (Elnaggar
et al., 2021; Ahmad et al., 2021; Roziere et al.,
2020, 2021; Zhu et al., 2022b; Yan et al., 2023;
Zhu et al., 2022a). These datasets often consist of
problem solutions in different languages extracted
from algorithm competition-related websites, thus
suffering from data contamination issue. Bechmark
like McEval (Chai et al., 2024), which relies on hu-
man annotation, requires a high cost. In this work,
we provide a process using LLMs for multilingual
code translation, which can achieve a high accuracy
and low cost in creating a multilingual dataset.

6 Conclusion

In this work, we provide a fully automated pro-
cess for constructing a multilingual dataset based
on a Python code language dataset. Through this
process, we successfully transform the CRUXEval
dataset into a multilingual dataset containing 19
PLs and test its effectiveness on 24 LLMs, demon-
strating the validity of the dataset. Furthermore, we
find that models trained on only a few languages
exhibit the ability to transfer their prediction capa-
bilities to other languages in input/output reasoning
tasks, and this ability is influenced by the model’s
own reasoning capabilities.

23769



7 Limitations

There are Three limitations in this work. First, our
benchmark relies on model-generated data. While
this approach effectively reduces costs and avoids
issues of data leakage, it may introduce biases in
the dataset towards the LLMs that generated the
data. However, we select different LLMs to con-
struct evaluation data and conduct experiments on
this data. The experimental results indicate that our
dataset construction method does not affect the fair-
ness of the dataset. Additionally, the model-based
translation method cannot guarantee that all data
will be perfectly translated into other PLs. How-
ever, through our method, based on 800 pieces of
data, we generated 500 aligned pieces of data for
19 PLs. From our evaluation results, it can be seen
that this amount of data is sufficient to effectively
distinguish the reasoning capabilities of each LLM.
Finally, translated codes from Python cannot re-
flect several specific language features of other lan-
guages. Our intention is to achieve highly aligned
multilingual data across 19 languages. However,
preserving language-specific features make it chal-
lenging to create such aligned data, as the distinc-
tive features of one language are inherently diffi-
cult to replicate in others. This represents a trade-
off. In our future work, we plan to explore how to
construct multilingual data while retaining more
language-specific features.

8 Acknowledgements

We sincerely thank the reviewers for their insight-
ful comments and valuable suggestions. This work
was supported by Beijing Natural Science Foun-
dation (L243006), Beijing Municipal Science and
Technology Project (Nos. Z231100010323002),
the Natural Science Foundation of China (No.
62272439, 62306303, 62476265) and the Basic
Research Program of ISCAS (Grant No. ISCAS-
ZD-202402).

References
Marah Abdin, Sam Ade Jacobs, Ammar Ahmad Awan,

Jyoti Aneja, Ahmed Awadallah, Hany Awadalla,
Nguyen Bach, Amit Bahree, Arash Bakhtiari, Harki-
rat Behl, et al. 2024. Phi-3 technical report: A highly
capable language model locally on your phone. arXiv
preprint arXiv:2404.14219.

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,

Shyamal Anadkat, et al. 2023. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774.

Wasi Uddin Ahmad, Md Golam Rahman Tushar, Saikat
Chakraborty, and Kai-Wei Chang. 2021. Avatar: A
parallel corpus for java-python program translation.
arXiv preprint arXiv:2108.11590.

Meta AI. 2024. Introducing meta llama 3: The most
capable openly available llm to date. Blog. Online;
accessed 15-January-2024.

Ben Athiwaratkun, Sanjay Krishna Gouda, Zijian Wang,
Xiaopeng Li, Yuchen Tian, Ming Tan, Wasi Uddin
Ahmad, Shiqi Wang, Qing Sun, Mingyue Shang, et al.
2022. Multi-lingual evaluation of code generation
models. arXiv preprint arXiv:2210.14868.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten
Bosma, Henryk Michalewski, David Dohan, Ellen
Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. 2021.
Program synthesis with large language models. arXiv
preprint arXiv:2108.07732.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang,
Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei
Huang, et al. 2023. Qwen technical report. arXiv
preprint arXiv:2309.16609.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877–1901.

Jialun Cao, Zhiyong Chen, Jiarong Wu, Shing chi Che-
ung, and Chang Xu. 2024a. Can ai beat undergrad-
uates in entry-level java assignments? benchmark-
ing large language models on javabench. Preprint,
arXiv:2406.12902.

Jialun Cao, Wuqi Zhang, Shing-Chi Cheung, and So on.
2024b. Concerned with data contamination? as-
sessing countermeasures in code language model.
Preprint, arXiv:2403.16898.

Federico Cassano, John Gouwar, Daniel Nguyen, Syd-
ney Nguyen, Luna Phipps-Costin, Donald Pinckney,
Ming-Ho Yee, Yangtian Zi, Carolyn Jane Anderson,
Molly Q Feldman, et al. 2023. Multipl-e: a scal-
able and polyglot approach to benchmarking neural
code generation. IEEE Transactions on Software
Engineering, 49(7):3675–3691.

