Generating Plausible Distractors for Multiple-Choice Questions
via Student Choice Prediction

Yooseop Lee!”**

Abstract

In designing multiple-choice questions (MCQs)
in education, creating plausible distractors is
crucial for identifying students’ misconcep-
tions and gaps in knowledge and accurately
assessing their understanding. However, prior
studies on distractor generation have not paid
sufficient attention to enhancing the difficulty
of distractors, resulting in reduced effectiveness
of MCQs. This study presents a pipeline for
training a model to generate distractors that are
more likely to be selected by students. First, we
train a pairwise ranker to reason about students’
misconceptions and assess the relative plausi-
bility of two distractors. Using this model, we
create a dataset of pairwise distractor ranks and
then train a distractor generator via Direct Pref-
erence Optimization (DPO) to generate more
plausible distractors. Experiments on computer
science subjects (Python, DB, MLDL) demon-
strate that our pairwise ranker effectively iden-
tifies students’ potential misunderstandings and
achieves ranking accuracy comparable to hu-
man experts. Furthermore, our distractor gener-
ator outperforms several baselines in generat-
ing plausible distractors and produces questions
with a higher item discrimination index (DI). !

1 Introduction

Multiple-Choice Questions (MCQs) hold signif-
icant educational value as they provide a useful
tool for assessing students’ knowledge. Among the
most critical elements in MCQs are distractors—
the incorrect answer options. While the growing
demand for education has amplified the need for
numerous MCQs, manually creating distractors is
time-consuming and costly, even for experts (Luo

“This work was conducted while the first author was a
graduate student at Seoul National University.

Corresponding author.

'Our code and a subset of our dataset are available at
https://github.com/holi-lab/distractor-generator

Suin Kim?
'Graduate School of Data Science, Seoul National University
{lyooseop, yohan.jol}@snu.ac.kr

Yohan Jo!f
2Elice
suin@elicer.com

Code Type Question

[Question] Look at the following code and choose
the correct code to replace (blank).
my_list = (blank)
print(my_list)
Result: [5, 15, 25, 35]
[Answer][num * 10 - 5 for num in range(1l, 5)]

Distractor
Generation

Plausibility
Rank

emy_list = [1@, 30, 50, 70]
GPT | .my 1list = [5, 10, 15, 20] L
ours | ° [num * 1@ - 5 for num in range(1, 6)] [(xj
*[num * 10 for num in range(1, 5)] =

Statement Type Question

[Question] Which of the following is not correct?
[Answer] sort() can only be applied to strings.

Distractor
Generation

Plausibility
Rank

« sort() can be used to sort lists.
GPT
« sort() can be used to sort arrays. "
» When using remove(), if the element to be
removed is duplicated, only the first
Ours occurrence will be removed. [(‘_7

» The pop() method removes and returns the
last item in a list.

Figure 1: Examples of distractor generation. A question
and a correct answer are provided as input, and the
output is a set of generated distractors. The plausibility
rank metric indicates how likely students are to select
the distractors.

et al., 2024). Consequently, the automation of dis-
tractor generation has emerged as a promising so-
lution (Doughty et al., 2024).

However, prior research has focused primar-
ily on generating distractors similar to human-
authored ones (Fernandez et al., 2024; Wang et al.,
2023), with insufficient emphasis on enhancing
their plausibility. Plausible distractors are crucial
as they encourage students to deliberate longer over
their answers, and high-quality MCQs must pos-
sess an appropriate level of difficulty to differen-
tiate among levels of achievement (Baek, 2019).
By contrast, overly simplistic distractors are eas-

23669

Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 23669-23692

July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

https://github.com/holi-lab/distractor-generator

ily dismissed, failing to adequately assess student
proficiency and reducing the educational value of
the assessment. Therefore, creating plausible dis-
tractors that target students’ common mistakes or
misconceptions is essential for developing highly
discriminative MCQs (Shin et al., 2019).

Based on these needs, this study presents a
model training pipeline for distractor generation.
Figure 1 illustrates example distractors generated
by GPT and our model. Our main idea is to assign
relative ranks to distractors according to their like-
lihood of being selected by students, and use this
information to train a model to generate plausible
distractors. To achieve this, the process involves
three steps (Figure 2). First, we train a pairwise
ranker to predict which distractors are more plausi-
ble and likely to confuse students (Step 1). Next,
we create a synthetic student choice dataset that
includes pairwise ranking information among dis-
tractors (Step 2). Finally, leveraging this dataset,
we train a distractor generator by applying Di-
rect Preference Optimization (DPO, Rafailov et al.,
2024) (Step 3).

According to evaluation on computer science
(CS) subjects (Python, DB, MLDL), our pairwise
ranker effectively identifies students’ common mis-
conceptions, achieving ranking accuracy compara-
ble to human experts. In addition, the distractor
generator surpasses several baselines in generating
plausible distractors in both automated metrics and
human studies. Notably, the distractors generated
by our model exhibit a high discrimination index
(DI), an essential educational metric that measures
a question’s ability to distinguish high-performing
students from low-performing ones.

The key contributions of our study are threefold.
* We build a pairwise ranker that reasons through

students’ misconceptions and predicts which dis-

tractor they are more likely to choose.

* We construct a student choice dataset with plau-
sibility rankings among distractors and use it to
train a plausible distractor generator.

* We apply our method to MCQs in CS subjects
(Python, DB, MLDL) and demonstrate the gen-
erator’s capability of generating distractors with
high plausibility and DI.

2 Related Works

2.1 Distractor Generation

Previous studies on distractor generation can be
categorized according to the question format and

domain.

Passage-Based Format This format is used for
exams that evaluate accurate knowledge based on
provided textual content, with datasets such as
RACE (Lai et al., 2017), DREAM (Sun et al.,
2019), SciQ (Welbl et al., 2017), and Wikipedia
commonly used to generate MCQs (Le Berre et al.,
2022). As a distractor generation model for this for-
mat, Offerijns et al. (2020) fine-tuned GPT-2 and
ensured the validity of MCQs through an external
QA filtering step. Qiu et al. (2020) proposed the
EDGE framework, which reformulates passages
and questions through attention mechanisms to gen-
erate distractors. Qu et al. (2024) introduced a
dual-task training approach in which separate train-
ing was conducted using passages and questions as
input to generate both answers and distractors.
However, since our study focuses on MCQs in
the CS domain without relying on passages, these
prior works are not directly comparable to ours.

Cloze-Style Format This format is commonly
used in literacy tests and science quizzes, where
test-takers fill in blanks with appropriate words
(Chiang et al., 2022; Ren and Q. Zhu, 2021). Wang
et al. (2023) proposed a pseudo Kullback-Leibler
Divergence method to regulate distractor genera-
tion by considering item discrimination factors. Yu
et al. (2024) used a knowledge graph to generate
distractors by retrieving relevant triplets and select-
ing those most aligned with the QA context.

Our framework is not limited to cloze-style ques-
tions, which are relatively rare in our dataset, and
instead supports a broader range of question types.

Math Scarlatos et al. (2024) improved the pro-
cess of generating distractors for math problems by
dividing it into two main steps: overgenerate-and-
rank. In the overgeneration phase, they used a large
language model (LLM) to generate n distractors,
while in the ranking phase, a ranker was employed
to select the top-k distractors most likely to be cho-
sen by students. Feng et al. (2024) explored a kKNN-
based approach to retrieve in-context examples sim-
ilar to the target question and used them to gener-
ate distractors. Fernandez et al. (2024) proposed
the DiVERT, which generates distractors based on
learned error representations in math MCQs. Hang
et al. (2024) utilize retrieval-augmented generation
(RAG) and chain-of-thought (CoT) for generating
relevant and challenging MCQs.

We use the methods by Scarlatos et al. (2024),

23670

Step 1.
Training Pairwise Ranker

Base MCQ Dataset

. @

Making Student Choice Dataset

Step 2. Step 3.

Training Distractor Generator

o | & T2 [+ —{pe][p7] [p4][2°]
l ik oro 1Q

05 ‘ Augmenting %

:. ‘DC DD‘ distractors | III

D4|:0.2 %

\D_B‘03 ‘ Re-ranking

Selec:-t.i;).r;"r:ates ‘DB‘>‘DD‘>‘DA‘>‘DC‘_ ‘T HD1H HDH‘

Figure 2: Training pipeline for the distractor generation.

Feng et al. (2024) and Hang et al. (2024) as base-
lines for comparison with our model. We cannot
compare with Fernandez et al. (2024) since their
method requires error explanations for each distrac-
tor.

Other Domains Luo et al. (2024) proposed
Chain-of-Exemplar Reasoning, a method to sequen-
tially generate distractors for multimodal questions
requiring image interpretation, enhancing quality
by leveraging contextually similar examples.

Meanwhile, research on distractor generation in
the CS domain remains limited. While Doughty
et al. (2024) developed a pipeline for generating
MCQs aligned with learning objectives for pro-
gramming education using GPT-4, our study em-
phasizes the plausibility of distractors by leverag-
ing a smaller language model.

2.2 Pairwise Ranker

Our study aims to assign plausibility ranks among
distractors using an LLM (Figure 2, Step 1 and
2). This approach is motivated by prior findings
demonstrating that LLMs exhibit strong inferential
abilities, closely aligning with human performance
in many evaluation tasks (Sun et al., 2023; Liu et al.,
2023). Moreover, distilling these abilities from
LLMs into smaller models, such as Prometheus 2
(Kim et al., 2024) fine-tuned from Mistral (Jiang
et al., 2023), and ListT5 (Yoon et al., 2024), has
achieved comparable performance to LLMs while
offering faster inference and reduced positional
biases.

However, the reasoning abilities of LLMs to rank
plausible distractors in the education domain re-
main underexplored. A related study by Scarlatos
et al. (2024) proposed an approach that trains a
pairwise ranker for distractors using data on the ac-
tual selection rates of distractors by students. They

further applied DPO to prioritize more plausible
distractors. However, their model neither examines
nor leverages LLMs’ reasoning abilities, and the
trained model lacks interpretability. In contrast, our
study extensively evaluates LLMs’ reasoning abil-
ities by comparing various prompting approaches
that are broadly applicable across diverse subjects.
Additionally, our ranker generates reasoning be-
hind its choices, enhancing its interpretability.

3 Methods

In this study, we propose a training pipeline to build
a model capable of automatically generating more
plausible distractors (as shown in Figure 2). Below,
we first describe the base MCQ dataset used for
training (§3.1), then introduce the modeling meth-
ods for the pairwise ranker (§3.2), student choice
dataset (§3.3), and distractor generator (§3.4).

