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Abstract

Hubness, the tendency for a few points to
be among the nearest neighbours of a dispro-
portionate number of other points, commonly
arises when applying standard distance mea-
sures to high-dimensional data, often negatively
impacting distance-based analysis. As autore-
gressive large language models (LLMs) operate
on high-dimensional representations, we ask
whether they are also affected by hubness. We
first prove that the only large-scale representa-
tion comparison operation performed by LLMs,
namely that between context and unembedding
vectors to determine continuation probabilities,
is not characterized by the concentration of dis-
tances phenomenon that typically causes the
appearance of nuisance hubness. We then em-
pirically show that this comparison still leads
to a high degree of hubness, but the hubs in this
case do not constitute a disturbance. They are
rather the result of context-modulated frequent
tokens often appearing in the pool of likely
candidates for next token prediction. However,
when other distances are used to compare LLM
representations, we do not have the same the-
oretical guarantees, and, indeed, we see nui-
sance hubs appear. There are two main take-
aways. First, hubness, while omnipresent in
high-dimensional spaces, is not a negative prop-
erty that needs to be mitigated when LLMs are
being used for next token prediction. Second,
when comparing representations from LLMs
using Euclidean or cosine distance, there is a
high risk of nuisance hubs and practitioners
should use mitigation techniques if relevant.

1 Introduction

Hubness is a phenomenon which occurs in high-
dimensional data (Radovanovic et al., 2010), where
some data points (the hubs) are in the k nearest
neighbours of many other points while most points
(the anti-hubs) are in the k nearest neighbours of
few or no other points. Hubness has been found in
many different types of data: for example in time-
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series, biology and image processing (TomaSev
et al., 2011, 2014) and, in relation to text, in bag-
of-words embeddings (Radovanovic et al., 2010;
Schnitzer et al., 2012), dense word embeddings
(Dinu and Baroni, 2014), dense sentence embed-
dings (Nielsen and Hansen, 2024) and cross-modal
embeddings (Bogolin et al., 2022). Hubs arise due
to intrinsic properties of certain distance measures
applied to high-dimensional spaces, and they are
typically considered a nuisance, as they obfuscate
the genuine semantic landscape of the data of in-
terest. Consequently, there is a general interest in
techniques to reduce the hubness of a representa-
tion space (see, for instance, Feldbauer and Flexer,
2019).

Autoregressive large language models (LLMs)
also trade in high-dimensional representations, and
it is thus natural to ask whether hubs emerge in
their distance computations. This is the question
we answer in this study. In order to address it,
it is fundamental to distinguish between the com-
parison operations a model is effectively perform-
ing when engaging in next-token prediction and
distance-based comparisons we might decide to
compute from its representations.

Concerning the distance-based comparisons ac-
tually performed by a standard autoregressive
transformer-based LLM (Elhage et al., 2021), we
note that the model prediction is accomplished
through the softmaxed dot product between a con-
text representation and each row of the unembed-
ding matrix. This operation effectively determines
a rank over the whole token vocabulary of a model
(typically made up of thousands of elements), and it
can be seen as a distance-based measure that could
be affected by nuisance hubs.!

!Technically, another dot product is computed, within the
attention modules, between the query vector of a token and
the key vectors of the preceding tokens. Since in this case the
potential “neighbours” are constrained to be the tokens in the
preceding context, which are meaningful elements (as long as
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We first present a theoretical analysis of the soft-
maxed context-unembedding dot product opera-
tion, which defines a measure that we will call,
from now on, probability distance. We show that
probability distance, under reasonable assumptions,
is not affected by the concentration of distances
phenomenon that typically leads to nuisance hub-
ness in high-dimensional spaces. Interestingly, we
also find, empirically, that probability distance is
still characterized by high hubness, but these hubs
are not noise. Instead, they correspond to context-
modulated frequent tokens that are often reasonable
guesses, given that natural language text is charac-
terized by very skewed word distributions (Baayen,
2001). Indeed, when the most likely continuation
according to the model is a hub, this prediction is
often the correct one.

On the other hand, a researcher might be inter-
ested in performing other similarity comparisons
between inner representations of a LLM: for ex-
ample, looking for the nearest neighbours of a
sentence, as represented by its hidden-activation
last-token vector, or of a vocabulary entry, as rep-
resented in the unembedding matrix.? It is already
theoretically known that, when using Euclidean
distance in this context, hubs might arise due to
concentration of distances. We confirm empirically
that such measurements are generally affected by
nuisance hubness, although, surprisingly, concen-
tration of distances is not observed in all cases.

Our main contributions are as follows:

* We present the first theoretical and empir-
ical analysis of hubness in autoregressive,
transformer-based LLMs;

* We show that the hubs that arise in the predic-
tion computations of the model are not a trivial
effect of concentration of distances, but reflect
a guessing heuristic exploiting the skewed
nature of word frequency distributions, and
should thus not be eliminated;

* We show that other similarity computations
involving LLM representations are instead af-
fected by nuisance hubness, and thus they
should only be performed in combination with
hubness reduction techniques.

we are looking at meaningful text), we do not expect nuisance
hubs to affect this operation.

2We focus on the unembedding matrix because it is the

one we are also studying in the context of probability distance

computations, but we expect similar trends to emerge for the
embedding matrix as well.

2 Related Work

Radovanovic et al. (2010) showed the ubiquity of
hubs in many different kinds of datasets. Hubness
is a cause of concern, as it can negatively impact
many common tasks in data analysis and machine
learning, such as regression, classification, outlier
detection and clustering. Hubness was also shown
to hinder the performance of nearest-neighbour al-
gorithms in speech recognition, recommendation
and multimedia retrieval (see Feldbauer and Flexer,
2019, and references therein). Problematic hubness
also occurs in distributed text representations anal-
ogous to those produced by a LLM. For example
Dinu and Baroni (2014), Smith et al. (2017), Lam-
ple et al. (2018), Huang et al. (2020) and Nielsen
and Hansen (2024) studied hubness in word and
text embeddings, while Bogolin et al. (2022), Wang
et al. (2023) and Chowdhury et al. (2024) looked at
hubness in multimodal language models and cross-
modal retrieval.

Given the problems posed by hubs, various hub-
ness reduction methods have been proposed, for
example Local Scaling (Zelnik-Manor and Per-
ona, 2004), Mutual Proximity (Schnitzer et al.,
2012), Globally Corrected Rank (Dinu and Ba-
roni, 2014), Inverted Softmax (Smith et al., 2017),
Cross-domain Similarity Local Scaling (Lample
et al., 2018), Hubness Nearest Neighbor Search
(Huang et al., 2020), Querybank Normalisation
(Bogolin et al., 2022), DBNorm (Wang et al., 2023),
Dual Inverted Softmax (Wang et al., 2023), F-norm
(Nielsen and Hansen, 2024) and Nearest Neighbor
Normalization (Chowdhury et al., 2024). These
methods apply different strategies to reduce hub-
ness and its effects. For example, Mutual Prox-
imity makes the nearest neighbour relation more
symmetric by considering the joint probability of
two points being each other’s nearest neighbours
conditioned on the distances to all other points. On
the other hand, F-norm forces the data to follow
a normal distribution in each dimension and nor-
malizes the lengths of the vectors, thus making the
data closer to a distribution which does not usually
exhibit hubness. As a further example, Globally
Corrected Rank reverses similarity queries, so that
the nearest neighbour of a point x is the point y
to which x is nearest, among all possible candi-
dates (as opposed to the point that is nearest to
x). Since many points are close to hubs (in rel-
ative terms), hubs are unlikely to have £ among
their nearest neighbours. Many of these methods
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have been systematically compared by Feldbauer
and Flexer (2019) and Nielsen and Hansen (2024),
among others.

As shown by the plethora of hubness reduction
techniques, the focus has so far been on mitigat-
ing hubness, with little attention devoted to the
question of whether hubness is actually always a
nuisance phenomenon to be mitigated.

3 Theoretical preliminaries

We first define the k-occurrence, Nj, as in
Radovanovic et al. (2010). Given a set of points,
the k-occurrence of a specific point =, Ni(z), is
the number of points for which z is in the k-nearest
neighbours. We define hubs as points, h, with high
k-occurrence, i.e., where Ny (h) is large. To get a
sense of which values of Ny (z) should be consid-
ered large, we can analyze the distribution of the k-
occurrences of a dataset. If the neighbourhood rela-
tion is relatively symmetric, and most points are in
the k£ nearest neighbours of & other points, the dis-
tribution of k-occurrences will have a peak at k& and
also be relatively symmetric, see Fig. 1 (Bottom).
This is the usual case in low dimensions. However,
if we have some points, hubs, with a k-occurrence
much larger than k, we will get a skewed distribu-
tion. Thus, like in Radovanovic et al. (2010) and
Feldbauer and Flexer (2019), we use the skewness
of the distribution of k-occurrences (k-skew) to
measure the hubness of a dataset. Recall that for
a collection of n data points, x, the skewness is
calculated as

n 3
skew(x) = %Z <X1;HX> (1)

=1

where (15 is the mean and o is the standard de-
viation of x. If the k-occurrence distribution is
completely symmetric, we get a k-skew of 0.

3.1 Hubness and concentration of distances

Concentration of distances happens when the dif-
ference between the largest and smallest distance
to a point goes to zero as the dimension increases.
Necessary and sufficient conditions for this to hap-
pen have been presented in Beyer et al. (1999);
Durrant and Kaban (2009). When concentration of
distances occurs, for every query point, we have
that every other point is almost equally far away,
see Fig. 1 (Top).