Linzheng Chai, Shukai Liu, Jian Yang, Yuwei Yin,
Ke Jin, Jiaheng Liu, Tao Sun, Ge Zhang, Changyu
Ren, Hongcheng Guo, et al. 2024. Mceval: Mas-
sively multilingual code evaluation. arXiv preprint
arXiv:2406.07436.

Junkai Chen, Zhiyuan Pan, Xing Hu, Zhenhao Li, Ge Li,
and Xin Xia. 2024. Reasoning runtime behavior of
a program with llm: How far are we? Preprint,
arXiv:2403.16437.

23770

https://ai.meta.com/blog/meta-llama-3/
https://ai.meta.com/blog/meta-llama-3/
https://arxiv.org/abs/2406.12902
https://arxiv.org/abs/2406.12902
https://arxiv.org/abs/2406.12902
https://arxiv.org/abs/2403.16898
https://arxiv.org/abs/2403.16898
https://arxiv.org/abs/2403.16437
https://arxiv.org/abs/2403.16437


Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Ponde De Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, et al. 2021. Evaluating large
language models trained on code. arXiv preprint
arXiv:2107.03374.

Xinyun Chen, Maxwell Lin, Nathanael Schärli, and
Denny Zhou. 2023. Teaching large language models
to self-debug. arXiv preprint arXiv:2304.05128.

Xueying Du, Mingwei Liu, Kaixin Wang, Hanlin Wang,
Junwei Liu, Yixuan Chen, Jiayi Feng, Chaofeng Sha,
Xin Peng, and Yiling Lou. 2024. Evaluating large
language models in class-level code generation. In
Proceedings of the IEEE/ACM 46th International
Conference on Software Engineering, pages 1–13.

Ahmed Elnaggar, Wei Ding, Llion Jones, Tom Gibbs,
Tamas Feher, Christoph Angerer, Silvia Severini,
Florian Matthes, and Burkhard Rost. 2021. Code-
trans: Towards cracking the language of sili-
con’s code through self-supervised deep learning
and high performance computing. arXiv preprint
arXiv:2104.02443.

Alex Gu, Baptiste Rozière, Hugh Leather, Armando
Solar-Lezama, Gabriel Synnaeve, and Sida I Wang.
2024. Cruxeval: A benchmark for code reason-
ing, understanding and execution. arXiv preprint
arXiv:2401.03065.

Suriya Gunasekar, Yi Zhang, Jyoti Aneja, Caio
César Teodoro Mendes, Allie Del Giorno, Sivakanth
Gopi, Mojan Javaheripi, Piero Kauffmann, Gustavo
de Rosa, Olli Saarikivi, et al. 2023. Textbooks are all
you need. arXiv preprint arXiv:2306.11644.

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie,
Kai Dong, Wentao Zhang, Guanting Chen, Xiao
Bi, Yu Wu, YK Li, et al. 2024. Deepseek-coder:
When the large language model meets programming–
the rise of code intelligence. arXiv preprint
arXiv:2401.14196.

Xueyu Hu, Kun Kuang, Jiankai Sun, Hongxia Yang,
and Fei Wu. 2024. Leveraging print debugging to
improve code generation in large language models.
arXiv preprint arXiv:2401.05319.

Carlos E Jimenez, John Yang, Alexander Wettig,
Shunyu Yao, Kexin Pei, Ofir Press, and Karthik
Narasimhan. 2023. Swe-bench: Can language mod-
els resolve real-world github issues? arXiv preprint
arXiv:2310.06770.

Sumith Kulal, Panupong Pasupat, Kartik Chandra, Mina
Lee, Oded Padon, Alex Aiken, and Percy S Liang.
2019. Spoc: Search-based pseudocode to code. Ad-
vances in Neural Information Processing Systems,
32.

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas
Muennighoff, Denis Kocetkov, Chenghao Mou, Marc
Marone, Christopher Akiki, Jia Li, Jenny Chim, et al.
2023a. Starcoder: may the source be with you!
arXiv preprint arXiv:2305.06161.

Yuanzhi Li, Sébastien Bubeck, Ronen Eldan, Allie
Del Giorno, Suriya Gunasekar, and Yin Tat Lee.
2023b. Textbooks are all you need ii: phi-1.5 techni-
cal report. arXiv preprint arXiv:2309.05463.

Michael Ling, Yijun Yu, Haitao Wu, Yuan Wang,
James R. Cordy, and Ahmed E. Hassan. 2022. In
rust we trust – a transpiler from unsafe c to safer rust.
In 2022 IEEE/ACM 44th International Conference
on Software Engineering: Companion Proceedings
(ICSE-Companion), pages 354–355.

Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Ling-
ming Zhang. 2024. Is your code generated by chatgpt
really correct? rigorous evaluation of large language
models for code generation. Advances in Neural
Information Processing Systems, 36.

Anton Lozhkov, Raymond Li, Loubna Ben Allal, Fed-
erico Cassano, Joel Lamy-Poirier, Nouamane Tazi,
Ao Tang, Dmytro Pykhtar, Jiawei Liu, Yuxiang Wei,
et al. 2024. Starcoder 2 and the stack v2: The next
generation. arXiv preprint arXiv:2402.19173.

Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xi-
ubo Geng, Wenxiang Hu, Chongyang Tao, Jing Ma,
Qingwei Lin, and Daxin Jiang. 2023. Wizardcoder:
Empowering code large language models with evol-
instruct. arXiv preprint arXiv:2306.08568.

Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan
Wang, Yingbo Zhou, Silvio Savarese, and Caiming
Xiong. 2022. Codegen: An open large language
model for code with multi-turn program synthesis.
arXiv preprint arXiv:2203.13474.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,
Jingyu Liu, Tal Remez, Jérémy Rapin, et al. 2023.
Code llama: Open foundation models for code. arXiv
preprint arXiv:2308.12950.

Baptiste Roziere, Marie-Anne Lachaux, Lowik Chanus-
sot, and Guillaume Lample. 2020. Unsupervised
translation of programming languages. Advances
in neural information processing systems, 33:20601–
20611.

Baptiste Rozière, Jie Zhang, François Charton, Mark
Harman, Gabriel Synnaeve, and Guillaume Lample.
2022. Leveraging automated unit tests for unsuper-
vised code translation. In The Tenth International
Conference on Learning Representations, ICLR 2022,
Virtual Event, April 25-29, 2022. OpenReview.net.

Baptiste Roziere, Jie M Zhang, Francois Charton,
Mark Harman, Gabriel Synnaeve, and Guillaume
Lample. 2021. Leveraging automated unit tests
for unsupervised code translation. arXiv preprint
arXiv:2110.06773.

Runchu Tian, Yining Ye, Yujia Qin, Xin Cong, Yankai
Lin, Zhiyuan Liu, and Maosong Sun. 2024. De-
bugbench: Evaluating debugging capability of large
language models. arXiv preprint arXiv:2401.04621.

23771

https://doi.org/10.1145/3510454.3528640
https://doi.org/10.1145/3510454.3528640
https://openreview.net/forum?id=cmt-6KtR4c4
https://openreview.net/forum?id=cmt-6KtR4c4


Chunqiu Steven Xia and Lingming Zhang. 2023. Keep
the conversation going: Fixing 162 out of 337
bugs for $0.42 each using chatgpt. arXiv preprint
arXiv:2304.00385.

Weixiang Yan, Yuchen Tian, Yunzhe Li, Qian Chen, and
Wen Wang. 2023. Codetransocean: A comprehensive
multilingual benchmark for code translation. arXiv
preprint arXiv:2310.04951.

Aidan ZH Yang, Claire Le Goues, Ruben Martins, and
Vincent Hellendoorn. 2024a. Large language mod-
els for test-free fault localization. In Proceedings
of the 46th IEEE/ACM International Conference on
Software Engineering, pages 1–12.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng,
Bowen Yu, Chang Zhou, Chengpeng Li, Chengyuan
Li, Dayiheng Liu, Fei Huang, et al. 2024b. Qwen2
technical report. arXiv preprint arXiv:2407.10671.

Xin Yin, Chao Ni, Tien N. Nguyen, Shaohua Wang, and
Xiaohu Yang. 2024. Rectifier: Code translation with
corrector via llms. Preprint, arXiv:2407.07472.

Li Zhong, Zilong Wang, and Jingbo Shang. 2024.
Ldb: A large language model debugger via verify-
ing runtime execution step-by-step. arXiv preprint
arXiv:2402.16906.

Ming Zhu, Aneesh Jain, Karthik Suresh, Roshan Ravin-
dran, Sindhu Tipirneni, and Chandan K Reddy. 2022a.
Xlcost: A benchmark dataset for cross-lingual code
intelligence. arXiv preprint arXiv:2206.08474.

Ming Zhu, Karthik Suresh, and Chandan K Reddy.
2022b. Multilingual code snippets training for pro-
gram translation. In Proceedings of the AAAI con-
ference on artificial intelligence, volume 36, pages
11783–11790.

Qihao Zhu, Daya Guo, Zhihong Shao, Dejian Yang,
Peiyi Wang, Runxin Xu, Y Wu, Yukun Li, Huazuo
Gao, Shirong Ma, et al. 2024. Deepseek-coder-v2:
Breaking the barrier of closed-source models in code
intelligence. arXiv preprint arXiv:2406.11931.

