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Abstract

Large language models (LLMs) have become
increasingly central to AI applications world-
wide, necessitating robust multilingual safety
alignment to ensure secure deployment across
diverse linguistic contexts. Existing prefer-
ence learning methods for safety alignment,
such as RLHF and DPO, are primarily mono-
lingual and struggle with noisy multilingual
data. To address these limitations, we intro-
duce Multilingual reward gaP Optimization
(MPO), a novel approach that leverages the
well-aligned safety capabilities of the domi-
nant language (e.g., English) to improve safety
alignment across multiple languages. MPO
directly minimizes the reward gap difference
between the dominant language and target lan-
guages, effectively transferring safety capabili-
ties while preserving the original strengths of
the dominant language. Extensive experiments
on three LLMs, LLaMA-3.1, Gemma-2 and
Qwen2.5, validate MPO’s efficacy in multilin-
gual safety alignment without degrading gen-
eral multilingual utility. Our code is available
at: https://github.com/circle-hit/MPO.
WARNING: This paper may contain content
that is offensive and harmful.

1 Introduction

Large language models (LLMs) are increasingly
driving global applications (Brown et al., 2020;
Touvron et al., 2023a,b; Jiang et al., 2023; Dubey
et al., 2024; Team et al., 2024), enabling users from
diverse linguistic and cultural backgrounds to ac-
cess the benefits of AI advancements (Zhao et al.,
2024b; Zheng et al., 2024a; Luo et al., 2024a; Xia
and Luo, 2025). In this context, achieving multilin-
gual safety alignment is crucial to ensuring secure
deployment across various languages (Kanepajs
et al., 2024; Friedrich et al., 2024). However, re-
cent studies highlight substantial differences in the
safety challenges faced by LLMs across various
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languages, with models being more prone to gen-
erate unsafe responses in low-resource languages.
(Yong et al., 2023; Deng et al., 2024; Wang et al.,
2024c; Shen et al., 2024).

To mitigate such challenge, one straightforward
solution is to conduct safety preference alignment
for each language, with methods like reinforcement
learning from human feedback (RLHF) (Ouyang
et al., 2022) or direct preference optimization
(DPO) (Rafailov et al., 2023).

However, a key issue is the scarcity of multi-
lingual data available (Ahmadian et al., 2024; Wu
et al., 2024c; Hong et al., 2024a). Though off-
the-shelf translation tools could be employed to
generate training data in various languages, the re-
sulting translations—especially for low-resource
languages—are often noisy, riddled with unusual
phrasing and inaccurate content (Zhang et al.,
2024b; Liu et al., 2024a). On the other hand, cur-
rent prevailing preference learning paradigms are
highly sensitive to noisy data (Bai et al., 2022;
Wang et al., 2024a; Chowdhury et al., 2024; Alfano
et al., 2024). In some cases, such noise-induced
errors may even cause safety misalignment (Shen
et al., 2024; Razin et al., 2024), further exacerbat-
ing multilingual safety concerns.

To address this challenge, we first conduct an em-
pirical analysis on several widely-used LLMs, in-
cluding LLaMA-3.1 (Dubey et al., 2024), Gemma-
2 (Team et al., 2024), and Qwen2.5 (Yang et al.,
2024a), which have undergone sufficient safety
alignment for their dominant language (typically
English). We identify a crucial pattern: the implicit
reward gap—defined as the log-likelihood differ-
ence between safe and unsafe responses—strongly
correlates with multilingual safety performance.
The dominant language (English) exhibits a sub-
stantially larger reward gap (RG) compared to low-
resource ones, directly corresponding to its superior
safety performance measured by Attack Success
Rate (ASR). This inverse RG-ASR relationship es-
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Figure 1: Top: Current preference learning methods
optimize noisy multilingual preference data. Bottom:
Our MPO directly minimizes the discrepancy of reward
gap across different languages.

tablishes the reward gap as a quantifiable indicator
of safety alignment quality across languages.

Building on these insights, we propose
Multilingual reward gaP Optimization (MPO), a
novel alignment paradigm for multilingual safety
challenge that transfers safety capabilities from
well-aligned dominant languages to others through
reward gap optimization. As shown in Figure 1, un-
like conventional preference learning approaches
that attempt to directly optimize noisy multilin-
gual preference data, MPO instead minimizes the
discrepancy between the dominant language’s ro-
bust and well-established reward gap and target lan-
guages’ weaker alignment signals. To preserve the
capabilities of the dominant language from degra-
dation, we also incorporate constraints that main-
tain its hidden representations largely intact.

Our extensive experiments on LLaMA-3.1-8B-
Instruct, Gemma-2-9B-it and Qwen2.5-7B-Instruct,
showcase the efficacy and scalability of MPO in
multilingual safety alignment over current prefer-
ence learning methods without compromising the
general multilingual utility. Deeper analysis reveals
that MPO consistently outperforms across training
datasets of varying quality. This further confirms
that the reward gap of the dominant language serves
as a more reliable and scalable supervision signal
for effective multilingual safety alignment.

The main contributions of this work are summa-
rized as follows:

• We propose to leverage the well-aligned safety
capabilities of the dominant language as a high-
quality supervision signal for multilingual safety

alignment.

• We propose MPO, which directly minimizes the
reward gap difference between the dominant lan-
guage and target languages, enabling effective
multilingual safety alignment.

• Experiments on three backbones demonstrate the
superior performance of MPO over existing pref-
erence learning methods.

2 Preliminaries

In this section, we first introduce the formulation
for the implicit reward gap re-parameterized by
DPO (§2.1), as well as its improvements and opti-
mizations in SimPO (§2.2). Specifically, we offer
their corresponding interpretations in the context
of multilingual safety alignment.

2.1 Direct Preference Optimization (DPO)
DPO (Rafailov et al., 2023) is one of the most
widely used methods for preference learning in
LLM alignment. Unlike approaches that involve
training an explicit reward model (Ouyang et al.,
2022), DPO re-parameterizes the implicit reward
function r using a closed-form expression derived
from the Bradley-Terry (BT) model (Bradley and
Terry, 1952) with the optimal policy:

r(x, y) = β log
πθ(y | x)
πref(y | x) + β logZ(x), x (1)

where πθ is the policy model, πref is the reference
model, typically the supervised fine-tuned (SFT)
checkpoint, β is a hyper-parameter and Z(x) is the
partition function.

In the context of multilingual safety alignment,
the reward gap of the backbone model between safe
and unsafe responses in different languages t can
be expressed as:

RGt = r(xt, yt
w)− r(xt, yt

l )

= β log
πθ(y

t
w|xt)

πref(yt
w|xt)

− β log
πθ(y

t
l |xt)

πref(yt
l |xt)

(2)

where the triplet (xt, ytw, y
t
l ) are preference pairs

related to safety concerns in language t, consisting
of the input query xt, the preferred (safe) response
ytw, and the dispreferred (unsafe) response ytl .

2.2 Simple Preference Optimization (SimPO)
As pointed out by SimPO (Meng et al., 2024), us-
ing Eq. (1) as the implicit reward has the following
drawbacks: it creates a mismatch between the re-
ward optimized in training and the log-likelihood
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En Zh Ko Ar Bn Sw

LLaMA-3.1 RG↑ 1.58 0.36 0.29 0.60 0.04 0.05
ASR↓ 9.00 22.00 50.00 15.00 55.00 57.00

Gemma-2 RG↑ 2.32 0.69 0.44 0.76 0.42 0.41
ASR↓ 0.00 9.00 14.00 4.00 24.00 26.00

Qwen-2.5 RG↑ 1.87 1.81 0.69 0.78 0.14 0.20
ASR↓ 13.00 9.00 21.00 20.00 69.00 98.00

Table 1: Results of reward gap (RG) and safety per-
formance across six languages. The evaluation metric
used for safety is the Attack Success Rate (ASR), where
lower values indicate better performance. Results of the
dominant languages are highlighted in bold.

optimized during inference. To address this issue,
SimPO considers using the average log-likelihood
as the implicit reward:

r(x, y) = pθ(y | x) = 1

|y| log πθ(y | x) (3)

Accordingly, the reward gap is formulated as:

RGt =
1

|yt
w|

log πθ(y
t
w | xt)− 1

|yt
l |
log πθ(y

t
l | xt) (4)

We posit that, compared with Eq. (2), the reward
gap in Eq. (4) provides a more accurate measure
of safety performance differences across languages
due to the following reasons: (1) It aligns with the
likelihood metric that governs response generation,
where a larger reward gap signifies a higher proba-
bility of producing safe responses over unsafe ones,
serving as a direct indicator of safety performance.
(2) Length normalization mitigates reward errors
caused by length bias (Singhal et al., 2023; Park
et al., 2024)—unsafe responses, which frequently
include specific harmful content, are often longer
than safe responses, which typically exhibit con-
cise refusal patterns. Please refer to Appendix A
for more emperical evidence and discussion.

