Capability Salience Vector: Fine-grained Alignment of Loss and
Capabilities for Downstream Task Scaling Law

Qiming Ge“**, Shuhao Xing”**, Songyang Gao”, Yunhua Zhou",
Yicheng Zou”’, Songyang Zhang”, Zhi Chen”, Hang Yan”, Qi Zhang*,

Qipeng Guo"

, Kai Chen"

“Shanghai AI Laboratory
*College of Computer Science and Artificial Intelligence, Fudan University
gmge22@m. fudan.edu.cn, zouyicheng@pjlab.org.cn

Abstract

Scaling law builds the relationship between
training computation and validation loss, en-
abling researchers to effectively predict the loss
trending of models across different levels of
computation. However, a gap still remains be-
tween validation loss and the model’s down-
stream capabilities, making it untrivial to apply
scaling law to direct performance prediction
for downstream tasks. The loss typically repre-
sents a cumulative penalty for predicted tokens,
which are implicitly considered to have equal
importance. Nevertheless, our studies have
shown evidence that when considering different
training data distributions, we cannot directly
model the relationship between downstream
capability and computation or token loss. To
bridge the gap between validation loss and
downstream task capabilities, in this work, we
introduce Capability Salience Vector, which
decomposes the overall loss and assigns dif-
ferent importance weights to tokens to assess
a specific meta-capability, aligning the valida-
tion loss with downstream task performance in
terms of the model’s capabilities. Experiments
on various popular benchmarks demonstrate
that our proposed Capability Salience Vector
could significantly improve the predictability of
language model performance on downstream
tasks.

1 Introduction

Large language models have demonstrated impres-
sive performance across a wide range of tasks, but
this achievement comes with the trade-off of sig-
nificant computational demands. To mitigate the
computational burden during the training of large
models, researchers have developed the scaling law
(Bahri et al., 2024; Hoffmann et al., 2022; Kaplan
et al., 2020; Muennighoff et al., 2024), a frame-
work that predicts how variations in model size and

“Equal contribution. This work was done when Qiming

Ge was an intern at Shanghai Al Laboratory.
fCorresponding Author

data scale impact the validation loss of LLMs. This
allows researchers to use smaller models to predict
the validation loss of larger ones, reducing the cost
of hyperparameter tuning and trial-and-error exper-
imentation. However, in practical applications, a
model’s capabilities are typically assessed using
a variety of downstream benchmarks, and valida-
tion loss does not always correlate directly with
performance on these tasks. It is not uncommon
to encounter instances where models with simi-
lar validation losses exhibit significantly different
downstream task performance (Liu et al., 2023).
Consequently, validation loss alone is not always a
reliable indicator of a model’s true capabilities.

To address this issue, some researchers have cho-
sen to bypass validation loss, focusing instead on
directly establishing the scaling relationship be-
tween computational resources and task perfor-
mance (Gadre et al., 2024). To minimize the effects
of data distribution shifts, they adjusted the amount
of computation and model sizes while keeping the
pre-training dataset fixed across all experimental
settings. However, we argue that the impact of data
distribution shifts cannot be overlooked, as they
may substantially influence model performance on
downstream tasks. As demonstrated by our experi-
ments (Section 3.1), the same amount of computa-
tion can yield markedly different outcomes when
models are trained on distinct data distributions.

Another line of research focuses on developing
alternative metrics that better correlate with down-
stream task performance. For instance, Ruan et
al. (2024) proposed the Observational Scaling Law
(OSL), leveraging open-source benchmark results
and applying principal component analysis (PCA)
to explore various dimensions of model capabili-
ties. While these approaches encompass a broad
range of model families that are pre-trained on dif-
ferent data distributions, they depend heavily on
the diversity and scope of the benchmarks used,
which can incur substantial evaluation costs.

23746

Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 2374623761

July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

From the discussions above, we identify two im-
portant but underexplored questions that this work
seeks to address:

* Is it reasonable to predict downstream capa-
bilities directly based on computational cost?

* Why is it challenging to establish a clear rela-
tionship between validation loss and a model’s
capabilities?

To address the first question, we explored the im-
pact of different pre-training data distributions on
the ability to model downstream tasks. Our exper-
iments show that, under the same computational
budget, different pre-training data distributions can
lead to varying downstream capabilities. There-
fore, it is not reasonable to predict downstream
task performance directly based on computational
cost. To answer the second question, we revisit the
concept of validation loss, a metric used to eval-
uate a model’s cumulative penalty for next-token
predictions. This metric inherently assumes that all
tokens contribute equally to the model’s training
process. However, previous studies have demon-
strated that tokens may differ in their learnability
and difficulty (Lin et al., 2024; Xia et al., 2022).
Inspired of this, we introduce the concept of Ca-
pability Salience Vector (CSV), which quantifies
the capabilities required for downstream tasks by
assigning different importance weights to tokens.
By computing a weighted average of the loss for
these tokens, this metric can replace the raw vali-
dation loss and demonstrate a stronger correlation
with downstream task performance. Furthermore,
we propose an optimization algorithm to automati-
cally derive the Capability Salience Vector for any
given text. Experiments conducted on six popular
benchmarks show that our approach consistently
achieves a high correlation across different model
series and significantly enhances the predictability
of language model performance on downstream
tasks.
Overall, our contributions are threefold:

* Our experiments indicate that downstream
scaling laws cannot be directly modeled using
computation or the average token loss on the
validation set.

* We introduce the Capability Salience Vector
and present an algorithm to automatically de-
rive it. This allows us to quantify a model’s
capabilities by assigning different importance

weights to the loss of specific tokens, thereby
establishing a strong correlation between vali-
dation loss and downstream task performance.

* Through experiments on six benchmarks for
different model capabilities, we show that our
method consistently achieves high correlation
across various model series and significantly
improves the predictability of model perfor-
mance on these benchmarks. The predicted
mean squared error was maintained within the
range of le-3.

2 Related work

2.1 Scaling Law for Downstream Tasks

Scaling law establishes the power-law relationships
between computation C', model parameters [V, the
number of training tokens D), and cross-entropy
loss on the validation set. However, there is still
a gap between validation loss and downstream
task performance. Recent studies have tried to
investigate the scaling laws governing downstream
task performance. Owen (2024) investigated the
predictability of model scaling on BBH (Srivas-
tava et al., 2022) and MMLU (Hendrycks et al.,
2020) tasks, proposing that downstream task perfor-
mance follows a sigmoidal function and can be pre-
dicted. Their findings also indicate that prediction
errors decrease as more models are incorporated
into the fitting process. Ruan et al. (2024) intro-
duced an alternative observational approach, apply-
ing low-rank decomposition to publicly available
model evaluation results to extract sub-dimensions
representing the model capabilities. These sub-
dimensions were then used to establish scaling laws
that relate computational cost to downstream task
performance. Gadre et al. (2024) examined the
scaling laws of overtraining models on specific
pre-training data distributions. They identified a
power-law relationship between validation loss and
downstream task performance, demonstrating pre-
dictability after pre-training on a given data distri-
bution.

