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Abstract

While Multi-modal Large Language Models
(MLLMs) have shown impressive capabilities
in document understanding tasks, their ability
to locate and reason about fine-grained details
within complex documents remains understud-
ied. Consider searching a restaurant menu for
a specific nutritional detail or identifying a dis-
claimer in a lengthy newspaper article — tasks
that demand careful attention to small but sig-
nificant details within a broader narrative, akin
to Finding Needles in Images (NiM). To ad-
dress this gap, we introduce NiM-Benchmark,
a carefully curated benchmark spanning di-
verse real-world documents including news-
papers, menus, and lecture images, specifi-
cally designed to evaluate MLLMs’ capabil-
ity in these intricate tasks. Building on this,
we further propose Spot-IT, a simple yet effec-
tive approach that enhances MLLMs capability
through intelligent patch selection and Gaus-
sian attention, motivated from how humans
zoom and focus when searching documents.
Our extensive experiments reveal both the ca-
pabilities and limitations of current MLLMs in
handling fine-grained document understanding
tasks, while demonstrating the effectiveness of
our approach. Spot-IT achieves significant im-
provements over baseline methods, particularly
in scenarios requiring precise detail extraction
from complex layouts.

1 Introduction

Recent breakthroughs in Multi-modal Large Lan-
guage Models (MLLMs) (Team et al., 2023; Driess
et al., 2023; Peng et al., 2023; OpenAI, 2023) have
fundamentally transformed how machines under-
stand and reason about visual information. These
models demonstrate remarkable capabilities in vi-
sual dialogue, scene comprehension, and answer-
ing nuanced questions about visual content. For
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Figure 1: An example of a "Needle in Images" task: finding a
specific breakfast extra under £1 in a restaurant menu requires
precise attention to a small region while processing the entire
layout. How do MLLMs compare to humans on such tasks?
We present a benchmark and a baseline method to study
this.

the task of Document Visual Question Answering
(DocVQA) (Mathew et al., 2021), MLLMs have
emerged as particularly powerful tools, interpreting
visually rich documents in ways that transcend tra-
ditional text extraction methods (Fenniak and Con-
tributors, 2022; pdfminer, 2019), enabling question
answering (QA) even in documents with complex
layouts and mixed text-visual elements.

While MLLMs excel at broad document compre-
hension, their ability to handle precise, localized
information within complex documents remains an
open question. Consider a seemingly simple task:
Searching a Restaurant Menu to find a breakfast
extra that costs less than £1 (as shown in Figure
1). This information occupies just a tiny fraction
of the document’s spatial extent, yet humans can
efficiently locate it by combining broad visual scan-
ning with focused attention – quickly zeroing in
on "Two Grilled Tomato Halves" as the answer.
This everyday scenario highlights a fundamental
challenge in document understanding: the ability
to locate and reason about minute details within
larger document.

Traditional approaches based on OCR and text-
extraction (Smith, 2007; Memon et al., 2020;
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pdfminer, 2019) inherently struggle with this chal-
lenge, as they often lose the crucial connection
between local details and global document struc-
ture. Even for MLLMs, despite their broad training
on web-scale data (Gadre et al., 2024), process-
ing fine-grained details within visually rich docu-
ments presents a unique challenge, especially in
domain-specific documents with complex visual
layout (shown in Figure 3). This difficulty stems
from a fundamental tension: models must simul-
taneously maintain document-level context while
precisely attending to minute details – a capability
that humans possess naturally but remains elusive
for automated systems.
The current landscape of DocVQA research has
not adequately addressed this challenge. While pi-
oneering work like DocVQA (Mathew et al., 2021)
established foundations for document understand-
ing using MLLMs, it primarily focuses on general
comprehension tasks in industrial documents. Sub-
sequent benchmarks such as SlideVQA (Tanaka
et al., 2023) and MMLongBench (Ma et al.) have
expanded the scope to multi-page scenarios and
long-form documents, respectively. However, these
benchmarks evaluate broad document comprehen-
sion rather than the specific challenge of locating
and reasoning about minute details within com-
plex layouts. This gap is particularly significant as
real-world document interaction often depends on
precisely locating and interpreting small but critical
pieces of information within a larger context.
To address this gap, we introduce the Needles in
Images Benchmark, NiM-Benchmark. This care-
fully curated benchmark specifically evaluates fine-
grained visual reasoning in DocVQA across di-
verse real-world scenarios - from dense newspa-
per layouts to intricate restaurant menus, magazine
spreads, and classroom lecture snapshots. Each
document type presents unique challenges in lo-
cating and reasoning about minute details within
complex visual contexts. The benchmark includes
targeted question types that probe a model’s ca-
pability to combine broad document understand-
ing with precise attention to relevant local details,
closely mirroring real-world information seeking
scenarios.
To complement our benchmark, we propose Spot-
IT, a simple yet effective approach that draws in-
spiration from human visual search behavior. Our
method enhances MLLMs’ ability to focus on spe-
cific document regions through a novel question-
guided attention mechanism. For each input doc-

ument, Spot-IT segments the image into patches,
identifies the most relevant regions based on the
query, and dynamically generates a Gaussian patch
with a variable σ, adjusted using cosine similarity
(as illustrated in Figure 2). This approach enables
models to better handle the dual challenges of main-
taining global context while attending to local de-
tails. Below, we summarize the key contributions
of our work:
1. We formalize the Needle in an Image challenge

in DocVQA, focusing on evaluating MLLMs’
ability to locate and reason about fine-grained
details within complex documents.

2. We introduce NiM-Benchmark, a carefully cu-
rated benchmark comprising 2, 970 images and
1, 180 question-answer pairs across diverse doc-
ument types including academic papers, newspa-
pers, menu and images from classroom lectures.
Each question is specifically designed to test
MLLMs’ capability to extract precise details
within rich visual contexts, with rigorous qual-
ity validation through both human experts and
automated verification.

3. We propose Spot-IT, a simple yet effective ap-
proach that enhances MLLMs’ fine-grained rea-
soning capabilities through question-guided dy-
namic attention. Our method achieves this with-
out requiring architectural changes to existing
MLLMs, making it broadly applicable across
different model architectures.

4. Through comprehensive experiments, we
demonstrate that Spot-IT significantly improves
state-of-the-art on fine-grained detail extraction,
achieving a 15.5% improvement over GPT-4o
on ArxiVQA and 21.05% improvement on our
NiM-Benchmark. These results establish new
baselines for precise information extraction in
DocVQA .