A Dataset Bias for Data-Generating LLM

The experimental results of existing papers have
already demonstrated that the LLMs used for gen-
erate CRUXEVAL benchmark do not introduce
unfairness (Gu et al., 2024). Therefore, our goal is
to verify whether our pipeline can lead to unfair-
ness on datasets of other programming languages
(PLs). To achieve this, we reduce the number of it-
erations and use a single model for data generation,
aiming to determine if different models can gain an
advantage on the data they generated themselves.

We select Qwen2.5-Coder-32B-Instruct (Qwen
32B), deepseek-coder-33b-instruct (Dpk 33B), and
deepseek-coder-6.7b-instruct (Dpk 7B) to generate
data respectively, and reduce the maximum num-
ber of iterations to 5. We generated data for both
commonly used PLs C++ and less commonly used
PLs Racket. After taking the intersection, we ob-
tain 566 aligned C++ data points and 206 aligned
Racket data points. We then calculate the pass@1
for these three models, with the specific results
shown in Table 3.

Input Reasoning (C++)

Data

Evaluate
Qwen 32B Dpk 33B Dpk 7B

Qwen 32B 76.3 49.6 38.3
Dpk 33B 75.6 47.5 39.2
Dpk 7B 76.3 48 37.6

Output Reasoning (C++)

Data

Evaluate
Qwen 32B Dpk 33B Dpk 7B

Qwen 32B 65.5 53.0 42.6
Dpk 33B 67.7 51.2 44.3
Dpk 7B 67.1 52.6 43.2

Input Reasoning (Racket)

Data

Evaluate
Qwen 32B Dpk 33B Dpk 7B

Qwen 32B 82.0 51.9 42.7
Dpk 33B 77.2 49.0 37.9
Dpk 7B 78.6 42.2 41.3

Output Reasoning (Racket)

Data

Evaluate
Qwen 32B Dpk 33B Dpk 7B

Qwen 32B 78.6 58.7 47.6
Dpk 33B 76.2 57.8 46.1
Dpk 7B 79.1 56.8 44.7

Table 3: Impact of data generating LLMs

23772

https://arxiv.org/abs/2407.07472
https://arxiv.org/abs/2407.07472


It can be observed that the relative ordering of
the three models does not change. Moreover, the
model used for data generation does not signifi-
cantly impact the final evaluation results. For in-
stance, in the Input Reasoning task for C++, Qwen
32B’s pass@1 consistently remain around 76.

We analyze the possible reason: During both
the data generation phase and the evaluation
phase, the tasks performed by the LLMs are dif-
ferent. We use the model to generate code in dif-
ferent languages (i.e., code translation), while we
evaluate the model’s ability to infer outputs/inputs
based on given inputs/outputs in code (i.e., code
reasoning). It is important to note that the test cases
used during the code reasoning phase are not visi-
ble to the model during the code translation phase,
ensuring a fair evaluation process. Therefore, the
model is performing two distinct tasks (i.e., code
translation and code reasoning), and there is no
unfairness involved.

B The Improvements of Pipline

B.1 Enhance of the Pipline

(1) For C# we enhance the check function to in-
clude the ability to judge if the List and Dict
types are equal. (2) For Julia we add the data type
to empty dict, for example change input Dict() to
Dict{String, String}(). Otherwise, the func-
tion can not accept the input (3) For JavaScript we
change String which Contains special characters,
such as"example\n" to `example\n `.

B.2 Transform Complex Types

(1) For inputs and outputs that include functions,
such as "bfrerat".split("-"), we will replace
the input or output with the result after the function
execution. (2) When the input is of Callable type,
such as lambda x: x.reverse(), we will remove
the parameter and incorporate the Callable type
into the main function internally. (3) For complex
variables that contain multiple types, if we can
convert them into a simpler type without altering
the function’s functionality, we will preserve such
functions. For instance, as illustrated in Listing 4,
consider a dictionary d: Dict[str, Union[int,
str]]. If converting all its values to the str type
does not alter the function’s behavior, we will retain
it; otherwise, we will discard them.

Listing 4: An example with complex type
1 from typing import Dict , Union , Tuple
2
3 def f(d: Dict[str , Union[int , str]])

-> Tuple[bool , bool]:
4 r = {
5 "c": d.copy(),
6 "d": d.copy()
7 }
8 return (r["c"] is r["d"], r["c"]

== r["d"])
9

10 def check(candidate):
11 assert candidate ({"i": 1, "love":

"parakeets"}) == (False ,
True)

12
13 def test_check ():
14 check(f)

C The Difficulties for Translation

(1) For indexing functions, the starting position is
not 0 but 1, with Julia being a typical language that
exhibits this behavior. An example is shown in list-
ing 5. (2) For the conversion between Python’s str
type and its own char and string types, D language
is a typical case where this issue arises. An exam-
ple is shown in listing 6. (3) For the transformation
and comparison of dictionary types. For example,
C# need to first sort two Dictionary before compare
them.