However, the aforementioned studies primarily
focused on the relationship between computational
cost and downstream task performance, without
addressing the fact that different pre-training data
distributions can result in different downstream per-
formances for the same computational cost. Isik et
al. (2024) explored the impact of pre-training data
distribution on downstream performance in trans-
lation tasks. Their findings revealed that different

23747

pre-training distributions significantly influence the
scaling behavior of downstream tasks, indicating
that data distribution should be considered when
evaluating model scaling laws.

2.2 Efficient Benchmark Prediction

As large language models continue to advance, nu-
merous benchmarks have been developed to as-
sess their diverse capabilities. To comprehensively
evaluate the performance of a pre-trained model,
it is necessary to measure its scores across vari-
ous downstream tasks. However, conducting a full
downstream evaluation is often time-consuming,
prompting recent efforts to improve its efficiency.
For example, Ye et al. (2023) and Perlitz et al.
(2023) have explored reducing the number of task
examples in benchmarks like BBH (Srivastava
et al., 2022) and HELM (Liang et al., 2022) to
streamline the evaluation process.

Recent studies, such as Polo et al. (2024) and
Kipnis et al. (2024), have explored leveraging Item
Response Theory (Lord and Novick, 2008; Baker,
2001) to extract model features from open-source
evaluations and compress validation sets. This al-
lows for the reconstruction of benchmark scores
using these compressed subsets. Similarly, Pac-
chiardi et al. (2024) applied a feature extraction
approach and trained an evaluator to directly pre-
dict performance on individual samples. Zhang
et al. (2024) demonstrated that incorporating task
performance across different model families, along-
side additional model and task information, can
enhance prediction accuracy. However, these meth-
ods still rely on accuracy metrics for part of the
data, and it remains uncertain whether downstream
task performance (e.g., accuracy) can be directly
predicted based on downstream scaling laws.

3 Method

In this section, we first explore whether down-
stream task performance can be directly predicted
using computation or average token loss. Then,
we introduce Capability Salience Vector (CSV),
which automatically assign different importance
weights to validation token loss. This aligns the
loss of tokens with the specific capabilities required
for downstream tasks.

3.1 Impact of Pre-training Data Distribution
on Modeling Downstream Scaling Law

Previous work on downstream scaling laws has pri-
marily explored whether the performance of large

bbh hellaswag

0450 o
" 0700 L

0425 -
0.400 ,.,o“o‘
Zoms X,
o
5 0350 &
3
Qoms

0.300 &
ki
0ars

Accuracy

0525

a0 60 a0 60
FLOPS (1e21) FLOPS (1e21)

mmlu gsm8k

x
x x

X +
X PR
x 4t sate

+
4
e XX

Lot *
x
3

Accuracy
Accuracy
.,

“Fhy
gL

80 100

a0 60 80 a0 60
FLOPS (1e21) FLOPS (1e21)

Figure 1: Relationship between computation (FLOPs)
and performance (accuracy) across various downstream
tasks is depicted, with red and blue points indicating
model checkpoints trained on two different data distri-
butions. Under the same computational budget, models
trained on different data distributions exhibit varying
downstream task performance.

models on downstream tasks can be predicted using
pretrained small models. These studies follow a
common setting, where small models trained on the
same pretraining data distribution are used to pre-
dict the performance of larger models. However,
during the pretraining process, researchers may
need to continuously adjust the data composition
to compare the impact of different data distribu-
tions on model performance. In this framework,
applying downstream scaling laws would require
training multiple small models under different con-
figurations with the sa data distributions, making
the experiments significantly more costly.

In this section, we first investigate whether down-
stream scaling laws can be directly modeled us-
ing computational cost. Specifically, we use In-
ternLM2.5 as the base architecture and train two
series of models on significantly different pretrain-
ing data distributions which is the same pretraining
data sources as InternLM2.5. These sources in-
clude a diverse mix of web data, code data, math
data, and other domain-specific datasets. We only
adjusted the proportions of different subsets within
this pretraining corpus. We then select checkpoints
at different levels of computational cost to evaluate
downstream performance.

Figure 1 illustrates the performance of two mod-
els with different training data distributions on var-
ious downstream tasks under different computa-
tional budgets. We observe that for tasks such as

23748

Figure 2: The relationship between average token loss
and downstream task performance.

Hellaswag and BBH, models trained with the same
computational cost exhibit differing downstream
task performance. This indicates that a direct func-
tion from computation to downstream task per-
formance cannot be reliably modeled. Therefore,
when predicting downstream task performance, we
must account for differences in the models’ train-
ing data distributions. Moreover, language models
exhibit emergent capabilities in certain tasks, mak-
ing it difficult to predict their performance using
smaller models trained on the same pretraining data
distribution. Before reaching the emergence thresh-
old—when computational resources are insufficient
and loss remains relatively high—the performance
of small models on downstream tasks becomes dif-
ficult to measure (Du et al., 2024).

This raises an important question: Is there a suit-
able metric that satisfies the following conditions?

* The metric provides continuous measure-
ments and is independent of emergent capa-
bilities.

* The metric reflects differences in data distribu-
tion and can be predicted during pretraining.

Inspired by traditional scaling laws, we consider
validation loss as a potential candidate. Valida-
tion loss is continuous and serves as an indicator
of model capability. Therefore, we aim to model
the relationship between validation loss and down-
stream performance. To explore this, we measure
the downstream performance of different open-
source models and their average token loss on task
validation datasets. To avoid biases introduced by
different tokenizers across models, we normalize
the loss calculation at the character level.

Figure 2 illustrates the relationship between
validation loss and downstream performance in
MMLU and BBH. We observe that models can
exhibit varying downstream performance across
different tasks with the same validation loss. We re-
visit the computation of validation loss. Traditional

scaling laws calculate validation loss by averaging
it at the dataset level, treating all loss values with
equal importance. However, different loss values
may contribute unequally to measuring a model’s
task specific capability. This indicates that a more
fine-grained approach may be necessary for mod-
eling loss effectively. In the next section, we intro-
duce the concept of the Capability Salience Vector
(CSV). This method assigns different importance
weights to token-level loss values in the validation
set, aiming to establish a more predictable rela-
tionship between validation loss and downstream
performance.