A first effect of the concentration of distances
is that, while every point will, trivially, still have
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Figure 1: Illustrative example of concentration of dis-
tances and k-occurrence. (Top) Distribution of 10,000
Euclidean distances between query and comparison
points from a standard Gaussian in 3 and 300 dimen-
sions. In 300 dimensions, no pair of points has a dis-
tance between 0 and 20, and most have a distance
around 25, so the distances “concentrate”. (Bottom)
K-occurrence distributions for the data in (Top). For 3
dimensions, k-skew is close to 0, so the neighbour rela-
tion is symmetric. For 300 dimensions, k-skew is quite
high (about 12), so the neighbour relation is very skewed
in accordance with the data exhibiting a concentration
of distances.

a nearest neighbour, just adding a small amount
of noise is likely to change which points are the
closest. Another consequence is that, in high di-
mension, all points will be close to lying on a hy-
persphere, and be quite sparsely distributed. If we
take a point which is slightly closer to the mean of
the data than most other points, then this point will
now be the closest neighbour of many other points
(although it is still quite far away from everything),
i.e., this point will be a hub.

Therefore, if we are attempting to compare high-
dimensional representations using a distance mea-
sure which exhibits concentration of distances, we
will get that most representations are far away from
each other. However, a few hubs will be the near-
est neighbours of many other representations, with
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no guarantee that they are close in any meaningful
sense. We call this kind of hubs, solely arising due
to concentration of distances, nuisance hubs.

3.2 Probability distance in LLMs and
concentration of distances

When comparing the representations of LLMs, it is
common to use Euclidean distance or cosine simi-
larity, which is equivalent to normalized Euclidean
distance in terms of neighbour ranking. However,
Euclidean distance is affected by concentration of
distances (Aggarwal et al., 2001). We thus expect
to find nuisance hubs when using it to compare
representations.

Does this mean that LLMs are adversely affected
by hubness? As discussed in the introduction, mod-
els are not using Euclidean-distance-based com-
parisons as part of their inner workings. They
are trained instead to compare contexts with possi-
ble vocabulary items and give the most likely next
items a high probability. We can interpret this as a
dissimilarity measure, the probability distance, by
using 1 —p(y | ), where p(y | x) is the probability
the model associates to item y given the context
x. In this way, we construct neighbourhoods for
each context, with the closest items being the ones
which are most likely.

The following theorem shows that, when using
probability distance, we do not get concentration
of distances unless the probabilities are uniform.

Theorem 1. Let x; € X be a data point. Let y;,
j € {1,...,v}, be the possible labels of points from
X, and let p(y;|x) be the probability of label y ;
given x which uses representations f(x),g(y) €
R™. We define the dissimilarity between x; and
yj to be d(x;,y;) = 1 — p(y;|xi). Then, if the
distribution over'y does not go to the uniform dis-
tribution for every x, p(y|x) /4 U(y), we will not
get concentration of distances for this dissimilarity
as the dimension m — 0.

Proof. In Appendix A 0

For LLM predictions in language models, this
proof means that, as long as our models do not as-
sign close to equal probabilities to all tokens for all
the given contexts, there will be no concentration
of distances. Table 14 in Appendix D shows that,
when we compare contexts with vocabulary items,
the mean L2 distance to the uniform distribution is
very far from zero for all models. This is expected
since, for any given context, some items will be

much more likely than others, and LLMs have been
expressly trained to make accurate in-context pre-
dictions.

Note that Theorem 1 does not imply that there
will be no hubs for the probability distance measure
used by LLMs, but if hubs are present, they will not
be nuisance hubs due to concentration of distances.
Note also that the theorem does not say anything
about what happens when using Euclidean or co-
sine distance to compare representations.

4 Experiments

All code for experiments and plots can be found on
github.3

4.1 Setup

We experiment with five different autoregressive
LLMs, namely OPT-6.7B (Zhang et al., 2022),
Llama-3-8B (Meta, 2024), Pythia-6.9B (Biderman
et al., 2023), OLMo-7B (Groeneveld et al., 2024),
and Mistral-7B (Jiang et al., 2023), hereon referred
to as Opt, Llama, Pythia, Olmo, and Mistral, respec-
tively. As input to the models, we use the 3 datasets
made available by Cheng et al. (2025). Each
of them consists of 50K sequences, or contexts,
as we will call them, of 20 orthographic tokens
randomly extracted from Bookcorpus (Zhu et al.,
2015), Pile10k (Gao et al., 2020) and WikiText-
103 (Merity et al., 2017), respectively. Note that
these contexts start and end at random points in a
text (in particular, the last token is not necessarily
a punctuation mark). In order to estimate domain-
specific token frequency distributions, we use the
full corpora the contexts were extracted from.

To measure hubness, we set k¥ = 10 and define a
point z as a hub if it has Ni(z) > 100. That is, a
point is a hub if it is in the 10 nearest neighbours of
10 times more points than we would expect if the
relationship had been symmetric. We informally as-
certained that our conclusions are robust to changes
in these hyperparameters.

4.2 Probability distance in LLMs

In this section, we first confirm that the probability
distances computed by LL.Ms do not exhibit con-
centration of distances. We then show that, despite
this, all tested LLMs are characterized by high hub-
ness. We find however that their hubs correspond
to context-dependent frequent tokens, that tend to
be reasonable prediction candidates.

3https://github.com/bemigini/
hubs-are-frequent-tokens
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Figure 2: Probability distance distribution for Pythia on
contexts from Pile10k. If we had had a concentration of
distances, we would not see this spread of distances all
the way to zero (compare with Fig. 1).
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Figure 3: k-occurrence distribution for Pythia pre-
dictions on contexts from Pile10k. This distribution
is highly skewed with many hubs (points with k-
occurrence larger than 100).

Fig. 2 shows, for Pythia and Pile10k, that there
is no concentration of distances, as predicted by
Theorem 1. This fact is confirmed for the other
models in Appendix E.

Given the lack of concentration of distances,
LLM probability neighbourhoods should not be
characterized by nuisance hubs. However, all mod-
els still have a very high k-skewness. A k-skewness
of 3 already means that either there are many points
which are in the %k nearest neighbours of more than
k other points (there are many points with a k-
occurrence larger than the mean), or there are a
few points which are in the &k nearest neighbours of
substantially more than k points (a few points have
k-occurrences much larger than the mean). Thus, a
k-skewness of 3 could already be considered high,
but all models have k-skewness higher than 40 for
all three datasets (Table 4 in Appendix B). Indeed,
in all cases we find hubs, that is, tokens with a k-

occurrence larger than 100. In fact, all models have
at least one vocabulary item with a k-occurrence
higher than 10,000 for all datasets. As an example,
the k-occurrence distribution of Pythia on Pile10k
is shown in Fig. 3.

If the hubs do not come from concentration of
distances, where do they come from? By quali-
tative inspection, we observe that the hubs corre-
spond to intuitively frequent tokens, as shown in
Table 1. To make this intuition more formal, we
plotted the k-occurrence of the hubs against the fre-
quencies of occurrence of the tokens in the various
datasets. We found that, for all models, there is a
high Spearman correlation (0.63 or larger) between
the k-occurrence of the hubs and the frequencies of
the vocabulary items in the dataset which the model
is making predictions on.* For example, compar-
ing k-occurrences of hubs in Pythia’s predictions
on Pile10k with the frequency of tokens in Pile10k
gives a Spearman correlation of 0.71 (Fig. 4; all
correlations in Table 15 of Appendix H).

1079 .l - - .

102 103 104
k-occurrence

Figure 4: k-occurrence of hubs in Pythia predictions
on contexts from Pile10k vs. frequency of vocabulary
items in Pile10k. p is the Spearman correlation.

Thus the probability distance computed by
LLM:s during predictions is characterized by high
hubness, but this high hubness is not a nuisance

*In all plots using log scales, we have added a small con-
stant, 1077, to the frequencies, in order to make the points
with O frequency visible. Tokens with O frequency therefore
all lie on a horizontal line at 10~ in our plots. Note that, for
all models and all datasets, there are some vocabulary items
which have frequency 0 even though they are hubs in the pre-
dictions. These are tokens that do not occur in the datasets
but are frequently predicted by the LLMs due to tokeniza-
tion and pre-processing discrepancies between the training
corpora and the datasets. For example, for Llama on Pile10k,
“\n’ is frequently predicted, but it never occurs in the dataset
(where periods and newlines were systematically separated
during pre-processing). As another example, the Bookcorpus
is systematically lower-cased, so a LLM will predict frequent
capitalized tokens (e.g., The) that never occur in this dataset.
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Pile10k Bookcorpus Wikitext-103
Pythia | \n and the in | the , and \n and the in a
Olmo and the . in | the , and \n and the in
Opt \n and the , . the and |, \n the and , in \n
Mistral | \n the and |, . the . and , \n and the in
Llama | \n , the and . \n the s and | \n the and , in

Table 1: Top five prediction hubs for the various LLMs on different datasets. Intuitively, they are all very frequent

tokens, that also coincide across models.

phenomenon, but the reflection of how LLMs
adapted to word frequency distributions. Given that
LLMs must predict the next token in natural text,
and natural text is characterized by very skewed
distributions, all models have learned to often pre-
dict very frequent tokens (punctuation marks, the,

of, etc.).

Preds Pile10k

)
R IR SR
[T AP YS o

Preds Bookcorpus

10—1,

Freq Pilel0k

074 "

Freq Bookcorpus

~lp=025

102 103

104 102 103 104

Figure 5: k-occurrence of hubs in Pythia predictions
(x-axis) vs. frequency of tokens (y-axis). p is the Spear-
man correlation. Top row: Predictions made on contexts
from Pile10k. Bottom row: Predictions made on con-
texts from Bookcorpus. First column: Frequency of
tokens in Pile10k. Second column: Frequency of to-
kens in Bookcorpus. In both cases, correlation is higher
when frequency is estimated on the same corpus as the
contexts used for prediction.