2 Background and Related Work

Document Understanding Evolution: Document
understanding has evolved from rule-based OCR
systems (Smith, 2007; Subramani et al., 2020) to
sophisticated Multi-modal Large Language Models
(Team et al., 2023; OpenAI, 2023). Early DocVQA
datasets (Mathew et al., 2021; Du et al., 2022)
focused on basic text extraction and comprehen-
sion tasks, while recent benchmarks like Slide-
VQA (Tanaka et al., 2023) and MMLongBench
(Ma et al.) have expanded to multi-page scenarios
and long-form documents. However, these datasets
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primarily evaluate broad document comprehension
rather than fine-grained detail extraction, which is
the primary motivation for creating our benchmark.
We compare our benchmark with existing ones in
Table 3 (in Appendix).
Fine-grained Visual Analysis in Documents:
While fine-grained visual analysis has been ex-
tensively studied in natural images (Yang et al.,
2023), its application to document understanding
remains limited. Recent visual prompting tech-
niques (Wu et al., 2024) have shown promise in
directing model attention to specific image regions
through bounding boxes (Lin et al., 2024) or mark-
ers (Shtedritski et al., 2023). However, documents
present unique challenges due to their hierarchi-
cal structure and complex layouts, making direct
adaptation of these techniques insufficient. Our
work bridges this gap by introducing both a bench-
mark and method specifically designed for evaluat-
ing fine-grained document analysis capabilities of
MLLMs.
Methods for Document VQA: Current ap-
proaches to DocVQA either rely on traditional
OCR-based pipelines (Xu et al., 2020b; Huang
et al., 2022) or leverage end-to-end MLLMs
(Zhang et al., 2024b,a). For larger documents,
retrieval-augmented generation (RAG) methods
(Faysse et al., 2024b) have emerged as a promis-
ing direction. However, these methods typically
process entire document regions without consider-
ing the granularity of relevant information, leading
to inefficiencies when only small portions contain
the answer. Our Spot-IT addresses this limitation
through a question-guided attention mechanism
that selectively focuses on relevant document re-
gions. For an extended discussion of related work,
please refer to Appendix A.1.

3 Dataset: Needle in an Image
Benchmark

Our benchmark, NiM-Benchmark, is designed to
evaluate MLLMs’ ability to locate and reason about
fine-grained details within complex documents. We
define fine-granularity using the following ratio:

Fine-Granularity =
Area of Relevant Region
Total Image Page Area

< 0.05 (1)

i.e., a task is considered fine-grained when the rele-
vant region occupies less than 5% of the total image
area.

In this section, we describe the dataset construction
process, its characteristics, and provide an in-depth
analysis.

3.1 Dataset Construction

Our dataset spans multiple domains including aca-
demic papers, newspapers, magazines, lecture ma-
terials, and restaurant menus, each presenting
unique challenges in locating fine-grained infor-
mation.
Document Collection and Processing: We cu-
rated documents from six diverse domains: (1)
Restaurant menus with complex layouts and pric-
ing information, (2) Recent academic papers from
arXiv (2024-2025), (3) Magazines covering di-
verse domains with mixed text-visual content, (4)
Contemporary English e-newspapers, (5) Website
screenshots from the CoVA dataset (Kumar et al.,
2022), and (6) Classroom lecture screenshots from
open educational resources. Details of the domain
sources are present in Table 8 (in Appendix).
To ensure consistency, all documents were con-
verted to a uniform image format while preserving
visual complexity and layout using a Python li-
brary (Belval, 2024). Documents example images
are shown in Table 11 in Appendix.
Question-Answer Pair Generation: We em-
ployed a hybrid approach to create high-quality
question-answer pairs that specifically target fine-
grained information: (1) We divided each docu-
ment into variable-sized patches (2×2 to 6×6 grids)
and used a MLLM with carefully crafted prompts
to generate initial QA pairs focusing on localized
information within each patch (2) The initial pool
of QA pairs are verified by a human annotator and
the irrelevant pairs were discarded. For certain do-
mains, automated generation with filtering proved
insufficient, so a team of four annotators created
fine-grained questions for those domains. (3) All
QA pairs underwent verification by three indepen-
dent annotators to ensure accuracy, relevance, and
consistency with our focus on fine-grained detail
extraction. All prompts used for dataset construc-
tion are detailed in Section A.9 in the Appendix.

3.2 Dataset Characteristics and Analysis

Our dataset includes 284 documents across six do-
mains, containing 1,180 question-answer pairs. An
overview is provided in Table 7. Each domain
presents unique challenges for fine-grained infor-
mation extraction, from dense multi-column news-
paper layouts to technical diagrams in academic
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papers.
Question Types and Distribution: We categorize
questions into several types to assess fine-grained
understanding: (1) Inline: Direct extraction of spe-
cific details, (2) Boolean: Yes/no questions about
specific details, (3) Comparative: Comparison be-
tween nearby elements, (4) Complex Reasoning:
Multi-step inference about document details, (5)
Commonsense: Requiring world knowledge, and
(6) Unanswerable: Context needed to answer is ab-
sent. Table 9 in Appendix presents the distribution
of question categories across domains.

3.3 Quality Analysis

To validate the quality of our automatically gener-
ated question-answer pairs, we conducted rigorous
evaluations using two carefully curated test sets: (1)
Set X containing 200 human-generated questions
from existing datasets, and (2) Set Y comprising
200 samples from our dataset with balanced rep-
resentation across domains (30-35 questions per
domain). Our analysis encompassed three comple-
mentary dimensions:
Response Time Analysis: We measured response
times and accuracy (EM and F1 scores) across
three MLLMs (GPT-4o, Gemini-1.5-Flash, GPT-
4o-mini) and human experts on Set Y. This analysis,
visualized in Figure 5, demonstrates that although
human accuracy is moderately high on our dataset,
it comes at the cost of increased response time.
Question Quality Assessment: We conducted
a blind Turing test where two independent re-
searchers evaluated a mixed set of human and
machine-generated questions (Sets X and Y com-
bined). The inter-annotator agreement (Cohen’s k
(Cohen, 1960) = 0.234) indicates that our generated
questions are comparable to human-crafted ones in
terms of quality and naturalness.
Automated Verification: To ensure scalable qual-
ity assessment, we employed Claude-3.5-Sonnet
and Gemini-2.0-Flash as independent judges,
achieving strong inter-model agreement (k =
0.339). These models were specifically chosen
to avoid potential biases, as they were not involved
in the question generation process.

4 Methodology: Spot-IT

Finding a "needle" of information in a complex doc-
ument requires a delicate balance between broad
context awareness and precise attention to detail.
Our method, Spot-IT, draws inspiration from how

humans efficiently locate specific details in doc-
uments: first identifying potentially relevant re-
gions based on the query, then focusing attention
on those regions while maintaining awareness of
the surrounding context. This two-stage approach
enables effective extraction of fine-grained infor-
mation while preserving the document’s structural
context.
At its core, the goal of Spot-IT is to make MLLMs
focus on specific document regions through a
query-guided attention mechanism. Given a doc-
ument image and a query seeking fine-grained in-
formation, our method first divides the image into
a grid of patches and identifies the most relevant
patch using semantic similarity between the query
and visual content. It then generates an adaptive
Gaussian attention mask centered on this region,
effectively highlighting the "needle" while main-
taining visibility of the surrounding context. This
attended image, along with the original query, is
then processed by an MLLM to generate the final
answer. Figure 2 illustrates this process.

4.1 Problem Formulation

The task of finding fine-grained details in docu-
ments can be formalized in both closed-domain
and open-domain settings. In the closed-domain
setting, given a query q and a document D con-
taining a set of page images {I1, ..., Ij}, the goal
is to locate the specific region within these images
that contains the answer to q. The open-domain
setting extends this to a collection of documents
S = {D1, ..., DM}, where we must first identify
the relevant documents and pages before locating
the specific region. In the open-domain setting, the
top-r relevant documents are retrieved using meth-
ods such as ColPali (Faysse et al., 2024a), and then
passed to the MLLM L.