3.2 Modeling Downstream Scaling Law

Inspired by the work of Arora and Goyal (2023).,
we consider that predicting different token frag-
ments requires different meta-capabilities. These
meta-capabilities ultimately determine the perfor-
mance of downstream tasks. Traditional scaling
laws treat all tokens equally when modeling val-
idation loss. While the expectation of validation
loss provides a rough estimate of model capability,
it does not accurately capture the relationship be-
tween loss and downstream performance. To solve
this problem, we propose the Capability Salience
Vector. By applying a simple linear weighting
to loss calculation, we can better model the re-
lationship between loss and downstream perfor-
mance. Given a validation set S = {XS}Lszll, we
first compute the validation loss of each sample
Xs = (z1,72, ..., 7|x,|). Next, we use the Capa-
bility Salience Vector, denoted as W = {ws ;}, to
apply linear weighting to each token’s loss. This al-
lows us to compute the capability score C,,, , which
represents the model’s ability based on the valida-
tion text.

S| [Xs]
Cn = —Ni D> weilogp(wi |). (1)

€ s=1 =1
where N, is the number of validation text charac-
ters. Then we use the sigmoidal function to model
the functional relationship between capability score
C,, and the model’s downstream task performance

(e.g., accuracy) :

1—v
Ay =7+ .
T T exp(—a(Crn —)
where « and 3 is the parameters to be fitted,
represents the expected performance of the task
under random guessing.

2

23749

Capability Salience Vector
M)

i Overall
| CE Loss

Each house has 3 * 2 = 6 windows

|

- ~
. ~
, N
/ \
/ \

Weighted
CE Loss

Each house has 3 * 2 = 6 windows

Knowledge

M]
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
i ' :
i ' i
1 1
1Overall i ' Task-specific !
i ili ; | Capabili '
e |7 Math J*
| Knowledge TW i ode .
1 1 1
1 ! 1 1
1 1 1 1
i ::(s)::l:; E 1 predicted well H
! g / : - / i
' Unclear 5 ' ! é Downstream!
! Relationship 5 trainset | I5 Scaling law ! |
! < models 1 [fitted well :
1 a ! 1 a 1
! x ! 1 / 1
\ & / - ;
\ ’ \ Ll ’

N J N !
Sl CE Loss 7 AN Capability Score 9 Pid

Figure 3: Capability salience vector establishes the relationship between cross-entropy loss and downstream task
performance. It quantifies a model’s capabilities as a weighted sum of token losses, with each token contributing

differently to the overall performance.

3.3 Modeling Capability Salience Vector

Since the weights of the Capability Salience Vec-
tor and the parameters « , are unknown, we use
three steps to get the weights of capability Salience
vector.

Extract Weights of Capability Salience Vector
For a given validation set, we first apply a loss
mapping algorithm to align losses across different
vocabulary spaces. Specifically, we average the
token-level losses over their corresponding charac-
ters to obtain character-level losses, and then aggre-
gate these character-level losses according to the
tokenization result of the target tokenizer. Then we
use language model with a scoring head to obtain
capability Salience Vector weights W = {w, ;} of
each token:

Ws; = fo(Ts,ilTs,<i)- 3
where 6 is the parameters of scoring head. The
scoring head is implemented as a linear layer ap-
plied to the final hidden states of a the language
model and we froze the other parameters of lan-
guage model during optimization. This step can be
seen as assigning a score to each token, reflecting
its contribution to the overall capability representa-
tion.

Fitting Downstream Scaling Law Function Af-
ter getting capability Salience Vector, we collect

token losses on the given validation set and down-
stream task performance of different models to fit-
ting downstream scaling law function. To do this,
we fix 0 and estimate the parameters « and 5 of
the downstream scaling law function. We mini-
mize the MSE loss between the predicted and ob-
served downstream task performance by using the
Levenberg-Marquardt algorithm.
min

[Apm — A).)
b Models m

Optimize Capability Salience Vector In this
stage, we use the downstream scaling law func-
tion to optimize Capability Salience Vector param-
eters 6 . This is done by minimizing the MSE loss
between predicted and observed downstream task
performance using SGD:

min A — Ap). 5

0 MO%]:Sm[t,m t,m] ()
We run multiple iterations of the three-steps op-
timization process to select the parameters that
achieve the best downstream performance predic-
tion. These optimal parameters are saved to obtain
the Capability Salience Vector and fit downstream
scaling law function. Finally, our algorithm work-
flow is illustrated in Appendix B.

4 Experiment

To validate the effectiveness of our approach, we di-
vide the experiment into two parts. First, we evalu-

23750

mmlu

+ train

val 0.9
® test

3

Accuracy
Accuracy
o o
>

cmmlu bbh

+ train

val 0.9
® test

+ train
val
® test

MSE(rain = 2.56e-05
0.5 [MSE,, = 6.47e-04
MSEest = 1.45e-03

MSE(rain = 6.17e-05
04 |MSEva =8.15e-04
MSE(est = 3.02e-03

MSE¢ain = 6.36e-04
0.4 MSE, . = 3.53e-03
MSE¢est = 2.26e-03

0.0 0.1 0.2 0.3 0.4 0.0 0.2
Capability Score 6
ceval-test

+ train
val

® test

08 08
3 3

07
g g 06
306 3
Q Q
<< 05 <C 04

Capability Score 6
gsm8k

0.6 0.8 0.0 0.1 0.2 0.3

Capability Score 6

hellaswag

train
val
test

train
val
test

MSE(rain = 1.85e-04
0.4 [MSEy, =7.54e-04
MSEes: = 3.71e-03

MSE rain = 3.79¢-03
MSE a1 = 2.99¢-03
02 |MSEtes = 6.32¢-03

MSE yain = 2.236-03
MSEya/ = 4.13-03
MSE test = 4.49¢-03

0.0 0.2 0.4 0.6 0.8 0.0 0.1

Capability Score 6

Capability Score 6

0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4

Capability Score 6

Figure 4: Downstream task prediction results of open-source models using capability score derived from Capability

Salience Vector.

ate the performance of the Capability Salience Vec-
tor using open-source models. Next, we use check-
points from our own models to assess whether the
Capability Salience Vector, optimized from open-
source models, can accurately predict downstream
task performance for models trained on different
data distributions.