3.1 Base MCQ Dataset

To train both the pairwise ranker and the distractor
generator, we use an MCQ dataset created by edu-
cators on a nationwide online learning platform in
South Korea. The MCQs in this dataset have been
provided to K12 institutions, large corporations,
and government agencies, and contain a variety of
CS-related questions and student answers. We re-
tained only those related to Python, DB (SQL), and
Machine Learning & Deep Learning (MLDL). We
target two categories of MCQs—coding and state-
ment (see Figure 1). The statistics of this dataset
are described in Table 1.

A key feature of this dataset is that it includes
information on how many students answered each
question and the selection rate for each distractor.
This allows us to determine which distractors were
more confusing and plausible to students. Since
each question was solved by hundreds of students

23671

of Avg. Avg. # of Avg. # of
Subject qufestions in corx:ticggss distractors students
train/test set question per question per question
Python 264/52 70.7% 3.1 636
DB 54/13 65.6% 29 399
MLDL 126/32 61.8% 3.2 1,075

Table 1: Statistics of the base MCQ dataset. The cor-
rectness rate refers to the percentage of students who
answered the question correctly.

from diverse sectors, the selection rate information
is considered reliable. This information will play a
key role in training the pairwise ranker and distrac-
tor generator, as discussed later. A subset of this
dataset without licensing issues is available on our
project website (the footnotes on the first page).

3.2 Pairwise Ranker

The pairwise ranker (M #97%) is designed to take
a question (@), its correct answer (A), and two
distractors (D4, DP) as input (Figure 2, Step 1),
and determine which distractor is more likely to be
selected by students.

MRank(Q’A7 DA,DB) N {R, CAorB} (1)

The model outputs two main components:

(1) Reasoning (R) To enhance the interpretabil-
ity and accuracy of ranking results, we utilize the
reasoning abilities of LLMs through a structured
prompt. Specifically, we instruct the model to
generate reasoning about (1) the knowledge being
tested (e.g., “When students approach this prob-
lem, they first need to understand ...”) based on the
question and the correct answer, and (2) why each
of the two given distractors might appear plausi-
ble to students (e.g., “Distractor A might confuse
students who misunderstand the syntax ...”).

(2) Choice (C4°*B) The model outputs the re-
sult of the reasoning process as a single token (ei-
ther A or B), indicating which distractor is more
likely to be selected by students.

To train a relatively small LM to perform as a
ranker, we prepare some training data of reasoning
for supervised fine-tuning (SFT). Specifically, for
each question in the training set of the base MCQ
dataset, we prompt GPT-40 with a distractor pair
and the indicator of which one was more frequently
selected by students, and instruct it to generate
reasoning about the two distractors that concludes

Avg. # of new # of # of
Subject | distractors distractor chosen/rejected
in top-3 comb. for SFT sets for DPO
All 1.45 18,899 7,613
Table 2: Statistics of the student choice dataset.

Columns 2 and 3 show the number of training sam-
ples used for SFT and DPO, respectively.

in favor of the more frequently chosen one. This
reasoning (R) and the more plausible distractor
(CA°rB) form the training data for small LMs.

However, the SFT model exhibited suboptimal
accuracy and became more erroneous as the reason-
ing grew longer. To address this, we use DPO to
further train the model’s reasoning process. After
inference on the training set using the SFT model,
samples diverging from the ground-truth choice
were labeled as rejected, while the original training
samples were set as chosen. DPO is then applied
to ensure the model generates correct reasoning
and choices. Examples of the model’s prompts are
provided in Appendix A.1.

3.3 Student Choice Dataset

The student choice dataset is created to build train-
ing data for the distractor generator (Figure 2, Step
2). For each question in the base MCQ dataset,
GPT-40 is used to generate three new distrac-
tors distinct from the human-authored ones (Ap-
pendix D). These new distractors, along with the
original ones, are scored using the pairwise ranker.
At this stage, the relative rankings of the original
distractors are preserved, while rankings between
the original and new distractors, as well as among
the new distractors, are determined by our pair-
wise ranker. Each question ultimately has approx-
imately six distractors ranked in plausible order.
This dataset serves for training the distractor gener-
ator for both SFT and DPO (§3.4).

Table 2 presents key statistics. Column 1 of Ta-
ble 2 shows that, on average, 1.45 newly added
distractors are ranked among the top 3 for each
question, indicating that the newly added distrac-
tors are as plausible as the human-authored ones.

3.4 Distractor Generator

The distractor generator (M Geny takes as input a
question (@), its correct answer (A), and a hyper-
parameter n, which specifies the number of dis-
tractors to generate (Figure 2, Step 3). The model
first determines the type (") of distractor (e.g., Cor-

23672

rect/Incorrect knowledge) it will generate, and then
outputs n distractors (D;).

MY (Q,A,n) = {T,D;..D,} (2

We ensure that the model produces distractors
that are both valid and plausible as follows.

(1) Enhancing Validity Before generating dis-
tractors, the model first determines the type (1)
of distractor. T" specifies whether the question re-
quires selecting a correct or incorrect statement.
This step is critical for questions involving nega-
tion (e.g., “Select the incorrect statement ...”’) as
the model has a strong tendency to generate incor-
rect statements as distractors, even in such cases
(see Appendix B.5 for validity evaluation).

(2) Improving Plausibility To enhance the plau-
sibility of distractors, we train the model through
two stages: SFT and DPO.

SFT: We use the student choice dataset to create
training data {(Q, A,T,n, D1, ..., D,,)} (n ranges
from 1 to the maximum number of distractors avail-
able for each question). The trained model learns
the basic ability to generate distractors for a given
question with varying n, but without prioritizing
more plausible ones.

DPO: To enhance the model to generate more
plausible distractors, we apply DPO using the stu-
dent choice dataset. Specifically, for each question,
we construct all possible pairs between the top-n
distractors and the bottom-n distractors, labeling
the distractor from the top-n as chosen and the one
from the bottom-n as rejected in each pair. This
allows the model to adjust its generation process to
prioritize more plausible distractors that are more
likely to challenge students. An example of the
model’s prompt is provided in Appendix B.1. We
also explored an alternative pairing method for in-
creasing the combinations (Appendix B.2), but its
performance was inferior.

4 Experiment Settings

In this section, we describe the model training setup
(§4.1) and introduce the metrics used to evaluate
each model (§4.2 and §4.3).

4.1 Model Training

For all experiments, both the pairwise ranker and
the distractor generator are fine-tuned by applying

LoRA (Hu et al., 2021) to the Mistral-7B-Instruct-
v0.2. The numbers of training and test data are de-
scribed in Table 1 and Table 2. The detailed settings
for SFT and DPO are provided in Appendix A.2
and B.2.

4.2 Pairwise Ranker

Baselines To assess the performance of the pro-

posed pairwise ranker, we compare it against the

following baseline models (the prompts for each

baseline are included in Appendix A.1):

e GPT-3.5-turbo and GPT-40: We instruct these
GPT models to predict the ranking between two
distractros in a zero-shot manner. To examine
the impact of different prompt formats, we ex-
periment with four approaches: (1) Reasoning:
the reasoning-based prompt format described in
§3.2, (2) Rubric: scoring based on evaluation cri-
teria for assessing plausibility, (3) G-Eval: adapt-
ing the prompt proposed by Liu et al. (2023) for
our specific task, and (4) Discussion: simulat-
ing a collaborative learning scenario where two
teacher agents discuss while observing students’
problem-solving processes.

* Scarlatos et al. (2024): We follow the pairwise
ranker prompt and training/inference method pro-
posed in this paper, replacing their data with
ours.

Training Data We use two distinct settings for

training data (Table 1):

* Separate (Sep.): Models trained separately with
data for each subject—Python, DB, and MLDL.

¢ Combined (Comb.): A model trained with data
from all subjects combined.

Distractor Order One known limitation of LLM-
based pairwise ranking is positional bias, where the
output may vary depending on whether two choices,
A and B, are presented in the input prompt as AB
or BA (Yoon et al., 2024). To address this, we
set the temperature to 0.5 and repeat the reasoning
process with both AB and BA input sequences until
congistent outputs are achieved, or randomly select
a result after 10 attempts.

Evaluation Metrics The evaluation metrics for

the pairwise ranker are as follows:

* Rank Accuracy measures how often the ranker
correctly identifies the distractor with the higher
student selection rate in the test set.

23673

* Human Evaluation aims to compare the
model’s performance with human experts. First,
two professors in data science perform the pair-
wise ranking task on 60 test samples (20 per
subject), and their results are compared with our
model’s rank accuracy. Second, three Master’s
students majoring in data science assess the qual-
ity of model-generated reasoning and ranking
results. For this, 30 samples (10 per subject) of
reasoning and choices generated by our pairwise
ranker (‘DPO, Comb.” in Table 3) are randomly
selected from the test set. The survey form and
the rubric are in Appendix A.6.

* Consistency in Rank Prediction tracks the num-
ber of iterations required for the model to pre-
dict the same choice for both AB and BA inputs.
Fewer iterations indicate lower positional bias.

4.3 Distractor Generator

The performance of our distractor generator is eval-
uated using the following metrics:

(1) Plausibility We compare the plausibility of
distractors generated by our model, GPT mod-
els, a kNN approach (Feng et al., 2024), a CoT
prompting approach (Hang et al., 2024), and hu-
man experts (from the base MCQ dataset) as mea-
sured by our pairwise ranker (‘DPO, Comb.” in

Table 3). Win/tie/lose counts are calculated per

question/distractor in two settings:

* Setting A: For each test question, three distrac-
tors are generated by each model (n = 3), and
only valid ones are retained. These are then com-
pared pairwise between two models, with one
point awarded to the winner. Identical distractors
are excluded from comparisons.

* Setting B: To account for cases where models
generate fewer than three valid distractors, each
model’s temperature is increased to generate up
to five valid distractors per model. After exclud-
ing identical distractors between the models, the
top-3 are selected for pairwise comparison.

(2) Human Evaluation We conduct a human
evaluation where actual students assess the diffi-
culty of distractors generated by our method. The
test comprises 40 MCQs (Python: 20, DB: 10,
MLDL: 10). Each question was sampled from
the test set of the base MCQ dataset and paired
with four distractors, one from each model (SFT,
DPO, GPT-3.5-turbo, and GPT-40), along with a
‘None of the above’ option. The test is taken by

Rank Accuracy 1

Python DB MLDL Avg.
GPT-3.5 (Reasoning) 0.633 0.523 0.606 0.587
GPT-40 (Reasoning) 0.686 0.664 0.570 0.640
GPT-40 (Reasoning, 3-shot) | 0.674 0.673 0.600 0.649
GPT-40 (Rubric) 0.686 0.500 0.624 0.603
GPT-40 (G-Eval) 0.632 0.550 0.543 0.575
GPT-40 (Discussion) 0.549 0.482 0.487 0.506
Scarlatos et al. (2024) 0.532 0.386 0.545 0.488
Ours (SFT, Sep.) 0.677 0.491 0.594 0.587
Ours (SFT, Comb.) 0.642 0.650 0.677 0.657
Ours (DPO, Comb.) 0.712 0.659 0.655 0.675
Ours (SFT w/o Reasoning) | 0.659 0.523 0.521 0.567

Table 3: Evaluation results on pairwise rankers. The
results were averaged over five generations for each
model.