Formally, our objective is to learn a function
f that maps a query q and a set of k images
{I1, I2, . . . , Ik} to corresponding attention masks
{M1,M2, . . . ,Mk} that highlight the regions most
likely to contain the answer:

{M1,M2, . . . ,Mk} = f(q, {I1, I2, . . . , Ik}) (2)

The attended images {IM1 , IM2 , . . . , IMk
} are

then provided to an MLLM L along with the query
to generate the answer:

answer = L (q, {IM1 , IM2 , . . . , IMk
}) (3)

23629



Figure 2: Overview of Spot-IT: Given a document and query, our method (1) cleans the query, (2) identifies the most relevant
image patch, (3) applies an adaptive Gaussian attention mask, and (4) provides the attended image to an MLLM for answer
generation. Our method combines targeted patch selection with dynamic attention to mimic human-like focus on relevant
document regions.

The key challenge lies in designing f to effec-
tively identify and highlight small regions contain-
ing critical information while maintaining suffi-
cient context for the MLLM to reason about the
answer.

4.2 Method Overview
Spot-IT addresses the challenge of fine-grained
detail extraction through a modular pipeline that
mimics human visual search behavior. As illus-
trated in Figure 2, our method consists of two key
components:
Query-Guided Patch Identification: First, we
divide the input document image into an n × n
grid of patches. Using a vision-language model
(SigLip (Zhai et al., 2023)), we compute semantic
similarity between the query and each patch to iden-
tify the region most likely to contain the answer.
This step is analogous to how humans quickly scan
a document to locate relevant sections based on
visual and semantic cues.
Adaptive Gaussian Attention: Once the most rel-
evant patch is identified, we generate a Gaussian
attention mask centered on this region. The spread
of this Gaussian distribution adapts dynamically
based on the confidence of our patch selection -
higher confidence leads to more focused attention,
while lower confidence results in broader attention.
This mechanism directs the MLLM’s focus to the

identified region while preserving awareness of the
surrounding context, similar to human attention.
The final attended image, created by applying this
adaptive Gaussian mask to the original document,
serves as input to an MLLM along with the orig-
inal query. This approach enables the model to
efficiently process fine-grained details within the
highlighted region while maintaining awareness of
the document’s overall context, leading to more
accurate answers for queries about specific details.

4.3 Query-Guided Patch Identification
The first key challenge in locating fine-grained in-
formation is identifying which region of the docu-
ment to focus on. Our patch identification approach
combines grid-based image segmentation with se-
mantic similarity matching to efficiently locate re-
gions relevant to the query.
Image Segmentation: Given an input document
image I of dimensions W ×H , we divide it into
an n× n grid of uniform patches. Each patch Pij

(i, j ∈ {1, ..., n}) represents a distinct region of
the document. Through empirical analysis on our
benchmark dataset, we found that n = 6 provides
an effective balance between granularity and com-
putational efficiency.
Query-Patch Similarity: To identify the most rele-
vant patch, we leverage the SigLip vision-language
model to compute semantic similarity between the
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query and each patch. First, we preprocess the
query q by removing stop words and extraneous
information to obtain a cleaned query qc, focusing
on key semantic elements. The SigLip model then
encodes both the cleaned query and each patch into
embedding vectors:

vq = SigLip(qc), vij = SigLip(Pij) (4)
The relevance of each patch to the query is deter-

mined by computing the cosine similarity between
their respective embeddings:

Sim(vij , vq) =
vij · vq

∥vij∥∥vq∥
(5)

Patch Selection: The patch with the highest simi-
larity score is selected as the center for our attention
mechanism:

(i∗, j∗) = argmax
i,j

Sim(vij , vq) (6)

To normalize the similarity score of the selected
patch, we apply a softmax function over all sim-
ilarity scores and define the probability p of the
selected patch as:

p =
exp(Sim(vi∗j∗ , vq))∑
i,j exp(Sim(vij , vq))

(7)

The center coordinates (x∗, y∗) of this patch in the
original image space are computed as:

x∗ =
(2j∗ − 1)W

2n
, y∗ =

(2i∗ − 1)H

2n
(8)

This patch identification process effectively nar-
rows down the region of interest while maintain-
ing computational efficiency. The similarity score
of the selected patch also serves as a confidence
measure that influences the subsequent attention
mechanism, allowing our method to adapt its focus
based on the strength of the match between query
and content.

4.4 Adaptive Gaussian Attention

Once we identify the most relevant patch, the next
challenge is to create an attention mechanism that
effectively highlights this region while preserving
contextual information. We achieve this through
an adaptive Gaussian attention mask that automati-
cally adjusts its focus based on the confidence of
our patch selection.
Dynamic Gaussian Mask: We generate a Gaus-
sian attention mask centered at the coordinates
(x∗, y∗) identified in the previous step. The spread
of this Gaussian distribution is controlled by its
standard deviation σ, which we compute adap-
tively based on the similarity score p of the selected
patch:

σ =
0.8

1 + exp(−10(p− 0.2))
(9)

This sigmoid-based formulation ensures that σ
varies smoothly with our confidence in the patch
selection: high similarity scores result in a broader
attention mask (large σ), reflecting our confidence
in finding the answer in that region. In contrast,
lower similarity scores yield a smaller mask, as we
are less certain about the answer’s location, and if σ
falls below 0.2, we omit drawing a patch altogether.
The parameters of this function were determined
through empirical analysis on validation set of our
benchmark dataset and existing datasets (see “Dy-
namic Gaussian Sigma Graph” in Figure 2).
Attention Mask Generation: The Gaussian atten-
tion mask M(x, y) (Wu et al., 2019) for each pixel
coordinate (x, y) in the image is computed as:

M(x, y) = exp

(
−(x− x∗)2 + (y − y∗)2

2σ2

)0.5

(10)
The square root operation in the exponent helps
create a more gradual falloff in attention, which
we found empirically to work better with MLLMs’
visual processing capabilities.
Image Enhancement: The final attended image
I ′ is created by blending the original image with a
highlight color using the attention mask:

I ′(x, y) =(1− αM(x, y))I(x, y)

+ αM(x, y)H(x, y)
(11)

where α is a blending factor (set to 0.5 in our exper-
iments) and H(x, y) represents the highlight color.
This approach ensures the highlighted region re-
mains readable and distinct.
The resulting attended image preserves the doc-
ument’s full content while drawing the MLLM’s
attention to the region most likely to contain the
answer. This balance between focused attention
and context preservation is crucial for accurately
answering questions about fine-grained details in
complex documents.

5 Spot-IT: Experimental Setup
5.1 Experimental Datasets

Existing DocVQA Datasets We evaluate Spot-IT
on two DocVQA datasets: ArxiVQA (Li et al.,
2024a) and DUDE (Van Landeghem et al., 2023).
For evaluation, we use questions, context images,
and gold answers from the ArxiVQA training set
(since only the training set is available) and the
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DUDE development set. Hyperparameters are
tuned by randomly selecting 50 questions from
each dataset. Our test set includes 500 questions
from ArxiVQA and 500 from DUDE.
NiM-Benchmark For the evaluation on NiM-
Benchmark, we select 937 samples distributed
across the following domains: Newspapers (174),
Menus (180), Lecture Screenshots (70), Website
Screenshots (215), Academic Papers (180), and
Magazines (118).