4.1 Settings

Dataset To explore the scaling capabilities of
models across various downstream tasks requiring
different abilities, we conducted our experiments
on six popular benchmarks that cover a wide range
of skills, including knowledge, reasoning, com-
monsense, and mathematics. For knowledge ca-
pabilities, we choose MMLU (Hendrycks et al.,
2020). For reasoning capabilities, we choose BBH
(Suzgun et al., 2022). For commonsense capabil-
ities, we choose Hellaswag (Zellers et al., 2019).
For mathematics capabilities, we choose Gsm8k
(Cobbe et al., 2021). For Chinese language capa-
bilities, we selected the CMMLU (Li et al., 2023)
and Ceval (Huang et al., 2024) benchmarks.

Evaluation Models Our experiments were con-
ducted under two different evaluation setups:

* Open-source Model Evaluation: We validate
the effectiveness of our method on over 50
open-source models across different series,
including LLAMA?2 (Touvron et al., 2023),

LLAMA3 (Dubey et al., 2024), Gemma2
(Team et al., 2024), Qwen1.5 (Bai et al., 2023),
Qwen2 (Yang et al., 2024), Yi, Yil.5(Young
et al., 2024), InternLM?2, and InternLM2.5
(Cai et al., 2024). In this setup, we use smaller
models from the same series as the training
set, while larger models are treated as the val-
idation and test sets. The specific splits are
detailed in Appendix A.

* Closed-source Model Evaluation: We train
two different series of models under vary-
ing data distributions and aim to predict their
downstream capabilities using the Capabil-
ity Salience Vector. The train data source
is the same as InternLM2.5. For Capability
Salience Vector optimization, we use all the
open-source models along with early check-
points (the first 50k steps) from both series.
One series of our own model is used as the
validation set, while the other serves as the
test set.

Evaluation Details We use the OpenCompass
(Contributors, 2023b) tool to evaluate the down-
stream scores for the aforementioned models.
OpenCompeass is a python package that supports
various large language models and datasets for eval-
uation and benchmarking. The detailed evaluation
results for the open-source models are provided

23751

mmlu
1.0

+ train

val 0.9
® test

0.8

3 3
g | £
val = 9.02e-
§ 0.6 MSE o5t = 9.46e-04 é 06
< 05 < 05
0.4 0.4
0.3 0.3
T
0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.2
Capability Score 6
ceval-test
10 + train 1.0
0.9 val
e test 0.8
0.8
3)
g Moy | £
val = 8.22€-
308 MSEas: = 7.960-04 3
(&) O 04
< 05 <

Capability Score 6
gsm8k

cmmlu bbh

1.0

+ train + train

val 0.9 val
e test ® test
0.8
3
MSE 7411 = 6.59-05 o 07
MSE, 4 = 8.40e-04 5
MSEest = 7.52e-04 o 06
[3}
< 05

MSE 7ain = 5.90e-04
0.4 [MSE,q = 4.65e-04
MSE est = 6.066-04

0.3

+ +
0.4 06 0.0 0.1 0.2 0.3 0.4

Capability Score 6

hellaswag

train
val
test

+ train
val 0.9
e test

Accuracy
3

MSErain = 3.91-04
0.2 |MSE,q = 1.01e-03
MSE test = 4.05¢-03

o o o
=)

o

MSE(rain = 3.44€-03
MSE, 5 = 2.69e-04
MSE¢es: = 8.20e-04

e
~

i ¥ 0.0
0.0 0.2 0.4 0.6 0.8 0.0

Capability Score 6

0.2
Capability Score 6

e
w
+

0.4 0.0 0.2 0.4

Capability Score 8

Figure 5: Downstream task prediction results of closed-source models using capability score derived from Capability

Salience Vector.

in Appendix C. To obtain the token cross-entropy
loss on specific validation sets, we utilize LMDe-
ploy(Contributors, 2023a) framework. To ensure
the validation loss better reflects the different capa-
bilities of the models, we randomly sample 100 ex-
amples from the six validation sets and mixed them.
Additionally, we include 50 examples with chain-
of-thought related to BBH. We treated CMMLU
and CEval as reflecting the same capability and
only sampled from one of these datasets. In to-
tal, we gathered 550 examples for optimizing the
Capability Salience Vector. Our method can use
only 550 examples as validation set for modeling
downstream scaling law.

Baseline

 All token loss : This method simply calculate
the average of all token loss in validation set.
Then We use the metric to model downstream
scaling law by fitting a sigmoidal function.

* Label token loss : Following the same setup
as Llama3 (Dubey et al., 2024), we compute
the negative log-likelihood of the correct an-
swers on each task’s test set and calculate its
expectation. We then use this metric to fit
a sigmoidal function between fitting perfor-
mance and downstream task performance.

Training Details We use InternLM2.5 1.8B (Cai
et al., 2024) as the scoring model, replacing its lan-

guage head with a linear layer followed by a non-
linear activation function. In practice, we found
that increasing model complexity has little impact
on the final results. To optimize efficiently, we
freeze the language model parameters and only
train the linear layer. We train with a learning rate
of 1e-3, and most tasks converged to the best per-
formance within 300 steps(training for 1-3 hours
on a single A800.), demonstrating the practical ef-
ficiency of our method.

Table 1: MSE of Different loss to predict downstream
performance.

Task Test Model Prediction MSE
CSvV All token | Label token

mmlu 1.45e-3 | 2.40e-2 3.31e-2
bbh 2.26e-3 | 5.8le-2 8.27e-2
gsm8k 6.32e-3 | 7.46e-2 9.88e-2
hellaswag | 4.49e-3 | 3.15e-3 3.33e-2
ceval 3.71e-3 | 2.67e-2 3.57e-2
cmmmlu | 3.32e-3 | 2.69e-2 3.67e-2

4.2 Main Results

Downstream Task Prediction for Open-source
Models Figure 4 shows the optimization re-
sults for different downstream tasks across various
model families. It can be observed that by identi-
fying a shared Capability Salience Vector across

23752

mmlu-step-0 mmlu-step-10

0.85
0.80
0.75
3070
g
5 065

o o

>

8 060
055

Accuracy
Accuracy

050

045

06 0.0 06 00 o1

0.2 04 0.2 04
Capability Score 6 Capability Score 6

mmlu-step-30

02

Capability Score 6

mmlu-step-135

mmlu-step-90

Accuracy

05

03 04 05 0.0 0.1 02 03 04 00 01

0.2 03
Capability Score 6 Capability Score 6

04

Figure 6: Relationship between capability scores and downstream task performance across different steps of the
Capability Salience Vector optimization process. As the optimization progresses, the capability scores of different
model series gradually align, leading to improved predictive performance on the test set.

different model families on validation text, we are
able to align the capabilities across different models
for downstream tasks. Furthermore, the sigmoidal
function fitted using the Capability Salience Vec-
tors can effectively predict the downstream task per-
formance of models with larger parameters. This
indicates that the downstream task capabilities of
models also follow a scaling law, which makes
their performance predictable. Table 1 and Figure
7 present the prediction MSE of different loss cal-
culation methods. The capability salience vector
significantly improves the predictability of down-
stream task performance by assigning different im-
portance weights to different token losses. In con-
trast, the label token loss does not perform well.
We believe this is because the loss at the position of
the correct answers in the downstream task test set
is susceptible to biases in the pretrain data distri-
bution. As a result, this metric fails to align across
different model families. We further validated this
on checkpoints from our own trained models.

mmiu

......