15 college students enrolled in Al courses at our
university®. Based on the selection counts for each
distractor, we calculate the plausibility and discrim-
ination index for each model. The discrimination
index indicates the ability of each item to differen-
tiate between high- and low-performing students
and is calculated as DI = (U — L)/N, where U
and L denote the number of students in the upper
(U) and lower (L) groups who answered the item
correctly, and N is the number of students in each
group.

We also evaluated the clarity (i.e., whether each
distractor is clearly written without ambiguity) and
answerability (i.e., whether a student with rele-
vant knowledge can reasonably answer the ques-
tion, as defined by Moon et al. (2022)) of MCQs
composed solely of the distractors generated by
our DPO model with 11 Master’s students in data
science. More details about the human evaluation
are provided in Appendix B.4.

5 Experiment Results

In this section, we present the experimental results
for the pairwise ranker (§5.1) and the distractor
generator (§5.2).

5.1 Pairwise Ranker

(1) Rank Accuracy As shown in Table 3, in
terms of accuracy, our DPO model achieved an
accuracy of 67.5% (row 10), outperforming GPT-
3.5-turbo (58.7%, row 1) and GPT-40 (64.0%, row

>The sample size is larger than the one tested on three
individuals in Luo et al. (2024).

23674

Python DB

Student
Understanding

= MLDL

N W

Choice
Agreement

Logical
Reasoning

Knowledge
Accuracy

Figure 3: Human evaluation on our pairwise ranker. The
results from participants were averaged.

Code Statement
Python Python
bs = be
0% 50% 100% MLDL
0% 50% 100%

Operation Confusion Conceptual Overlap

Syntax Familiarity Familiarity Trap

Logical Consistency ii Ambiguity and Complexity

Calculation Mistake u Partial Understanding

= Structure Error A Practical Experience

u Additional Conditions m Overgeneralization

Figure 4: Plausibility factors in our pairwise ranker’s
reasoning.

2) on average. This result is somewhat surpris-
ing because our model was trained on reasoning
generated by GPT-40. Moreover, the DPO model
significantly outperformed the SFT models (58.7%—
65.7%, rows 8-9), particularly in Python, showing
the effectiveness of DPO in enhancing the reason-
ing capability of the model. While Scarlatos et al.
(2024)’s method achieved strong performance on
math questions in their original work, it exhibited
lower accuracy on the CS subjects (48.8%, row 7).

(2) Human Evaluation Human experts (two pro-
fessors) tasked with choosing the more plausible
distractor for 60 questions achieved an accuracy
of 71.7%, compared to 70% achieved by our DPO
model on the same task. This result suggests that
the task is challenging even for experts and that
GPT-like LLMs trained on large data can predict
the confusion experienced by students at a level
comparable to human performance.

Figure 3 presents survey results from three Mas-
ter’s students evaluating the reasoning quality of the
DPO model on a 5-point Likert scale. These results
provide mild to moderate evidence supporting the
model’s ability to infer students’ misconceptions
through logical reasoning and accurate knowledge.

(3) Plausibility Factors We analyzed main fac-
tors revealed in the model’s reasoning to determine
plausibility. We selected reasoning outputs where
the DPO model predicted correct choices, and cat-
egorized plausibility factors in collaboration with
GPT-40. Figure 4 visualizes the proportion of each
category. In the code type questions (e.g., determin-
ing the output of a code snippet or filling in blanks),
factors such as incorrect assumptions about func-
tion outputs or operations were the most common,
while in the statement type questions (e.g., select-
ing statements about concepts), factors like con-
ceptual overlap with other similar terms appeared
most frequently. Definitions for each category can
be found in Appendix A.5.

(4) Reasoning Methods We conducted an ab-
lation study to examine the effectiveness of our
reasoning method for rank accuracy. As shown in
Table 3, for GPT-40, using our reasoning structure
(row 2) substantially outperformed other reasoning
methods (rows 4-6), leading us to adopt the current
reasoning format for the trained models. Training
the model without the reasoning process (row 11)
significantly reduced ranking accuracy, highlight-
ing the importance of our reasoning method.

(5) Consistency in Rank Prediction We eval-
uated the consistency of predictions when input
order was altered and found that our model ex-
hibits lower positional bias compared to GPT-3.5-
turbo. The experimental results are provided in
Appendix A.4.

(6) Error Analysis Upon analyzing cases where
our pairwise ranker produced incorrect reasoning,
we identified several types of error, such as misjudg-
ing implausible errors as plausible and struggling
with reasoning for unfamiliar questions that were
underrepresented in the training data. A detailed
analysis and suggestions for future work can be
found in Appendix A.8.

5.2 Distractor Generator

(1) Plausibility Table 4 summarizes the win/lose
counts of our distractor generators against GPT
models, Feng et al. (2024), Hang et al. (2024) and
human-authored distractors, as evaluated by our
pairwise ranker (DPO-based). Our DPO model gen-
erated more plausible distractors than baseline mod-
els in most cases. Compared to human-authored
distractors, our DPO model excelled in Python but
underperformed in DB and MLDL. This discrep-

23675

per Distractor (Winf/Lose.)

Setting A Setting B
Ours Ours Ours Ours
(SFT) (DPO) | (SFT) (DPO)
GPT-3.5 127/129 145/101 | 190/198 198/190
GPT-40 158/199 184/156 | 178/212 200/185

Python Feng et al. (2024) | 153/157 164/131 | 176/223 196/199
Hang et al. (2024) | 110/167 137/120 | 179/218 202/198

Human-Authored | 191/199 207/159 | 220/175 217/178

GPT-3.5 29/32 28/26 37/48 34/42
GPT-40 40/55 50/41 38/47 47/39
DB Feng et al. (2024) | 35/47 41/36 45/41 45/33
Hang et al. (2024) | 34/43 43/25 37/49 39/52
Human-Authored | 25/71 35/54 24/53 31/51
GPT-3.5 72/73 68/65 | 128/115 150/89
GPT-40 104/110 104/91 | 135/134 167/99
MLDL Fengetal. (2024) | 81/90 84/68 | 129/123 150/110
Hang et al. (2024) | 57/106 62/83 | 109/145 139/113
Human-Authored | 86/130 81/107 | 111/141 127/119

Table 4: Plausibility evaluation on distractor generators.
Win/lose counts of our models (columns) against base-
lines (rows), averaged over two evaluations.

ancy may be due to the underrepresentation of these
subjects in our dataset, leading to limited exposure
during training.

We assessed the benefit of augmenting the base
MCAQ dataset with synthetic distractors and auto-
mated ranking (i.e., the student choice dataset). Us-
ing only the base MCQ dataset for SFT and DPO
led to a significant performance drop compared
to using the whole student choice dataset, and no
significant difference was observed between SFT
and DPO (Appendix B.6). This highlights the im-
portance of incorporating diverse chosen-rejected
samples and sufficient distractors during training.
Overall, the results demonstrate that our approach
of creating the student choice dataset and employ-
ing DPO using this data effectively enhances dis-
tractor plausibility.

We further examined the models’ performance
based on question type (i.e., code vs. statement).
Our model outperformed GPT-3.5-turbo in gener-
ating plausible distractors for code type questions
but was slightly less effective for statement type
questions in Python and DB. In contrast, compared
to GPT-40, our model tended to perform better in
statement type questions. Detailed results are in
Appendix B.3.

(2) Human Evaluation Table 5 compares the
frequency of distractors selected by students, show-
ing that our DPO model generated more plausible
distractors than GPT-40 across all subjects and out-

of Selected Distractors 1

T
Python DB MLDL sgb SO0 | Avg.

DI 1

GPT-3.5 42 18 22 38 44 |0.162
GPT-40 14 5 26 22 23 |0.119
Ours (SFT) 40 10 24 32 42 |0.194
Ours (DPO) | 45 14 27 39 47 | 0.212

Table 5: Human evaluation on distractor generators.

performed GPT-3.5-turbo in all but one subject.
To evaluate whether the distractors have differing
impacts based on students’ proficiency levels, we
divided the students into two groups—Top 50%
and Low 50%—based on their average scores. The
distractors generated by the DPO model were most
frequently chosen by both groups. These findings
suggest that our model may effectively identify ar-
eas of confusion across varying proficiency levels
as a versatile tool for a wide range of students.

Our DPO model achieved the highest discrimina-
tion index (DI) of 0.212, falling within the accept-
able range of discrimination (0.21-0.24) (Kumar
et al., 2021). This indicates that the distractors
generated by our model are better at differenti-
ating between high-performing students and low-
performing ones than the baseline models. This is
desirable because MCQs with a high DI can iden-
tify misconceptions and gaps in students’ knowl-
edge, and challenging MCQs can promote deeper
learning.

Expert evaluation of our DPO model on clar-
ity and answerability using a 5-point Likert scale
showed that all metrics scored above 4, confirming
that most distractors were clear enough to answer
the question. Detailed results are provided in Ap-
pendix B.4.

(3) Additional Evaluations We additionally
evaluated the similarity between model-generated
distractors and human-authored ones, as well as
their validity. Our DPO model showed greater text
similarity to human-authored distractors than GPT-
3.5-turbo and GPT-4o. It also demonstrated higher
validity compared to GPT-3.5-turbo, particularly
excelling in questions that ask for incorrect state-
ments.

Furthermore, we examined the similarity be-
tween model-generated distractors and the correct
answer to assess the potential issue of distractors
being too similar to the correct answer. Our analy-
sis found no evidence that our models pose a par-

23676

per Distractor (Win?1/Lose])
Setting A Setting B
Ours Ours Ours Ours
(SFT) (DPO) | (SFT) (DPO)
GPT-3.5 | 71/65 81/56 | 100/74 105/59
Python
GPT-40 57/78 74/60 87/53 95/43
DB GPT-3.5 | 89/67 88/51 95/64 107/54
GPT-40 93/67 90/53 | 103/47 120/33
PT-3.
MLDL GPT-3.5 | 59/93 59/82 | 71/108 83/96
GPT-40 | 57/100 67/80 77/98 90/90
. GPT-3.5 | 44/44 41/42 78/65 83/61
English
GPT-40 44/46 39/46 80/64 84/59

Table 6: Plausibility evaluation of distractor generators
on four publicly available datasets (GPT-generated CS
questions and a Korean high school English exam). For
the English questions, plausibility was evaluated using
GPT-40 due to its higher performance. Win/lose counts
of our models (columns) against baselines (rows), aver-
aged over two evaluations.