3 Multilingual Reward Gap Optimization

In this section, we first demonstrate the relationship
between the reward gap and the multilingual safety
performance for different languages on three back-
bone LLMs (§3.1). Then, we derive the MPO ob-
jective (§3.2) and perform gradient analysis (§3.3).

3.1 Reward Gap across Languages
Models We select two English-centric LLMs:
LLaMA-3.1-8B-Instruct (Dubey et al., 2024) and
Gemma-2-9B-it (Team et al., 2024) and one bilin-
gual LLMs: Qwen2.5-7B-Instruct (Yang et al.,
2024a), to demonstrate the reward gap (Eq. (4)) on
safety issues across different languages.

Languages We select six languages for evalua-
tion based on the availability of language resources.
The high-resource languages are English (En) and
Chinese (Zh); the medium-resource languages are
Korean (Ko) and Arabic (Ar); and the low-resource
languages are Bengali (Bn) and Swahili (Sw). For
LLaMA-3.1-8B-Instruct and Gemma-2-9B-it, En
serves as the dominant language, while that for
Qwen2.5-7B-Instruct is En and Zh.

Data We utilize the PKU-SafeRLHF dataset (Ji
et al., 2024) for the reward gap evaluation across
languages. This dataset comprises high-quality
English preference pairs focused on safety-related
questions. To extend its scope, we randomly sam-
ple 100 instances and translate them into each tar-
get language using the Google Translate API. Sub-
sequently, we query LLMs directly with these mul-
tilingual inputs. The reward gap is computed using
Eq. (4), while safety performance is evaluated
based on the Attack Success Rate (ASR).

Analysis According to the results in Table 1, we
can draw two key insights:

• Inverse relationship between RG and ASR:
Higher RG corresponds to lower ASR, indicat-
ing better safety performance. This demonstrates
that RG can, to some extent, reflect the safety
performance of LLMs in a specific language.

• Safety performance varies significantly across
languages: As reflected in RG values, lower-
resource languages exhibit significantly lower
RG compared to high-resource dominant ones,
underscoring critical safety concerns in lower-
resource settings.

3.2 The MPO Objective
Based on the above insights, we propose a novel
method for multilingual safety alignment called
Multilingual reward gaP Optimization (MPO). It
takes the high-quality and well-aligned RG of the
dominant language in LLMs as the pivot and aligns
the RG of the target language to it. This facilitates
the transfer of the dominant language’s safety ca-
pabilities to the target language. This process can
be formulated as:

L1 = E(x,yw,yl)∼D

[∥∥∥β RGt − RGd
∥∥∥
2
]

(5)

where t and d represent target and dominant lan-
guages, respectively. β functions to balance and
stabilize the optimization (Haarnoja et al., 2018).
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And RG is calculated by:

RGt =
1

|yt
w|

log πθ(y
t
w|xt)− 1

|yt
l |
log πθ(y

t
l |xt) (6)

RGd =
1

|yd
w|

log πref(y
d
w|xd)− 1

|yd
l |

log πref(y
d
l |xd) (7)

where the triplets (xt, ytw, y
t
l ) and (xd, ydw, y

d
l ) are

preference pairs derived from target and dominant
languages, respectively. Here, πθ denotes the pol-
icy model, while πref serves as the reference model.

To ensure that the capabilities of the dominant
language are not compromised, we constrain the
representations of dominant language (at the posi-
tion of the last token) to remain largely intact:

L2 = Exd∼D

[∥∥∥hd − hd
ref

∥∥∥
2
]

(8)

where hd
ref is the representation of dominant lan-

guage xd obtained from the reference model. In-
spired by recent empirical findings suggesting that
modifying the hidden representations of LLMs is
more effective for behavior control (Zou et al.,
2023), we choose to constrain these representations
directly, rather than applying KL-based regulariza-
tion on logits (Ziegler et al., 2019).

The final optimization objective of MPO is:

L = L1 + L2 (9)

3.3 What does the MPO update do?
The gradient for the learning of target languages
with respect to the parameter θ can be written as:

∇θ L1(θ) = 2β E(x,yw,yl)∼D

(
wθ ∇θ RGt(θ)

)
(10)

where ∇θ RGt(θ) increases the likelihood of the
preferred (safe) response ytw and decreases the like-
lihood of dispreferred (unsafe) response ytl for the
target language, which is computed by:

∇θ RGt(θ) =
1

|yt
w|

∇θ log πθ

(
yt
w | xt)

− 1

|yt
l |
∇θ log πθ

(
yt
l | xt) (11)

And we have wθ = β RGt(θ)− RGd, which com-
pares the reward gap between the target language
β RGt and the dominant language RGd. This
weight enables the model to adjust both the mag-
nitude and direction of its gradient updates, while
the extent of gradient descent is not dictated by
the model’s likelihood on the dataset. Thus, RGd

effectively sets the goal for how strongly the model
should discriminate between ytw and ytl in target
languages. Please refer to Appendix C for the
derivation and detailed discussions.

4 Experiments

4.1 Experimental Setup
Models We use the same three backbones as in
§3.1 to fully validate the efficacy and scalability of
our MPO in safety alignment across languages.

Languages to be Safety Aligned We select six
target languages, reflecting diverse linguistic fam-
ilies and resource levels. The high-resource lan-
guages are Chinese (Zh) and Japanese (Jp); the
medium-resource languages are Korean (Ko) and
Arabic (Ar); and the low-resource languages are
Bengali (Bn) and Swahili (Sw). For LLaMA-
3.1-8B-Instruct and Gemma-2-9B-it, English (En)
serves as the dominant language, while that for
Qwen2.5-7B-Instruct is En and Zh.

It is crucial to note that these target languages
are deemed out-of-scope by the official model
providers of the three backbones, who stress the
importance of additional alignment efforts to guar-
antee safe and responsible deployment.

Training Data We sample 100 data points from
PKU-SafeRLHF dataset (Ji et al., 2024) and trans-
late them into each target language using the
Google Translate API. This leads to that all meth-
ods are trained under the same 700 pairs of prefer-
ence data. Details about the training data can be
found in Appendix D. A comprehensive discussion
on the effects of various translation tools and data
volumes is provided in §5.2.

Benchmarks To comprehensively measure the
efficacy of MPO on various safety scenarios, we
employ 3 benchmarks for evaluation, including two
multilingual jailbreak datasets: MultiJail (Deng
et al., 2024) and Advbench-X (Yong et al., 2023),
and one code-switch attack dataset: CSRT (Yoo
et al., 2024). We use the Attack Success Rate
(ASR) as our evaluation metric, calculated accord-
ing to the evaluation pipeline proposed by Deng
et al. (2024) with GPT-4o. Only meaningful re-
fusal responses, excluding unrelated ones, are con-
sidered as failed attacks. As justified by Deng
et al. (2024), this evaluation pipeline combining
translation and GPT-4 classification achieves strong
agreement with human annotations, with a Cohen’s
kappa score of 0.86, indicating a high level of align-
ment. Please refer to Appendix E for the detailed
description of the evaluation setups.

Baseline Methods We compare MPO with su-
pervised finetuning (SFT) (Ouyang et al., 2022)
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MultiJail AdvBench-X CSRT
En Zh Ko Ar Bn Sw AVG. En Zh Jp Ko Ar Bn Sw AVG. -

LLaMA-3.1 14.60 20.32 52.38 16.83 49.52 37.78 31.91 1.54 12.5 17.89 19.23 6.15 40.12 48.56 20.86 18.10

SFT 12.70 9.84 31.43 8.57 31.75 39.37 22.28 5.19 1.73 2.31 10.38 3.08 18.23 17.27 8.31 13.65
DPO 6.35 3.17 15.87 2.54 22.86 37.14 14.65 0.77 1.15 2.88 5.58 0.38 8.83 18.23 5.40 5.71
IPO 7.62 5.08 24.44 2.22 36.51 38.73 19.10 0.38 0.77 3.65 8.85 0.96 10.36 21.88 6.69 3.49
rDPO 15.24 14.13 44.29 18.73 50.79 56.83 33.34 6.35 5.77 3.85 11.54 8.08 60.65 56.62 21.84 11.43
CPO 22.85 41.26 29.21 38.10 66.98 66.98 44.23 1.35 2.69 3.85 5.78 1.35 20.96 29.23 9.32 19.37
KTO 4.76 6.67 21.59 4.76 30.79 42.86 18.57 0.58 0.96 3.27 8.46 1.92 11.35 22.84 7.05 7.31
ORPO 9.52 2.86 15.24 1.27 18.73 21.27 11.48 0.19 0.00 0.19 1.35 0.58 11.54 10.75 3.51 3.91
R-DPO 10.16 14.29 35.87 9.84 42.22 46.67 26.51 3.85 3.27 22.31 3.27 5.19 7.49 54.32 14.24 11.43
SimPO 9.21 8.25 30.48 7.30 40.63 42.22 23.02 5.77 3.46 11.73 17.69 5.19 28.94 21.25 13.43 7.62