Accuracy
Accuracy

00 04 0 4 6 8 10

2
label_token_loss
bbh

01 02 03
Capability Score 8
bbh

Accuracy

Accuracy

00

o1 02 s 02 04 o ' 2
Capability Score & all_token_loss label_token_loss

Figure 7: Visualization of prediction results of our
method compared to baseline

Downstream Task Prediction for Closed-source
Models The results in figure 5 demonstrate that
by using the Capability Salience Vector as a proxy,

we can predict downstream performance during
the model training process, even when models are
trained with different data distribution. During
training, we were able to maintain a prediction ac-
curacy for downstream task performance with a
mean squared error of 1e-4. This demonstrates that
our method provides strong guidance for model
training and effectively predicts downstream per-
formance.

4.3 Convergence Trend of Capability Salience
Vector Optimization

Figure 6 depicts the optimization trend of model ca-
pabilities during the process of Capability Salience
Vector optimization. The figure shows that the
model capabilities progressively converge toward
a universal curve shared across different models.
This convergence demonstrates that the LM cross-
entropy loss reliably reflects model capabilities
and that a functional relationship exists between
LM cross-entropy loss and downstream task per-
formance. Our algorithm successfully models the
downstream scaling law across various model fam-
ilies, improving the predictability of downstream
performance based on LM cross-entropy loss.

4.4 Analysis Studies

Impact of Validation Set Data Distribution on
Capability Salience Vector Optimization We
found that as the diversity of the validation set dis-
tribution increases, the range of meta-capability
combinations captured by the model from LM
cross-entropy loss also expands. This leads to
more accurate capability predictions for down-
stream scaling law. Therefore, when using loss
to measure model capabilities, we recommend con-
sidering token losses from a more diverse set of
data sources, rather than relying solely on the loss
from a single data distribution. The result is shown
in Figure 8

23753

Case Study In this section, we visualize the Ca-
pability Salience Vectors identified by the auto-
matic optimization algorithm. Figure 9 shows the
results of the Capability Salience Vector optimized
for the BBH downstream task. The intensity of
the green color represents the importance weight
assigned by the Capability Salience Vector, with
darker shades indicating larger weights. We ob-
serve that the optimized Capability Salience Vec-
tor highlights the tokens which can measure the
model’s reasoning capabilities. The model needs to
summarize contextual information and apply rea-
soning to predict these tokens. These examples
demonstrate that our method effectively extracts
meta-capabilities that capture the model’s scaling
behavior on specific tasks.

mmlu-mix mmlu-random
0.9 09 + train
val
0.8 0.8 o test

5 5 0.7
@®© o7 ©
o °

8 0.6 8 0.6
Q Q
< <

05 05

04 0.4

0.0 0.1 0.2 03 0.4 0.0 02 0.4 0.6
Capability Score 6 Capability Score 6
bbh-mix bbh-random

1.0

0.8
>
8]

@M 06
S
3
Q

2 0.4

0.2

0.0 0.1 0.2 03 0.0 0.2 0.4 0.6 0.8

Capability Score 6 Capability Score 6

Figure 8: Impact of varying validation set distributions
on Capability Salience Vector optimization.

5 Conclusion

In this work, we first demonstrated that different to-
kens correspond to distinct meta-capabilities, high-
lighting the importance of accounting for token-
level differences when exploring the scaling re-
lationship between LM CE loss and downstream
task performance. Furthermore, we proposed an
automatic optimization method to identify the Ca-
pability Salience Vector for a text segment. By as-
signing varying importance weights to the losses of
different tokens, our approach enables researchers
to model the scaling relationship between loss and
downstream tasks. We believe that precisely mod-
eling the scaling relationship between language CE

Let 's trace the sequence of ball sw aps to determine
which ball Eve ends up with at the end of the game : 1.
** C la ire and Dave swap balls ** : - Claire now has the
yellow ball . - Dave now has the brown ball . 2. ** E ve
and Alice swap balls ** : - Eve now has the blue ball . -
Alice now has the black ball . 3. ** G er tr ude and Eve
swap balls ** : - Ger tr ude now has the blue ball . - Eve
now has the purple ball . 4 . ** C la ire and Alice swap
balls ** : - Claire now has the black ball . - Alice now has
the yellow ball . 5 . ** Dave and Eve swap balls ** : -
Dave now has the purple ball . - Eve now has the brown
ball . 6 . ** Alice and Ger tr ude swap balls ** : - Alice
now has the blue ball . - Ger tr ude now has the yellow
ball . 7 . ** F red and Bob swap balls ** : - Fred now has
the pink ball . - Bob now has the red ball . After following
all the sw aps , Eve ends up with the brown ball .
Therefore , the correct answer is : (C) brown ball .

Figure 9: Visualization of the importance weights as-
signed to different tokens by the Capability Salience
Vector after optimization on the BBH task. Tokens
with higher importance weights are highlighted in green.
This shows that the Capability Salience Vector effec-
tively identifies tokens that require reasoning by the
model, capturing the model’s reasoning capabilities.

loss and downstream task performance is a mean-
ingful and valuable area for future research.

6 Limitation

In this section, we will discuss some limitations of
our method. First, while our approach can optimize
any given text to identify its Capability Salience
Vector, the effectiveness varies across different
texts. Therefore, selecting suitable optimization
texts remains an open area for future research. Sec-
ond, since the optimization needs to be performed
simultaneously on all texts, the computation cost in-
creases with the length of the text. Thus, improving
the efficiency of the optimization algorithm or ex-
ploring simpler modeling approaches is a topic for
future investigation. Finally, our experiments are
limited to six popular objective evaluation bench-
marks. Exploration of more challenging tasks or
subjective evaluations is left for future work.