5.2 Spot-IT Baselines

Our approach operates in a training-free, zero-shot
setting. We evaluate it against two baseline meth-
ods: an Optical Character Recognition (OCR)-
based pipeline (Mishra et al., 2019) and the MLLM-
DocVQA approach (Cho et al., 2024a). To ensure a
comprehensive evaluation, we utilize three closed-
source MLLMs—GPT-4o (OpenAI et al., 2024),
GPT-4o-mini (OpenAI et al., 2024), and Gemini-
1.5-flash (Team et al., 2024)—and two open-source
MLLMs—Qwen2-VL 7B (Wang et al., 2024) and
Llama-3.2-11B-Vision (Grattafiori et al., 2024).
We additionally assess performance under Chain-
of-Thought (CoT) prompting (Wei et al., 2022).
This diverse selection ensures a broad and repre-
sentative evaluation across both open-source and
closed-source models.
OCR-Based Pipeline In this pipeline, text is first
extracted from a set of images using OCR (Mishra
et al., 2019), adapted from MMLongBench (Ma
et al.). The extracted text is then input to the LLM,
along with the corresponding question, enabling
the LLM to generate an answer.
MLLM-Based DocVQA This pipeline utilizes
MLLMs as the VQA model, where both the ques-
tion and the corresponding context images are di-
rectly input into the model to generate an answer,
as adapted from Cho et al. (2024a).

5.3 Evaluation Metrics

We use Exact-Match (EM), F1-Score (Rajpurkar,
2016), and ANLS Score (Biten et al., 2019) as
automatic metrics to assess the correctness of the
predicted answers. For ArxiVQA, being a multiple-
choice question dataset, we use accuracy as the
evaluation metric.

For NiM-Benchmark, we also conduct human
evaluation on 100 samples, with the assistance of
three annotators.

5.4 Implementation Details

Problem Setting: We evaluate our method in both
open-domain and closed-domain settings. We use
DUDE as closed-domain and convert ArxiVQA
to open-domain by collating the context of all in-
stances.
Open-Domain: The top-k most relevant images
are retrieved from the corpus to answer queries,
using the ArxivQA dataset.
Closed-Domain: Queries are answered using a
predefined set of images that contain the exact
query context, evaluated on the DUDE dataset.
Distractor Setting: Our benchmark, NiM-
Benchmark, introduces distractor images to assess
model resilience against irrelevant information.
These diverse settings enable a comprehensive eval-
uation of our proposed method against baseline
models.
Context Images and MMLLMs Used: We use the
same set of images across both OCR and MLLM
baselines—either for text extraction or as direct
inputs to the language model for answering queries.
Additionally, we employ same language models for
both OCR-based and image-based inputs to ensure
consistency and fair comparison.
Spot-IT Hyperparameters: For query cleaning,
we employ the same Multi-modal Large Language
Models (MLLMs) used in the DocVQA task. The
image is segmented into a 6× 6 grid of patches to
determine the regions relevant to the query. The
standard deviation σ for the 2D Gaussian spread
is selected within the range [0, 0.8], as values ex-
ceeding 0.8 encompass a substantial portion of the
image, thereby negating the intended effect.
For visualization, patches are highlighted using
Blue color, and alpha blending is applied with
a blending factor of α = 0.5. Additionally, we
impose a threshold of σ < 0.2, ensuring that if
the final σ falls below this threshold, no patch is
drawn. This prevents visualization in cases where
the model’s confidence in patch relevance is insuf-
ficient.
Experiments were performed using two NVIDIA
A30 GPUs (24GB each) and MLLMs inference
APIs.

6 Results and Analysis

This section is divided into two parts:
(1) Spot-IT Evaluation: We present the results of
Spot-IT using three closed-source models—GPT-
4o, GPT-4o-mini, and Gemini-1.5-Flash—and
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Methods ArxiVQA DUDE

Acc.(↑) EM(↑) F1(↑) ANLS(↑)
Closed-Source LLMs (zero-shot)

GPT-4o 0.52 0.42 0.56 0.55
GPT-4o-mini 0.47 0.34 0.50 0.47
Gem-1.5-Flash 0.53 0.30 0.42 0.42
GPT-4o+OCR 0.41 0.34 0.47 0.47
GPT-4o+CoT 0.51 0.43 0.57 0.58
GPT-4o+Ours 0.60 0.45 0.60 0.60
GPT-4o-mini+Ours 0.52 0.41 0.55 0.52
Gem-1.5-Flash+Ours 0.54 0.34 0.47 0.45

Open-Source LLMs (zero-shot)
Llama-3.2-VL-11B 0.41 0.13 0.23 0.18
Qwen2-7B 0.44 0.21 0.32 0.28
Llama-3.2+OCR 0.38 0.05 0.19 0.08
Llama-3.2+CoT 0.42 0.11 0.23 0.17
Llama-3.2+Ours 0.44 0.19 0.29 0.24
Qwen2-7B+Ours 0.44 0.27 0.37 0.32

Table 1: Spot-IT evaluation results compared with baselines
adapted from M3DocRAG (Cho et al., 2024b). Our method
outperforms all baselines, including CoT (Wei et al., 2022).

two open-source models—Llama-3.2-VL-11B and
Qwen2-7B on ArxiVQA and DUDE datasets. This
is followed by an occlusion sensitivity analysis and
a detailed error analysis of Spot-IT.
(2) NiM-Benchmark Evaluation: We assess the
performance of NiM-Benchmark on GPT-4o, GPT-
4o-mini, Gemini-1.5-Flash, Qwen2-7B, and human
evaluators. This is followed by an error analysis of
the NiM-Benchmark evaluation.

6.1 Evaluation on Document Visual QA
Table 1 presents zero-shot results on ArxiVQA and
DUDE, comparing our method Spot-IT to base-
lines. Spot-IT consistently outperforms all base-
lines, including OCR and CoT, highlighting its ef-
fectiveness in efficiently finding the “needle” in
the set of images. We also test our method with
the proposed dataset NiM-Benchmark, achieving
the best performance across all domains in various
MLLM models, shown in Table 2.
Additional Results We present further evalua-
tions on additional DocVQA datasets using GPT-
4o, alongside extensive ablation studies and patch
count analyses, to demonstrate the robustness and
generalizability of our Spot-IT framework. Our
experiments show that SigLIP consistently outper-
forms CLIP for patch-query similarity, and that
varying the number of patches reveals an optimal
trade-off between performance and generalization.
Spot-IT achieves consistent gains across multi-
ple benchmarks—DocVQA, InfoVQA, ChartQA,
and MMlongbench-doc—for both short and long
documents. Detailed results are provided in Ap-
pendix A.2.

6.2 Our NiM-Benchmark Evaluation

Automatic Evaluation Table 2 shows the eval-
uation of our proposed dataset NiM-Benchmark

across SoTA MLLMs using EM, F1, and ANLS.
These models exhibit low performance both on the
overall benchmark and across individual domains,
including Restaurant Menus, Newspapers, Website
Screenshots, and Lecture Screenshots. This high-
lights the need to enhance MLLMs and DocVQA
methodologies for locating and reasoning about
fine-grained details within documents.
Human Evaluation We evaluate NiM-Benchmark
using human performance, achieving 63% EM and
70% F1, highlighting significant room for improve-
ment compared to MLLMs (Figure 4 in Appendix).

6.3 Analysis of Spot-IT
For our method, we perform: a) Occlusion Sensi-
tivity Analysis - to understand model behavior, b)
Error Analysis - to interpret failure cases, and c)
Accuracy vs. Latency Trade-off Analysis - compar-
ing our method with baselines.