MPO (Ours) 2.22 0.95 4.76 1.90 12.38 10.79 5.98 0.00 0.19 0.38 2.88 0.00 7.10 5.37 2.27 1.59

Gemma-2 2.54 9.52 14.61 4.13 20.32 14.60 10.95 0.96 1.15 3.08 5.00 3.85 6.72 5.18 3.71 4.76

SFT 2.86 4.44 13.02 4.76 23.17 12.38 10.11 0.19 0.77 1.92 4.42 2.50 5.00 4.22 2.72 5.74
DPO 2.23 7.30 10.79 6.35 23.82 13.33 10.64 0.38 1.73 1.54 3.46 3.08 5.03 3.84 2.72 5.71
IPO 2.86 8.89 16.19 5.08 18.41 14.92 11.06 0.77 1.54 2.50 4.42 3.65 8.25 5.18 3.76 6.37
rDPO 2.54 8.25 14.92 6.35 20.61 14.92 11.27 0.96 1.15 3.27 4.62 3.27 8.45 5.18 3.84 7.62
CPO 3.17 6.67 8.57 4.13 19.68 13.65 9.31 0.38 1.15 1.54 3.85 4.04 6.53 5.57 3.29 5.71
KTO 2.23 6.67 13.97 3.49 20.95 14.92 10.37 0.58 1.15 1.92 4.22 3.08 6.14 4.22 3.04 4.78
ORPO 3.17 6.03 10.16 5.71 17.14 10.48 8.78 0.38 1.54 0.96 2.88 2.12 5.84 4.26 2.57 6.67
R-DPO 3.81 7.62 12.70 6.35 28.25 13.97 12.12 0.58 1.92 4.42 4.81 3.46 7.68 4.80 3.95 6.03
SimPO 2.54 8.57 15.56 4.44 20.95 15.87 11.32 0.58 1.35 2.69 4.42 3.46 7.10 4.61 3.46 6.67

MPO (Ours) 0.63 4.76 6.98 3.81 16.51 7.94 6.77 0.38 0.96 0.19 2.50 2.69 4.22 2.88 1.97 1.90

Table 2: Detailed results on three multilingual safety benchmarks are presented. The evaluation metric used is
the Attack Success Rate (ASR), where lower values indicate better performance. The best results achieved by our
method and baselines are highlighted in bold, while the second-best results are underlined.

MT-Bench M-MMLU MGSM

En Mul. En Mul. En Mul.

LLaMA-3.1 7.31 4.81 67.70 45.35 88.00 40.13
+ MPO 7.25 4.92 67.10 44.67 88.00 44.67

Gemma-2 7.71 6.60 73.40 55.97 90.00 72.93
+ MPO 7.83 6.63 73.40 55.92 90.80 74.80

Table 3: Results of the multilingual utility evaluation.
En denotes the performance of the dominant language,
while Mul. represents the average performance across
six target languages: Zh, Jp, Ar, Ko, Bn and Sw.

and the following preference optimization meth-
ods: DPO (Rafailov et al., 2023), IPO (Azar et al.,
2024), rDPO (Chowdhury et al., 2024), CPO
(Xu et al., 2024b), KTO (Ethayarajh et al., 2024),
ORPO (Hong et al., 2024b), R-DPO (Park et al.,
2024) and SimPO (Meng et al., 2024). Please refer
to Appendix F for the detailed description of the
baseline methods.

Implementation Details All training experi-
ments are conducted on 8 A100 GPUs using the
LLaMA-Factory (Zheng et al., 2024b). And our
MPO is also implement based on this repo. For
distributed training, we leverage the DeepSpeed
(Rasley et al., 2020) with ZeRo-2 optimization. For
more details, please refer to the Appendix G.

4.2 Overall Evaluation

Table 2 demonstrates the performance compari-
son of MPO and baselines based on LLaMA-3.1-
8B-Instruct and Gemma-2-9B-it. Please refer to
Appendix H.1 for more results on Qwen2.5-7B-
Instruct. From the results across all backbones, we
have drawn the following key insights:

MPO exhibits robust and consistent perfor-
mance across various benchmarks and back-
bone models. It consistently surpasses all pref-
erence learning methods across three backbone
LLMs and benchmarks, highlighting its outstand-
ing safety alignment capabilities and scalability.

MPO excels in low-resource languages. Exist-
ing baseline methods often exhibit biased perfor-
mance, disproportionately benefiting high-resource
languages (e.g., Zh and Jp) and those where the
model already demonstrates strong safety align-
ment (e.g., Ar). In contrast, MPO achieves com-
prehensive and significant improvements, particu-
larly in low-resource languages (e.g., Bn and Sw).
This highlights the effectiveness of leveraging high-
quality internal safety alignment signals instead of
relying exclusively on uneven preference data.

MPO maintains multilingual utility. Multilin-
gual safety alignment should not compromise the
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MultiJail MT-Bench
En Zh Ko Ar Bn Sw AVG. En Zh Jp Ko Ar Bn Sw AVG.

MPO 2.22 0.95 4.76 1.90 12.38 10.79 5.98 7.25 5.32 5.26 5.44 5.38 4.11 4.01 5.25

w/o Retain 2.23 0.63 1.90 0.95 10.16 13.33 4.87 7.19 5.09 4.41 5.27 4.79 3.46 3.79 4.86
w/ KL 14.60 22.54 58.73 22.54 58.10 75.87 42.06 7.41 5.33 5.16 5.58 5.38 4.28 4.11 5.32
w/o LN 17.78 26.67 57.46 26.67 65.08 77.14 45.13 7.41 5.61 5.29 5.53 5.38 4.31 4.31 5.41

Table 4: Ablation results on the key components of MPO. The best results are highlighted in bold.
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Figure 2: The results of replacing the dominant lan-
guage reward gap with a fixed value on multilingual
safety and general utility performance.

model’s multilingual general utility. Thus, we
evaluate the resulting model across three key di-
mensions: (1) World Knowledge: M-MMLU
(Hendrycks et al., 2021), (2) Reasoning: MGSM
(Shi et al., 2023), and (3) Multi-turn Instruction-
Following: MT-Bench (Zheng et al., 2023). The
results in Table 3 show that MPO consistently main-
tains the general utility of both the dominant and
target languages. For detailed results, evaluation
settings and the comparison with baseline methods,
please refer to Appendix H.2.

5 Analysis and Discussions

In this section, we offer a comprehensive analysis
of MPO from: (1) ablation studies (§5.1), (2) the
influence of preference data quality and quantity
(§5.2), and (3) the rewards, representations, and
case visualizations of the resulting model (§5.3).
Unless stated otherwise, all analysis are conducted
using the LLaMA-3.1 backbone.

5.1 Ablation Study

Effect of Reward Gap from the Dominant Lan-
guage as the Supervision Signal To assess the
effectiveness of using the reward gap from the dom-
inant language as an alignment objective, we con-
duct ablation experiments where we replace it with
either a fixed constant or the reward gap of other
languages. We also compare MPO against recent

MultiJail

En Zh Ko Ar Bn Sw AVG.

LLaMA-3.1 14.60 20.32 52.38 16.83 49.52 37.78 31.91

Align with Ar 6.98 6.67 20.00 4.13 17.78 46.35 16.99
Align with Bn 35.56 41.91 72.07 51.75 63.49 84.44 58.20
Align with Sw 20.63 30.16 53.97 26.35 53.97 81.90 44.50

MPO 2.22 0.95 4.76 1.90 12.38 10.79 5.98

Table 5: Multilingual safety performance when replac-
ing reward gap with that from Ar, Bn and Sw as the
supervision signal. The evaluation metric is the Attack
Success Rate (ASR), where lower values indicate better
performance. The best results are highlighted in bold.

cross-lingual transfer methods.
Figure 2 shows the impact of replacing the

dominant language reward gap with a fixed value
(0.1–20) on multilingual safety and general utility.
While increasing the constant enhances safety per-
formance, it significantly degrades general utility
due to excessive parameter shifts, leading to model
collapse despite retention constraints. Notably, set-
ting the constant to 1.58 (the training set’s aver-
age reward gap of the dominant language) yields
limited gains, highlighting the superiority of the
fine-grained instance-level supervision in our MPO
over coarse-grained dataset-level alignment. Please
see Appendix H.3 for more details.