Acknowledgements

The authors wish to thank the AC and anony-
mous reviewers for their constructive comments.
This work was supported by the China Postdoc-
toral Science Foundation under Grant Number
2023M741851.

References

Sanjeev Arora and Anirudh Goyal. 2023. A theory
for emergence of complex skills in language models.

23754

arXiv preprint arXiv:2307.15936.

Yasaman Bahri, Ethan Dyer, Jared Kaplan, Jaechoon
Lee, and Utkarsh Sharma. 2024. Explaining neural
scaling laws. Proceedings of the National Academy
of Sciences, 121(27):e2311878121.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang,
Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei
Huang, et al. 2023. Qwen technical report. arXiv
preprint arXiv:2309.16609.

Frank B Baker. 2001. The basics of item response the-
ory. ERIC.

Zheng Cai, Maosong Cao, Haojiong Chen, Kai Chen,
Keyu Chen, Xin Chen, Xun Chen, Zehui Chen, Zhi
Chen, Pei Chu, et al. 2024. Internlm?2 technical re-
port. arXiv preprint arXiv:2403.17297.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, et al. 2021. Training verifiers to solve math
word problems. arXiv preprint arXiv:2110.14168.

LMDeploy Contributors. 2023a. Lmdeploy: A toolkit
for compressing, deploying, and serving llm. https:
//github.com/InternLM/1mdeploy.

OpenCompass Contributors. 2023b. Opencompass: A
universal evaluation platform for foundation models.
https://github.com/open-compass/opencompass.

Zhengxiao Du, Aohan Zeng, Yuxiao Dong, and Jie Tang.
2024. Understanding emergent abilities of language
models from the loss perspective. arXiv preprint
arXiv:2403.15796.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, et al. 2024. The llama 3 herd of models. arXiv
preprint arXiv:2407.21783.

Samir Yitzhak Gadre, Georgios Smyrnis, Vaishaal
Shankar, Suchin Gururangan, Mitchell Wortsman,
Rulin Shao, Jean Mercat, Alex Fang, Jeffrey Li,
Sedrick Keh, et al. 2024. Language models scale
reliably with over-training and on downstream tasks.
arXiv preprint arXiv:2403.08540.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou,
Mantas Mazeika, Dawn Song, and Jacob Steinhardt.
2020. Measuring massive multitask language under-
standing. arXiv preprint arXiv:2009.03300.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Men-
sch, Elena Buchatskaya, Trevor Cai, Eliza Ruther-
ford, Diego de Las Casas, Lisa Anne Hendricks,
Johannes Welbl, Aidan Clark, et al. 2022. Train-
ing compute-optimal large language models. arXiv
preprint arXiv:2203.15556.

Yuzhen Huang, Yuzhuo Bai, Zhihao Zhu, Junlei
Zhang, Jinghan Zhang, Tangjun Su, Junteng Liu,
Chuancheng Lv, Yikai Zhang, Yao Fu, et al. 2024.
C-eval: A multi-level multi-discipline chinese evalua-
tion suite for foundation models. Advances in Neural
Information Processing Systems, 36.

Berivan Isik, Natalia Ponomareva, Hussein Hazimeh,
Dimitris Paparas, Sergei Vassilvitskii, and Sanmi
Koyejo. 2024. Scaling laws for downstream task per-
formance of large language models. arXiv preprint
arXiv:2402.04177.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B
Brown, Benjamin Chess, Rewon Child, Scott Gray,
Alec Radford, Jeffrey Wu, and Dario Amodei. 2020.
Scaling laws for neural language models. arXiv
preprint arXiv:2001.08361.

Alex Kipnis, Konstantinos Voudouris, Luca M Schulze
Buschoff, and Eric Schulz. 2024. metabench —a
sparse benchmark to measure general ability in large
language models. arXiv preprint arXiv:2407.12844.

Haonan Li, Yixuan Zhang, Fajri Koto, Yifei Yang, Hai
Zhao, Yeyun Gong, Nan Duan, and Timothy Bald-
win. 2023. Cmmlu: Measuring massive multitask
language understanding in chinese. arXiv preprint
arXiv:2306.09212.

Percy Liang, Rishi Bommasani, Tony Lee, Dimitris
Tsipras, Dilara Soylu, Michihiro Yasunaga, Yian
Zhang, Deepak Narayanan, Yuhuai Wu, Ananya Ku-
mar, et al. 2022. Holistic evaluation of language
models. arXiv preprint arXiv:2211.09110.

Zhenghao Lin, Zhibin Gou, Yeyun Gong, Xiao Liu, Ye-
long Shen, Ruochen Xu, Chen Lin, Yujiu Yang, Jian
Jiao, Nan Duan, et al. 2024. Rho-1: Not all tokens
are what you need. arXiv preprint arXiv:2404.07965.

Hong Liu, Sang Michael Xie, Zhiyuan Li, and Tengyu
Ma. 2023. Same pre-training loss, better downstream:
Implicit bias matters for language models. In Inter-
national Conference on Machine Learning, pages
22188-22214. PMLR.

Frederic M Lord and Melvin R Novick. 2008. Statistical
theories of mental test scores. 1AP.

Niklas Muennighoff, Alexander Rush, Boaz Barak,
Teven Le Scao, Nouamane Tazi, Aleksandra Piktus,
Sampo Pyysalo, Thomas Wolf, and Colin A Raffel.
2024. Scaling data-constrained language models.

Advances in Neural Information Processing Systems,
36.

David Owen. 2024. How predictable is language
model benchmark performance? arXiv preprint
arXiv:2401.04757.

Lorenzo Pacchiardi, Lucy G Cheke, and José
Hernandez-Orallo. 2024. 100 instances is all you
need: predicting the success of a new 1lm on unseen
data by testing on a few instances. arXiv preprint
arXiv:2409.03563.

23755

https://github.com/InternLM/lmdeploy
https://github.com/InternLM/lmdeploy
https://github.com/open-compass/opencompass

Yotam Perlitz, Elron Bandel, Ariel Gera, Ofir Arviv,
Liat Ein-Dor, Eyal Shnarch, Noam Slonim, Michal
Shmueli-Scheuer, and Leshem Choshen. 2023. Ef-
ficient benchmarking (of language models). arXiv
preprint arXiv:2308.11696.