Sensitivity Analysis
Figure 6 shows the occlusion sensitivity analysis
of Spot-IT on the Qwen2-VL model. By systemat-
ically occluding image regions, the analysis iden-
tifies areas most influential to the model’s predic-
tions. Details of the occlusion methodology are in
Appendix A.4.
Findings: Our method effectively highlights criti-
cal image regions that contribute to the model’s
predictions. This is validated by the occlusion
sensitivity analysis, confirming alignment between
our method’s attributions and the model’s decision-
making process.

Error Analysis
We analyze our method on ArxivQA using GPT-4o
on 500 samples, of which 200 were incorrect. We
randomly selected 50% of these errors and catego-
rized them as follows: a) Dataset Errors - 19%, b)
Retrieval Errors - 22%, c) Patch Formation - 25%,
d) Patch Selection - 26%, and e) MMLLM Fault -
8%. For details, refer Section A.5 in the Appendix.

Accuracy vs Latency Trade-off
The accuracy-latency trade-off plot compares our
method with the baseline using GPT-4o on (a) Arx-
iVQA, (b) DUDE, and (c) NiM-Benchmark, show-
ing a 10-20% accuracy improvement across all
datasets with only an additional latency of approxi-
mately 4 seconds (see Figure 4 in Appendix).

6.4 Analysis of NiM-Benchmark
For NiM-Benchmark, we conduct: a) Error Analy-
sis, and b) Human Evaluation to compare accuracy
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Methods Menus Academic
Papers

Magazines Newspaper Website
Screenshots

Lectures All

Exact Match (EM) (↑)

GPT-4o 0.33 0.41 0.55 0.28 0.42 0.26 0.38
GPT-4o-mini 0.25 0.23 0.47 0.24 0.34 0.24 0.29

Gemini-1.5-Flash 0.22 0.17 0.19 0.14 0.30 0.34 0.22
Qwen2-7B 0.12 0.11 0.05 0.06 0.01 0.11 0.07

GPT-4o + Ours 0.47 0.51 0.64 0.33 0.46 0.29 0.46
GPT-4o-mini + Ours 0.37 0.26 0.49 0.30 0.39 0.27 0.35

Gemini-1.5-Flash + Ours 0.35 0.23 0.20 0.16 0.34 0.41 0.27
Qwen2-7B + Ours 0.21 0.15 0.03 0.07 0.04 0.20 0.11

F1 (↑)

GPT-4o 0.35 0.59 0.72 0.39 0.50 0.31 0.48
GPT-4o-mini 0.25 0.38 0.62 0.35 0.42 0.32 0.38

Gemini-1.5-Flash 0.22 0.29 0.25 0.20 0.36 0.40 0.28
Qwen2-7B 0.16 0.19 0.07 0.11 0.01 0.12 0.10

GPT-4o + Ours 0.50 0.66 0.77 0.44 0.56 0.37 0.56
GPT-4o-mini + Ours 0.38 0.41 0.64 0.37 0.49 0.36 0.44

Gemini-1.5-Flash + Ours 0.35 0.36 0.29 0.20 0.40 0.47 0.34
Qwen2-7B + Ours 0.27 0.24 0.06 0.10 0.04 0.20 0.15

ANLS (↑)

GPT-4o 0.55 0.61 0.71 0.49 0.55 0.39 0.56
GPT-4o-mini 0.35 0.44 0.64 0.45 0.47 0.37 0.46

Gemini-1.5-Flash 0.29 0.40 0.35 0.32 0.47 0.42 0.37
Qwen2-7B 0.19 0.29 0.18 0.25 0.08 0.16 0.19

GPT-4o + Ours 0.63 0.67 0.78 0.52 0.60 0.45 0.62
GPT-4o-mini + Ours 0.49 0.46 0.67 0.46 0.51 0.40 0.50

Gemini-1.5-Flash + Ours 0.40 0.46 0.39 0.32 0.41 0.49 0.40
Qwen2-7B + Ours 0.26 0.32 0.17 0.23 0.11 0.23 0.22

Table 2: NiM-Benchmark Performance across different domains including Newspapers, Website Screenshots,
and Lectures. While Spot-IT consistently outperforms baseline models, the overall performance remains modest,
highlighting the challenging nature of the benchmark and the need for further research and model improvements.

and latency with model predictions.

NiM-Benchmark Error Analysis
We evaluate the performance of NiM-Benchmark
on GPT-4o by randomly selecting 20 samples from
all 6 domains domain and categorized them as fol-
lows: a) Incomplete Evidence - 47 cases, b) Hallu-
cinated Evidence - 28 cases, c) Perceptual Error -
24 cases, d) Reasoning Error - 15 cases, e) Irrele-
vant Answer - 5 cases, and f) Knowledge Lacking
- 1 case. Refer Section A.6 in Appendix for details.

Human vs Model: Accuracy & Latency
We compare human and model performance on ac-
curacy and latency for NiM-Benchmark. While
humans achieve higher accuracy, they take signif-
icantly more time than models, highlighting the
need for improved methodologies to efficiently han-
dle our dataset (see Figure 5 in Appendix).

7 Conclusion

In this paper, we formalize the Needle in Im-
ages challenge in DocVQA, focusing on evaluating
MLLMs’ ability to locate and reason about fine-
grained details within complex documents. To ad-
dress this, we introduce NiM-Benchmark, a bench-
mark specifically designed to assess MLLMs’ effec-
tiveness in extracting precise information from vi-
sually rich layouts. Our experiments reveal that cur-
rent MLLMs struggle with accurately locating and
extracting answers from such intricate structures.
To overcome this, we propose Spot-IT, which intel-
ligently identifies relevant regions within images,
achieving substantial improvements over baseline
models across multiple datasets. We believe our
findings pave the way for more advanced and ef-
ficient DocVQA systems capable of fine-grained
detail extraction from complex documents.
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Limitations

The limitations of our work are as follows: 1)
Although our method performs well on existing
DocVQA datasets, it struggles with long length
documents as LLMs have limitations in processing
large documents even after identifying the relevant
patch. 2) The performance of our method depends
on the current capabilities of LLMs, which may
improve over time. 3) While achieving high accu-
racy, our method incurs slightly higher latency due
to Gaussian patch construction. 4) We use SigLip
for cosine similarity between document patches
and the query using a bag-of-words-like approach,
which limits contextual understanding of document
structure; future work could explore a customized
model for better similarity assessment. 5) Our
benchmark has fewer complex reasoning questions,
which can be expanded in future iterations.
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A Appendix

In this section, we provide detailed related work
and additional results and analysis that we could
not include in the main paper due to space con-
straints. In particular, this appendix contains the
following:

• Extended Related Work
• Additional results
• Additional Figures and Tables
• Occlusion Sensitivity Analysis
• Extended Spot-IT Error Analysis
• Extended NiM-Benchmark Error Analysis
• Spot-IT Qualitative Examples
• Sample Illustrations from NiM-Benchmark
• All LLM Prompts Used for Evaluation and

Dataset Generation

A.1 Extended Related Work

A.1.1 Evolution of Document Visual Question
Answering

Document understanding has evolved significantly
from its origins in rule-based systems (Srihari et al.,
1992) and traditional OCR approaches (Subramani
et al., 2020). Early systems focused primarily on
text extraction and basic layout analysis (Smith,
2007), with limited ability to handle complex vi-
sual elements or perform sophisticated reasoning.
The field has since transformed with the advent of
MLLMs (Team et al., 2023; Driess et al., 2023;
Peng et al., 2023; OpenAI, 2023), which have en-
abled more nuanced document understanding and
reasoning capabilities.