Listing 5: Julia Error Case
1 function f(text::String , s::Int64 , e

::Int64)::Int64
2 sublist = text[s+1:e] # Julia

uses 1-based indexing , so
adjust the start index

3 if isempty(sublist)
4 return -1
5 end
6 min_char = minimum(sublist)
7 return findfirst (==( min_char),

sublist) - 1 # Adjust for 0-
based index in the result

8 end

D Details of Benchmark Construction

D.1 Experimental Setup of Each Step

In Generation step. Given the higher usage cost of
closed-source LLMs, we set N to 5, k to 5, δA to 0,
and the temperature to 0.2 for GPT3.5-Turbo. For
DeepseekCoder-33B-Instruct We set N to 50, k to
5, δA to 0, and the temperature to 0.8. In Repair
step. We set temperature to 0. For GPT-4o, we
generate once, and correct errors three times.

23773



D.2 Prompt of Each Step

In Figures 7 and 6, we include the prompts we
use for our benchmark construction. We use a
few-shot prompt for all models. For Generation
step of each model, the prompt is show in Fig-
ure 7. The example in this Figure is used for
GPT3.5-turbo. After the Generation and Repair
of GPT3.5-turbo, we choose three examples from
the correct generated problems which include str,
List, Dict type respectively. We use these exam-
ples for Deepseekcoder-instruct-33b Generation.
For GPT-4o, based on the summarized difficulties
in translation, we provide three examples, as shown
in Listing 6, 7, and 8. we present these examples in
three distinct languages. For each specific language
translation, we employ the corresponding language
version of the three examples.

As illustrated in Figure 6, the prompt for Repair
is shown, which depicts a single round of error cor-
rection. The compiler’s returned error messages
are provided to the model for correction. For mul-
tiple rounds of error correction, subsequent error
messages are appended to the dialogue after the
model encounters errors again.

Listing 6: example1 for GPT-4o (D)
1 import std.math;
2 import std.typecons;
3 import std.conv;
4 import std.algorithm;
5 import std.array;
6 import std.string;
7
8 string f(string x, string y) {
9 char[] yMutable = y.dup;

10 yMutable.reverse ();
11 string tmp = yMutable.map!(c => c

== "9" ? "0" : "9").array.
map!(c => c.to!string).array.
join("");

12 if (x.isNumeric && tmp.isNumeric)
{

13 return x ~ tmp;
14 } else {
15 return x;
16 }
17 }
18 unittest
19 {
20 alias candidate = f;
21 assert(candidate("", "

sdasdnakjsda80") == "");
22 }
23 void main(){}

=================== System ===================

You are an expert programming assistant.

==================== User ====================

Please translate the language of the function from python to 

cpp

```python

{the python code}

```

=================== Assistant ==================

```cpp

{the error cpp code}

```

==================== User ====================

The code you translated has the following {error type} error:

{error message}

Please analyze the cause of the error and then return the 

repaired code in cpp.

Figure 6: Prompt of repair

=================== System ===================
You are a helpful programming assistant designed to translate 
code and complete code snippets.

==================== User ====================
Please translate the python function to cpp function:
    
```python
def add(a, b):
 return a + b
```
    
The function starts as follows, and your task is to complete it 
so that its semantics are the same as the python code above.
Note that the number of packages called at the beginning of 
the given function cannot be reduced, but can only be 
increased.
    
```cpp
#include<assert.h>
#include<bits/stdc++.h>
long add(long x, long y) {
```

=================== Assistant ===================
```cpp
#include<assert.h>
#include<bits/stdc++.h>
long add(long x, long y) {
 return x + y;
}
```
==================== User ====================
Please translate the python function to cpp function:
    
```python
{the python code}
```
    
The function starts as follows, and your task is to complete it 
so that its semantics are the same as the python code above.
Note that the number of packages called at the beginning of 
the given function cannot be reduced, but can only be 
increased.
    
```cpp
{the cpp function head}
```

Figure 7: Prompt of generation

23774



Listing 7: example2 for GPT-4o (Swift)
1 import Foundation
2
3 func f(strand: String , zmnc: String)

-> Int {
4 var strand = strand
5 var poz = strand.range(of: zmnc)
6 while poz != nil {
7 strand.removeSubrange(poz!)
8 poz = strand.range(of: zmnc)
9 }

10 let lastIndex = strand.range(of:
zmnc , options: [], range: nil
, locale: nil)?. lowerBound.
utf16Offset(in: strand)

11 return lastIndex ?? -1
12
13 func ==( left: [(Int , Int)], right: [(

Int , Int)]) -> Bool {
14 if left.count != right.count {
15 return false
16 }
17 for (l, r) in zip(left , right) {
18 if l != r {
19 return false
20 }
21 }
22 return true
23 }
24
25 assert(f(strand: "", zmnc: "abc") ==

-1)

Listing 8: example3 for GPT-4o (Python)
1 from typing import Dict ,Tuple
2
3 def f(d: Dict[str , int]) -> Tuple[int

,int]:
4 if "x" in d:
5 x = d["x"]
6 if "y" in d:
7 y = d["y"]
8 return x,y
9

10 def check(candidate):
11 assert candidate ({"x": 5, "y":

12}) == (5, 12)
12
13 def test_check ():
14 check(f)

E Programming Language Correlation in
Translation

We observed that after a four-step translation pro-
cess, the intersection of the 18 programming lan-
guages contained only 333 entries. This indicates
that each programming language has its unique
subset of correctly translated parts. Therefore, we
constructed a Venn diagram to study the correla-
tion between the sets of correct translations among
different languages.