Rank Accuracy 1
GPT-3.5 GPT-40 Ours (SFT)
English 0.483 0.608 0.573

Table 7: Evaluation results on pairwise rankers for En-
glish questions. The results were averaged over five
generations for each model.

ticularly high risk to students because of this issue.
Detailed analyses can be found in Appendix B.5.

(4) Error Analysis We analyzed the suboptimal
distractors generated by our model and identified
several types of issues. For code type questions,
the distractors lacked variation in format, while for
statement type questions, they were overly similar
to the correct answers and failed to incorporate
broader conceptual differences. Examples of each
type and future improvement strategies are detailed
in Appendix B.7.

(5) Generalizability To verify the generalizabil-
ity of our approach beyond the base MCQ dataset
and the CS domain, we conducted additional ex-
periments on two publicly available datasets: (1)
newly generated CS questions created using GPT-
40 and (2) high school English exam questions.
For CS questions, we generated 100 MCQs
per subject using GPT-40 and built a new stu-
dent choice dataset to train a distractor genera-
tor. The results in Table 6, evaluated using our
pairwise ranker, are consistent with those from the
base MCQ dataset, reaffirming that plausibility im-

proves with DPO over SFT.

For English questions, we used 88 questions
from a South Korean high school exam? to train a
pairwise ranker and a distractor generator. In Ta-
ble 7, our pairwise ranker, despite limited training
data, outperformed GPT-3.5-turbo and closely ap-
proached GPT-40. Similarly, Table 6 shows that in
Setting B, where more distractors were compared,
our DPO model achieved higher plausibility than
GPT models, reflecting the trends observed in CS
subjects.

6 Conclusion

In this study, we proposed a pipeline for training
a model to generate more plausible distractors for
MCQs and demonstrated its effectiveness across
computer science subjects. We trained the pair-
wise ranker to evaluate the relative plausibility
of distractors, and used this to create the student
choice dataset where distractors for each question
are ranked by plausibility. From this dataset, we
created chosen-rejected pairs of distractors to train
the distractor generator using DPO. Our models
outperformed GPT and other baseline models and
performed comparably to humans in various met-
rics, including pairwise rank accuracy and distrac-
tor plausibility. We believe that our work can ad-
vance automated educational tools, contributing to
more adaptive and effective learning environments.

Limitations

The models presented in this study have the follow-
ing limitations. First, the pairwise ranker’s method
of comparing distractors pairwise significantly in-
creases the number of combinations and requires
substantial computing resources due to the need for
generating reasoning. A listwise approach using an
encoder-decoder structure could be explored as a
solution (Yoon et al., 2024).

Second, the distractor generator occasionally
produces invalid distractors, necessitating review
by human experts or high-performing LLMs (e.g.,
GPT-40) to accurately evaluate students’ knowl-
edge. To address this limitation, future work could
include an additional supervision phase, such as
integrating feedback loops with other models or ap-
plying constraints like Counterfactual Contrastive
Decoding (Qu et al., 2024).

3These MCQs are from the latest CSAT (Korean SAT),
and the distractor selection rates were obtained from an online
education platform specializing in CSAT preparation.

23677

Finally, our method focuses on generating diffi-
cult distractors, but there are instances where ad-
justing the difficulty level of MCQs to suit the
needs of the target students is necessary. While
our pairwise ranker can be utilized to select dis-
tractors with varying degrees of plausibility, future
work could explore more direct approaches, such
as incorporating student knowledge tracing or adap-
tive decoding, to address this challenge (Cui and
Sachan, 2023).

Acknowledgments

This work was supported by the National Research
Foundation of Korea (NRF) grants funded by the
Korean government (MSIT) (RS-2024-00333484,
RS-2024-00414981). It was also supported by
Elice, Inc., which also provided the proprietary
datasets.

References

Sun-Geun Baek. 2019. Theory and Practice of Educa-
tional Evaluation. Kyoyookbook, Paju.

Shang-Hsuan Chiang, Ssu-Cheng Wang, and Yao-
Chung Fan. 2022. CDGP: Automatic cloze distrac-
tor generation based on pre-trained language model.
In Findings of the Association for Computational
Linguistics: EMNLP 2022, pages 5835-5840, Abu
Dhabi, United Arab Emirates. Association for Com-
putational Linguistics.

Peng Cui and Mrinmaya Sachan. 2023. Adaptive and
personalized exercise generation for online language
learning. In Proceedings of the 61st Annual Meeting
of the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 10184-10198, Toronto,
Canada. Association for Computational Linguistics.

Jacob Doughty, Zipiao Wan, Anishka Bompelli, Juba-
hed Qayum, Taozhi Wang, Juran Zhang, Yujia
Zheng, Aidan Doyle, Pragnya Sridhar, Arav Agarwal,
Christopher Bogart, Eric Keylor, Can Kultur, Jaromir
Savelka, and Majd Sakr. 2024. A comparative study
of ai-generated (gpt-4) and human-crafted mcqs in
programming education. In Proceedings of the 26th
Australasian Computing Education Conference, ACE
’24, page 114-123, New York, NY, USA. Association
for Computing Machinery.

Wanyong Feng, Jaewook Lee, Hunter McNichols,
Alexander Scarlatos, Digory Smith, Simon Wood-
head, Nancy Ornelas, and Andrew Lan. 2024. Ex-
ploring automated distractor generation for math
multiple-choice questions via large language mod-
els. In Findings of the Association for Computational
Linguistics: NAACL 2024, pages 3067-3082.

Nigel Fernandez, Alexander Scarlatos, Wanyong Feng,
Simon Woodhead, and Andrew Lan. 2024. DiVERT:

Distractor generation with variational errors repre-
sented as text for math multiple-choice questions.
In Proceedings of the 2024 Conference on Empiri-
cal Methods in Natural Language Processing, pages
9063-9081, Miami, Florida, USA. Association for
Computational Linguistics.

Ching Nam Hang, Chee Wei Tan, and Pei-Duo Yu.
2024. Mcqgen: A large language model-driven mcq
generator for personalized learning. IEEE Access,
12:102261-102273.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. 2021. Lora: Low-rank adaptation of
large language models. Preprint, arXiv:2106.09685.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, et al. 2023. Mistral
7b. arXiv preprint arXiv:2310.06825.

Seungone Kim, Juyoung Suk, Shayne Longpre,
Bill Yuchen Lin, Jamin Shin, Sean Welleck, Graham
Neubig, Moontae Lee, Kyungjae Lee, and Minjoon
Seo. 2024. Prometheus 2: An open source language
model specialized in evaluating other language mod-
els. arXiv preprint arXiv:2405.01535.

Dharmendra Kumar, Raksha Jaipurkar, Atul Shekhar,
Gaurav Sikri, and V Srinivas. 2021. Item analysis
of multiple choice questions: A quality assurance
test for an assessment tool. Medical Journal Armed
Forces India, 77:S85-S89.

Guokun Lai, Qizhe Xie, Hanxiao Liu, Yiming Yang,
and Eduard Hovy. 2017. RACE: Large-scale ReAd-
ing comprehension dataset from examinations. In
Proceedings of the 2017 Conference on Empirical
Methods in Natural Language Processing, pages 785—
794, Copenhagen, Denmark. Association for Compu-
tational Linguistics.

Guillaume Le Berre, Christophe Cerisara, Philippe
Langlais, and Guy Lapalme. 2022. Unsuper-
vised multiple-choice question generation for out-
of-domain Q&A fine-tuning. In Proceedings of the
60th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 2: Short Papers), pages
732738, Dublin, Ireland. Association for Computa-
tional Linguistics.

Yang Liu, Dan Iter, Yichong Xu, Shuohang Wang,
Ruochen Xu, and Chenguang Zhu. 2023. G-eval:
NLG evaluation using gpt-4 with better human align-
ment. In Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Processing,
pages 2511-2522, Singapore. Association for Com-
putational Linguistics.

Haohao Luo, Yang Deng, Ying Shen, See-Kiong Ng,
and Tat-Seng Chua. 2024. Chain-of-exemplar: En-
hancing distractor generation for multimodal educa-
tional question generation. In Proceedings of the

23678

https://doi.org/10.18653/v1/2022.findings-emnlp.429
https://doi.org/10.18653/v1/2022.findings-emnlp.429
https://doi.org/10.18653/v1/2023.acl-long.567
https://doi.org/10.18653/v1/2023.acl-long.567
https://doi.org/10.18653/v1/2023.acl-long.567
https://doi.org/10.1145/3636243.3636256
https://doi.org/10.1145/3636243.3636256
https://doi.org/10.1145/3636243.3636256
https://doi.org/10.18653/v1/2024.emnlp-main.512
https://doi.org/10.18653/v1/2024.emnlp-main.512
https://doi.org/10.18653/v1/2024.emnlp-main.512
https://doi.org/10.1109/ACCESS.2024.3420709
https://doi.org/10.1109/ACCESS.2024.3420709
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2106.09685
https://doi.org/10.18653/v1/D17-1082
https://doi.org/10.18653/v1/D17-1082
https://doi.org/10.18653/v1/2022.acl-short.83
https://doi.org/10.18653/v1/2022.acl-short.83
https://doi.org/10.18653/v1/2022.acl-short.83
https://doi.org/10.18653/v1/2023.emnlp-main.153
https://doi.org/10.18653/v1/2023.emnlp-main.153
https://doi.org/10.18653/v1/2023.emnlp-main.153
https://doi.org/10.18653/v1/2024.acl-long.432
https://doi.org/10.18653/v1/2024.acl-long.432
https://doi.org/10.18653/v1/2024.acl-long.432

62nd Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers),
pages 7978-7993, Bangkok, Thailand. Association
for Computational Linguistics.

Wajiha Mahjabeen, Saeed Alam, Usman Hassan, Tahira
Zafar, Rubab Butt, Sadaf Konain, and Myedah Rizvi.
2017. Difficulty index, discrimination index and
distractor efficiency in multiple choice questions. An-
nals of PIMS-Shaheed Zulfigar Ali Bhutto Medical
University, 13(4):310-315.

Hyeongdon Moon, Yoonseok Yang, Hangyeol Yu, Se-
unghyun Lee, Myeongho Jeong, Juneyoung Park,
Jamin Shin, Minsam Kim, and Seungtaek Choi. 2022.
Evaluating the knowledge dependency of questions.
In Proceedings of the 2022 Conference on Empiri-
cal Methods in Natural Language Processing, pages
10512—-10526, Abu Dhabi, United Arab Emirates. As-
sociation for Computational Linguistics.

Jeroen Offerijns, Suzan Verberne, and Tessa Verhoef.
2020. Better distractions: Transformer-based distrac-
tor generation and multiple choice question filtering.
Preprint, arXiv:2010.09598.

Zhaopeng Qiu, Xian Wu, and Wei Fan. 2020. Automatic
distractor generation for multiple choice questions
in standard tests. In Proceedings of the 28th Inter-
national Conference on Computational Linguistics,
pages 2096-2106, Barcelona, Spain (Online). Inter-
national Committee on Computational Linguistics.