Interestingly, the hubs are not simply fixed based
on a single frequency distribution (e.g., that of the
training corpus). Instead, they are modulated by the
type of text the LLM is predicting. This is shown
by the fact that, given a context extracted by one
of the datasets, k-occurrence is more highly corre-
lated with frequency estimates extracted from the
corpus that dataset is extracted from, than with esti-
mates from the other corpora. For example, Fig. 5
shows that, for Pythia, the correlation of Pile10k
hub k-occurrences with frequencies estimated on
the Bookcorpus is only 0.25, but if we instead com-

model context all hub non-hub
Pythia  Pile10k 0.37 0.39 0.28
Pythia  WikiText-103 0.36 0.38 0.30
Pythia  Bookcorpus 0.31 0.32 0.23
Olmo  Pilel0k 0.36  0.39 0.29
Olmo  WikiText-103 0.36 0.38 0.32
Olmo  Bookcorpus 0.32 0.33 0.24
Opt Pile10k 0.34 0.37 0.26
Opt WikiText-103  0.35 0.37 0.31
Opt Bookcorpus 0.30 0.31 0.22
Mistral  Pile10k 0.35 0.38 0.27
Mistral WikiText-103  0.36 0.37 0.31
Mistral Bookcorpus 0.32 0.33 0.24
Llama Pilel0k 0.37 040 0.31
Llama  WikiText-103 0.38 0.40 0.35
Llama Bookcorpus  0.33 0.34 0.25

Table 2: Prediction accuracy over all contexts, accuracy
on hubs and accuracy on non-hubs. Accuracy is higher
for hubs than non-hubs for all models on all datasets.

pare with frequencies from the Pile10k corpus we
get a much higher correlation of 0.71.

Unlike the nuisance hubs in the literature we re-
viewed above, which often harm performance, the
context-modulated, frequent-token-predicting hubs
emerging in LLMs look benign. Indeed, when a
model predicts a hub as the most likely continua-
tion, this actually leads on average to higher accu-
racy than when the model is predicting a non-hub.
For example, when Pythia predicts a non-hub for
Pile10k contexts, it has an accuracy of about 28%,
but when it predicts a hub, it has an accuracy of
39% (Table 2).

4.2.1 Emergence of frequency-sensitive
prediction hubs during training

Having established that hubs in LLMs are the prod-
uct of a sensible token prediction heuristic, we
might wonder if this behavior is due to an intrinsic
model bias, or it emerges during training. Focusing
on Pythia, whose intermediate training checkpoints
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are publicly available, we find that hubs appear
in predictions from the very beginning, as shown
by the k-skewness values reported in Table 7 (Ap-
pendix B). However, Fig. 6 shows that the corre-
lation of k-occurrence with frequency is relatively
low in the earlier stages of training, and becomes
larger as training progresses. This suggests that,
on the one hand, the model might have an intrinsic
bias towards hubness in prediction, but, on the other
hand, learning to constantly keep context-relevant
frequent tokens in the top candidate pool is a strat-
egy that is acquired during training, because it is
advantageous for the prediction task.

Pythia training step

512 4000 16000

g
:

frequency

[p=0.39
102 10 10* 102 103 10* 102 103 104
k-occurrence

. [p=062

Figure 6: k-occurrence of hubs in Pythia predictions
on Bookcorpus (x-axis) vs frequency from Bookcorpus
(y-axis) for three checkpoints. p is the Spearman corre-
lation. The final number of training steps is 143,000, at
which point p = 0.72. The correlation saturates faster
on Pile10k (a subset of Pythia’s training data) than on
Bookcorpus and WikiText-103, so we show an example
from Bookcorpus to better display the gradual increase.

4.3 Comparing contexts or vocabulary items
with Euclidean distance

Having shown that the probability distance measure
computed by LLMs during next token prediction
is not affected by nuisance hubs, we turn to other
comparisons that, while not relevant to LLM gener-
ation, might arise in LLM analysis or when using
LLM-derived representations in downstream tasks.
In particular, one might want to compute similar-
ities between LLM representations of sequences
or vocabulary entries for interpretability purposes
or for specific downstream tasks that require mea-
suring the similarity of two sentences or passages,
as represented by their last-token activation vec-
tors. In such cases, it is natural to use Euclidean
distance or normalized Euclidean distance (or the
rank-equivalent cosine) to compare representations.
As we mentioned above, these measures are af-

fected by concentration of distances given various
underlying distributions (Aggarwal et al., 2001),
and we thus might observe the rise of nuisance
hubs. We present here examples using Euclidean
distance; normalized Euclidean and full results are
in appendices F and G.

Starting with distance between context represen-
tations (that is, the last-layer/last-token representa-
tions of the sequences in our datasets), when we
consider the distribution of distances between con-
texts using plain or normalized Euclidean distance,
we get concentration of distances for all models,
in the sense that the distance distributions do not
have support all the way to zero. However, the
distances are not as tightly concentrated around a
single value as they were in the toy example of
Fig. 1. For example, for Pythia all distances be-
tween contexts from Bookcorpus are larger than 15
using Euclidean distance, and only two distances
are less than 20 (Fig. 7) (see Appendix F for all
plots).

Bookcorpus Pile10k

108

10°

100
distances

100
distances

Figure 7: Distribution of Euclidean distances between
contexts for Pythia on Bookcorpus (left) and Pile10k
(right). In both cases we observe a gap in distances
approaching 0, more pronounced for Bookcorpus.

As expected given the presence of concentration
of distances, when comparing contexts with Eu-
clidean distance, we get high k-skewness (Table 5
in Appendix B). When we consider the neighbour-
hoods in which the hubs occur (examples in Table
13, Appendix C), we see that they occur in neigh-
bourhoods of contexts they are, intuitively, not at
all semantically similar to. Thus, we confirm they
are indeed “a nuisance”, that would interfere with
meaningful semantic-similarity-based analysis.

The picture is more nuanced when comparing
vocabulary items, as represented by their entries in
the unembedding matrix. For Pythia and Opt, we
again observe a concentration of distances, while

23721



for Olmo, Mistral and Llama, surprisingly, the dis-
tribution has support all the way to zero (see Fig. 8
for Pythia and Llama, and the figures in Appendix
G for the other models). This suggests that, for
these models, the underlying distribution of rep-
resentations is different from those that lead to
concentration of distances with increasing dimen-
sion (Aggarwal et al., 2001). Interestingly, the
distance plots show that different distance distribu-
tions emerge for different LLMs, suggesting that
different factors are at play. We leave a thorough
investigation of vocabulary item distributions in
these LLMs to future work.

Pythia Llama

108
L 108
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>
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107

100_

0 1 2 1 2

distances

distances

Figure 8: Vocabulary item to vocabulary item Euclidean
distances in unembedding matrix for Pythia (left) and
Llama (right).

Still, for all models, even those that do not show
concentration of distances, we observe high hub-
ness (with the exception of Olmo when using nor-
malized Euclidean distance) (Table 6 in Appendix
B), and the hubs do not correlate with token fre-
quency. Fig. 9, where we report the case for the
k-occurrences of Pythia against the frequency com-
puted on Pile10k, is remarkablly different from the
plots presented earlier in Fig. 5. Similar results
were obtained for the other model/corpora combi-
nations and are reported in Table 16 in Appendix
H. In fact, we see that, for all models, the hubs are
“junk” tokens unlikely to be meaningfully similar
to many other items, coherent with the view that
they are nuisance hubs: see Table 3 for Euclidean
distance, with other distance measures exemplified
in tables 10 and 11 of Appendix C.

5 Conclusion

We explored the phenomenon of hubness in autore-
gressive language models. We first observed that
the only representation comparison performed by
the model that could be affected by hubs consists in

p=-0.20

102 103
k-occurrence

Figure 9: Relation between Pythia vocabulary-item-to-
vocabulary-item hub k-occurrence and vocabulary item
frequency for Pile10k, using Euclidean distance. No
correlation emerges, with most hubs corresponding to 0
frequency items.

the softmaxed dot product between context repre-
sentations and vocabulary vectors in the unembed-
ding matrix. Note that this is different from what
happens in other deep learning systems: for ex-
ample, in multimodal language-and-vision models
such as CLIP (Radford et al., 2021), (normalized)
Euclidean distances are commonly used to find the
nearest text and image embeddings, which implies
likely concentration of distances and consequent
rise of nuisance hubs.

We showed, theoretically, that the probability
distance measure used by LL.Ms is not affected by
the concentration of distance problem that leads
to undesirable hubness in other high-dimensional
spaces. Still, we empirically found that probability
distance is characterized by high hubness. How-
ever, when considering the hubs, we discovered
that they are context-modulated frequent tokens, of
the sort that it makes sense for the model to often
predict. In other words, they are “benign” hubs
that reflect the highly skewed distributions found
in natural language (Baayen, 2001). The existence
of these frequent-token hubs ties in well with the
recent discovery of Stolfo et al. (2024) that LLMs
have neurons which, all else being equal, promote
the probability of frequent tokens, and that of Ma-
cocco et al. (2025) that outlier dimensions on the
top layer of LLMs also promote frequent tokens.

When other similarity measures are considered,
such as comparing representations of contexts or
of vocabulary items in the unembedding matrix us-
ing Euclidean distance, we found a theoretically
mixed but empirically clear picture. For context
comparison and vocabulary item comparison with
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Table 3: Top five k-occurrence hubs when comparing vocabulary items using Euclidean distance. To display long
space sequences, we write nx_ where n is number of spaces. Very long tokens have been broken into multiple lines.
These are mostly “junk” items, although Olmo has top hubs which are well-formed word fragments.

some models, we confirmed the expected relation
between concentration of distances and the pres-
ence of nuisance hubness. Concerning the com-
parison vocabulary items with other models, we
observed distance distributions that do not clearly
imply concentration, but we still detected hubs that
appear to be nuisance neighbours. While these
comparisons are not performed by the model for
purposes of output prediction, they might still be of
interest to researchers for analytical purposes (e.g.,
establishing if the unembedding matrix defines a
meaningful semantic space) or practical reasons
(e.g., extracting sentence representations from the
model, and use their similarity in a downstream
task). Since in these cases hubness appears in its
nuisance form, it is appropriate to ap<ply hubness
reduction techniques.

Our main take-away is that hubness, while ubig-
uitous, is neither good nor bad in itself, and a care-
ful analysis of the hubs that arise in different situa-
tions is called for, before deciding whether to apply
hubness mitigation. We have further established,
through the lens of hubness analysis, that the LLMs
we analyzed all learned a guessing heuristic that
consists in constantly promoting a set of context-
modulated frequent tokens as likely predictions.