A.1.2 DocVQA Datasets and Their Evolution
The development of DocVQA datasets has closely
mirrored the advancement in model capabilities.
The seminal DocVQA dataset (Mathew et al., 2021)
established foundational benchmarks for document
understanding, focusing primarily on in-line ques-
tions where answers could be found within single
text spans. This was followed by datasets that in-
troduced additional complexity:
Single-Page Complex Reasoning: Datasets like
CS-DVQA (Du et al., 2022) and RDVQA (Wu
et al., 2022) pushed beyond simple text extraction
by requiring commonsense reasoning and regional
understanding. ArxivQA (Li et al., 2024b) further
expanded the challenge by incorporating multiple-
choice questions based on academic documents
with mixed elements like tables, figures, and charts.
Multi-Page Understanding: The introduction of

multi-page datasets marked a significant evolu-
tion in the field. SlideVQA (Tanaka et al., 2023)
pioneered questions spanning multiple presenta-
tion slides, while MP-DocVQA (Tito et al., 2023)
extended document coverage to up to 20 pages.
DUDE (Van Landeghem et al., 2023) enriched
the challenge by introducing diverse answer types,
including lists and arithmetic problems. SPIQA
(Pramanick et al.) specifically targeted academic
content, requiring sophisticated understanding of
scientific figures and plots.
Long-Form Document Understanding: As
MLLMs demonstrated increasing capability in han-
dling standard DocVQA tasks, more challenging
benchmarks emerged. MMLongBench-Doc (Ma
et al.) represents the current frontier, testing mod-
els’ ability to reason over long-form documents
with complex, multi-step questions. However, none
of these datasets specifically target the challenge
of locating and reasoning about minute details
within larger document contexts—the gap our NiM-
Benchmark aims to address.

A.1.3 Methods in Document Understanding
The methodological approach to document under-
standing has seen several paradigm shifts:
OCR and Layout-Aware Models: Early ap-
proaches relied heavily on OCR-based pipelines
(Subramani et al., 2020), treating text and visual
elements separately. The introduction of layout-
aware models like LayoutLM and its variants (Xu
et al., 2020b,a; Huang et al., 2022) marked a signif-
icant advance by incorporating spatial information
and document structure into the modeling process.
End-to-End Multimodal Models: The emergence
of powerful MLLMs (Team et al., 2023; Driess
et al., 2023; Peng et al., 2023; OpenAI, 2023) has
enabled end-to-end document understanding ap-
proaches. Recent methods like CREAM (Zhang
et al., 2024b) and CFRET (Zhang et al., 2024a)
have demonstrated strong performance across vari-
ous DocVQA tasks.
Retrieval-Augmented Generation: For larger
documents, retrieval-augmented generation (RAG)
has emerged as a crucial technique. Methods like
ColPali (Faysse et al., 2024b) and M3DocRAG
(Cho et al., 2024a) have shown promise in effi-
ciently handling large document collections. How-
ever, these approaches often process entire docu-
ment regions without considering information gran-
ularity, leading to inefficiencies when answers lie
in small, specific regions.
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Benchmarks # Pages/
Document

Unanswerable
Questions

Granular
Questions

Document
Relevance

Answer
Source

Domains

DocVQA (Mathew et al., 2021) 1 ✗ ✗ ✗ TXT/L/C/TAB/I Industry Docs
ChartQA (Masry et al., 2022) 1 ✗ ✗ ✓ C Statista, Pew, OWID, OECD

InfoVQA (Mathew et al., 2022) 1.2 ✗ ✗ ✗ L/C/TAB/I Infographics Browsing
TAT-DQA (Zhu et al., 2022) 1.1 ✗ ✗ ✗ TXT/TAB Finance Reports

DUDE (Van Landeghem et al., 2023) 5.7 ✓ ✗ ✗ TXT/L/C/TAB/I Books, Media, Public Docs
MP-DocVQA (Tito et al., 2023) 8.3 ✗ ✗ ✗ TXT/L/C/TAB/I Industry Docs

ArxiVQA (Li et al., 2024a) 1 ✗ ✗ ✗ L/C/I Scientific papers
SlideVQA (Tanaka et al., 2023) 20 ✗ ✗ ✗ TXT/L/C/TAB/I SlideDecks

MMLONGBENCH-DOC (Ma et al.) 47.5 ✓ ✗ ✓ TXT/L/C/TAB/I Research and Financial
Reports, Academic Papers,

Industry Files

NiM-Benchmark (Ours) 29 ✓ ✓ ✓ TXT/L/C/TAB/I Menus, Academic Papers,
Magazines, Website SS,

Lectures SS, Newspapers

Table 3: Comparison of benchmarks based on document-level attributes and question types. SS is Screenshots

Figure 3: Spot-IT method comparison with existing methods.We highlight failure cases of existing methods and
illustrate how Spot-IT effectively overcomes these challenges.

Figure 3 shows a comparison of our method,
Spot-IT, with existing methods.

A.1.4 Fine-Grained Visual Analysis and
Attention Mechanisms

While fine-grained visual analysis has been exten-
sively studied in natural images, its application to
documents presents unique challenges:
Visual Prompting: Recent work in visual prompt-
ing (Wu et al., 2024) has shown promising results
in directing model attention. Techniques including
bounding boxes (Lin et al., 2024), markers (Sht-
edritski et al., 2023), and pixel-level annotations
(Yang et al., 2023) have proven effective in natural
image understanding tasks.

Document-Specific Challenges: Documents
present unique challenges for fine-grained analysis
due to their hierarchical structure, complex layouts,
and the need to preserve both spatial and semantic
relationships. Our Spot-IT addresses these chal-
lenges through a novel question-guided attention
mechanism that adapts visual prompting techniques
specifically for document understanding tasks.

A.2 Additional Results

Table 5 presents our systematic optimization of the
Spot-IT framework. In our comparison of CLIP
and SigLIP for patch-query similarity, SigLIP con-
sistently outperforms CLIP, achieving an accuracy
of 0.59 compared to 0.56. Table 6 reports the effect
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Figure 4: Accuracy and response time comparison
of GPT-4o and GPT-4o + Ours on (a) ArxiVQA, (b)
DUDE, and (c) NiM-Benchmark.

of varying the number of patches (N ), showing
that accuracy increases with N and peaks at N=7
(0.61), before slightly declining at N=8 (0.60).
We select N=6 (0.59 accuracy) to ensure better
generalizability, striking a balance between strong
performance and avoiding potential overfitting at
the peak.

Tables 4 present comprehensive evaluation re-
sults across multiple document understanding
benchmarks. It shows consistent improvements
with our method over GPT-4o across DocVQA,
InfoVQA, and ChartQA, each evaluated on 200
representative questions. For long document under-
standing, MMlongbench-doc results—evaluated on
54 samples across two runs—further validate the
effectiveness of our approach, showing improve-
ments across all metrics: Exact Match, F1, and
ANLS.1

A.3 Additional Figures and Tables
1. Table 7 provides a comprehensive overview

of the NiM-Benchmark dataset. Table 8
lists the data sources used to construct NiM-
Benchmark, while Table 9 outlines the distri-
bution of question categories across various
domains. This structured distribution ensures
a balanced representation of domain-specific
questions, enabling a thorough evaluation of
model performance in diverse scenarios.