Felipe Maia Polo, Lucas Weber, Leshem Choshen,
Yuekai Sun, Gongjun Xu, and Mikhail Yurochkin.
2024. tinybenchmarks: evaluating llms with fewer
examples. arXiv preprint arXiv:2402.14992.

Yangjun Ruan, Chris J Maddison, and Tatsunori
Hashimoto. 2024. Observational scaling laws and the
predictability of language model performance. arXiv
preprint arXiv:2405.10938.

Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao,
Abu Awal Md Shoeb, Abubakar Abid, Adam Fisch,
Adam R Brown, Adam Santoro, Aditya Gupta,
Adria Garriga-Alonso, et al. 2022. Beyond the
imitation game: Quantifying and extrapolating the
capabilities of language models. arXiv preprint
arXiv:2206.04615.

Mirac Suzgun, Nathan Scales, Nathanael Schirli, Se-
bastian Gehrmann, Yi Tay, Hyung Won Chung,
Aakanksha Chowdhery, Quoc V Le, Ed H Chi, Denny
Zhou, et al. 2022. Challenging big-bench tasks and
whether chain-of-thought can solve them. arXiv
preprint arXiv:2210.09261.

Gemma Team, Morgane Riviere, Shreya Pathak,
Pier Giuseppe Sessa, Cassidy Hardin, Surya Bhupati-
raju, Léonard Hussenot, Thomas Mesnard, Bobak
Shahriari, Alexandre Ramé, et al. 2024. Gemma 2:
Improving open language models at a practical size.
arXiv preprint arXiv:2408.00118.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Mengzhou Xia, Mikel Artetxe, Chunting Zhou, Xi Vic-
toria Lin, Ramakanth Pasunuru, Danqgi Chen, Luke
Zettlemoyer, and Ves Stoyanov. 2022. Training tra-
jectories of language models across scales. arXiv
preprint arXiv:2212.09803.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng,
Bowen Yu, Chang Zhou, Chengpeng Li, Chengyuan
Li, Dayiheng Liu, Fei Huang, et al. 2024. Qwen2
technical report. arXiv preprint arXiv:2407.10671.

Qinyuan Ye, Harvey Yiyun Fu, Xiang Ren, and Robin
Jia. 2023. How predictable are large language model
capabilities? a case study on big-bench. arXiv
preprint arXiv:2305.14947.

Alex Young, Bei Chen, Chao Li, Chengen Huang,
Ge Zhang, Guanwei Zhang, Heng Li, Jiangcheng
Zhu, Jianqun Chen, Jing Chang, et al. 2024. Yi:
Open foundation models by 01. ai. arXiv preprint
arXiv:2403.04652.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali
Farhadi, and Yejin Choi. 2019. Hellaswag: Can a
machine really finish your sentence? arXiv preprint
arXiv:1905.07830.

Qiyuan Zhang, Fuyuan Lyu, Xue Liu, and Chen Ma.
2024. Collaborative performance prediction for large
language models. arXiv preprint arXiv:2407.01300.

23756

A Appendix
A Open-source Model Evaluation Setting

In this section, we present the specific model splits
used for Capability Salience Vector optimization
in the evaluation of open-source models. Larger
models within the same series were used for vali-
dation and testing, as detailed in Table 2. This split
ensures that our method is evaluated across mod-
els of varying sizes while maintaining consistency
within each series for training and validation.

B Algorithm Workflow

Based on the derivation in Section 3.3, we sum-
marise the algorithmic flow of Capability Salience
Vector modeling in Algorithm 1 and 2.

C Open-source Model Evaluation Results

In this section, we present the evaluation results in
Table 3 for various tasks on open-source models
using OpenCompass.

23757

Table 2: Model split in open-source model evaluation

train validation test
Llama-2-{7, 13}B Llama-2-70B Yi-1.5-34B
Llama-2-{7, 13}B-chat Llama-2-70B-chat Llama-3-70B

Qwenl.5{1.8,4,7, 14}B
Qwenl.5{1.8, 4, 7, 14}B-chat
Llama3-8B
Llama3-8B-Instruct
Qwen2{1.5,7}B

Qwen2{1.5, 7}B-Instruct
Yi-{6}B

Yi-{6}B-chat

Yil.5-{6,9}B

Yil.5-{6, 9}B-chat
Gemma2-2-{2,9}B
internlm2-{1.8, 7}B
internlm2-{1.8, 7}B-chat
internlm2-{1.8, 7}B-chat-sft
internlm2.5-{1.8, 7} B
internlm2.5-{1.8, 7} B-chat
internlm2.5-{1.8, 7}B-chat-sft

Qwenl.5-{32,72}B
Qwenl.5-{32, 72}B-Chat
internlm2-chat-20B
internlm2-20B
internlm2-chat-20B-sft
Yi-{34}B

Yi-{34}B-chat

Llama-3-70B-Instruct
Yi-1.5-34B-Chat
gemma-2-27B
gemma-2-27B-it
Qwen2-72B
Qwen2-72B-Instruct
internlm2_5-20B
internlm2_5-20B-chat
Yi-1.5-34B-Chat

Algorithm 1: Loss Mapping Between Different Tokenizers

Require: Input text C' = (¢, ca, . .

1 Cn)

Require: Source tokenizer T and target tokenizer T}

Require: Source token losses Ls = (

10:
11:
12:
13:
14:
15:

1
2
3
4:
5:
6
7
8
9

S S S
05,00

: Tokenize input with source tokenizer: T5(C) = (77,..., 7,

)
: Initialize character-level losses (5 = 0 for each character ¢; € C
: for each token 7;° in Tx(C') do
Let S; be the indices of characters spanned by 7}
for each j € S; do

=4

J

end for
: end for
: Tokenize input with target tokenizer: T3 (
Initialize target token losses L; = (¢}, ..
for each token 7} in 73(C) do

Let T} be the indices of characters spanned by T;
end for
return Target token losses Ly

— 7;
I3

C)=(r,...,7})
gt
otk

)

23758

Algorithm 2: Optimization of Capability Salience Vector and Downstream Scaling Law

Require: Validation set S = {X’S}LS:'1
Require: Language model with score head fy
Require: Model Set M = {m}
Require: Observed downstream performance of different models At,m
1: Collect token losses on the validation set of different model {L,, } and mapping the losses from
source tokenizer to target tokenizer Using algorithm 1
2: for each epoch do

3: Step 1: Extract Weights of Capability Salience Vector
4. for each sample X = (z1,72,...,7|x,|) € S do
5: for each token x5 ; in X do
6: Compute ws ; = fp(zs,; | Ts,<;) using the language model scoring head.
7: end for
8: end for
9: Obtain initial Capability Salience Vector W = {ws ; }.
10: for each model m in Model Set M do
11: Step 2: Fit Downstream Scaling Law Function
12: Using equation 1 and 2 to predict downstream task performance Ay .
13: Fix 0 and estimate «, 5 by minimizing the MSE loss:
min [At,m — Ath]Q
a,f —
14: Use the Levenberg-Marquardt algorithm to solve for «, 3.
15: Step 3: Optimize Capability Salience Vector
16: Using equation 1 and 2 to predict downstream task performance A; .
17: Update 6 by minimizing:
I'IleiIl ;[At,m - At7m]2
18: Use Stochastic Gradient Descent (SGD) to optimize 6.