From a practical point of view, our results sug-
gest that there is no reason to worry about hubness
when causal LLMs are used for text generation.
On the other hand, Euclidean or cosine distances
are sometimes employed when deriving embedding
models from causal LLMs (e.g., Neelakantan et al.,
2022; BehnamGhader et al., 2024; Ma et al., 2024),
to be used for downstream tasks at the word level
(e.g., POS tagging or named entity recognition) or
at the sentence/passage level (e.g., sentiment anal-
ysis or question answering). In these settings, Eu-
clidean/cosine distances might be used both when
fine-tuning representations with a semi-supervised

objective such as contrastive learning, and/or to
directly search for nearest neighbors at inference
time (such as in text retrieval). Distances between
inputs in model representations are also used in in-
terpretability research, for example to estimate the
intrinsic dimensionality of LLM representations
(e.g., Cheng et al., 2023; Valeriani et al., 2023).
In all these cases, according to our analysis, there
is a high risk of nuisance hubs, and practitioners
should check for their potential interference and
apply mitigation techniques if necessary.

Limitations

* The theoretical result that probability distance
does not entail concentration of distances is
general. However, the empirical finding that
hubs reflect context-dependent frequency dis-
tributions only holds for the models we ex-
perimented with, and it should be extended to
other model families and sizes.

¢ We established that, at least for the models
we considered, prediction hubs correspond
to context-dependent frequent tokens, and,
at least in Pythia, this is an emergent phe-
nomenon during training. We still lack an
understanding of how these prediction hubs
come about. In future research, we would
like to relate our finding with recent work
by Stolfo et al. (2024) and Macocco et al.
(2025) on how LLMs might be implement-
ing frequent-token-favoring heuristics.

¢ We found that, for 3/5 models, Euclidean dis-
tance applied to unembedding matrix repre-
sentations does not lead to concentration of
distances, although it still leads to what ap-
pear to be nuisance hubs. The nature of the
distance distributions of these models and the
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reason why they lead to nuisance hubs will
have to be studied in future work.

* Our understanding of when a hub is a “junk”
item (as in Table 3) or semantically distant
from the items it is a near neighbour of (as in
Table 13) is entirely based on qualitative ob-
servation. We leave it to further work to turn
these intuitions into automated quantitative
scores.

Ethics Statement

The inner workings of language models are still
largely unknown. This makes their increasingly
common deployment in a variety of settings essen-
tially unreliable and potentially harmful. Our paper
constitutes a small contribution towards a better
understanding of how language models work, and
hence, ultimately, towards increasing their safety.
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A Proof that non-uniform probability
distances do not concentrate

We here prove theorem 1.

Theorem 1. Let x; € X be a data point. Let y,
j € {1,...,v}, be the possible labels of points from
X, and let p(y;|x) be the probability of label y
given x which uses representations f(x),g(y) €
R™. We define the dissimilarity between x; and y
to be d(x;,y;) = 1—p(y;|xi). Then if the distribu-
tion over'y does not go to the uniform distribution
for every x, p(y|x) 4 U(y), then we will not get
concentration of distances for this dissimilarity as
the dimension m — oo.

Proof. By theorem 2 in (Durrant and Kaban, 2009),
if not

Varxy[d(x, y)]

im0 Ty 0 @

then we do not get concentration of distances.
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We see that this does not depend on the di-
mension, m. Therefore, if we can show that
lim,, o Vary y [d(x,y)] # 0, we are done. We
consider Vary y[d(x,y)].
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So we get that
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The summation is the L2 distance between the prob-
ability functions p(y|x) and the uniform distribu-
tion over y. Therefore this does not go to zero,
unless p(y|x) goes to the uniform distribution over
y for every x. O
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B Occurrence of hubs

We here present information about the occurrence
of hubs for the tested models when comparing
the representations using either Euclidean distance,
normalized Euclidean distance or softmaxed dot
product. The softmaxed dot product is what the
model uses when comparing contexts with vocabu-
lary items to get probabilities of next tokens; how-
ever, it is also possible to do a softmaxed dot prod-
uct of contexts with contexts or vocabulary with
vocabulary. Since we showed in Theorem 1 that the
softmaxed dot product will not display a concentra-
tion of distances if the distribution is not uniform,
one might hope that the softmaxed dot product
could be used to compare contexts with contexts
or vocabulary items with vocabulary items without
getting nuisance hubs. However, when comparing
vocabulary items, we get close to uniform distri-
butions (Table 14 in Appendix D), and when we
compare contexts, we get that contexts are usually
much closer to themselves than to other contexts,
but all other contexts are still far away (figures 17,
20, 23, 26 and 29 in Appendix F).

In Table 4 we show statistics of prediction hubs
for the tested models on the tested datasets. Ta-
ble 5 presents hub statistics for contexts compared
with contexts and Table 6 has vocabulary items
compared with vocabulary items.

Statistics concerning prediction hubs, hubs of
contexts compared with contexts and vocabulary
items compared with vocabulary items for Pythia’s
training checkpoints are in tables 7, 8 and 9, respec-
tively.

C Hub examples

Examples of hubs when comparing vocabulary
items using normalized Euclidean distance (Table
10) and softmaxed dot product (Table 11). These
examples show that the hubs are “junk” tokens, as
expected from nuisance hubs.

Examples of hubs when comparing contexts us-
ing Euclidean distance on Pile10k are in Table 12.
Note that in this case potential neighbours range
over the 50k natural language sequences in each
dataset, which are unlikely to contain “junk text”.
Still, when we consider the neighbourhoods in
which the hubs occur (examples in Table 13), we
see that they tend to occur in the neighbourhoods
of largely semantically unrelated contexts nuisance,
as expected of nuisance hubs.

D L2 distances to the uniform
distribution

We show the mean L2 distances to the uniform dis-
tribution in Table 14. When comparing contexts
with vocabulary items (cv), we get a distance that
is far from zero, as expected. When comparing vo-
cabulary entry with vocabulary entry (vv), we get
a distance that is very close to zero, implying that
we are close to a uniform probability distribution.
When comparing contexts with other contexts, we
get a distance very close to one. By inspection of
the distance distributions, we see that this is be-
cause, among contexts, each item is much closer
to itself than to any other item, resulting in a dis-
tribution very far from uniform (the probability
of the context itself is close to one, and all other
probabilities are close to zero). This is different
from when comparing vocabulary item to vocabu-
lary item, where we find that all items have close
to the same distance to each other, including when
comparing an item with itself.

E Distribution of probability distances

We present here plots showing the distribution of
probability distances for Llama (Fig. 10), Pythia
(Fig. 11), Olmo (Fig. 12), Opt (Fig. 13) and Mistral
(Fig. 14). For none of the tested models we find a
concentration when using probability distance.

F Distribution of context-to-context
distances

Plots showing the distribution of distances when
comparing context with context for Llama, us-
ing Euclidean distance (Fig. 15), normalized Eu-
clidean distance (Fig. 16) and softmaxed dot prod-
uct (Fig. 17); Pythia, using Euclidean distance
(Fig. 18), normalized Euclidean distance (Fig. 19)
and softmaxed dot product (Fig. 20); Opt, us-
ing Euclidean distance (Fig. 21), normalized Eu-
clidean distance (Fig. 22) and softmaxed dot prod-
uct (Fig. 23); Olmo, using Euclidean distance
(Fig. 24), normalized Euclidean distance (Fig. 25)
and softmaxed dot product (Fig. 26) and Mistral,
using Euclidean distance (Fig. 27), normalized Eu-
clidean distance (Fig. 28) and softmaxed dot prod-
uct (Fig. 29). For all models we see a concentration
of distances in the sense that there is a gap from
zero to the lowest distance values.
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model context num hubs £-skew median N, mean N, max N, var N},
Pythia  Pile10k 540 53.03 212.00 598.45 11715 1848618.70
Pythia  WikiText-103 547 56.89 198.00 610.39 15029 2521266.01
Pythia  Bookcorpus 500 52.72 243.50 832.06 17246  3854568.12
Olmo  Pilel0k 519 50.23 224.00 635.68 11795 1950492.38
Olmo  WikiText-103 529 56.52 203.00 632.46 15011 2576370.51
Olmo  Bookcorpus 493 51.77 249.00 840.93 17293  3661079.69
Opt Pile10k 536 53.28 220.00 625.90 12335 2115506.63
Opt WikiText-103 539 57.64 194.00 618.47 15628 2726513.86
Opt Bookcorpus 503 51.74 241.00 824.51 17425 3700789.63
Mistral Pilel10k 527 42.27 219.00 647.29 12376  2350693.16
Mistral WikiText-103 538 44.98 206.00 640.02 15148 2873570.50
Mistral Bookcorpus 511 40.92 240.00 810.77 17678 3503898.55
Llama Pilel0k 501 86.89 210.00 645.67 15174 2288104.43
Llama  WikiText-103 506 90.48 194.00 661.64 16390 2962717.56
Llama  Bookcorpus 493 88.92 252.00 834.07 19255 3801136.99

Table 4: Hubs occurring in predictions for the tested models. All models have high k-skewness on all datasets.
Also, for all models and all datasets, there are a large number of hubs and the maximum k-occurrence is quite high.
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Figure 10: Distribution of probability distances for Llama on Pile10k (left), Bookcorpus (middle) and WikiText-103

(right). There is no concentration of distances.

G Distribution of
vocabulary-item-to-vocabulary-item
distances

We present here plots showing the distribution of
distances when comparing vocabulary item with vo-
cabulary item for Llama (Fig. 30), Pythia (Fig. 31),
Opt (Fig. 32), Olmo (Fig. 33) and Mistral (Fig. 34).
In these plots we see a concentration of distances
for all models when using softmaxed dot product,
but for Euclidean and normalized Euclidean dis-
tance the behaviour is more varied.