Specifically, the results are shown in Figure 8.

Due to the limitation of the number of sets that a
Venn diagram can clearly represent, we explored
by two methods, each selecting five representative
languages. First, we chose the five languages with
the largest union of results from the 18 languages
to construct the first Venn diagram, which is the
left half of Figure 8. Subsequently, we selected
the top five most widely used languages, excluding
Python, based on data from GitHut 2.0, to construct
the second Venn diagram, which is the right half of
Figure 8.

From Figure 8, we can observe that mainstream
programming languages often have more similar
syntax structures, and the model’s generation ca-
pability is stronger for these languages. Therefore,
the intersection of the generation results for these
five languages is relatively large, with 632 entries,
while the union is relatively small, totaling 776 en-
tries. Lua, PHP, R, Ruby, and JavaScript are among
the languages with the broadest correct translation
entries across all programming languages, with
their union totaling 798 entries.

3 43

2
0

3

1

4

5

2

5

0
5

2
14

4

0
32

Java3

2 5
Lua 5

0

2

6

60

10

10

22

611

GOLua
PHP
R
Ruby

C++
JavaScript

13 15

4
3

0

17

3

1

1

11

2
0

5
12

1

2
01

1

10 0
13

2

0

0

3

11

5

R 17

632

PHP Java
Go
C++
TypeScript
JavaScript

TypeScript
JavaScript

Ruby JavaScript

Figure 8: The communitie of each langugage in code
translation.

GPT3.5
Generate

GPT3.5
Repair

DeepSeek
Generate

DeepSeek
Repair

GPT-4o

100

200

300

400

500

600

700
C#
C++
D
Go
Java
JavaScript
Julia
Lua
Perl
PHP
R
Racket
Ruby
Rust
Scala
Shell
Swift
TypeScript

Figure 9: The result of each step in translation

23775



F The Result of Each Step in Translation

Figure 9 shows the improvement brought by each
step for every language during the construction of
the benchmark. It can be observed that each step
leads to an overall enhancement in translation per-
formance. For mainstream languages such as C++
and Java, the number of correctly translated items
can exceed 600 after one or two steps. For lower-
frequency languages like D and Racket, the effect
is gradually improved, eventually resulting in all
languages having more than 600 correct transla-
tions.

G GPU Usage and Total Cost of
Translation

The total cost of GPT3.5-Turbo and GPT-4o is
aboat $60 US dollars. For Deepseekcoder-Instruct-
33b, we use 1 NVIDIA A100-80GB GPU and the
generation and repair takes about 72 hours.

H Prompt of Input/Output Reasoning

In Figures 12, 10, 11, 13, we include the prompts
we use for our benchmark construction. We use
a few-shot prompt for all models. The examples
of few-shot is shown in Listings 9, 10, 11. All the
prompts and examples are demonstrated in the C++
language.

Based on the given code, which may contain errors, complete the 

"????" in assert statement with the output when executing the cpp

code on the given test case. Do NOT output any extra information, 

even if the function is incorrect or incomplete. Do NOT output a 

description for the assert.

…

```cpp

{function}

```

[ANSWER]

{function answer}

[/ANSWER]

Figure 10: Prompt of output reasoning (non-GPT)

You will be given a cpp function f and a check function, where you 

only know the output of the test case. Output the completion of the  

check function so that the code will run without errors by finding 

any input such that executing f on the input leads to the given 

output. There may be multiple answers, and you can output any one. 

Do NOT output any additional information.

…

```cpp

{function}

```

[ANSWER]

{function answer}

[/ANSWER]

Figure 11: Prompt of input reasoning (GPT)

You will be given a cpp function f and a check function, where you 

only know the output of the test case. Find any input such that 

executing f on the input leads to the given output. There may be 

multiple answers, but you should only output one. Think step by 

step before arriving at an answer. Finally, surround the answer, with 

no additional words, with [ANSWER] and [/ANSWER] tags. 