Fanyi Qu, Hao Sun, and Yunfang Wu. 2024. Unsuper-
vised distractor generation via large language model
distilling and counterfactual contrastive decoding. In
Findings of the Association for Computational Lin-
guistics: ACL 2024, pages 827-838, Bangkok, Thai-
land. Association for Computational Linguistics.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christo-
pher D Manning, Stefano Ermon, and Chelsea Finn.
2024. Direct preference optimization: Your language
model is secretly a reward model. Advances in Neu-
ral Information Processing Systems, 36.

Nils Reimers and Iryna Gurevych. 2019. Sentence-
BERT: Sentence embeddings using Siamese BERT-
networks. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
3982-3992, Hong Kong, China. Association for Com-
putational Linguistics.

Siyu Ren and Kenny Q. Zhu. 2021. Knowledge-driven
distractor generation for cloze-style multiple choice
questions. Proceedings of the AAAI Conference on
Artificial Intelligence, 35(5):4339-4347.

Assad Ali Rezigalla, Ali Mohammed FElhassan
Seid Ahmed Eleragi, Amar Babikir Elhussein,
Jaber Alfaifi, Mushabab A ALGhamdi, Ahmed Y
Al Ameer, Amar Ibrahim Omer Yahia, Osama A Mo-
hammed, and Masoud Ishag Elkhalifa Adam. 2024.
Item analysis: the impact of distractor efficiency

on the difficulty index and discrimination power of
multiple-choice items. BMC Medical Education,
24(1):445.

Alexander Scarlatos, Wanyong Feng, Digory Smith, Si-
mon Woodhead, and Andrew Lan. 2024. Improving
automated distractor generation for math multiple-
choice questions with overgenerate-and-rank. In Pro-
ceedings of the 19th Workshop on Innovative Use
of NLP for Building Educational Applications (BEA
2024), pages 222-231, Mexico City, Mexico. Associ-
ation for Computational Linguistics.

Jinnie Shin, Qi Guo, and Mark J Gierl. 2019. Multiple-
choice item distractor development using topic mod-
eling approaches. Frontiers in psychology, 10:825.

Kai Sun, Dian Yu, Jianshu Chen, Dong Yu, Yejin Choi,
and Claire Cardie. 2019. DREAM: A challenge data
set and models for dialogue-based reading compre-
hension. Transactions of the Association for Compu-
tational Linguistics, 7:217-231.

Weiwei Sun, Lingyong Yan, Xinyu Ma, Shuaigiang
Wang, Pengjie Ren, Zhumin Chen, Dawei Yin, and
Zhaochun Ren. 2023. Is ChatGPT good at search?
investigating large language models as re-ranking
agents. In Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Process-
ing, pages 14918-14937, Singapore. Association for
Computational Linguistics.

Neeraj Varshney, Satyam Raj, Venkatesh Mishra, Ag-
neet Chatterjee, Ritika Sarkar, Amir Saeidi, and
Chitta Baral. 2024. Investigating and addressing
hallucinations of llms in tasks involving negation.
Preprint, arXiv:2406.05494.

Hui-Juan Wang, Kai-Yu Hsieh, Han-Cheng Yu, Jui-
Ching Tsou, Yu An Shih, Chen-Hua Huang, and Yao-
Chung Fan. 2023. Distractor generation based on
Text2Text language models with pseudo Kullback-
Leibler divergence regulation. In Findings of the As-
sociation for Computational Linguistics: ACL 2023,
pages 12477-12491, Toronto, Canada. Association
for Computational Linguistics.

Johannes Welbl, Nelson F. Liu, and Matt Gardner. 2017.
Crowdsourcing multiple choice science questions.
In Proceedings of the 3rd Workshop on Noisy User-
generated Text, pages 94-106, Copenhagen, Den-
mark. Association for Computational Linguistics.

Soyoung Yoon, Eunbi Choi, Jiyeon Kim, Hyeongu Yun,
Yireun Kim, and Seung-won Hwang. 2024. ListT5:
Listwise reranking with fusion-in-decoder improves
zero-shot retrieval. In Proceedings of the 62nd An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 2287—
2308, Bangkok, Thailand. Association for Computa-
tional Linguistics.

Han Cheng Yu, Yu An Shih, Kin Man Law, KaiYu Hsieh,
Yu Chen Cheng, Hsin Chih Ho, Zih An Lin, Wen-
Chuan Hsu, and Yao-Chung Fan. 2024. Enhancing
distractor generation for multiple-choice questions

23679

https://doi.org/10.18653/v1/2022.emnlp-main.718
https://arxiv.org/abs/2010.09598
https://arxiv.org/abs/2010.09598
https://doi.org/10.18653/v1/2020.coling-main.189
https://doi.org/10.18653/v1/2020.coling-main.189
https://doi.org/10.18653/v1/2020.coling-main.189
https://doi.org/10.18653/v1/2024.findings-acl.47
https://doi.org/10.18653/v1/2024.findings-acl.47
https://doi.org/10.18653/v1/2024.findings-acl.47
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.1609/aaai.v35i5.16559
https://doi.org/10.1609/aaai.v35i5.16559
https://doi.org/10.1609/aaai.v35i5.16559
https://aclanthology.org/2024.bea-1.19/
https://aclanthology.org/2024.bea-1.19/
https://aclanthology.org/2024.bea-1.19/
https://doi.org/10.1162/tacl_a_00264
https://doi.org/10.1162/tacl_a_00264
https://doi.org/10.1162/tacl_a_00264
https://doi.org/10.18653/v1/2023.emnlp-main.923
https://doi.org/10.18653/v1/2023.emnlp-main.923
https://doi.org/10.18653/v1/2023.emnlp-main.923
https://arxiv.org/abs/2406.05494
https://arxiv.org/abs/2406.05494
https://doi.org/10.18653/v1/2023.findings-acl.790
https://doi.org/10.18653/v1/2023.findings-acl.790
https://doi.org/10.18653/v1/2023.findings-acl.790
https://doi.org/10.18653/v1/W17-4413
https://doi.org/10.18653/v1/2024.acl-long.125
https://doi.org/10.18653/v1/2024.acl-long.125
https://doi.org/10.18653/v1/2024.acl-long.125
https://doi.org/10.18653/v1/2024.findings-acl.655
https://doi.org/10.18653/v1/2024.findings-acl.655

with retrieval augmented pretraining and knowledge
graph integration. In Findings of the Association
for Computational Linguistics: ACL 2024, pages
11019-11029, Bangkok, Thailand. Association for
Computational Linguistics.

A Pairwise Ranker

A.1 Prompt for Pairwise Ranker

The instruction prompts for the pariwise ranker
are in Table 17 (Reasoning), 18 (Rubric), 19 (G-
Eval), 20 (Discussion) and 21 (Scarlatos et al.,
2024). We used the same prompt (Reasoning) with
GPT models and ours (SFT, DPO).

A.2 SFT and DPO Settings for Pairwise
Ranker

The pairwise ranker model was trained using
Mistral-7B-Instruct-v0.2* with 4-bit quantization
and fine-tuned using LoRA. For SFT, the learning
rate was set to 2e-4 and the model was trained for
5 epochs. For DPO, the learning rate was set to
le-6, also trained for 5 epochs. These hyperparam-
eters were selected as they allowed stable training
without overfitting while preserving the quality of
the DPO output. SFT took approximately 2 hours,
and DPO took about 1 hour on an NVIDIA A6000
GPU. Scarlatos et al. (2024) model was reproduced
for baseline comparison using the same model and
DPO settings as above.

A.3 Prompt for Generating Pairwise Ranker
Training Data

The instruction prompt for generating pairwise
ranker training data is in Table 22. To enhance
the diversity of expressions and reasoning used in
the samples, two reasoning examples are generated
for each pair—one with temperature set to 0 and
the other to 1—using GPT-4o.

A.4 Consistency in Rank Prediction

Table 8 demonstrates that our pairwise ranker ex-
hibits relatively robust to positional bias. In com-
parison to GPT-3.5-turbo, which required an aver-
age of more than two attempts to produce consis-
tent results when the input order was altered, our
DPO model was able to achieve consistent results
with significantly fewer attempts. Additionally, our
DPO model slightly outperformed GPT-40 by re-
quiring fewer average generation attempts.

*This model is distributed under the Apache 2.0 license.
https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2

Generation Attempts per Question |

Python DB MLDL Avg.
GPT-3.5 (Reasoning) 2.491 2.482 2.427 2.467
GPT-40 (Reasoning) 1.753 1.699 1.699 1.717
GPT-40 (Rubric) 2.306 2.316 2212 2.278
GPT-40 (G-Eval) 5.303 5.193 5.150 5.215
Ours (SFT, Sep.) 1.708 1.718 1.771 1.732
Ours (SFT, Comb.) 1.685 1.715 1.740 1.713
Ours (DPO, Comb.) 1.650 1.725 1.740 1.705
Ours (SFT w/o Reasoning) | 2.013 2.034 2.036 2.028

Table 8: Consistency evaluation results on pairwise
rankers. The results were averaged over five generations
for each model.

A.5 Plausibility Factors

We used GPT-40 to summarize and categorize rea-
soning samples where our pairwise ranker accu-
rately predicted the rankings on the test set, and
selected six representative examples per question
type. Definitions for each category are in Table 23
(Code Type) and 24 (Statement Type).

A.6 Human Evaluation

Recruitment We conducted a survey with three
Master’s degree students who voluntarily expressed
their willingness to participate in this experiment.
The survey was designed to begin only after they
agreed to provide their results for research pur-
poses and acknowledged the precautions via an
online form. The experiment lasted approximately
90 minutes, and participants were compensated
above the standard hourly wage for the time they
participated. The entire process of human evalua-
tion was conducted following procedures approved
by the IRB committee of our university.

Survey Form The reasoning quality of our pair-

wise ranker was evaluated on a 5-point Likert scale

based on the following criteria:

» Logical Reasoning: Whether the reasoning pro-
cess is logical.

* Student Understanding: Whether the reasoning
effectively understands students’ misconceptions
or problem-solving processes.

* Knowledge Accuracy: Whether the reasoning
is based on accurate and error-free knowledge.

* Choice Agreement: Whether the evaluator
agrees with the model’s final choice.
An example of the survey form is presented in
Table 25.

23680

https://doi.org/10.18653/v1/2024.findings-acl.655
https://doi.org/10.18653/v1/2024.findings-acl.655
https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2

A.7 Ablation Study

The instruction prompt used for the ablation study
(w/o Reasoning) is in Table 26, and the training
settings are identical to those of our pairwise ranker
training setup (Appendix A.2).