2. Table 10 presents results from a Turing test,
comparing human-generated and machine-
generated responses across different question

1We used fewer samples for MMlongbench-doc due to
the high computational cost associated with long documents.
For similar reasons, we restricted our evaluation to the GPT-4o
model across all datasets.

Figure 5: Accuracy and response time comparison on
NiM-Benchmark (a) for GPT-4o, GPT-4o-mini, Gemini-
1.5-Flash, and human.

categories. These results offer insights into
the models’ capability to generate responses
that closely resemble human-like reasoning
and linguistic patterns.

3. Figure 4 illustrates a comparative performance
analysis between GPT-4o and its enhanced
variant (GPT-4o + Ours) across multiple well-
established benchmarks, including ArxiVQA,
DUDE, and NiD-Benchmark. The results
demonstrate that Spot-IT leads to a measur-
able improvement in accuracy across various
tasks. However, this gain comes at the cost of
slightly increased inference time, suggesting a
trade-off between performance enhancement
and computational efficiency.

4. Figure 5 provides an in-depth examination
of the performance gap between AI models
and human annotators on the NiD-Benchmark
dataset across different domains. The analy-
sis reveals that human responses consistently
achieve superior F1 and EM (Exact Match)
scores, while also exhibiting a longer aver-
age response time. This discrepancy under-
scores the limitations of existing AI models
in achieving human-level comprehension and
contextual reasoning, further motivating fu-
ture advancements in model architectures and
training paradigms.

A.4 Occlusion Sensitivity Analysis

MLLMs integrate both visual and textual modali-
ties to answer queries about images. Understanding
how these models focus on different parts of an im-
age is crucial for interpretability. We implement
an occlusion sensitivity method to identify critical
image regions that affect model predictions.
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Method DocVQA InfoVQA ChartQA MMlongbench-doc
EM F1 ANLS EM F1 ANLS EM F1 ANLS EM F1 ANLS

GPT-4o 0.70 0.85 0.73 0.50 0.54 0.49 0.29 0.32 0.29 0.34 0.44 0.42
GPT-4o + Our Method 0.73 0.88 0.74 0.52 0.56 0.50 0.30 0.32 0.29 0.37 0.48 0.45

Table 4: Performance (EM / F1 / ANLS) on DocVQA, InfoVQA, ChartQA, and MMlongbench-doc datasets.

Model ACC

GPT-4o 0.53
GPT-4o + Spot-IT(CLIP) 0.56
GPT-4o + Spot-IT(SigLIP) 0.59

Table 5: Accuracy scores for ArxivQA to compare
Siglip and Clip for similarity matching of patch and
query

Method Acc

GPT-4o 0.53
Spot-IT + GPT-4o(N=3) 0.60
Spot-IT + GPT-4o(N=4) 0.58
Spot-IT + GPT-4o(N=5) 0.59
Spot-IT + GPT-4o(N=6) 0.59
Spot-IT + GPT-4o(N=7) 0.61
Spot-IT + GPT-4o(N=8) 0.60

Table 6: Effect of Number of Patches (N) on Accuracy
Score for ArxivQA

A.4.1 Model and Dataset

The Qwen2-VL model (Wang et al., 2024) is em-
ployed for answering image-based queries. The
dataset used is the ArxiVQA dataset..

A.4.2 Occlusion Sensitivity Analysis

Given an image I of size (W,H) and a query Q, we
systematically occlude square patches of the image
and measure the change in response probability.
The procedure is as follows:

1. Compute the model’s original response proba-
bility Porig.

2. Slide an occlusion window of size S×S with
stride T over the image.

3. Replace the windowed region with a neutral
color (e.g., black or gray).

4. Compute the new response probability Pocc

after occlusion.
5. Compute the sensitivity score as:

S(x, y) = Porig − Pocc (12)
where (x, y) are the coordinates of the oc-
cluded patch.

6. Generate a heatmap from S(x, y) values and

apply Gaussian smoothing.

A.4.3 Probability Calculation

To determine the probability of a model’s response,
the output logits are converted into probabilities
using the softmax function:

P (y) =
ezy∑
i e

zi
(13)

where zy is the logit corresponding to the gener-
ated response.

A.5 Extended Spot-IT Error Analysis

We analyze our method on ArxivQA using GPT-4o
on 500 samples, where 200 samples were incorrect.
We randomly selected 50% of these samples and
categorized the errors as follows:

• Dataset Error (19 cases): The dataset had 14
cases of incorrect or ambiguous ground-truth
answers, and some questions lacked the nec-
essary context, leading to unavoidable evalua-
tion errors.

• Retrieval Error (22 cases): The retrieval
module (Faysse et al., 2024a) failed to fetch
relevant information, leading to incorrect an-
swers.

• Patch Formation (25 cases): The patch was
incorrectly formed due to a static grid size,
leading to improper image cropping and loss
of answer context, which caused incorrect
matching with the query.

• Patch Selection (26 cases): Incorrect seman-
tic similarity matching occurred between the
patch and the input query due to the query’s
complexity.

• LLM Fault (8 cases) Despite having the
correct patched image, the Large Language
Model sometimes fails to provide the correct
answer, particularly for complex questions.

A.6 Extended NiM-Benchmark Error
Analysis

We evaluate the performance of NiM-Benchmark
on GPT-4o by randomly selecting 20 samples from
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Figure 6: Occlusion Sensitivity Analysis(OSA) comparison with Spot-IT. Demonstrating the correlation between
where the MMLLM searches for the answer and where Spot-IT highlights the images to assist MMLLMs.

all 6 domains domain and categorized them as fol-
lows:

• Incomplete Evidence (47 cases): MLLM is
not able to find an evidence to answer the
question.

• Hallucinated Evidence (28 cases):MLLM is
either answering unanswerable questions or
hallucinating the response.

• Perceptual Error (24 cases): MLLMs strug-
gle to perceive details such as incorrect dec-
imal placements, leading to inaccurate an-
swers.

• Reasoning Error (25 cases): MLLMs strug-
gle to reason accurately, often selecting the
first piece of evidence in the relevant section
without verifying its correctness.

• Irrelevant Answer (5 cases): MLLM is not
able to reason deeply and relies on pattern
matching, leading to irrelevant answers. It
often prioritizes the most prominent or recent
context, resulting in inaccurate responses.

• Knowledge Lacking (1 case): MLLMs may
lack knowledge due to outdated training data,
insufficient domain-specific information, or
limited context understanding. Additionally,
they may struggle with complex reasoning or

nuanced details not well-represented in the
training corpus.