Express your answer as a function call that when executed will give 

the output.

```cpp

{example1}

```

[ANSWER]

{answer1}

[/ANSWER]

```cpp

{example2}

```

[ANSWER]

{answer2}

[/ANSWER]

```cpp

{example3}

```

[ANSWER]

{answer3}

[/ANSWER]

```cpp

{function}

```

[ANSWER]

{function answer}

[/ANSWER]

Figure 12: Prompt of input reasoning (non-GPT)

Based on the given code, which may contain errors, complete the 

"????" in assert statement with the output when executing the cpp

code on the given test case. Do not output any extra information,

even if the function is incorrect or incomplete

.…

```cpp

{function}

```

[ANSWER]

{function answer}

[/ANSWER]

Figure 13: Prompt of output reasoning (GPT)

Listing 9: Input/Output Reasoning example1 (C++)
1 #include <assert.h>
2 #include <bits/stdc ++.h>
3 long f(std::vector <std::string >

my_list) {
4 long count = 0;
5 for (std:: string i : my_list) {
6 if (i.size() % 2 == 0) {
7 count += 1;
8 }
9 }

10 return count;
11 }
12 int main() {
13 auto candidate = f;
14 assert(candidate ((std::vector <std

::string >({( std:: string)"mq",
(std:: string)"px", (std::

string)"zy"}))) == (3));
15 }

23776



Listing 10: Input/Output Reasoning example2
(C++)
1 #include <assert.h>
2 #include <bits/stdc ++.h>
3 std:: string f(std:: string s1, std::

string s2) {
4 return s1 + s2;
5 }
6 int main() {
7 auto candidate = f;
8 assert(candidate (("ba"), ("nana")

) == ("banana"));
9 }

Listing 11: Input/Output Reasoning example3
(C++)
1 #include <assert.h>
2 #include <bits/stdc ++.h>
3 std::tuple <long , long > f(std::map <std

::string ,long > d) {
4 long x = 0, y = 0;
5 if(d.find("x") != d.end()){
6 x = d["x"];
7 }
8 if(d.find("y") != d.end()){
9 y = d["y"];

10 }
11 return std:: make_tuple(x, y);
12 }
13 int main() {
14 auto candidate = f;
15 assert(candidate ((std::map <std::

string ,long >({{"x", 5}, {"y",
12}}))) == (std:: make_tuple

(5, 12)));
16 }

I The Statistics of Benchmark

We present specific statistics for our benchmark
across various PLs. As shown in Table 4, the av-
erage number of lines and average length for each
PLs is provided. Each entry corresponds to one test
case, and the input-output reasoning is evaluated
by predicting the outcome of that test case.

J Code Reasoning Task

J.1 The Connection Between Code Reasoning
and Input/Output Prediction

Input/output prediction is a good carrier for demon-
strating code reasoning capabilities. First, for code
tasks such as code generation, code repair, and
code translation, they all fundamentally depend
on understanding the code execution process. The
input/output reasoning ability of a LLM is excel-
lent representation of this understanding. What’s
more, starting from the perspective of LLMs in-
put/output reasoning is a task that is easy to judge
for correctness and has a certain level of difficulty,

language Rust Racket Lua Java

avg line 14.1 17.6 17.3 22
avg length 380.4 401.1 413.3 641.6

Scala PHP Perl GO D
16.1 17.3 21.3 35.8 21.5

445.9 407.8 409.3 755.2 396.6

C++ C# TS Python R

16.4 22.9 17.1 14.3 11.3
481.1 636.3 405.1 303.4 347.2

Julia Ruby JS Swift Shell
15.2 14.5 16 24.5 23.2

299.3 321.9 344.6 551.4 370.4

Table 4: The average number of lines and average length
of our benchmark

requiring rigorous logical reasoning. This task is of
great reference value for evaluating the reasoning
capabilities of language models.

J.2 The Applicability of Code Reasoning
Tasks

In software development, understanding and pre-
dicting the input and output of code is crucial for
detecting potential security vulnerabilities and en-
suring the reliability of the code. For example,
input validation and output filtering are key steps
in preventing security vulnerabilities such as SQL
injection and cross-site scripting attacks. A LLM
capable of precise input and output reasoning can
provide strong support in this regard.

K Additional Case Study

K.1 Error Cases of GPT-4o

As can be seen in Table 2, even GPT-4o fails to suc-
cessfully solve approximately 30% of the problems.
We analyze this portion of cases, specifically select-
ing those where less than two PLs out of 19 passed
the test cases. We find that a significant number of
these cases involve the processing of long strings.
In input reasoning tasks, this accounted for 85.2%
(46/54) of the cases. In Output reasoning tasks, it
accounted for 68.4% (39/57).

Listings 12 and 13 respectively show the er-
ror cases of GPT-4o in input / output reasoning
tasks. In Listing 12, the LLM fail to comprehend
the code’s intention of converting the case of ev-
ery alternate character. In Listing 13, the variable
space_symbol consists of two parentheses, but the

23777



LLMs mistakenly interpreted it as one parenthesis,
leading to an error. This aligns with the conclusion
in Section 4.1 that the longer the input or output,
the more prone the LLMs are to making mistakes.