Table 5 further shows that using the reward gap
of a target language as the alignment objective fails
to yield meaningful safety improvements. Even
when selecting the second-best safety-performing
language (Ar) or low-resource languages (Sw, Bn),
no effective multilingual safety enhancement is
observed. This reinforces that the dominant lan-
guage’s reward gap provides a more reliable and
high-quality supervision signal. For Qwen2.5, al-
though it is a bilingual LLM with both Chinese and
English as dominant languages, we find that us-
ing Chinese as the alignment target leads to better
safety alignment performance compared to using
English. Detailed results supporting this observa-
tion are provided in Appendix H.1, Table 9.

Table 14 in Appendix H.3 compares MPO
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Figure 3: Impact of the preference data. (a) Multilingual safety performance on MultiJail with varied data quality.
(b) Multilingual safety performance on MultiJail with varied data size.

with state-of-the-art cross-lingual transfer methods,
which align multilingual safety by either aligning
multilingual representations: CLA (Li et al., 2024a)
and LENS (Zhao et al., 2024a), or distilling knowl-
edge from the dominant language: SDRRL (Zhang
et al., 2024b). MPO consistently outperforms these
methods, maintaining strong multilingual safety
alignment. This further highlights the advantage of
leveraging the dominant language’s reward gap as
a fine-grained supervision signal.

Effect of Other Components in MPO We fur-
ther analyze the effect of other key components in
Table 4. Removing the Retain component in Eq.
(8) leads to a significant drop in multilingual util-
ity, demonstrating its efficacy in preserving cross-
lingual robustness. Introducing a KL-divergence-
based constraint imposes a strong regularization
that restricts the alignment of reward gap distribu-
tions across different languages, limiting the flex-
ibility of MPO in adapting to multilingual safety
preferences. Finally, removing length normaliza-
tion (LN) in reward gap computation results in
biased reward gap values, particularly in safety
scenario that unsafe responses are often longer
than safe ones, highlighting that LN effectively
mitigates length-induced bias and facilitates more
stable multilingual safety alignment. Please refer
to Appendix H.3 for more detailed ablation stud-
ies, including our rationale for using the reference
model—rather than the policy model—to compute
the dominant language reward gap.

5.2 The Impact of Preference Data

Impact of Data Quality To evaluate the robust-
ness of MPO across different levels of multilingual
preference data quality, we employ three versions

of the dataset obtained using three NLLB (Costa-
jussà et al., 2022) translation models of varying
sizes: NLLB-600M, NLLB-1.3B, and NLLB-3.3B.
These models represent a progressive improvement
in translation quality, with the largest model gener-
ally producing more accurate translations. Results
are shown in Figure 3(a).

Baselines show considerable performance vari-
ations across different data quality levels, strug-
gling to maintain stable safety alignment—even
when trained on the highest-quality preference data
(NLLB-3.3B). This underscores the challenges that
noisy multilingual data pose for existing alignment
methods. In contrast, MPO consistently delivers
the best results across all data quality levels, demon-
strating its stability and resilience to data noise.
This validates the effectiveness of leveraging the
reward gap in the dominant language as a source
of high-quality supervision.

Further, recent studies explore LLMs themselves
to generate multilingual preference data, rather
than relying on external translation tools (She et al.,
2024; Yang et al., 2024b, 2025). MPO consistently
achieves the best multilingual safety alignment re-
sults data sources, demonstrating its robustness to
variations in preference data. Please refer to Ap-
pendix H.4 for detailed results and analysis.

Impact of Data Quantity Figure 3(b) compares
MPO with baseline methods across varying dataset
sizes, with the x-axis representing the number of
preference samples per language. MPO maintains
stable performance across different data volumes,
consistently outperforming baselines. However, all
methods, including MPO, exhibit diminishing re-
turns as data increases, with baseline performance
even degrading with excessive data. This high-
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Figure 4: Reward gap across languages for the original
backbone and those safety aligned by MPO and DPO.

lights that enhancing supervision signal quality
is far more effective than simply increasing data
volume, aligning with broader LLM post-training
trends (Zhou et al., 2023; Li et al., 2023; Cao et al.,
2024; Guo et al., 2025; Ye et al., 2025).

5.3 Visualization Analysis
To better illustrate the impact of MPO on multilin-
gual safety alignment, we visualize changes in the
reward gap and the model’s internal representation
space. In Figure 4, MPO consistently achieves a
higher reward gap than DPO across all languages.
Notably, it significantly improves low-resource lan-
guages such as Swahili and Bengali, reducing the
performance gap with English. Further, the visu-
alization of the model’s representation space in
Figure 5, shows that MPO enables a clearer distinc-
tion between safe and unsafe responses in the target
language Sw. This suggests that MPO enhances
the model’s ability to differentiate safety-critical
responses, reinforcing its effectiveness in multilin-
gual safety alignment. Please refer to Appendix
H.5 for more visualization results.

6 Related Works

Multilingual Safety Vulnerability Recent stud-
ies have exposed risks in the multilingual safety
of LLMs, underscoring the need for multilingual
safety alignment (Qin et al., 2024; Li et al., 2024c;
Gupta et al., 2024; Kanepajs et al., 2024; Verma
and Bharadwaj, 2025). One line of approaches
translate harmful prompts from high-resource to
low-resource languages to assess safety (Yong
et al., 2023; Deng et al., 2024; Xu et al., 2024b;
Shen et al., 2024; Li et al., 2024b; Wang et al.,
2024c; Poppi et al., 2024), as seen in Deng et al.
(2024), which manually translated 315 English
safety prompts (Ganguli et al., 2022) into nine
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Figure 5: The visualization of multilingual representa-
tions for English and Swahili.

languages. Others evaluate multilingual safety us-
ing code-switching, embedding multiple languages
within the same harmful input (Gutiérrez-Clellen,
1999; Yoo et al., 2024; Song et al., 2024b; Upad-
hayay and Behzadan, 2024).

While these works have established a solid
testbed for multilingual safety in LLMs, they have
yet to introduce effective solutions to the existing
challenges in this domain.

Safety Alignment Technique DPO (Rafailov
et al., 2023) has emerged as a widely adopted of-
fline preference learning method for aligning LLMs
with human safety principles and values. In addi-
tion to DPO, various preference optimization ob-
jectives have been introduced. Ranking-based ob-
jectives enable comparisons among more than two
instances (Dong et al., 2023; Yuan et al., 2023;
Liu et al., 2024b; Song et al., 2024a). IPO (Azar
et al., 2024) mitigates the overfitting issues inherent
in DPO, while KTO (Ethayarajh et al., 2024) ad-
dresses preference optimization in non-pairwise
data settings. Meanwhile, ORPO (Hong et al.,
2024b) and SimPO (Meng et al., 2024) seek to
remove reliance on a reference model.

Our proposed MPO stands out from existing
methods in that we seek multilingual supervision
signals from the internal reward gap of the LLMs,
which specifically addresses the challenge of un-
even data quality in multilingual safety alignment
and offers fresh insights and new opportunities for
achieving effective multilingual safety alignment.

7 Conclusion

In this paper, we introduce MPO, a novel approach
to multilingual safety alignment that leverages the
reward gap of the dominant language as a high-
quality supervision signal. MPO directly mini-
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mizes the discrepancy of reward gap across dif-
ferent languages to transfer safety alignment effec-
tively. Experiments on LLaMA-3.1, Gemma-2, and
Qwen2.5 confirm that MPO outperforms existing
methods in multilingual safety alignment without
compromising general multilingual utility. Further
analysis shows that MPO remains robust across
varying data qualities and sources, reinforcing the
superiority of the dominant language’s reward gap
as a scalable alignment signal. These results estab-
lish MPO as a practical and effective solution for
deploying multilingual-safe LLMs.

Limitations

This work has several limitations that provide di-
rections for future research. Due to computational
constraints, we conduct experiments on mid-scale
models and did not extend our evaluation to larger-
scale ones such as 32B even 72B LLMs. Future
work should explore whether MPO scales effec-
tively with larger models and whether its advan-
tages persist at greater parameter sizes.

Additionally, we have focused exclusively on the
application of MPO to multilingual safety align-
ment. However, there are more challenging and di-
verse alignment tasks that could be explored in the
future, particularly those involving multicultural
value alignment (Sorensen et al., 2024; Yao et al.,
2024; Cahyawijaya et al., 2024). As multilingual
safety alignment is only one aspect of broader eth-
ical considerations, future work could extend the
current methodology to tackle these value align-
ment challenges, ensuring models respect different
cultural norms and ethical standards across regions.