A.8 Error Analysis

Our pairwise ranker exhibited the following three
types of errors:

First, our model tended to incorrectly judge im-
plausible mistakes as plausible—errors that real
students would not typically make. For example,
in the process of calculating the output of Python
code, the model incorrectly deemed ‘unrealistic
reasoning’ or ‘mistakes in obvious calculations’
as plausible, even though such errors would be un-
likely for actual students to make based on common
sense.

Second, our model struggled with reasoning
when encountering unfamiliar questions that were
insufficiently represented in the training data. This
issue was particularly evident in subjects like DB
and MLDL, where the training set was relatively
small and shared few similar concepts or questions
with the test set.

Lastly, in questions requiring the selection of
an incorrect option, there were cases where our
model’s final ranking was correct, but its reasoning
was flawed. Instead of identifying why each option
seemed more incorrect to the students, the model
mistakenly focused on determining which option
was more correct.

To improve the pairwise ranker, future work
should focus on enabling the model to learn com-
mon student misconceptions for better reasoning
and prediction and enhancing the inference process
to clearly recognize question requirements.

B Distractor Generator

B.1 Prompt for Distractor Generator

The instruction prompt for our distractor generator
is in Table 27. We used the same prompt for both
GPT models and ours. However, we instructed the
GPT models to generate outputs in JSON format
for stability reasons.

The instruction prompt for the kNN approach
proposed by Feng et al. (2024) is presented in Ta-
ble 28. Following the method outlined in the paper,
the target question and answer were encoded us-
ing the SBERT encoder (Reimers and Gurevych,

per Question per Distractor
(Wint1/Tie/Losel) (Win1/Losel)
Setting A | Setting B | Setting A | Setting B
Ours Ours Ours Ours
(DPO, (DPO, (DPO, (DPO,
window) | window) window) window)
Pyih GPT-3.5 | 21/13/18 | 30/1/20 | 140.5/110.5 | 216/173
on
Y GPT-4o | 21/9/22 | 22/11/18 186/162 200/187
DB GPT-3.5 4/6/3 6/1/4 33.5/25.5 42.5/33.5
GPT-40 6/2/5 5/4/2 48.5/44.5 50.5/40.5
MLDL GPT-3.5 | 7/12/12 13/2/15 60.5/72.5 | 136.5/107.5
GPT-4o0 | 12/6/14 | 21/1/10 | 95.5/102.5 165/107

Table 9: Plausibility evaluation on the distractor genera-
tor, DPO with sliding window setting (Appendix B.2).

2019), MPNet?, and the top-3 most similar items
based on cosine similarity were extracted from the
question pool (training set) and used as in-context
examples.

B.2 SFT and DPO Settings for Distractor
Generator

The distractor generator model was trained using
Mistral-7B-Instruct-v0.2 with 4-bit quantization
and fine-tuned using LoRA. For SFT, the learning
rate was set to 2e-4 and the model was trained for
2 epochs. For DPO, the learning rate was set to
le-5, trained for 3 epochs. These hyperparameters
were determined as a result of finding a setup that
avoids overfitting while ensuring no issues with
the quality of the DPO output. SFT and DPO took
approximately 3 hours on an NVIDIA A6000 GPU.

As briefly mentioned in §3.4, in addition to the
chosen-rejected sample pairing method described
in the main text, another setting employs a method
similar to a sliding window for pairing. In this
setting, all distractor candidates are sorted in de-
scending order and grouped into non-overlapping
windows of size n. For example, if there are six
candidates and n is 2, a total of three windows
are created. Pairwise combinations between these
windows are then used to create chosen-rejected
samples. A model trained with DPO using these
samples showed no significant performance differ-
ence compared to the model described in the main
text. The plausibility evaluation results for this
model are provided in Table 9.

B.3 Plausibility Evaluation

per Question The results of the plausibility eval-
uation analyzed from a per-question perspective

Shttps://huggingface.co/sentence-transformers/all-mpnet-
base-v2

23681

https://huggingface.co/sentence-transformers/all-mpnet-base-v2
https://huggingface.co/sentence-transformers/all-mpnet-base-v2

per Question (Win?1/Tie/Lose|)
Setting A Setting B
Ours Ours Ours Ours
(SFT) (DPO) | (SFT) (DPO)
GPT-3.5 17/13/22 23/15/14 | 21/7/22 26/1/23
Python GPT-40 12/15/25 24/12/16 | 19/6/26 24/4/22
Feng et al. (2024) | 14/21/17 21/15/15 | 16/5/28 25/2/21
Human-Authored | 21/11/20 27/10/15 | 31/5/15 26/4/20
GPT-3.5 3/3/7 6/2/5 4/1/5 6/1/4
DB GPT-40 4/1/8 4/3/6 5/0/6 6/0/5
Feng et al. (2024) | 3/3/7 6/3/4 6/1/3 6/0/4
Human-Authored | 1/1/11 4/0/9 v 4217
GPT-3.5 9/12/10 12/13/6 | 12/1/17 18/2/10
MLDL GPT-40 11/4/17 12/7/12 | 13/4/15 19/7/5
Feng et al. (2024) | 11/6/14 15/6/9 | 17/0/15 18/3/10
Human-Authored | 11/4/17 9/7/16 | 11/3/18 15/2/4

Table 10: Plausibility evaluation on distractor genera-
tors.

are presented in Table 10 (compare with Table 4).

Case Study The analysis of plausibility results
based on question types (Code/Statement) is pro-
vided in Table 11. A summary of the case study
results is as follows:

First, our model generates more plausible dis-
tractors for code type questions compared to GPT-
3.5-turbo. The distractors generated by the latter
were either significantly different from the correct
answer or included code syntax that does not ac-
tually exist. On the other hand, for the statement
type questions, GPT-3.5-turbo demonstrated higher
plausibility only in the cases of Python and DB.
This was because its distractors included more di-
verse knowledge or additional conditions, while
our model seemed to construct distractors with rel-
atively limited scope of knowledge, possibly due
to the small training dataset.

Next, our model exhibited higher plausibility in
the statement type compared to GPT-40. When
compared with the validity results in Appendix B.5
(‘Statement’), it can be seen that GPT-40 gener-
ated more obvious statements, resulting in a lower
risk of invalid distractors but making the difficulty
level lower. For the code type, both models gener-
ated distractors that were not far from the correct
answer. However, in the case of Python, the dis-
tractors generated by our model were slightly less
plausible than those of GPT-4o, likely because the
latter made better use of partial errors in the code.

B.4 Human Evaluation

Recruitment We conducted the evaluation with
15 college students who voluntarily agreed to par-

per Question per Distractor
(Win1/Losel|) (Win1/Lose|)
Code State. Code State.
GPT-3.5 | 12/5 14/18 | 86.5/52.5 111.5/137.5
Python
GPT-40 6/11 18/11 | 58.5/70.5 142/115
DB GPT-3.5 | 4/0 2/4 22.5/8.5 11.5/33.5
GPT-40 2/2 4/3 20/16 27/23
GPT-3.5 - 18/10 - 150/89
MLDL
GPT-40 - 19/5 - 167/99

Table 11: Plausibility evaluation on the distractor gen-
erator, categorized by question type. This table further
details the results from Table 4 and 10, Setting B, Ours
(DPO).

5-point Likert Scale 1
Python DB MLDL
Clairity 4418 4282 4373
Answerability | 4.414 4264 4.382

Table 12: Evaluation results on the clarity and answer-
ability of distractors generated by our DPO model.

ticipate. The test was conducted online, and par-
ticipants were allowed to begin the test only after
agreeing to the instruction stating that their results
would be provided for research purposes. The ex-
periment took approximately 60 minutes, and par-
ticipants were compensated with a reward above
the standard hourly wage for their time. The entire
human evaluation process was conducted in accor-
dance with the procedures approved by the IRB
committee of our university.

Test Form Each question allows for multiple se-
lections (e.g., Select all the correct/incorrect ...) and
includes one distractor generated by each model,
along with ‘None of the above’ as the final option.
To mitigate unintended effects on the selection rate
of distractors when the actual correct answer is
included, two versions of each question were cre-
ated: one with the correct answer included and one
without. These versions were randomly distributed.
For analysis, the results from both versions were
integrated.

DI To analyze the DI of a specific model, it is
necessary to assume that each item consists solely
of options generated by that model. Therefore, we
restructured the test results by treating each distrac-
tor generated by a model as a separate test item that
determines ‘whether the corresponding statement
(distractor) is true or false’. In other words, we as-

23682

sBLEU 1 BERTScore 1
Python DB MLDL | Python DB MLDL
GPT-3.5 12.572 16.794 10.133 | 0.879 0.893 0.873
GPT-40 15387 24.752 16.120 | 0.893 0.912 0.882
Mistral 11.192 14.642 10.850 | 0.859 0.872 0.863
Ours (SFT) | 16.859 20.892 14.752 | 0.894 0.897 0.876
Ours (DPO) | 18.313 26.322 16.476 | 0.896 0.906 0.881

Table 13: Similarity between model-generated and
human-authored distractors.

sumed that all students took multiple independent
tests, each consisting of items created exclusively
with distractors from a single model. When grad-
ing, if a student chose the distractor generated by
the model, the item was considered incorrect; oth-
erwise, it was considered correct. The cutoff for
dividing students into high and low groups was
set at the top and bottom 27%, and the DI calcula-
tion formula was also in line with previous studies
(Mahjabeen et al., 2017; Rezigalla et al., 2024).

Clairity and Answerability We concern that ex-
cessively ambiguous distractors could hinder edu-
cational assessment. To verify whether such issues
exist, we asked 11 experts to evaluate the clarity
and answerability of distractors generated by our
DPO model on a 5-point Likert scale. The results,
averaged across a total of 40 questions (Python: 20,
DB: 10, MLDL: 10) for each subject, are in Ta-
ble 12. These results confirm that the potential side
effects of high plausibility, which were a concern,
do not appear to be present in our model.

B.5 Additional Evaluations

Similarity Between Model-Generated and
Human-Authored Distractors Table 13
presents the similarity evaluation results for the
distractor generator. sBLEU® and BERTScore’
were used as the text similarity metrics. For
sBLEU, the ‘smooth_method” was set to ‘exp’, and
the default parameters were used for BERTScore.
In terms of sBLEU, our model (DPO) generates
distractors that are most similar to human-authored
ones across the majority of subjects.

Similarity Between Model-Generated Distrac-
tors and Correct Answers We evaluated the se-
mantic similarity between distractors and correct
answers using OpenAl’s text-embedding-3-small
model. Cosine similarity scores were computed

®https://github.com/mjpost/sacrebleu
"https://github.com/Tiiiger/bert_score

between correct answers and distractors generated
by each model.

As shown in Table 14, similarity scores are
largely consistent across models, with no evidence
that our SFT or DPO models generate distractors
that are excessively similar to correct answers. For
instance, the average similarity score of human-
authored distractors (0.53) is comparable to that of
our DPO model (0.59) for Python.