K.2 Comparative Evaluation of LLMs’
Reasoning Ability

To better understand the reasoning capabilities of
different LLMs, we select three LLMs at varying
levels: GPT-4o, DeepseekCoder-6.7b-base, and
phi-1.5. We compare them pairwise to assess the
reasoning ability of each LLM. We define that if a
model correctly solves a problem in more than 17
PLs, it is considered to have mastered that problem.
Conversely, if it solves the problem in fewer than 3
languages, it is deemed not to have mastered it.

By comparing the problems that GPT-4o mas-
ter but DeepseekCoder-6.7b-base do not, we find
that these problems mostly require multi-step op-
erations, but the overall difficulty does not exceed
the problem in Listing 12. As shown in Listings
14 and 15, one such problem involves successfully
reversing ’ OOP ’ and removing extra spaces.
Although DeepseekCoder-6.7b-base also execute
these two steps, it fail to completely remove the
spaces on both sides.

Next, by comparing the problems that
DeepseekCoder-6.7b-base master but phi-1.5
do not, we find that these issues often arise
because phi-1.5 fails to correctly write variables
corresponding to programming languages other
than Python, accounting for 90% (36/40) of the
cases. As illustrated in Listings 16 and 17, phi-1.5
does not understand the meaning of the long-type
variable and still outputs it as a string, leading to
syntax errors.

From the above analysis, it can be seen that GPT-
4o is capable of handling relatively complex tasks,
DeepseekCoder-6.7b-base performs well in simple
tasks but may make minor errors in complex tasks.
phi-1.5, although demonstrating a certain level of
Cross-PL Generalization, still performs poorly in
non-Python languages. Particularly in understand-
ing variable types and syntax.

Listing 12: Error Case of GPT-4o (Input Reasoning,
C++)
1 #include <assert.h>
2 #include <bits/stdc ++.h>
3 std:: string f(std:: string line) {
4 int count = 0;
5 std:: string a;
6 for (int i = 0; i < line.length ()

; i++) {
7 count += 1;
8 if (count %2==0) {
9 a.push_back(tolower(line[

i]) == line[i] ?
toupper(line[i]) :
tolower(line[i]));

10 }
11 else {
12 a.push_back(line[i]);
13 }
14 }
15 return a;
16 }
17 int main() {
18 auto candidate = f;
19 assert(candidate (("987 yHnShAsHd

93275 YrGsGbGsShFbSfB")) == ("
987 YhnShAShD 93275
yRgsgBgssHfBsFB"));

20 }

Listing 13: Error Case of GPT-4o (Output Reason-
ing, Python)
1 def f(text: str , space_symbol: str ,

size: int) -> str:
2 spaces = ''.join(space_symbol for

i in range(size -len(text)))
3 return text + spaces
4
5 def check(candidate):
6 assert candidate('w', '))', 7) ==

'w))))))'
7
8 def test_check ():
9 check(f)

10
11 test_check ()

Listing 14: Correct Case of GPT-4o (Output Rea-
soning, Python)
1 def f(s: str) -> str:
2 arr = list(s.strip())
3 arr.reverse ()
4 return ''.join(arr)
5
6 def check(candidate):
7 assert candidate(' OOP ') ==

'POO'
8
9 def test_check ():

10 check(f)
11
12 test_check ()

23778



Listing 15: Error Case of DeepseekCoder-6.7b-
base (Output Reasoning, Python)
1 def f(s: str) -> str:
2 arr = list(s.strip())
3 arr.reverse ()
4 return ''.join(arr)
5
6 def check(candidate):
7 assert candidate(' OOP ') ==

' POO'
8
9 def test_check ():

10 check(f)
11
12 test_check ()

Listing 16: Correct Case of DeepseekCoder-6.7b-
base (Input Reasoning, C++)
1 #include <assert.h>
2 #include <bits/stdc ++.h>
3 std:: string f(std:: string text , long

size) {
4 long counter = text.length ();
5 for (long i = 0; i < size - (size

% 2); ++i) {
6 text = " " + text + " ";
7 counter += 2;
8 if (counter >= size) {
9 return text;

10 }
11 }
12 return text;
13 }
14 int main() {
15 auto candidate = f;
16 assert(candidate (("7"), ("7")) ==

(" 7 "));
17 }

Listing 17: Error Case of Phi-1.5 (Input Reasoning,
C++)
1 #include <assert.h>
2 #include <bits/stdc ++.h>
3 std:: string f(std:: string text , long

size) {
4 long counter = text.length ();
5 for (long i = 0; i < size - (size

% 2); ++i) {
6 text = " " + text + " ";
7 counter += 2;
8 if (counter >= size) {
9 return text;

10 }
11 }
12 return text;
13 }
14 int main() {
15 auto candidate = f;
16 assert(candidate (("7"), (11)) ==

(" 7 "));
17 }

23779