Furthermore, given that safety guidelines are
universal principles that users across various lin-
guistic and cultural regions must adhere to, as em-
phasized in OpenAI (OpenAI, 2024b) and Meta’s
user guidelines (AI, 2024), it is reasonable to trans-
fer the safety alignment of the dominant language
to other languages. This idea has proven effective
in our experiments, and we believe it could be val-
idated in broader multilingual tasks in the future,
particularly those that are language-agnostic, such
as general problem-solving skills (Hu et al., 2024;
Zhang et al., 2024a; Huang et al., 2024; Wang et al.,
2024b; Luo et al., 2024b). Future work could ex-
plore these areas and broaden the scope of multi-
lingual model evaluation, to ensure that advanced
AI technologies are universally applicable and can
promote responsible and ethical AI development

on a global scale. We hope the research commu-
nity continues to push forward in advancing these
technologies and facilitating their global adoption.

Ethical Considerations

This work is conducted solely for academic re-
search purposes and aims to address multilingual
safety risks in large language models (LLMs). The
primary goal of our study is to improve the ro-
bustness and consistency of LLMs across different
languages, ensuring that they adhere to established
safety principles regardless of linguistic variations.
We acknowledge that multilingual safety alignment
is a complex challenge, and our research does not
aim to impose any specific cultural or ethical stan-
dards on diverse linguistic communities. Instead,
our approach focuses on enhancing model consis-
tency in following universally recognized safety
guidelines, as outlined in user policies of major AI
developers such as OpenAI and Meta. By ensuring
equitable safety alignment across languages, we
seek to mitigate risks associated with uneven safety
performance in LLMs and reduce potential harm
in lower-resource languages.

In conclusion, we aim to contribute to the devel-
opment of fair, transparent, and globally applicable
AI systems that align with responsible AI deploy-
ment principles. We encourage further community-
driven research to refine multilingual safety align-
ment and promote the ethical and safe application
of AI technologies worldwide.
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En Zh Ko Ar Bn Sw

LLaMA-3.1 RG↑ 27.02 25.09 22.82 27.85 32.21 29.77
ASR↓ 9.00 22.00 50.00 15.00 55.00 57.00

Gemma-2 RG↑ 214.57 63.92 45.54 88.46 80.62 96.60
ASR↓ 0.00 9.00 14.00 4.00 24.00 26.00

Qwen-2.5 RG↑ 13.84 12.31 9.77 19.76 5.04 23.77
ASR↓ 13.00 9.00 21.00 20.00 69.00 98.00

Table 6: Results of reward gap (calculated by Eq. 2) and
safety performance across six languages. The evaluation
metric used for safety is the Attack Success Rate (ASR),
where lower values indicate better performance. Results
of the dominant languages are highlighted in bold.

A Further Discussion on Reward Gap

A.1 Definition

Our use of the term reward gap follows the theoret-
ical foundations of Direct Preference Optimization
(DPO) (Rafailov et al., 2023) and Simple Prefer-
ence Optimization (SimPO) (Meng et al., 2024),
where the log-likelihood is treated as a proxy for
implicit reward. DPO derives this from the Bradley-
Terry model (Bradley and Terry, 1952), and SimPO
further simplifies it using average log-likelihood.

In our case, for each input, we compute the
implicit reward for both the safe and unsafe re-
sponses using log-likelihoods. The difference be-
tween these two values is what we define as the
reward gap (or margin). This gap reflects how
much more the model prefers the safe response
than unsafe one and is strongly correlated with
multilingual safety performance.

A.2 Emperical and Theoritical Justification

We have already discussed in §2.2 that using Eq.
(4) within SimPO (Meng et al., 2024) to compute
the reward gap is more reasonable compared to Eq.
(2) in DPO (Rafailov et al., 2023). Additionally,
in §3.1, we provide an intuitive demonstration of
the advantages of using Eq. (4) for reward gap
calculation. Here, we conduct a more in-depth
analysis to illustrate the limitations of Eq. (2).

Table 6 presents the results of computing the re-
ward gap using Eq. (2) across three different back-
bone models. β is set to 1.0 and the base version of
these backbones are adopted as the reference mod-
els. The dataset used for this evaluation remains
consistent with that in §3.1. However, the results
indicate that the computed reward gap fails to accu-
rately reflect the model’s safety performance across
different languages. We attribute this discrepancy
to the following three key reasons:
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(1) Inference-Training Objective Mismatch:
The reward formulation in Eq. (2) is derived from
the implicit reward used during the training phase,
but it does not directly align with the log-likelihood
objective that governs inference (Meng et al., 2024).
As a result, the reward gap computed with Eq. (2)
may not faithfully capture the model’s actual gen-
eration behavior, leading to misleading safety per-
formance evaluations.

(2) Bias in the Reference Model: Ideally, the
reference model used for computing the reward gap
in a preference-optimized model should be the su-
pervised fine-tuned (SFT) model from the previous
training stage, rather than the base model (Ouyang
et al., 2022; Rafailov et al., 2023). However, model
providers do not publicly release this intermediate
SFT model, making it difficult to obtain an accurate
reference. As a result, using the base model as the
reference introduces bias (Hong et al., 2024b; Wu
et al., 2024a), further compromising the reliability
of Eq. (2) in assessing safety performance.

(3) Length Bias Effects: Eq. (2) does not incor-
porate length normalization, making it susceptible
to biases introduced by response length disparities
(Meng et al., 2024; Kim and Seo, 2024). Empir-
ically, unsafe responses tend to be longer due to
the presence of explicit harmful content, while safe
responses are often concise refusals. This discrep-
ancy skews the reward gap calculations, causing in-
consistencies in cross-linguistic safety evaluations.

These limitations collectively suggest that Eq.
(2) from DPO (Rafailov et al., 2023) is not a reli-
able metric for evaluating safety differences across
languages. In contrast, Eq. (4) from SimPO (Meng
et al., 2024) mitigates these issues by normalizing
the log-likelihood with sequence length, ensuring
a more accurate measure of safety performance.

B Further Discussion on MPO

Here we conduct further explanation of how reward
gap of the dominant language RGd influences the
learning of ytw and ytl for different languages.

Recall that:

RGd =
1

|yd
w|

log πref
(
yd
w | xd)− 1

|yd
l |

log πref
(
yd
l | xd),

where πref is a reference policy (or model). This
quantity, RGd, is constant with respect to the train-
able parameters θ (because it depends on the refer-
ence model). However, it plays an important role
in shaping how θ is learned for ytw and ytl .

Target Gap The difference β RGt−RGd appears
inside the loss function. Because RGd is subtracted
from β RGt, it effectively sets a target “goal” in
log probabilities that the model πθ should achieve
between the winning (safe) candidate ytw and the
losing (unsafe) candidate ytl .

Penalty for Reward Signal The term β RGt −
RGd penalizes deviations of β RGt from RGd. In-
tuitively, if β RGt is not aligned with RGd, the loss
increases, thus signaling the training process that
πθ is not matching the reference gap.

Alignment with Reference Behavior Because
RGd comes from πref, one can interpret it as how
strongly the reference policy prefers its “winning”
candidate ydw over its “losing” candidate ydl . By
forcing RGt from πθ to approximate RGd, the train-
ing encourages πθ to mimic or at least stay con-
sistent with that preference structure, though for
potentially different xt and ytw, ytl .

Effect on ytw and ytl Learning For ytw: If the
reference gap indicates a high preference for a cor-
responding “winning” candidate ydw, then during
training, the model sees a stronger incentive to in-
crease log πθ(y

t
w | xt) (since that helps match the

overall gap).
For ytl : The model similarly sees a signal to

decrease log πθ(y
t
l | xt) (or at least not let it grow

too large), in order to keep the difference consistent
with RGd.

In essence, RGd provides a reference or target
difference in log probabilities that the model πθ
tries to match between ytw and ytl . Although it does
not directly update θ (because it is constant with
respect to θ), it influences the loss landscape and
hence indirectly guides how log πθ(y

t
w | xt) and

log πθ(y
t
l | xt) are learned.

C Gradient Analysis of MPO

C.1 Deriving the Gradient of MPO
Below is a step-by-step derivation of the gradient
of the loss function.

L(πθ) = E(x,yw,yl)∼D
[∥∥β RGt − RGd

∥∥2
]
, (12)

where

RGt =
1

|yt
w|

log πθ

(
yt
w | xt)− 1

|yt
l |

log πθ

(
yt
l | xt), (13)

and

RGd =
1

|yd
w|

log πref
(
yd
w | xd) − 1

|yd
l |

log πref
(
yd
l | xd).