19: end for

20: Repeat Steps 1-3 until convergence.

21: end for

22: return Optimized Capability Salience Vector W and Downstream Scaling Law parameters «, 3.

23759

Table 3: Downstream Tasks Evaluation Results(1)

model bbh ceval-test cmmlu gsm8k hellaswag mmlu
Llama-2-7b-hf 38.27 30.13 32775 16.76 29.29 46.78
Llama-2-13b-hf 45.68 37.38 38.81 29.87 45.06 55.76
llama-2-70b-hf 64.78 49.53 53.05 63.53 5591 69.87
Qwenl.5-1.8B 27.01 58.67 5745 3487 42.32 47.14
Qwenl.5-4B 34.81 66.55 66.38 47.61 55.89 57.03
Qwenl.5-7B 39.87 72.49 71.86 54.36 68.51 62.15
Qwenl.5-14B 50.38 76.93 7695 63.53 83.86 69.1
Qwenl.5-32B 67.47 82.5 81.58 7271 87.28 73.88
Qwenl.5-72B 58.81 83.03 83 79.53 90.41 77.02
Qwen2-7B 54.28 82.22 83.67 73.77 73.74 70.27
Qwen2-72B 74.52 89 90.82 89.54 93.46 83.73
Yi-6B 44.82 70.78 74.01 39.58 66.83 64.08
Yi-34B 66.37 80.93 82.79 67.7 83.83 76.26
Yi-1.5-6B 57.55 66.93 69.68 61.33 70.79 64.88
Yi-1.5-9B 71.09 72.71 74.11 74.53 76.64 71.52
Yi-1.5-34B 75.06 82.24 83.55 79.98 84.92 1.7

Qwenl.5-1.8B-Chat 27.03 55.19 48.3 29.57 42.32 45.39
Qwenl.5-4B-Chat 43.19 61.37 5822 46.02 60.74 56.01
Qwen1.5-7B-Chat 35.19 68.18 67.98 55.88 69.8 61.78
Qwenl.5-14B-Chat 55.58 74.67 7529 64.82 80.03 68.08
Qwen1.5-32B-Chat 68.55 80.66 80.17 79.15 88.42 75.12
Qwenl.5-72B-Chat 71.73 81.37 82.15 79.68 88.99 77.1
Qwen2-7B-Instruct 64.56 82.11 80.84 87.29 78.57 70.68

Qwen2-72B-Instruct 82.07 87.02 89.88 9242 93.7 82.73

Yi-6B-Chat 30.98 70.69 7274 4246 64.27 63.22
Yi-34B-Chat 60.47 78.58 80.33 7271 78.69 73.91
Yi-1.5-6B-Chat 58.68 68.05 68.59 75.36 75.66 64.76

Yi-1.5-9B-Chat 69.61 73.19 74.51 79.23 83.14 71.35
Yi-1.5-34B-Chat 73.63 80.83 81.05 85.82 87.33 75.95

internlm2-1_8b 36.03 44.79 45.27 304 44.86 45.99
internlm2-7b 63.56 63.54 66.17 69.98 89.52 65.84
internlm2-20b 71.29 67.28 68.28 76.8 9141 67.58

internlm2-chat-1_8b 37.31 47.06 46.19 39.2 59.71 47.72
internlm2-chat-1_8b-sft 38.23 47.21 46.17 37.83 60.86 47.7
internlm2-chat-7b 59.96 58.85 62.66 72.1 84.44 63.51
internlm2-chat-7b-sft ~ 59.35 58.99 62.57 70.51 85.01 63.51
internlm2-chat-20b 69.53 63.03 65.85 76.19 88.16 67.36
internlm2-chat-20b-sft 69.31 63.2 66.04 77.03 88.68 67.28
internlm2_5-1_8b-chat 42.58 61.25 62.3 53.3 49.97 50.98
internlm2_5-7b 72.64 77.21 78.95 74.83 73.49 71.5
internlm2_5-7b-chat 74.8 77.38 78.04 84 67.74 71.82
internlm2_5-20b-chat ~ 79.77 79.75 79.18 88.1 66.53 72.49
internlm2_5-1_8b 42.65 63.97 65.5 38.82 56.64 53.44
internlm2_5-20b 79.83 81.94 8225 82.64 79.35 74.2

23760

Table 4: Downstream Tasks Evaluation Results(2)

model bbh ceval-test cmmlu gsm8k hellaswag mmlu
Meta-Llama-3-8B 59.69 48.83 5095 5428 50.86 66.43
Meta-Llama-3-70B 79.16 66.56 68.36 69.98 80.6 79.35

Llama-2-7b-chat-hf 41.51 30.2 32.62 28.13 48.94 44.56
Llama-2-13b-chat-hf 49.61 33.76 37.01 42.08 61.43 52.1

Meta-Llama-3-8B-Instruct ~ 52.5 49.93 51.89 79.3 73.29 67.16

Meta-Llama-3-70B-Instruct 80.45 66.91 70.11 90.22 87.72 80.52

gemma-2-2b-it 46.44 41.82 4486 55.65 62.43 58.39
gemma-2-9b-it 75.07 57.32 59.49 86.66 70.29 73.14
gemma-2-27b-it 80.05 61.71 62.5 89.99 75.96 76.45
gemma-2-27b 74.77 60.84 61.53 80.97 75.55 75.97
gemma-2-2b 42.12 39.44 39.31 33.51 65.91 54.35
gemma-2-9b 70.63 57.63 59.02 72.86 72.93 72.44

Llama-2-70b-chat-hf 59.94 32.21 43.07 60.65 74.18 59.93
Qwen2-1.5B-Instruct 38.31 68.27 68.12 63.53 55.38 55.73
Qwen2-1.5B 35.75 69.32 70.58 59.06 46.76 57.45

23761