H Hubs k-occurrence correlation with
frequency of tokens

In table 15 we see that the k-occurrence of predic-
tion hubs is strongly correlated with the frequency
of vocabulary items in the corpus the contexts come
from. For Pythia and Olmo, we also have access
to the original training corpora, namely the (full)
Pile (Gao et al., 2020) and Dolma (Soldaini et al.,

2024), and we use them to compute their training
token frequency distributions. These frequencies
are used in the rows of the table where freq from is
“train dataset”. The correlations are also higher for
frequencies based on the corpora the contexts come
from than for frequencies from the training data. In
Table 16, we see that, when comparing vocabulary
items with other vocabulary items, we do not get a
good correlation between k-occurrence of the hubs
and frequency of vocabulary items.

With respect to checkpoints from Pythia, we see
in Table 17 that correlation with frequencies from
the relevant dataset increases as the model trains for
longer. We also see that the correlation for Pile10k
saturates quite fast, which is probably due to Pythia
being trained on the Pile. In Table 18 we see that
there is no strong correlation for the hubs emerging
from comparing vocabulary items with vocabulary
items.
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model  similarity context num hubs k-skew median Ny mean N, max Ny var Ng

Pythia  euc Pile10k 404 12.43 145.00 183.08 887 12934.00
Pythia  euc WikiText-103 340 11.86 130.00 170.10 918 10276.35
Pythia  euc Bookcorpus 263 9.15 134.00 160.01 630 6555.05
Pythia ~ norm euc Pile10k 156 6.19 122.00 138.71 455 2686.78
Pythia  norm euc WikiText-103 115 5.27 125.00 140.08 278 1907.99
Pythia ~ norm euc Bookcorpus 108 5.11 121.00 139.14 355 2175.86
Pythia  softmax dot Pilel0k 21 6.70 12514.00 21421.86 49999  395655332.50
Pythia  softmax dot = WikiText-103 21 6.02 12504.00  21425.05 50000  395697992.71
Pythia  softmax dot Bookcorpus 21 7.98 12536.00 21415.71 49999  395465874.87
Olmo euc Pile10k 41 3.55 118.00 124.83 220 602.14
Olmo euc WikiText-103 26 3.24 113.50 124.00 200 759.92
Olmo euc Bookcorpus 76 3.69 116.00 123.88 239 604.79
Olmo norm euc Pile10k 41 3.55 118.00 124.90 220 600.87
Olmo norm euc WikiText-103 25 3.25 115.00 125.24 201 782.34
Olmo norm euc Bookcorpus 76 3.69 116.00 123.91 239 605.00
Olmo softmax dot  Pilel0k 21 3.55 12507.00  21425.29 50000 395704459.82
Olmo softmax dot ~ WikiText-103 21 3.24 12507.00  21425.29 50000 395704459.82
Olmo softmax dot ~ Bookcorpus 21 3.69 12507.00  21425.29 50000 395704459.82
Opt euc Pile10k 181 10.99 133.00 162.28 700 7619.44
Opt euc WikiText-103 188 7.95 129.50 148.91 521 4158.88
Opt euc Bookcorpus 193 6.16 128.00 145.15 500 2770.80
Opt norm euc Pile10k 180 11.00 134.00 162.41 707 7620.39
Opt norm euc WikiText-103 185 7.98 129.00 149.52 524 4205.78
Opt norm euc Bookcorpus 189 6.14 129.00 145.95 497 2759.84
Opt softmax dot  Pile10k 9 11.11 50000.00  49993.67 50000 157.78
Opt softmax dot ~ WikiText-103 9 7.96 50000.00  49996.44 50000 44.25
Opt softmax dot  Bookcorpus 9 6.05 50000.00  49996.44 50000 44.25
Mistral ~ euc Pile10k 292 43.26 139.00 203.08 2723 61061.52
Mistral  euc WikiText-103 313 11.39 139.00 174.85 840 10196.62
Mistral ~ euc Bookcorpus 192 7.41 127.00 146.66 585 4276.08
Mistral  norm euc Pile10k 201 70.69 133.00 152.31 596 3946.67
Mistral  norm euc WikiText-103 237 70.69 128.00 145.98 462 3050.37
Mistral  norm euc Bookcorpus 139 70.69 124.00 136.22 416 2439.06
Mistral ~ softmax dot  Pile10k 10 46.15 49992.00  49992.00 49992 0.00
Mistral ~ softmax dot ~ WikiText-103 10 49.84 49996.00  49996.00 49996 0.00
Mistral ~ softmax dot  Bookcorpus 10 64.73 49997.00  49997.00 49997 0.00
Llama  euc Pile10k 85 4.11 120.00 130.75 279 950.04
Llama  euc WikiText-103 110 5.62 122.50 146.75 323 3024.46
Llama  euc Bookcorpus 86 3.73 117.00 124.62 223 642.77
Llama  norm euc Pile10k 34 3.11 114.00 117.76 164 213.18
Llama  norm euc WikiText-103 52 393 119.50 137.33 211 1184.68
Llama  norm euc Bookcorpus 51 3.35 115.00 122.92 186 438.78
Llama  softmax dot PilelOk 9 2.51 50000.00  49996.44 50000 44.25
Llama  softmax dot WikiText-103 9 2.86 50000.00  49996.44 50000 44.25
Llama  softmax dot Bookcorpus 9 2.93 50000.00  49996.44 50000 44.25

Table 5: Hub occurrence in context-to-context comparisons of models. Here, we find a variable number of hubs.
Notice that in the cases where there are very few hubs, they also have a very high k-occurrence. k-skew is generally
high, but noticeably lower for Olmo and Llama.
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model similarity num hubs k-skew median N; mean N; max N, var N

Pythia euc 219 28.09 1204.00 1542.98 7010  1461748.99
Pythia  norm euc 213 15.60 175.00 187.92 480 4670.50
Pythia  softmax dot 82 87.72 228.00 632.27 6849  1076426.66
Olmo  euc 182 48.49 569.00 1582.87 16758  5493220.08
Olmo  norm euc 2 2.87 129.00 129.00 153 576.00
Olmo softmax dot 11 17.00 368.00 333.91 416 6904.81
Opt euc 121 133.76 2351.00  2925.73 49567 20890799.01
Opt norm euc 131 187.67 480.00 644.24 17868  2339052.32
Opt softmax dot 61 95.73 437.00 1544.64 15035  8521519.41
Mistral euc 92 55.70 475.50 1665.46 15492  6620836.97
Mistral norm euc 42 48.47 890.00 1750.00 5908  2951721.24
Mistral  softmax dot 72 127.38 219.50 946.78 19930  6324938.23
Llama euc 154  119.95 2342.00  5214.19 75630 87178321.52
Llama norm euc 157 51.83 1417.00 1839.80 9633  2734227.93
Llama  softmax dot 115  126.75 290.00  2480.46 34902 32640506.49

Table 6: Hub occurrence in vocabulary to vocabulary comparisons of models. All models have high k-skewness
except Olmo when using normalized Euclidean distance.

trgg;:l:tip context ll::::; k-skew median N; mean N; max Vg var N
512 Pile10k 494 60.79 280.00 921.15 23732  5546010.32
512 WikiText-103 384  59.93 319.50  1216.65 25522 9575950.85
512 Bookcorpus 329  54.56 466.00  1458.22 23409 8832689.96
4000 Pile10k 541 54.05 216.00 655.19 14190 2461721.49
4000 WikiText-103 517 58.84 213.00 703.55 18218 3566829.92
4000 Bookcorpus 445  54.66 262.00 977.78 20739 5542898.30
16000 Pile10k 530  53.26 221.00 630.52 13209 207773291
16000 WikiText-103 528  58.19 202.00 655.80 16334 2916747.40
16000 Bookcorpus 483 53.30 248.00 876.65 19036 4366880.92
64000 Pile10k 544 5324 222.50 599.79 11827 1875166.92
64000 WikiText-103 546  56.94 200.50 619.68 15334 2575362.91
64000 Bookcorpus 490 5427 247.00 852.74 19433 4033276.62

Table 7: Hub occurrence in prediction hubs of training checkpoints of Pythia. All checkpoints have high k-skewness.
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Pythia

train step similarity context .o k-skew median N, mean N;  max N var N
512 euc Pile10k 0 1.51 - - - -
512 euc WikiText-103 0 1.67 - - - -
512 euc Bookcorpus 0 1.42 - - - -
512 norm euc Pile10k 0 1.51 - - - -
512 norm euc WikiText-103 0 1.67 - - - -
512 norm euc Bookcorpus 0 1.42 - - - -
512 softmax dot Pile10k 9 1.51 50000.00  49994.89  50000.00 102.32
512 softmax dot ~ WikiText-103 9 1.67 50000.00  49996.44  50000.00 44.25
512 softmax dot Bookcorpus 9 1.42 50000.00  49996.44  50000.00 44.25
4000 euc Pile10k 71 4.52 121.00 135.51 290.00 1362.20
4000 euc WikiText-103 64 3.95 117.50 128.09 255.00 863.33
4000 euc Bookcorpus 55 5.54 121.00 143.87 508.00  4929.57
4000 norm euc Pile10k 71 4.31 121.00 133.89 265.00 1163.00
4000 norm euc WikiText-103 57 3.81 114.00 126.96 245.00 784.45
4000 norm euc Bookcorpus 52 5.36 119.00 143.12 486.00 4628.29
4000 softmax dot Pile10k 9 391 50000.00  49994.67  50000.00 100.22
4000 softmax dot ~ WikiText-103 9 341 50000.00  49996.44  50000.00 44.25
4000 softmax dot Bookcorpus 9 4.69 50000.00  49996.44  50000.00 44.25
16000 euc Pile10k 324 14.97 141.00 188.35 1167.00 15864.51
16000 euc WikiText-103 249 10.81 133.00 157.92 826.00 7733.11
16000 euc Bookcorpus 181 6.97 125.00 144.98 542.00  4211.09
16000 norm euc Pile10k 183 8.58 134.00 156.45 696.00  4892.84
16000 norm euc WikiText-103 108 5.83 124.50 140.79 415.00 2920.02
16000 norm euc Bookcorpus 94 4.77 123.00 137.38 364.00 2102.22
16000 softmax dot Pile10k 9 2.69 50000.00  49994.56  50000.00 99.80
16000 softmax dot ~ WikiText-103 9 2.03 50000.00  49996.44  50000.00 44.25
16000 softmax dot Bookcorpus 9 2.37 50000.00  49996.44  50000.00 44.25
64000 euc Pile10k 484 4541 148.00 230.15 4113.00 85626.85
64000 euc WikiText-103 400 15.26 147.50 195.59 1307.00  18498.18
64000 euc Bookcorpus 321 16.14 132.00 170.63 1309.00 14396.79
64000 norm euc Pile10k 152 11.84 129.00 156.08 863.00 8231.98
64000 norm euc WikiText-103 101 5.88 129.00 143.64 337.00 2566.94
64000 norm euc Bookcorpus 113 5.26 123.00 139.71 327.00 2022.99
64000 softmax dot Pile10k 9 3.51 49999.00  49988.78  50000.00 461.51
64000 softmax dot ~ WikiText-103 9 3.45 50000.00  49995.44  50000.00 66.69
64000 softmax dot Bookcorpus 9 10.96 50000.00  49988.89  50000.00 569.21