* Question: "Choose the incorrect statement."

¢ Correct Answer: "If an if statement’s condi-
tion is False, its content executes before the else
statement."

¢ Distractor 1 (similarity = 0.59): "An if-else
statement can include multiple conditions using
elif in some languages."

* Distractor 2 (similarity = 0.53): "An if state-
ment can exist without an else statement in most
languages."

A 0.06 difference in similarity score does not
indicate a meaningful impact on quality, as the
first distractor is not noticeably more similar to the
correct answer than the second.

Validity Validity refers to whether the distractors
are indeed incorrect options for the question. We
assessed validity by categorizing questions as ei-
ther Correct/Incorrect or Code/Statement. ‘Correct’
and ‘Incorrect’ refer to question types where the
task is to select the correct or incorrect statement,
respectively. ‘Code’ type questions involve cases
where the answer (and distractors) take the form of
filling in blanks or matching outputs in code. ‘State-
ment’ refers to questions composed of explanatory
statements about a concept.

Table 15 shows the proportion of valid distrac-
tors generated by each model according to the type
of question. Our models demonstrate stable va-
lidity across various question types, significantly
outperforming GPT-3.5-turbo and pre-trained Mis-
tral. This highlights the importance of the proposed
methodology—first generating the type (1") such
as ‘Correct/Incorrect knowledge’—in enhancing
validity.

Studies have shown that LLMs perform poorly
on tasks involving negation (Varshney et al., 2024),
and in a similar vein, GPT-3.5-turbo and Mistral
show significantly lower validity when generating
distractors for question types that require select-
ing an incorrect option (in ‘Incorrect’ type, the
distractors should actually represent correct knowl-

23683

https://github.com/mjpost/sacrebleu
https://github.com/Tiiiger/bert_score

Similarity
Human GPT-3.5 GPT-40 Feng et al. (2024) Hanget al. (2024) Ours (SFT) Ours (DPO)
Python | 0.53 (0.04) 0.54 (0.05) 0.60 (0.05) 0.58 (0.04) 0.59 (0.05) 0.57 (0.06) 0.59 (0.06)
DB 0.55(0.05) 0.55(0.05) 0.60 (0.05) 0.58 (0.04) 0.59 (0.05) 0.59 (0.06) 0.61 (0.06)
MLDL | 0.53 (0.04) 0.47(0.05) 0.51(0.05) 0.52 (0.04) 0.52 (0.05) 0.50 (0.05) 0.53(0.05)

Table 14: Similarity between model-generated distractors and correct answers. Numbers in parentheses represent

variance.
Validity
Correct Incorrect Code Statement
Python DB MLDL | Python DB MLDL | Python DB MLDL | Python DB MLDL
GPT-3.5 0.883 0.571 0.938 | 0400 1.000 0.426 | 0.877 0.630 - 0.588 0.630 0.684
GPT-40 0.938 1.000 0.902 | 0967 0917 0956 | 0.912 0917 - 0.970 0.963 0.927
Mistral (w/o 7)) | 0.839 0.227 0.820 | 0.233 0917 0.370 | 0.815 00917 - 0485 0.357 0.604
Mistral (w/ T') 0903 0.364 0.822 | 0.265 0.750 0.378 | 0.891 0.750 - 0.500 0.464 0.600
Ours (SFT) 0.874 0905 0.765 | 0.902 1.000 0.844 | 0.842 1.000 - 0.909 0.926 0.802
Ours (DPO) 0.839 0905 0.627 | 0.850 0917 0.800 | 0.875 0917 - 0.825 0.889 0.708
Ablation (SFT) | 0.783 0.778 0.608 | 0.733 0.810 0.822 | 0.717 0.833 - 0.788 0.778 0.708
Ablation (DPO) | 0.848 0.722 0.627 | 0.717 0905 0.733 | 0.811 0.750 - 0.788 0.852 0.677

Table 15: Validity evaluation on distractor generators. Mistral is a model that has not been fine-tuned, w/o T is the
result of using a prompt that generates distractors directly without specifying the distractor type, and w/ 7" is the

result using the same prompt as Ours.

per Question per Distractor
(Win1/Tie/Lose]) (Wint/Losel)
Ablation Ablation | Ablation Ablation
(SFT) (DPO) (SFT) (DPO)
Python GPT-3.5|15/14/23 20/13/19|98.5/121.5 115.5/122
Y GPT-40 | 14/11/27 18/9/25 | 122/179 135.5/184.5
DB GPT-3.5| 5/5/3 3/4/6 29/21 25.5/26.5
GPT-4o0 | 7/1/5 4/4/5 46.5/36 42/44
GPT-3.5| 8/10/13 9/9/13 | 55/70.5 52/66
MLDL
GPT-4o | 13/7/12 15/8/9 |87.5/104.5 95.5/82

Table 16: Ablation study on our distractor generator.
The evaluation setup is the same as Setting A in Table 4.

edge, but these models mostly generated distrac-
tors with incorrect knowledge). However, after
going through SFT and DPO, the proportion of
valid distractors generated for such types greatly
increases, indicating that the proposed methodol-
ogy in this study (first generating types such as
‘Correct/Incorrect knowledge’) plays an important
role in improving validity. Meanwhile, there is a
slight decrease in validity after DPO compared to
SFT, which appears to be a trade-off arising from
the process of creating more confusing distractors.

B.6 Ablation Study

The training settings used for the ablation study
are identical to those of our distractor generator
training setup (Appendix B.2), except that the base
MCQ dataset was used as the training data instead
of the student choice dataset. Table 16 presents the
results of the ablation study (compare with Table 4
and 10).

B.7 Error Analysis

Analyzing the low-quality samples generated by
our distractor generator revealed the following
types of errors:

First, the model sometimes failed to produce
the specified number of distractors based on the
input parameter n, or it created duplicate distractors
among the outputs.

Next, for code type questions, the generated dis-
tractors lacked diversity in output formats and often
made minimal changes, such as altering only one
or two variables, resulting in repetitive and insuffi-
ciently varied distractors.

Meanwhile, for statement type questions, the
model overly mimicked the correct answer, creat-
ing distractors based on only one or two concepts,

23684

while failing to effectively incorporate other related
concepts.

Future work to improve the distractor generator
could involve explicitly providing the model with
information on similar concepts or common errors
that students are likely to confuse.

B.8 Prompt for Checking Distractor Validity

The instruction prompt for checking the validity of
distractors is in Table 29. If the output is ‘invalid’
(as it is an incorrect option for the question), it is
considered a distractor.

C Base MCQ Dataset

We were provided with an MCQ dataset by an on-
line learning platform for educational research pur-
poses and processed it for use within the scope of
the provided purpose. The questions and options,
originally in Korean, were translated into English
for experimental purposes. The provided MCQ
data does not contain any personally identifiable
information about the individuals who answered
the questions, and we manually checked to confirm
that the text does not include any offensive content.

D Prompt for Augmenting Distractors in
the Base MCQ Dataset

The instruction prompt for augmenting distractors
in the base MCQ dataset is in Table 30. Through
this prompt, the student choice dataset was con-
structed only when at least one newly generated
distractor by GPT-40 was valid and did not overlap
with the original.

E Potential Issues

MCQs serve as a tool for assessing students’ knowl-
edge, so the options must be based on accurate
information (i.e., both the correct answer and dis-
tractors must be valid). As mentioned earlier in
the limitations, distractors generated by the model
may not be actual incorrect options to the question.
To proactively address the potential issue, we ex-
plored methodologies to ensure the validity of the
distractors generated by the model. As part of these
efforts, we implemented instruction prompts and
output formats for the model to classify the type
(T') of distractors, thereby mitigating this issue.
We used selection rate data from questions an-
swered by hundreds of students to ensure the reli-
ability of common misconception information for

training the pairwise ranker. However, since mis-
conceptions can vary by learning level or educa-
tional environment, the model’s reasoning may not
generalize to other populations. To make accurate
predictions for a target population, selection rates
specific to that group should be used.

23685

Pairwise Ranker Prompt (Reasoning)

[INST] You are a teacher analyzing which distractor in a given Multiple Choice Question is more confusing for students
and why. Your review should include the following content in one paragraph:

- Describe a realistic process of solving the problem from a student’s perspective as you look at each distractor.

- Consider why it might be plausible as the correct/incorrect statement, based on students’ misconceptions, mistakes,
intuition, etc., from various angles.

Output your choice as a single token, either A or B, that students are more likely to choose.

[Question] {question}
[Answer] {answer}
[Distractor A] {distractor}
[Distractor B] {distractor}

Generate in the following format:
Review:
Choice: [/INST]

Table 17: Instruction prompt (Reasoning) for pairwise ranker.

Pairwise Ranker Prompt (Rubric)

Analyze which side of the given Multiple Choice Question distractor pair is more confusing and plausible to students
based on the given rubric.

[Question] {question}
[Answer] {answer}
[Distractor A] {distractor}
[Distractor B] {distractor}

Evaluation Rubric:

[1]. Conceptual Misunderstandings: Evaluate if the distractor addresses into specific misconceptions or partial
understandings related to the question.

[2]. Similarity to Correct Answer: Assess how closely the distractor resembles the correct answer, either in structure,
terminology, or context.

[3]. Intuitive Appeal: Analyze if the distractor seems logical or intuitively correct based on common language use or
student intuition.

Generation Guide:

- [n]: For each evaluation criterion, review in one sentence how each distractor may or may not confuse students.
- [Summary]: Summarize the review, and choose more confusing and plausible distractor.

- [Choice]: Output your choice as a single token, either A or B.

Generate in the following format:
[1]:

[2]:

[3]:

[Summary]:

[Choice]:

Table 18: Instruction prompt (Rubric) for pairwise ranker.

23686

Pairwise Ranker Prompt (G-Eval)

You will be given one multiple-choice question (MCQ) and two distractors. Your task is to choose one distractor based on
the metric.

Please make sure you read and understand these instructions carefully. Please keep this document open while reviewing,
and refer to it as needed.

Evaluation Criteria:

Plausibility: This metric indicates how likely students are to feel that the distractor is the correct answer and choose it. A
distractor with high plausibility is similar in form to the correct answer or contains common misconceptions and mistakes,
making students more likely to select it.

Evaluation Steps:

1. Read the MCQ carefully and think about the relevant misconceptions or mistakes related to the question from your
perspective as a teacher.

2. Judge how plausible and confusing the distractor would be from a student’s perspective.

3. Choose one distractor based on Evaluation Criteria. Output your choice as a single token, either A or B.

[Question] {question}
[Answer] {answer}
[Distractor A] {distractor}
[Distractor B] {distractor}

Evaluation Form (A or B ONLY):
- Choice:

Table 19: Instruction prompt (G-Eval) for pairwise ranker.