(14)
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Note that RGd does not depend on θ, whereas RGt

depends on θ through log πθ(·).
Rewrite the Loss Function Define the per-
sample loss (ignoring the expectation for a mo-
ment) as

ℓ(θ) =
∥∥β RGt(θ) − RGd

∥∥2
. (15)

For the gradient derivation, we focus on ℓ(θ). The
overall gradient will then be its expectation w.r.t.
the data distribution D.

Introduce an Intermediate Variable Let

z(θ) = β RGt(θ) − RGd. (16)

Hence
ℓ(θ) =

∥∥z(θ)
∥∥2

. (17)

If RGt is a scalar, ∥z(θ)∥2 = z(θ)2. (For the vector
case, one may treat each component in the same
way.)

Apply the Chain Rule to ℓ(θ) We have

ℓ(θ) =
∥∥z(θ)

∥∥2
. (18)

Taking the gradient w.r.t. θ,

∇θ ℓ(θ) = ∇θ

∥∥z(θ)
∥∥2 (19)

= 2 z(θ) ∇θ z(θ). (20)

Recalling

z(θ) = β RGt(θ) − RGd, (21)

and that RGd is a constant w.r.t. θ, we get:

∇θ z(θ) = β∇θ RGt(θ). (22)

Hence,

∇θ ℓ(θ) = 2
[
β RGt(θ)− RGd

]
β∇θ RGt(θ). (23)

Compute ∇θ RGt(θ) By definition,

RGt(θ) =
1

|yt
w|

log πθ

(
yt
w | xt) − 1

|yt
l |

log πθ

(
yt
l | xt).

(24)

Hence,

∇θ RGt(θ) =
1

|yt
w|

∇θ log πθ

(
yt
w | xt)

− 1

|yt
l |
∇θ log πθ

(
yt
l | xt).

(25)

Combine the Results Putting it all together,

∇θ ℓ(θ) = 2
[
β RGt(θ)− RGd

]

β
( 1

|yt
w|

∇θ log πθ(y
t
w | xt) − 1

|yt
l |
∇θ log πθ(y

t
l | xt)

)
.

(26)

The Full Gradient of L(θ) Recall the origi-
nal loss is the expectation of ℓ(θ) over samples
(x, yw, yl) ∼ D. Therefore,

∇θ L(θ) = 2β E(x,yw,yl)∼D

[
(
β RGt(θ)− RGd)

(
1

|yt
w|

∇θ log πθ(y
t
w | xt) − 1

|yt
l |
∇θ log πθ(y

t
l | xt)

)]
.

(27)

This completes the derivation of the gradient
w.r.t. the parameters θ.

C.2 Analysis
Here we explain how RGd influences the model’s
updates for ytw and ytl from the gradient view:

Shifts the Gradient Magnitude and Direction
The difference (β RGt(θ) − RGd) multiplies the
gradient terms that involve log πθ(y

t
w | xt) and

log πθ(y
t
l | xt). If β RGt is smaller than RGd, then

the difference is negative, which encourages the
model to increase RGt (e.g., by increasing the prob-
ability of ytw or decreasing the probability of ytl ) so
that it moves toward or surpasses RGd. If β RGt

is larger than RGd, the difference is positive, so
the model is nudged to preserve or even enlarge its
current gap, reinforcing the discrimination it has
already learned between ytw and ytl .

Controls the Drive to Differentiate ytw and ytl
Because RGt involves log πθ(y

t
w) and log πθ(y

t
l ),

the difference term (β RGt(θ) − RGd) directly
scales how strongly the model updates its param-
eters to favor ytw over ytl . A larger RGd essen-
tially raises the “bar” the model is trying to clear; a
smaller RGd lowers it.

D Training Data

To ensure that our multilingual preference data
generation process remains on-policy, we adopt a
structured approach based on well-established prin-
ciples in LLM post-training (Dubey et al., 2024).
Specifically, for each English harmful prompt in
the PKU-SafeRLHF dataset (Ji et al., 2024), we
first feed it to the model to generate a refusal re-
sponse, which serves as the preferred response. We
then pair this generated refusal with the original
dispreferred response from the dataset, forming a
preference pair. This ensures that the optimization
process remains aligned with the model’s actual
behavior, avoiding potential inconsistencies that
arise from using static preference data (Yuan et al.,
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2024; Chen et al., 2024; Rosset et al., 2024; Wu
et al., 2024b; Guo et al., 2024; Zhou et al., 2025).

To extend this preference data to multiple lan-
guages, we then translate both the harmful prompts
and their paired responses using the Google Trans-
late API. This approach allows us to create multi-
lingual preference data while preserving the prefer-
ence structure of the original dataset.

E Benchmark

We comprehensively measure the efficacy of our
MPO on various multilingual safety benchmarks.

• MultiJail (Deng et al., 2024): It carefully
gather 315 English harmful queries and man-
ually translate them by native speakers into
9 non-English languages, ranging from high-
resource to low-resource.

• AdvBench-X (Yong et al., 2023): AdvBench
is a set of 500 harmful behaviors formulated as
instructions. These behaviors range over the
same themes as the harmful strings setting, but
the adversary’s goal is to find a single attack
string that will cause the model to generate
any response that attempts to comply with the
instruction, and to do so over as many harmful
behaviors as possible. The original English
version is also translated manually into target
languages of different resource levels.

• CSRT (Yoo et al., 2024): It synthesizes code-
switching red-teaming queries, combining up
to 10 languages, and investigate the safety and
multilingual understanding of LLMs.

We evaluate multilingual safety alignment using the
Attack Success Rate (ASR), following the evalua-
tion pipeline proposed by Deng et al. (2024), with
GPT-4o as the judgment model. The evaluation pro-
cess consists of the following steps: (1) Translation
to English: Since safety alignment performance
needs to be assessed across multiple languages, we
first translate the model-generated responses from
the target language into English using GPT-4o to
ensure consistent evaluation. (2) Three-Class Clas-
sification: GPT-4o then classifies each response
into one of the following categories: Safe (mean-
ingful refusal), Unsafe or Irrelevant. (3) Attack Suc-
cess Calculation: Responses classified as unsafe or
irrelevant are both considered unsuccessful refusals
and thus counted as successful attacks when calcu-
lating ASR. Only safe refusals are considered failed

attacks, contributing to a lower ASR (better safety
performance). Importantly, as shown in Figure 2 of
Deng et al. (2024), the evaluation pipeline combin-
ing translation and GPT-4 classification achieves
strong agreement with human annotations, with
a Cohen’s kappa score of 0.86, indicating a high
level of alignment. This validates the reliability
and soundness of the evaluation protocol.

It is essential to highlight that the languages tar-
geted for enhancement, as mentioned above, are
all within the capability range of GPT-4o, espe-
cially given that its official model card (OpenAI,
2024a) emphasizes support for low-resource lan-
guages such as Swahili (Sw) and Bengali (Bn).
This underscores the validity and reliability of the
evaluation approach.

F Baseline Methods

We compare MPO with other preference optimiza-
tion methods listed in Table 7. IPO (Azar et al.,
2024) is a theoretically grounded approach that
avoids DPO’s assumption that pairwise preferences
can be replaced with pointwise rewards. rDPO
(Chowdhury et al., 2024) mitigates the impact of
noise on average, making policies trained with this
method more robust. CPO (Xu et al., 2024a) lever-
ages sequence likelihood as a reward and trains
jointly with an SFT objective. KTO (Ethayarajh
et al., 2024) learns from non-paired preference data,
while ORPO (Hong et al., 2024b) introduces a
reference-model-free odds ratio term to directly
contrast winning and losing responses with the pol-
icy model, training it alongside the SFT objective.
R-DPO (Park et al., 2024) modifies DPO by in-
corporating an additional regularization term to
prevent length exploitation. Finally, SimPO (Meng
et al., 2024) normalizes rewards based on response
length and enforces a target reward margin, ensur-
ing that the reward difference between winning and
losing responses meets a predefined threshold.