Table 8: Hub occurrence in context-to-context hubs of training checkpoints of Pythia. Hubness seems to increase
during training.

trzg:hsltip similarity ll::llll:; k-skew median N, mean N; max Ny var N
512 euc 849 25.31 178.00 283.46  4208.00 97323.77
512 norm euc 0 0.39 - - - -
512 softmax dot 0 0.51 - - - -
4000 euc 126 91.37 345.00 2778.63 48472.00 59240949.76
4000 norm euc 0 1.12 - - - -
4000 softmax dot 0 0.90 - - - -
16000 euc 144 93.25 259.00 1928.71 42221.00 30508081.08
16000 norm euc 0 1.10 - - - -
16000 softmax dot 2 9.10 243.00 243.00 333.00 8100.00
64000 euc 220 32.10 1083.00 1522.12  9107.00  1897935.92
64000 norm euc 8 8.37 155.50 166.38 325.00 4226.48
64000 softmax dot 36 103.45 208.50 408.83  2937.00 272428.14

Table 9: Hub occurrence in vocabulary to vocabulary comparisons of training checkpoints of Pythia. All checkpoints
have high k-skewness when using Euclidean distance, but, with the other distances, k-skewness only becomes high
later during training.
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Normalized Euclidean distance hub examples
Pythia neighb \n 44x_ \n 11x_  disappe \n 43x_
Olmo \n\n\n 3x_  imonit - - -
Opt <pad> <mask> \ufffd \u0011 madeupword0000
Mistral | }.\r 0):\r \ul940  }\r \">\r
Llama —>\r\n\r\n  artisanlib  ’\r\r\n \u044c\u0447\u0438\u044 \u044c  \UO45TN

Table 10: Top five hubs when comparing vocabulary items for the various LLMs using normalized Euclidean
distance. They are nearly all “junk” tokens. To display long sequences of spaces, we write nx_ where n is number
of spaces. OLMo only has two hubs in this case, so we use - to denote there is no token in places three to five.

softmaxed dot product hub examples
Pythia | neighb acknow laug resil advertis
Olmo \ufffd\ufffd  \ufffd\ufffd \ufffd\uftfd \ufffd\ufffd \ufffd
Opt 20439 Vaults \ufffd\ufffd\u6975 Depths \u899a\u9192
Mistral | /#*%*%%/ Geplaatst gpoint ICENSE vscale
Llama | HeaderCode .scalablytyped addCriterion Guidld OffsetTable

Table 11: Top five hubs when comparing vocabulary items for the various LLMs using softmaxed dot product.
They are mostly “junk” tokens, they differ a lot across model. These are examples of nuisance hubs.

Euclidean distance hub examples on Pile10k
Mart\u0OOed and Sandoya , 2013 ) , 2D and 3D bin packing ( Alvarez - Valdes et al . , 2013
secondary cave proves that your camp does n\u2019t want to fight for conservative principles ever . Happy Nomad on December 11
Pythia 1=-54--305. Letk=1-255. Does k =0 ? False Let w(a
to scale , as for aright & quot . We had to pay , taking across the theory&hellip made AD
0. What is the lowest common multiple of ( -8)/28 + (-32)/(-14 ) and m ? 18 Let j(t
. Indeed almost no one ever does that for a longer period , but at least we can . The unidentified
did n’t want to be . I know now that he must have been taking drugs from time to time .
Olmo been our bread and butter , " said Springstead . That wo n’t stop , he said , but the bar
loose there context when stored in a directory , the only thing you have to keep the context is the directory
ruins . " " What ’s so great about you anyway ? " " Seen one , seen them all
of each other , then Bruma , Vlastarus , and Cropsford , were the most even for the time being .
. Indeed almost no one ever does that for a longer period , but at least we can . The unidentified
Opt but remember I *m not a powerful money owner ) and my cell phone , but ca n’t know if they
other sweeties and started to court me , and it is always clear that poly has been successful for him ,
huntings e we keep the weapons pointed with respect to them . " " Navigating , as it is this ?
materials , outcropping from splendid descriptions and friendships to bottom mess semi - circular as fear and postcode Check , Convective
by a Non - interacting Fig . , a detail who tied back avoided flow contact 10 ceilings specifically . At
Mistral waited that home - cooked download pflanzenreich pfitzer orchidaceae surprised a judgment of the subject of popular robots under thesis .
. He loads prepare a heavy energy for page , rather ; too he occupies a dad that does , Fortunately
1& 11 &, 1977 . complex to important . Slater : Quantum teaching : navigate , taimen , ’
OXFFCB // -0.003229 0xFF96 // 0.002528 0x0053 // -0.001220 OXFFDS // -0.002878 0xFFA2 // -0.001199 0XFFD9 // 0.002841 0x005D // -0.003089
use variables that you wo n’t have though , so you may need to change them . And as mentioned ,
Llama - g_)$ would be substantially lower than the value of $ 4 $ given by Eq . indicates that the connection
were merely minor annoyances , and he went about an elaborate campaign to just go ahead and steal it anyway .
in [ Figure 4](#{4 - ehp-119 - 784)ref - type="fig" ). (* B * ) The signaling

Table 12: Top five hubs when comparing contexts for the various LLMs using Euclidean distance on Pile10k. Next
tokens are on the right.
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Examples of Euclidean distance hubs in weird neighbourhoods on Pile10k
Pythia hub Mart\u0Oed and Sandoya , 2013 ), 2D and 3D bin packing ( Alvarez - Valdes et al . , 2013
most quadratic . The natural framework for this kind of job is the one of refs . [ @ fieldcov ; @masterf
Neighbourhoods photographed in Bahia for the 1978 issue . Career A former student of Communication at the Pontifical Catholic University of Rio
evicted from the land , which was then turned over to the church . ( Published by the Newman Postcard Company
Olmo hub . Indeed almost no one ever does that for a longer period , but at least we can . The unidentified
a real world problem , and I remember a class I took where I made something very similar for some for
Neighbourhoods | a recent edition of the NBAA Flight Plan podcast . " These days , you may not even know the people
, and the traffic was flowing more freely than before . > Mr Lai will finally give you the huge bonus
Opt hub materials , outcropping 'from splendid descriptions and friendships Convective
to bottom mess semi - circular as fear and postcode Check ,
15\u2013 17 . BLOOD , BREAD , AND POETRY The Location of the Poet ( 1984 ) The Miami airport , summer
Neighbourhoods ,1.77)* # %% 144 (1.18,1.76 ) * * Knows where to get family planning
some specific lover , although that was the chief obsession of the legend - mongers for more than half a century
Mistral hub . He loads prepare a heavy energy for page , rather ; too he occupies a dad that does , Fortunately
15\u2013 17 . BLOOD , BREAD , AND POETRY The Location of the Poet ( 1984 ) The Miami airport , summer
Neighbourhoods smartphone market , if not more so . Between the Fire and W8 / RT , Google - sanctioned Android on
million pounds of honey each year , told Food Safety News that 201c honey has been valued by millions for centuries
Llama hub sees you . My child more and more . Your is a slap on the face of humanity in general and
, " " Japan breaks the impasse on December 8th , " " Japan launched the attack on Pearl Harbor .
Neighbourhoods Geometric Analysis , [ were a atmosphere and HardcoverOne on G2 Manifolds and Related Topics on 19 - -25 August 2017
selling a product at the end of the day . I would n\u2019t want to compromise the story in search of

Table 13: Examples of contexts that have hubs in the ten nearest neighbours. The hubs are intuitively dissimilar

from the contexts of which they are neighbours.
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Figure 11: Distribution of probability distances for Pythia on Pile10k (left), Bookcorpus (middle) and WikiText-103

(right). There is no concentration of distances.

I Computing resources

All experiments were run using a single NVIDIA
A30 GPU. Extracting context representations took
about 2 hours. Calculating probabilities for all
models took about 2 days. Calculations of distance
distributions (with precomputed probabilities) took
about 10 hours. Calculations for comparing predic-
tion hubs with frequent tokens about 2 hours. Cal-
culations for vocabulary to vocabulary hubs took
about 3 hours. Calculations for context to con-
text hubs, about 1 hour. Calculations for plotting
k-occurence distributions took about 8 hours. Get-
ting hub examples took less than a minute. All in
all, about 3 days of compute time were needed to
run all experiments.

J Assets

Besides standard tools such as Python (version
3.10.14) and its main libraries, we used the fol-

lowing tools and datasets, in accordance with their
respective terms and licenses.