23687

Pairwise Ranker Prompt (Discussion)

<Prompt - Student>

Play the role of students with three different levels of proficiency: A is low, B is medium, and C is high.

A lower proficiency level indicates more confusion about the concept, while a higher proficiency level indicates a better
understanding of the related knowledge.

- In a cooperative learning situation, three students with different levels of proficiency are discussing and solving a given
problem together.

- For each option in the MCQ, share your thoughts according to each proficiency level. Discuss similar concepts and any
confused or mistaken knowledge, ask for help, give advice, and interact actively.

- Having a high proficiency level does not mean knowing the correct answer. However, they have better problem-solving
skills through reasonable inference.

- Take turns speaking equally among the low, medium, and high proficiency students. Use natural transitions like ’Shall
we talk about this option next?’ to keep the discussion flowing smoothly. End the discussion after discussing all the options.

[Question] {question}
[Options] {distractors}

Output the result in the following format:
[A]:"..."
[B]: ".."
[C]:"."

<Prompt - Teacher>

Act as teachers discussing and judging the plausibility (whether it would confuse students) score of each distractor in a
given MCQ.

- First, analyze the collaborative learning records of three students. Then, as the first teacher, choose between distractors A
and B, deciding which one is more likely to confuse students or be frequently selected by them.

- As the second teacher, share your thoughts and provide reasonable counterarguments. Use the collaborative learning
records of the three students as supporting evidence for your scoring. The second teacher should always question the
initial score, challenge generalized assumptions, and argue which distractor is more plausible.

- Take turns discussing and adjusting the choice.

- The utterances must be clear and concise.

[Question] {question}

[Answer] {answer}

[Cooperative Learning Records] {cooperative learning records}
[Distractor A] {distractor}

[Distractor B] {distractor}

[Discussion History] {history}

A conclusion must be reached within a maximum of 5 utterances, taking into account both [T1] and [T2] com-
bined.

Once you both agree on the final choice, output ### Choice: A or ### Choice: B.

Generate the next utterance in the discussion based on the discussion history:

[T1orT2]: ".."

Table 20: Instruction prompt (Discussion) for pairwise ranker.

Pairwise Ranker Prompt (Scarlatos et al., 2024)

[INST] A teacher assigns the following programming question to the students.
Question: {question}

Correct answer: {answer}

Generate a distractor for this question that targets some student misconception.
Distractor: [/INST] {distractor}

Table 21: Instruction prompt (Scarlatos et al., 2024) for pairwise ranker.

23688

Prompt for Generating Pairwise Ranker Training Data

You are a teacher analyzing which distractor in a given Multiple Choice Question is more confusing for students and why.
Your review should include the following content in one paragraph:

- Describe a realistic process of solving the problem from a student’s perspective as you look at each distractor. Consider
why it might be plausible as the correct/incorrect statement, based on students’ misconceptions, mistakes, intuition, etc.,
from various angles.

- Output your choice as a single token, either A or B, that students are more likely to choose.

[Question] {question}
[Answer] {answer}

[Distractor A] {distractor a}
[Distractor B] {distractor b}
Distractor chosen more frequently by actual students:{a or b}

Make sure your choice matches the distractor most frequently chosen by actual students.

However, you must

not mention this information as if you originally knew it.
Generate in the following format:

Review:
Choice:
Table 22: Instruction prompt for generating pairwise ranker training data.
Category Definition

Operation Confusion

Distractors that involve misunderstanding of specific operations, such as incorrect assump-
tions about function outputs or operation precedence.

Structure Error

Distractors reflecting improper syntax or structural misunderstandings.

Calculation Mistake

Distractors that exploit errors in arithmetic, index calculations, or logical evaluations, leading
to incorrect results.

Syntax Familiarity

Distractors that align with common syntax conventions or structures from Python or other
programming languages, leading to confusion due to familiarity.

Logical Consistency

Distractors that maintain a consistent or plausible logic or pattern, even if incorrect, which
can mislead students who are not fully confident in their understanding.

Additional Conditions

Distractors that introduce extra conditions or columns, which may lead students to misinter-
pret the problem as requiring more complex logic, thus creating confusion.

Table 23: Definitions of plausibility factors of code type question.

Category Definition
Ambiguity and Distractors that introduce nuanced or ambiguous details, leading to confusion and misinter-
Complexity pretation due to their complexity or lack of clarity.

Conceptual Overlap

Distractors that involve concepts or operations that overlap with other similar terms, causing
students to conflate them and mistakenly believe they are correct.

Familiarity Traps

Distractors that use familiar terms or straightforward statements, making them seem correct
at first glance and less likely to be critically analyzed by students.

Partial Understanding

Distractors built on incomplete knowledge, leading students to make errors due to gaps in
conceptual clarity.

Overgeneralization

Distractors that appear plausible by relying on students’ tendency to apply learned concepts
too broadly without verifying their validity in specific contexts.

Practical Experience

Distractors that leverage students’ familiarity with common tasks, such as data manipulation
or querying, creating false confidence in their correctness.

Table 24: Definitions of plausibility factors of statement type question.

23689

Human Evaluation Survey Form

<Guideline>

The following provides a programming multiple-choice question, along with an analysis (review) that predicts which of
the two incorrect options is more challenging for students (i.e., more likely to be chosen). You are tasked with evalu-
ating the quality of the analysis from the perspective of an education expert and stating whether you agree with the analysis.

Provided Items:

[Question]: The question

[Answer]: The correct answer

[Distractor A and B]: The two incorrect options, A and B

[Review]: An analysis of which incorrect option (A or B) would be more confusing (more likely to be chosen) by students,
along with the final selection

Evaluation Criteria:

- Logical Reasoning: Whether the reasoning process is logical.

- Student Understanding: Whether the reasoning effectively understands students’ misconceptions or problem-solving
processes.

- Knowledge Accuracy: Whether the reasoning is based on accurate and error-free knowledge.

- Choice Agreement: Whether the evaluator agrees with the model’s final choice.

<Item>

[Question] {question}
[Answer] {answer}
[Distractor A] {distractor}
[Distractor B] {distractor}
[Review] {model’s reasoning}

- The reasoning process in the review is logical.

I 1. Strongly Disagree | 2. Disagree | 3. Neutral | 4. Agree | 5. Strongly Agree |

- The review demonstrates a good understanding of actual student misconceptions or problem-solving processes.
I 1. Strongly Disagree | 2. Disagree | 3. Neutral | 4. Agree | 5. Strongly Agree |

- The review is based on accurate and error-free knowledge.

I 1. Strongly Disagree | 2. Disagree | 3. Neutral | 4. Agree | 5. Strongly Agree |

- I agree with the final choice in the review.

I 1. Strongly Disagree | 2. Disagree | 3. Neutral | 4. Agree | 5. Strongly Agree |

Table 25: Survey form for human evaluation on the pairwise ranker. The original guideline in Korean has been
translated into English.

Pairwise Ranker Prompt (Ablation Study, w/o Reasoning)

[INST] You are a teacher analyzing which distractor in a given Multiple Choice Question is more confusing for students.
Output your choice as a single token, either A or B, that students are more likely to choose.

[Question] {question}
[Answer] {answer}
[Distractor A] {distractor}
[Distractor B] {distractor}

Generate in the following format:
Choice: [/INST]

Table 26: Instruction prompt for ablation study on the pairwise ranker.

23690

Distractor Generator Prompt (Ours)

[INST] You are a teacher tasked with creating distractors (plausible wrong options) for a given Multiple Choice Question.
Generate distractors according to the guide below:

1) Distractor type:

- Analyze whether the question asks for a ‘correct’ or ‘incorrect’ option.

- If the question asks for a correct option, the distractor type should be "Incorrect knowledge"; if it asks for an incorrect
option, the distractor type should be "Correct knowledge".

2) Distractors:

- The distractor should be well-formatted so that it fits naturally when presented together with the question and answer.

- If the distractor type is "Incorrect knowledge", the distractor must be an actually incorrect statement; if the distractor type
is "Correct knowledge", the distractor must be an actually correct statement.

[Question] {question}
[Answer] {answer}

Generate {n} distractor(s) in the following format:
#i## Type:
Distractor n: [/INST]

Table 27: Instruction prompt for distractor generator (Ours).

Distractor Generator Prompt (KNN approach by Feng et al. (2024))

Question: {in-context question}
Answer: {in-context answer}
Distractorl: {in-context distractor}
Distractor2: {in-context distractor}
Distractor3: {in-context distractor}

Question: {in-context question}
Answer: {in-context answer}
Distractorl: {in-context distractor}
Distractor2: {in-context distractor}
Distractor3: {in-context distractor}

Question: {in-context question}
Answer: {in-context answer}
Distractorl: {in-context distractor}
Distractor2: {in-context distractor}
Distractor3: {in-context distractor}

Referencing the above samples, generate 3 distractors.
Question: {question}

Answer: {answer}

Distractorl:

Distractor2:

Distractor3:

Table 28: Instruction prompt for distractor generator (kNN approach).

23691

Prompt for Checking Distractor Validity

Check if the given option is the correct choice in a multiple-choice question (MCQ).

1. Check whether the question asks for a ‘correct’ or ‘incorrect’ option. If the question asks for a correct option, label
"type" as "asking correct option." If the question asks for an incorrect option, label "type" as "asking incorrect option."
2. Insert the given option into the question and analyze whether it is the correct choice.

3. Based on the analysis, if the option is the correct answer to the question, label it as "valid." If it is not the correct answer,
label it as "invalid."

[Question] {question}
[Option] {distractor}

Output according to the following JSON format:
{{

"type": "asking correct option" or "asking incorrect option",
"analysis": "your analysis in one sentence",
"validity": "valid" or "invalid"

1)

Table 29: Instruction prompt for checking the validity of distractors.

Prompt for Augmenting Distractors in the Base MCQ Dataset

You are a teacher tasked with creating distractors (plausible wrong options) for a given Multiple Choice Question.
Generate distractors according to the guide below:

1) Distractor type:

- Analyze whether the question asks for a ‘correct’ or ‘incorrect’ option.

- If the question asks for a correct option, the distractor type should be "Incorrect knowledge"; if it asks for an incorrect
option, the distractor type should be "Correct knowledge".

2) Distractors:

- The distractor should be well-formatted so that it fits naturally when presented together with the question and answer.

- If the distractor type is "Incorrect knowledge", the distractor must be an actually incorrect statement; if the distractor type
is "Correct knowledge", the distractor must be an actually correct statement.

- Refer to the original distractors provided.

[Question] {question}
[Answer] {answer}
[Original Distractors] {distractors}

Generate 3 new distractor(s) in the following JSON format:

{{

"type": "Incorrect knowledge" or "Correct knowledge",

non

"distractor_n": "n-th distractor in string type",

)

Table 30: Instruction prompt for augmenting distractors in the base MCQ dataset.

23692