G Implementation Details

All training experiments are conducted on eight
A100 GPUs using the LLaMA-Factory repository
(Zheng et al., 2024b). And our MPO is also imple-
ment based on this repo. For distributed training,
we leverage the DeepSpeed (Rasley et al., 2020)
framework with ZeRo-2 optimization. Initially,
we perform preliminary experiments to determine
optimal batch sizes from [8, 16, 32] and training
epochs from [1, 2, 3]. We observe that a batch size
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Method Objective Hyperparameter

DPO (Rafailov et al., 2023) − log σ
(
β log πθ(yw|x)

πref(yw|x) − β log πθ(yl|x)
πref(yl|x)

)
β ∈ [0.01, 0.05, 0.1]

IPO (Azar et al., 2024)
(
log πθ(yw|x)

πref(yw|x) − log πθ(yl|x)
πref(yl|x) −

1
2τ

)2
τ ∈ [0.01, 0.1, 0.5, 1.0]

rDPO (Chowdhury et al., 2024)
(1−ϵ)L(θ,x,yw,yl)−ϵL(θ,x,yl,yw)

1−2ϵ ϵ ∈ [01, 0.5]

L(θ, x, yl, yw) = − log σ
(
β log πθ(yw|x)

πref(yw|x) − β log πθ(yl|x)
πref(yl|x)

)
β ∈ [0.01, 0.05, 0.1]

CPO (Xu et al., 2024a) − log σ (β log πθ(yw|x)− β log πθ(yl|x))− λ log πθ(yw|x) λ = 1.0, β ∈ [0.01, 0.05, 0.1]

KTO (Ethayarajh et al., 2024)
−λwσ

(
β log πθ(yw|x)

πref(yw|x) − zref

)
+ λlσ

(
zref − β log πθ(yl|x)

πref(yl|x)

)
, λl = λw = 1.0

where zref = E(x,y)∼D [βKL (πθ(y|x)||πref(y|x))] β ∈ [0.01, 0.1, 1.0]

ORPO (Hong et al., 2024b)
− log pθ(yw|x)− λ log σ

(
log pθ(yw|x)

1−pθ(yw|x) − log pθ(yl|x)
1−pθ(yl|x)

)
,

λ ∈ [0.01, 0.1, 1.0]
where pθ(y|x) = exp

(
1
|y| log πθ(y|x)

)

R-DPO (Park et al., 2024) − log σ
(
β log πθ(yw|x)

πref(yw|x) − β log πθ(yl|x)
πref(yl|x) + (α|yw| − α|yl|)

) α ∈ [0.05, 0.1, 0.5, 1.0]
β ∈ [0.01, 0.05, 0.1]

SimPO (Meng et al., 2024) − log σ
(

β
|yw| log πθ(yw|x)−

β
|yl| log πθ(yl|x)− γ

) β ∈ [2.0, 2.5]
γ ∈ [1.0, 1.2, 1.4, 1.6]

Table 7: Detailed optimization objectives of current preference learning methods. We carefully tune their specific
hyperparameters and list the search space in the right column.

Learning Rate Epoch β

LLaMA-3.1-8B-Instruct 6e-7 2 1.0
Gemma-2-9b-it 4e-7 2 1.5
Qwen2.5-7B-Instruct 6e-7 2 1.5

Table 8: The hyperparameters in our proposed MPO
used for all three backbones.

of 8 consistently yields the best performance across
all methods, while the optimal number of training
epochs varies by method. All models on all three
backbones are trained with a maximum sequence
length of 2048, and we employ a cosine learning
rate schedule with a 10% warmup phase.

To further refine performance, we extensively
tune key hyperparameters for all baselines, includ-
ing the learning rate, training epochs, and method-
specific parameters. The learning rate is searched
within [3e-7, 4e-7, 5e-7, 6e-7, 1e-6], while training
epochs are explored in [1, 2, 3]. Method-specific
hyperparameter search spaces are detailed in Table
7. For MPO, β is searched in [1.0, 1.5, 2.0] and we
find that 1.0 or 1.5 always exhibit the best results
across all three backbones. Table 8 shows MPO’s
hyperparameters used under each backbone.

H Additional Experimental Results

H.1 Results on Qwen2.5

Table 9 demonstrates the performance compari-
son of MPO and baselines based on Qwen2.5-7B-
Instruct. we have drawn the following key insights:

MPO still exhibits robust and consistent perfor-
mance across various benchmarks and maintain
multilingual utility. It consistently surpasses all
preference learning methods, highlighting its out-
standing safety alignment capabilities and scalabil-
ity. Tables 10, 11 and 12 presents MPO maintains
multilingual utility on MT-Bench, M-MMLU and
MGSM, respectively.

Multilingual safety alignment depends on foun-
dational abilities The improvement of multilin-
gual safety performance relies on the foundational
multilingual capabilities of the backbone model.
Results on Qwen2.5 show that while MPO still
achieves significant gains compared to the origi-
nal model and baselines, its absolute performance
lags behind other two backbones, especially for
low-resource languages. This disparity arises from
Qwen2.5’s weaker foundational abilities in these
languages. More Specifically, as shown in Table
10, Qwen2.5 exhibits weak instruction-following
ability in Bn and Sw, frequently generating out-
puts unrelated to the input. In our evaluation, such
outputs are classified as unsafe.

H.2 Evaluation on Multilingual Utility

Evaluation Settings We conduct a comprehen-
sive evaluation of MPO’s impact on multilingual
utility across the following benchmarks.

• MT-Bench (Zheng et al., 2023): The dataset
is designed for open-ended generation to
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MultiJail AdvBench-X CSRT
En Zh Ko Ar Bn Sw AVG. En Zh Jp Ko Ar Bn Sw AVG. -

Qwen2.5 12.70 10.16 15.87 15.87 73.02 98.10 37.62 1.15 1.35 5.96 5.38 6.35 57.58 99.04 25.26 34.60

SFT 10.79 10.79 13.02 13.02 64.76 99.05 35.24 1.35 2.12 5.38 3.46 5.38 48.18 98.46 23.48 34.92
DPO 11.43 10.48 12.38 13.33 69.84 98.73 36.03 1.54 1.35 5.77 3.85 4.81 51.82 98.08 23.89 37.46
IPO 11.43 8.89 13.65 13.02 68.25 99.05 35.72 0.96 1.92 5.96 5.19 5.77 53.93 97.70 24.49 38.10
rDPO 9.84 8.25 15.24 14.92 70.16 98.73 36.19 1.73 1.92 4.23 4.04 6.92 52.78 96.93 24.08 35.56
CPO 13.33 7.94 12.38 13.33 58.92 98.73 34.11 1.15 2.31 5.96 4.23 6.35 50.48 99.04 24.22 34.92
KTO 10.16 9.52 13.65 13.97 66.67 99.05 35.50 2.50 1.54 5.38 4.04 6.73 53.93 98.08 24.60 39.81
ORPO 10.16 10.16 16.19 13.97 67.62 99.37 36.25 2.31 2.50 5.77 3.27 4.62 48.56 98.46 23.64 30.16
R-DPO 10.79 7.62 9.84 14.29 58.41 98.10 33.18 1.73 2.12 5.58 4.62 5.58 56.24 98.85 24.96 38.41
SimPO 11.75 9.52 14.60 13.97 70.79 98.41 36.51 1.35 1.92 5.38 4.23 5.96 49.33 98.85 23.86 31.43

MPO (Ours) 7.30 6.67 8.89 13.02 53.65 92.38 30.32 1.92 0.96 3.27 2.50 3.65 30.33 85.03 18.24 26.35
MPO - En Align 9.52 13.65 13.33 13.97 64.44 98.73 35.61 2.12 3.46 3.27 2.88 5.00 46.64 97.50 22.98 27.94

Table 9: Detailed results of Qwen2.5-7B-Instruct on three multilingual safety benchmarks are presented. The
evaluation metric used is the Attack Success Rate (ASR), where lower values indicate better performance. The best
results achieved by our method and baselines are highlighted in bold, while the second-best results are underlined.

MT-Bench

En Zh Jp Ko Ar Bn Sw AVG.