Bookcorpus https://huggingface.co/
datasets/bookcorpus; license: unknown

Pile-10k https://huggingface.co/datasets/
NeelNanda/pile-10k; license: bigscience-
bloom-rail-1.0

Wikitext https://huggingface.co/
datasets/wikitext; license: Creative
Commons Attribution Share Alike 3.0

Llama https://huggingface.co/

meta-1lama/Meta-Llama-3-8B; license:
llama3

Mistral https://huggingface.co/
mistralai/Mistral-7B-v0.1; license:

apache-2.0
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model context comparison type mean L2 distance to uniform

Pythia  Pilel10k cv 0.44
Pythia  Pile10k \2% 0.00
Pythia  Pile10k cc 1.00
Pythia ~ WikiText-103 cv 0.41
Pythia  WikiText-103 A% 0.00
Pythia  WikiText-103 cc 1.00
Pythia  Bookcorpus cv 0.36
Pythia  Bookcorpus Vv 0.00
Pythia  Bookcorpus cc 1.00
Olmo  Pilel0k cv 0.43
Olmo  Pilel0k \a% 0.00
Olmo  Pilel0k cc 1.00
Olmo  WikiText-103 cv 0.43
Olmo  WikiText-103 vV 0.00
Olmo  WikiText-103 cc 1.00
Olmo  Bookcorpus cv 0.38
Olmo  Bookcorpus Vv 0.00
Olmo  Bookcorpus cc 1.00
Opt Pile10k cv 0.41
Opt Pile10k A2 0.00
Opt Pile10k cc 1.00
Opt WikiText-103 cv 0.41
Opt WikiText-103 Vv 0.00
Opt WikiText-103 cc 1.00
Opt Bookcorpus cv 0.35
Opt Bookcorpus Vv 0.00
Opt Bookcorpus cc 1.00
Mistral Pile10k cv 0.45
Mistral  Pile10k \a% 0.00
Mistral Pile10k cc 1.00
Mistral WikiText-103 cv 0.44
Mistral WikiText-103 Vv 0.00
Mistral  WikiText-103 cc 1.00
Mistral Bookcorpus cv 0.37
Mistral Bookcorpus \&% 0.00
Mistral Bookcorpus cc 1.00
Llama Pile10k cv 0.45
Llama  Pile10k vV 0.00
Llama PilelOk cc 1.00
Llama  WikiText-103 cv 0.45
Llama  WikiText-103 Vv 0.00
Llama  WikiText-103 cc 1.00
Llama  Bookcorpus cv 0.37
Llama  Bookcorpus Vv 0.00
Llama  Bookcorpus cc 1.00

Table 14: When using softmaxed dot product: mean L2 distance between the resulting probability distribution
and the uniform distribution. Rounded to two decimals. Comparison types are: cv - context with vocabulary item,
vv - vocabulary with vocabulary and cc - context with context. Note that mean L2 distance is far from zero when
comparing contexts with vocabulary items. See more discussion in the appendix text (D).
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model  context freq from Spearman corr
Pythia  Pilel0k Pile10k 0.71
Pythia  Pile10k WikiText-103 0.45
Pythia  PilelOk Bookcorpus 0.25
Pythia  Pilel0Ok train dataset 0.70
Pythia ~ WikiText-103  Pilel10k 0.64
Pythia ~ WikiText-103  WikiText-103 0.70
Pythia ~ WikiText-103  Bookcorpus 0.28
Pythia ~ WikiText-103  train dataset 0.68
Pythia ~ Bookcorpus Pile10k 0.60
Pythia ~ Bookcorpus WikiText-103 0.46
Pythia ~ Bookcorpus Bookcorpus 0.72
Pythia ~ Bookcorpus train dataset 0.66
Olmo Pile10k Pile10k 0.74
Olmo Pile10k WikiText-103 0.45
Olmo Pile10k Bookcorpus 0.27
Olmo Pile10k train dataset 0.66
Olmo WikiText-103  Pile10k 0.63
Olmo WikiText-103  WikiText-103 0.70
Olmo WikiText-103  Bookcorpus 0.27
Olmo WikiText-103  train dataset 0.65
Olmo Bookcorpus Pile10k 0.59
Olmo Bookcorpus WikiText-103 0.45
Olmo Bookcorpus Bookcorpus 0.70
Olmo Bookcorpus train dataset 0.61
Opt Pile10k Pile10k 0.76
Opt Pile10k WikiText-103 0.44
Opt Pile10k Bookcorpus 0.31
Opt WikiText-103  Pile10k 0.64
Opt WikiText-103  WikiText-103 0.69
Opt WikiText-103  Bookcorpus 0.32
Opt Bookcorpus Pile10k 0.61
Opt Bookcorpus WikiText-103 0.45
Opt Bookcorpus Bookcorpus 0.73
Mistral ~ Pile10k Pile10k 0.79
Mistral ~ Pile10k WikiText-103 0.49
Mistral ~ Pile10k Bookcorpus 0.29
Mistral ~ WikiText-103  Pile10k 0.62
Mistral ~ WikiText-103 ~ WikiText-103 0.73
Mistral ~ WikiText-103  Bookcorpus 0.28
Mistral ~ Bookcorpus Pile10k 0.64
Mistral  Bookcorpus WikiText-103 0.47
Mistral  Bookcorpus Bookcorpus 0.70
Llama  PilelOk Pile10k 0.69
Llama  PilelOk WikiText-103 0.43
Llama  PilelOk Bookcorpus 0.29
Llama  WikiText-103  Pile10k 0.57
Llama  WikiText-103 ~ WikiText-103 0.66
Llama  WikiText-103  Bookcorpus 0.29
Llama  Bookcorpus Pile10k 0.57
Llama  Bookcorpus WikiText-103 0.43
Llama  Bookcorpus Bookcorpus 0.63

Table 15: For prediction hubs: correlation of k-occurrence with frequencies of vocabulary items for all tested
models on all tested datasets. Note correlation is strongest when the columns context and freq from agree.

23735



model similarity freq from Spearman corr
Pythia euc Pile10k -0.20
Pythia euc WikiText-103 -0.20
Pythia euc Bookcorpus -0.12
Pythia  norm euc Pile10k -0.11
Pythia  norm euc WikiText-103 -0.02
Pythia  norm euc Bookcorpus -0.04
Pythia  softmax dot Pilel0Ok -0.07
Pythia  softmax dot WikiText-103 0.04
Pythia  softmax dot Bookcorpus 0.29
Olmo  euc Pile10k -0.22
Olmo  euc WikiText-103 0.03
Olmo  euc Bookcorpus 0.05
Olmo  norm euc Pile10k -
Olmo  norm euc WikiText-103 -
Olmo  norm euc Bookcorpus -
Olmo  softmax dot PilelOk -0.59
Olmo softmax dot WikiText-103 -0.67
Olmo  softmax dot Bookcorpus -
Opt euc Pile10k -0.00
Opt euc WikiText-103 -0.14
Opt euc Bookcorpus 0.01
Opt norm euc Pile10k -0.01
Opt norm euc WikiText-103 -0.13
Opt norm euc Bookcorpus -0.00
Opt softmax dot Pile10k -0.14
Opt softmax dot WikiText-103 -0.16
Opt softmax dot Bookcorpus -0.12
Mistral euc Pile10k -0.45
Mistral euc WikiText-103 -0.29
Mistral euc Bookcorpus -0.23
Mistral norm euc Pile10k -
Mistral norm euc WikiText-103 -
Mistral norm euc Bookcorpus -0.18
Mistral softmax dot Pile10k -0.17
Mistral  softmax dot WikiText-103 -0.30
Mistral softmax dot Bookcorpus -0.14
Llama euc Pile10k -0.22
Llama euc WikiText-103 -
Llama euc Bookcorpus -
Llama norm euc Pile10k -0.13
Llama norm euc WikiText-103 -0.13
Llama norm euc Bookcorpus -0.13
Llama  softmax dot PilelOk -0.12
Llama  softmax dot WikiText-103 -0.14
Llama  softmax dot Bookcorpus -0.14

Table 16: For hubs in comparisons of vocabulary with vocabulary: k-occurrence correlation with frequencies

of vocabulary items for all tested models and three different distance measures. We write

[T3R L)

in cases where the

correlation coefficient is not well-defined. In the case of OLMo and normalized Euclidean distance, it is because
there are only two hubs. In the rest of the cases, it is because all the frequencies are the same.
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Pythia

. context freq from Spearman corr
train step
512 Pile10k Pile10k 0.59
512 Pile10k WikiText-103 0.43
512 Pile10k Bookcorpus 0.30
512 WikiText-103  Pile10k 0.47
512 WikiText-103  WikiText-103 0.44
512 WikiText-103  Bookcorpus 0.24
512 Bookcorpus Pile10k 0.47
512 Bookcorpus  WikiText-103 0.35
512 Bookcorpus Bookcorpus 0.39
4000 Pile10k Pile10k 0.70
4000 Pile10k WikiText-103 0.42
4000 Pile10k Bookcorpus 0.26
4000 WikiText-103  Pile10k 0.61
4000 WikiText-103  WikiText-103 0.64
4000 WikiText-103  Bookcorpus 0.28
4000 Bookcorpus Pile10k 0.54
4000 Bookcorpus WikiText-103 0.42
4000 Bookcorpus Bookcorpus 0.62
16000 Pile10k Pile10k 0.72
16000 Pile10k WikiText-103 0.44
16000 Pile10k Bookcorpus 0.27
16000 WikiText-103  Pile10k 0.64
16000 WikiText-103  WikiText-103 0.70
16000 WikiText-103  Bookcorpus 0.31
16000 Bookcorpus Pile10k 0.61
16000 Bookcorpus WikiText-103 0.47
16000 Bookcorpus Bookcorpus 0.66
64000 Pile10k Pile10k 0.71
64000 Pile10k WikiText-103 0.45
64000 Pile10k Bookcorpus 0.26
64000 WikiText-103  Pile10k 0.63
64000 WikiText-103  WikiText-103 0.71
64000 WikiText-103  Bookcorpus 0.28
64000 Bookcorpus Pile10k 0.59
64000 Bookcorpus WikiText-103 0.46
64000 Bookcorpus Bookcorpus 0.71