Statistics

Domains 6 Categories 6
Newspapers 22 Academic Papers 32
Magazines 17 Lecture Shots 50
Web Shots 100 Menus 60
Pages/Images 2,970 Questions 1,180

Question Statistics Answer Statistics

Max Length 26 Max Length 19
Avg Length 10.96 Avg Length 1.92

Table 7: Dataset Statistics for NiM-Benchmark

A.7 Sample Illustrations from
NiM-Benchmark

Table 11 represents examples from NiM-
Benchmark encompassing multiple domains and
categories to support diverse research applications.
The dataset integrates visually rich images from
domains such as website screenshots, lecture slides,
restaurant menus, magazines, newspapers, and
research papers. Each instance is categorized into
Boolean, unanswerable, common sense, reasoning,
comparative, and inline question-answering tasks.
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Domain Source

Restaurant Menus Various Sources including Heathrow Restaurants, London Stansted Restaurants etc.
Academic Papers Arxiv (2024-2025)
Magazines freemagazines.top
Newspapers Times of India, The Hindu, Hindustan Times (2024-2025)
Website Screenshots CoVA dataset (Kumar et al., 2022)
Lecture Screenshots MIT 6.034 AI, Fall 2010 (MIT OCW)

Table 8: Data Sources used to construct the NiM-Benchmark dataset across different domains

Domain Count Domain Count Domain Count

News Paper Lectures Screenshots
Inline 199 Inline 48 Inline 203
Comparative 10 Comparative – Comparative –
Unanswerable 7 Unanswerable 15 Unanswerable 3
Reasoning – Reasoning 25 Reasoning 35
Boolean – Boolean 12 Boolean 5
Commonsense – Commonsense 2 Commonsense –
Total 216 Total 102 Total 246

Academic Paper Magazines Menus
Inline 185 Inline 180 Inline 143
Comparative 22 Comparative 9 Comparative 21
Unanswerable 8 Unanswerable 3 Unanswerable –
Reasoning 5 Reasoning 10 Reasoning –
Boolean – Boolean – Boolean 23
Commonsense – Commonsense – Commonsense 7
Total 220 Total 202 Total 194

Table 9: NiM-Benchmark Distribution of Question Categories Across Domains

A.8 Spot-IT Qualitative Examples
Figures 7, 8, and 9 present qualitative examples
from the NiM benchmark, demonstrating its ap-
plicability across diverse domains such as restau-
rant menus, website screenshots, and lecture slides.
These examples emphasize how NiM focuses on
fine-grained visual question answering, requir-
ing models to reason over localized and domain-
specific visual details. Furthermore, the effective-
ness of the proposed Spot-IT method is highlighted,
as it successfully identifies and highlights the query-
relevant regions in each image. By drawing atten-
tion to the most informative parts of the visual
input, Spot-IT facilitates better grounding for mul-
timodal large language models, thereby improving
their interpretability and VQA performance across
different real-world document types.
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Figure 7: An example from the restaurant menu domain in the NiM benchmark. The Spot-IT method accurately
highlights the query-relevant region.

Figure 8: An example from a website screenshot in the NiM benchmark.Spot-IT successfully localizes the visual
region relevant to the query.
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Ground Truth Gemini 2.0 Flash Human verifier 1
Predicted Human Predicted Machine Predicted Human Predicted Machine

Human 146 54 170 30
Machine 143 57 160 40
Total 289 111 330 70

Ground Truth Claude 3.5 Sonnet Human verifier 2
Predicted Human Predicted Machine Predicted Human Predicted Machine

Human 181 19 171 29
Machine 176 24 162 38
Total 357 43 333 76

Table 10: Turing Test and LLM as a Judge Results. We find that the generated questions in our NiM-Benchmark
are classified as human-generated with a moderately high agreement score

Figure 9: An example from the lecture screen shot domain in the NiM benchmark. Spot-IT effectively highlights
the query-specific portion of the blackboard.
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Domain Category Image Region of Interest Question Answer

Website
Screen
Shot

Boolean The game
"Greedy
Granny"
and "Baby
Shark" are
priced the
same
(True/-
False)?

False

Lecture
Screen
Shot

Unanswerable Who
Hugged
Chris?

Information
not avail-
able

Restaurant
Menus

Common
Sense

Is the
Nawarattan
Korma dish
vegetarian?

Yes

Magazines Reasoning What is the
estimated
price of
Thermo’s
stock if it
trades at 25
times 2026
earnings?

$654

News
Papers

Comparative What was
the record
low value
of the rupee
against the
dollar?

85.07

Research
Papers

Inline What is the
value of m
in the De-
composer’s
MLP?

4

Table 11: Sample Illustrations from NiM-Benchmark. Question-answer pairs across different domains, including
the question, required context, question category, and relevant region of interest to find the answer.
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A.9 All LLM Prompts Used for Evaluation and Dataset Generation

A.9.1 Prompt for Document VQA Evaluation
This prompt assesses a model’s ability to answer questions based solely on document images, without
external knowledge. Responses should be concise (preferably a single word or number). If the information
is unavailable, the model should respond with "Information not available."

A.9.2 Customized Prompt for Document VQA Evaluation
This variant prioritizes information in blue-highlighted regions, considering the entire image only if
necessary. Constraints on external knowledge, concise responses, and handling of missing information
remain unchanged.

A.9.3 QA Generation Prompt for NiM-Benchmark
This prompt generates precise, challenging questions from document images. Each question should be
natural, answerable from a small document portion, and uniquely identifiable. Necessary context must be
explicit, avoiding vague references.
Only 2–3 high-quality questions per document should be produced; otherwise, output "NA." The output
follows a structured JSON format for consistent benchmarking.

Prompt for Document VQA Evaluation (Ma et al.)
Task:
[Images]
Read the above Images and answer this question
Instructions:

• DO NOT use external knowledge.

• Provide a one-word or numerical answer if possible.

• If information is unavailable, state "Information not available."

Customized Prompt for Document VQA(for Spot-IT) Evaluation
Task:
[Images]
Read the above Images and answer this question

Focus on the BLUE Highlighted area in images as it is more relevant to
the query. First, try to answer only using the highlighted area, and if not
found, then, consider whole image
Instructions:

• DO NOT use external knowledge.

• Provide a one-word or numerical answer if possible.

• If information is unavailable, state "Information not available."

QA Generation Prompt for NiM-Benchmark Benchmark
Task:
[Images]
You are very good in question making from documents. I am giving you a task to
make some questions from some pages from a document.
Instructions:
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• The questions should be precise. Each question should be answerable from a
very small portion of the document and relevant to the textual and visual
elements of the provided image.

• Questions should be natural and easy to understand. yet,questions should
be challenging enough that even you would find them difficult to answer
immediately.

• Ensure the questions are open-domain so that even if multiple documents are
provided, the question remains uniquely identifiable and answerable.

• Include all necessary information to make the question unique and answerable.
Avoid vague references like "according to the given article" or "mentioned
in the article". Explicitly include the full information if needed.

• Create only 2-3 high-quality questions. If a quality question cannot be
made, return "NA". However, ensure that effort is made to create a good
question.

• Accepted Questions:
- "Question": "Who accused AAP of supporting ’terrorist sympathizers’ during
Punjab elections?"
"Answer":Anurag Thakur"
- "Question": "What was the altitude of Sandakphu where the tourist died?"
"Answer": "11,900 feet"

• Rejected Questions:
- "Question": "Who is the alleged associate of Partha Chatterjee mentioned
in the article?"
Don’t make such questions that reference the artcile.
- "Question": "Which company is prominent in biodiversity monitoring using
AI?"
Such question is not acceptable because it is document specific. There can
be multiple answers.

• Stick to the above format. If you are unable to create quality questions,
return NA.

Output Format (JSON):

{
"questions": [

{
"question": "the question",
"answer": "the answer"

},
...

]
}
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