Table 17: For prediction hubs in Pythia training checkpoints: correlation of k-occurrence with frequencies of
vocabulary items on all three datasets. Correlation where the columns context and freq from agree increases with
the training step. The correlation saturates faster for Pile10k, probably because Pythia was trained on the Pile.
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Pythia

. context freq from Spearman corr
train step
512 euc Pile10k -0.03
512 euc WikiText-103 0.02
512 euc Bookcorpus -0.05
512 norm euc Pile10k -
512 norm euc WikiText-103 -
512 norm euc Bookcorpus -
512 softmax dot Pile10k -
512 softmax dot WikiText-103 -
512 softmax dot Bookcorpus -
4000 euc Pile10k 0.06
4000 euc WikiText-103 0.09
4000 euc Bookcorpus -0.04
4000 norm euc Pile10k -
4000 norm euc WikiText-103 -
4000 norm euc Bookcorpus -
4000 softmax dot Pile10k -
4000 softmax dot WikiText-103 -
4000 softmax dot Bookcorpus -
16000 euc Pile10k 0.04
16000 euc WikiText-103 0.04
16000 euc Bookcorpus -0.19
16000 norm euc Pile10k -
16000 norm euc WikiText-103 -
16000 norm euc Bookcorpus -
16000 softmax dot Pile10k -1.00
16000 softmax dot WikiText-103 -
16000 softmax dot Bookcorpus -1.00
64000 euc Pile10k -0.16
64000 euc WikiText-103 -0.16
64000 euc Bookcorpus -0.11
64000 norm euc Pile10k -0.51
64000 norm euc WikiText-103 0.20
64000 norm euc Bookcorpus -0.47
64000 softmax dot Pile10k -0.34
64000 softmax dot WikiText-103 -0.27
64000 softmax dot Bookcorpus 0.38

Table 18: For vocabulary to vocabulary hubs in training checkpoints of Pythia: correlation of k-occurrence with
frequencies of vocabulary items on all three datasets. There is no general correlation with frequent tokens. We write
“-” in cases where the correlation coefficient is not well-defined.
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Figure 12: Distribution of probability distances for Olmo on Pile10k (left), Bookcorpus (middle) and WikiText-103

(right). There is no concentration of distances.
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Figure 13: Distribution of probability distances for Opt on Pile10k (left), Bookcorpus (middle) and WikiText-103

(right). There is no concentration of distances.

OLMo https://huggingface.co/allenai/
OLMo-7B; license: apache-2.0

OPT https://huggingface.co/facebook/
OPT-6.7b; license: OPT-175B license

Pythia https://huggingface.co/
EleutherAI/pythia-6.9b-deduped;
license: apache-2.0

scikit-learn https://scikit-learn.org/;
license: bsd; scikit-learn 1.5.1
py310h1128e8f_0

PyTorch https://pytorch.org/; license: bsd;
pytorch 2.4.1 py3.10_cudal2.1_cudnn9.1.0_0

Dolma https://huggingface.co/datasets/
allenai/dolma; license: ODC-By

The Pile https://pile.eleuther.ai/; license:
MIT

Huggingface Transformers https://github.
com/huggingface/transformers;
license:apache-2.0;  transformers 4.45.2
pyhd8edlab_1

K AI use disclosure

Microsoft Copilot has been used for minor auto
completions in the code.
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Figure 14: Distribution of probability distances for Mistral on Pile10k (left), Bookcorpus (middle) and WikiText-103
(right). There is no concentration of distances.
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Figure 15: Distribution of context-to-context Euclidean distances for Llama on Pile10k (left), Bookcorpus (middle)
and WikiText-103 (right). We see concentration of distances in the sense that there is a gap from zero to the lowest

distance values. Here, we do not include the distance of a context to itself, since it will always be zero for this
distance measure.
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Figure 16: Distribution of context-to-context normalized Euclidean distances for Llama on Pile10k (left), Bookcor-
pus (middle) and WikiText-103 (right). We see concentration of distances in the sense that there is a gap from zero

to the lowest distance values. Here, we do not include the distance of a context to itself, since it will always be zero
for this distance measure.
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Figure 17: Distribution of context-to-context softmaxed dot product distances for Llama on Pile10k (left), Bookcor-
pus (middle) and WikiText-103 (right). Here we have included the distance of a context to itself, which is the spike

at zero. Note that, when using the dot product, there is no guarantee that a context will get the largest score with
itself.
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Figure 18: Distribution of context-to-context Euclidean distances for Pythia on Pile10k (left), Bookcorpus (middle)
and WikiText-103 (right). We see concentration of distances in the sense that there is a gap from zero to the lowest

distance values. Here, we do not include the distance of a context to itself, since it will always be zero for this
distance measure.
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Figure 19: Distribution of context-to-context normalized Euclidean distances for Pythia on Pile10k (left), Bookcor-
pus (middle) and WikiText-103 (right). We see concentration of distances in the sense that there is a gap from zero

to the lowest distance values. Here, we do not include the distance of a context to itself, since it will always be zero
for this distance measure.
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Figure 20: Distribution of context-to-context softmaxed dot product distances for Pythia on Pile10k (left), Bookcor-
pus (middle) and WikiText-103 (right). Here we have included the distance of a context to itself. Note that, when

using a dot product, there is no guarantee that a context will get the largest score with itself. Pythia is the only tested
model which has distances between 0 and 1.
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Figure 21: Distribution of context-to-context Euclidean distances for Opt on Pile10k (left), Bookcorpus (middle)
and WikiText-103 (right). We see concentration of distances in the sense that there is a gap from zero to the lowest

distance values. Here, we do not include the distance of a context to itself, since it will always be zero for this
distance measure.
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Figure 22: Distribution of context-to-context normalized Euclidean distances for Opt on Pile10k (left), Bookcorpus
(middle) and WikiText-103 (right). We see concentration of distances in the sense that there is a gap from zero to

the lowest distance values. Here, we do not include the distance of a context to itself, since it will always be zero for
this distance measure.
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Figure 23: Distribution of context-to-context softmaxed dot product distances for Opt on Pile10k (left), Bookcorpus
(middle) and WikiText-103 (right). Here we have included the distance of a context to itself, which is the spike at
zero. Note that, when using a dot product, there is no guarantee that a context will get the largest score with itself.
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Figure 24: Distribution of context-to-context Euclidean distances for Olmo on Pile10k (left), Bookcorpus (middle)
and WikiText-103 (right). We see concentration of distances in the sense that there is a gap from zero to the lowest

distance values. Here, we do not include the distance of a context to itself, since it will always be zero for this
distance measure.
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Figure 25: Distribution of context-to-context normalized Euclidean distances for Olmo on Pile10k (left), Bookcorpus
(middle) and WikiText-103 (right). We see concentration of distances in the sense that there is a gap from zero to

the lowest distance values. Here, we do not include the distance of a context to itself, since it will always be zero for
this distance measure.
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Figure 26: Distribution of context-to-context softmaxed dot product distances for Olmo on Pile10k (left), Bookcorpus
(middle) and WikiText-103 (right). Here we have included the distance of a context to itself, which is the spike at
zero. Note that, when using a dot product, there is no guarantee that a context will get the largest score with itself.
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Figure 27: Distribution of context-to-context Euclidean distances for Mistral on Pile10k (left), Bookcorpus (middle)
and WikiText-103 (right). We see concentration of distances in the sense that there is a gap from zero to the lowest

distance values. Here, we do not include the distance of a context to itself, since it will always be zero for this
distance measure.
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Figure 28: Distribution of context-to-context normalized Euclidean distances for Mistral on Pile10k (left), Bookcor-
pus (middle) and WikiText-103 (right). We see concentration of distances in the sense that there is a gap from zero

to the lowest distance values. Here, we do not include the distance of a context to itself, since it will always be zero
for this distance measure.
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Figure 29: Distribution of context-to-context softmaxed dot product distances for Mistral on Pile10k (left), Bookcor-
pus (middle) and WikiText-103 (right). Here we have included the distance of a context to itself. Note that, when
using a dot product, there is no guarantee that a context will get the largest score with itself. For Mistral, most
contexts do not have a significantly different dot product with themselves compared to that with other contexts.
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Figure 30: Distribution of vocabulary to vocabulary distances for Llama using Euclidean (left), normalized Euclidean
(middle) and softmaxed dot product (right) distances. For Euclidean and normalized Euclidean, we do not include
the distance of an item to itself, since it will always be zero. The spread of distances goes all the way to zero for
Euclidean and normalized Euclidean. However, we get a concentration of distances for the softmaxed dot product.
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Figure 31: Distribution of vocabulary to vocabulary distances for Pythia using Euclidean (left), normalized Euclidean

(middle) and softmaxed dot product (right) distances. For Euclidean and normalized Euclidean, we do not include

the distance of an item to itself, since it will always be zero. We get a concentration of distances for all distance
measures.
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Figure 32: Distribution of vocabulary to vocabulary distances for Opt using Euclidean (left), normalized Euclidean

(middle) and softmaxed dot product (right) distances. For Euclidean and normalized Euclidean, we do not include

the distance of an item to itself, since it will always be zero. We get a concentration of distances for all distance
measures.
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Figure 33: Distribution of vocabulary to vocabulary distances for Olmo using Euclidean (left), normalized Euclidean

(middle) and softmaxed dot product (right) distances. For Euclidean and normalized Euclidean, we do not include

the distance of an item to itself, since it will always be zero. The spread of distances goes all the way to zero for

Euclidean and normalized Euclidean. However, we get a concentration of distances for the softmaxed dot product.
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Figure 34: Distribution of vocabulary to vocabulary distances for Mistral using Euclidean (left), normalized
Euclidean (middle) and softmaxed dot product (right) distances. For Euclidean and normalized Euclidean, we do
not include the distance of an item to itself, since it will always be zero. The spread of distances goes all the way to
zero for Euclidean and normalized Euclidean. However, we get a concentration of distances for the softmaxed dot
product. Mistral is the only model to display a second “hump” when using the Euclidean distance.
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