LLaMA-3.1 7.31 5.38 4.88 5.22 5.43 3.98 3.98 5.17

SFT 7.31 5.56 4.84 4.94 5.09 4.25 3.72 5.10
DPO 7.44 5.66 5.03 5.49 4.89 4.76 4.16 5.35
IPO 7.31 5.42 4.89 5.12 5.23 4.39 4.08 5.26
rDPO 7.31 5.81 5.31 5.16 5.43 4.44 4.21 5.38
CPO 7.45 5.59 4.98 4.93 5.04 4.16 3.86 5.14
KTO 7.33 5.55 5.02 5.11 5.05 4.39 4.01 5.24
ORPO 7.39 5.41 4.73 5.01 5.36 4.24 3.72 5.12
R-DPO 7.30 5.63 5.21 5.45 5.48 4.80 4.11 5.43
SimPO 7.48 5.48 5.54 5.21 5.59 4.01 4.11 5.35

MPO 7.25 5.32 5.26 5.44 5.38 4.11 4.01 5.25

Gemma-2 7.71 7.07 6.84 6.81 7.06 5.66 6.15 6.76

SFT 7.72 6.86 6.31 6.38 7.08 5.16 5.84 6.48
DPO 7.79 6.88 7.06 6.86 6.98 6.26 6.20 6.86
IPO 7.61 6.86 6.95 6.86 7.07 5.88 6.17 6.77
rDPO 7.57 6.82 6.93 6.57 6.98 6.03 6.23 6.73
CPO 7.73 6.64 6.62 6.56 7.01 5.33 5.98 6.55
KTO 7.63 6.87 7.00 6.69 6.88 6.06 6.04 6.74
ORPO 7.71 6.86 6.78 6.49 7.09 5.22 6.07 6.60
R-DPO 7.77 7.11 7.09 7.33 6.87 5.33 6.11 6.80
SimPO 7.47 6.89 7.00 6.78 6.95 5.84 6.16 6.73

MPO 7.83 6.81 7.07 6.88 7.05 5.78 6.16 6.80

Qwen2.5 7.77 7.36 6.43 6.21 6.60 4.49 2.37 5.89

SFT 7.49 7.14 6.73 6.50 6.46 4.66 2.08 5.87
DPO 7.68 6.99 6.79 6.61 6.50 4.71 2.24 5.93
IPO 7.66 7.24 6.86 6.29 6.61 4.68 1.98 5.90
rDPO 7.78 7.01 6.58 6.38 6.59 4.48 2.10 5.85
CPO 7.61 7.16 6.82 6.33 6.57 4.54 2.12 5.88
KTO 7.77 7.03 6.82 6.60 6.64 4.71 2.18 5.96
ORPO 7.52 7.18 6.58 6.43 6.78 4.53 2.09 5.87
R-DPO 7.61 7.23 6.90 6.33 6.56 4.87 2.20 5.96
SimPO 7.57 7.07 6.73 6.29 6.68 4.77 2.08 5.88

MPO 7.77 7.39 6.71 6.19 6.56 4.43 2.28 5.90

Table 10: Results on MT-Bench across three backbones.

M-MMLU

En Zh Jp Ko Ar Bn Sw AVG.

LLaMA-3.1 67.70 51.30 47.90 43.30 47.60 41.40 40.60 48.54

SFT 67.30 50.90 47.70 47.00 42.60 40.60 39.20 47.90
DPO 67.10 51.50 48.40 47.30 41.80 39.80 38.20 47.73
IPO 67.30 51.60 48.30 47.90 43.00 41.30 39.60 48.43
rDPO 67.20 50.80 47.90 47.30 42.80 40.00 40.50 48.07
CPO 67.40 51.60 47.60 47.50 42.50 40.00 39.80 48.06
KTO 67.10 51.40 48.50 47.60 41.90 40.40 40.40 48.19
ORPO 67.30 51.00 48.10 47.30 42.10 41.30 38.90 48.00
R-DPO 66.90 51.50 48.10 47.70 43.30 40.70 40.20 48.34
SimPO 66.70 51.40 47.70 47.80 43.00 40.90 40.40 48.27

MPO 67.10 50.70 48.40 42.40 47.70 40.10 38.70 47.87

Gemma-2 73.40 61.20 59.40 53.80 59.10 49.90 52.40 58.45

SFT 61.10 50.70 73.30 59.40 59.40 55.40 52.50 58.83
DPO 61.20 49.80 73.40 58.70 59.20 53.90 52.20 58.34
IPO 61.30 49.70 73.30 59.30 59.50 53.60 52.40 58.44
rDPO 61.00 50.20 73.30 59.10 59.40 54.20 52.50 58.53
CPO 61.40 50.80 73.30 59.30 59.60 55.10 52.60 58.87
KTO 61.40 49.90 73.40 59.20 59.50 53.90 52.40 58.53
ORPO 61.70 50.40 73.20 59.30 59.70 55.20 52.90 58.91
R-DPO 60.80 49.00 73.30 59.10 59.20 54.00 51.40 58.11
SimPO 61.30 49.90 73.30 59.20 59.40 53.90 52.30 58.47

MPO 73.40 61.20 58.90 54.00 59.50 49.80 52.10 58.41

Qwen2.5 72.50 63.90 57.70 49.70 56.60 43.20 31.50 53.59

SFT 64.10 43.10 72.60 56.70 57.80 49.30 31.30 53.56
DPO 64.00 43.10 72.50 56.70 57.70 49.50 31.40 53.56
IPO 64.20 43.10 72.20 57.00 57.30 49.70 31.40 53.56
rDPO 64.00 43.40 72.40 56.60 57.70 49.70 31.40 53.60
CPO 64.40 42.60 72.70 57.00 57.90 49.10 31.60 53.61
KTO 64.00 43.20 72.50 56.70 57.70 49.80 31.40 53.61
ORPO 64.50 43.00 72.70 57.10 57.80 50.40 31.50 53.86
R-DPO 64.20 43.30 72.50 56.50 57.60 49.60 31.40 53.59
SimPO 64.10 43.10 72.20 56.80 57.70 50.00 31.40 53.61

MPO 72.20 64.50 57.30 50.50 57.10 43.20 31.60 53.77

Table 11: Results on M-MMLU across three backbones.
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MGSM

En Zh Bn Sw AVG.

LLaMA-3.1 88.00 67.20 12.40 40.80 52.10

SFT 86.80 69.60 13.60 54.00 56.00
DPO 85.60 68.80 15.60 45.20 53.80
IPO 85.60 68.80 16.00 46.80 54.30
rDPO 86.80 71.20 13.60 39.60 52.80
CPO 88.80 73.60 11.20 43.20 54.20
KTO 84.80 67.60 16.80 48.40 54.40
ORPO 86.80 69.60 14.80 55.20 56.60
R-DPO 86.80 71.20 13.60 39.60 52.80
SimPO 86.00 72.40 11.60 46.40 54.10

MPO 88.00 68.40 12.00 53.60 55.50

Gemma-2 90.00 77.60 66.00 75.20 77.20

SFT 89.60 79.20 43.60 63.60 69.00
DPO 89.20 78.80 67.60 73.60 77.30
IPO 90.00 78.40 67.20 75.20 77.70
rDPO 90.40 78.00 65.60 76.80 77.70
CPO 90.40 79.20 46.00 68.00 70.90
KTO 90.00 77.60 67.60 75.20 77.60
ORPO 90.40 80.00 49.60 65.20 71.30
R-DPO 90.00 77.60 75.20 75.60 79.60
SimPO 90.00 76.80 67.20 75.20 77.30

MPO 90.80 80.40 70.00 74.00 78.80

Qwen2.5 87.20 82.00 35.20 6.40 52.70

SFT 87.60 82.00 35.60 8.40 53.40
DPO 87.60 82.00 38.00 7.20 53.70
IPO 88.00 84.40 36.40 7.60 54.10
rDPO 88.00 82.40 36.00 8.00 53.60
CPO 88.80 82.40 34.00 9.20 53.60
KTO 87.60 82.40 36.40 7.60 53.50
ORPO 88.40 82.40 24.00 6.80 50.40
R-DPO 87.20 82.40 36.40 7.20 53.30
SimPO 88.40 84.00 38.00 9.20 54.90

MPO 88.40 82.80 34.40 6.80 53.10

Table 12: Results on MGSM across three backbones.

evaluate a model’s ability to follow multi-
turn instructions. In our experimental setup,
this benchmark covers English (En), Chinese
(Zh), Arabic (Ar), Japanese (Jp), Korean (Ko),
Swahili (Sw) and Bengali (Bn). We collect
data in English1, Japanese2, Korean3, and Ara-
bic4 from huggingface, and Chinese5 from
github. In addition, we use GPT-4o to trans-
late the English data into Swahili and Ben-
gali, and performed manual proofreading to
ensure correctness. The evaluation follows
the LLM-as-a-judge approach, where GPT-
4o is prompted to assign a score directly to
a single response on a scale of 1 to 10. It is
essential to highlight that the languages tar-
geted for enhancement, as mentioned above,
are all within the capability range of GPT-4o,
especially given that its official model card
(OpenAI, 2024a) emphasizes support for low-
resource languages such as Swahili (Sw) and
Bengali (Bn). This underscores the validity
and reliability of the evaluation approach.

• M-MMLU (Hendrycks et al., 2021):6 The
MMLU is a widely recognized benchmark of
general knowledge attained by AI models. It
covers a broad range of topics from 57 dif-
ferent categories, covering elementary-level
knowledge up to advanced professional sub-
jects like law, physics, history, and computer
science. OpenAI translated the MMLU’s test
set into 14 languages using professional hu-
man translators. Relying on human transla-
tors for this evaluation increases confidence
in the accuracy of the translations, especially
for low-resource languages. In our experimen-
tal setup, we adopt the 5-shot evaluation and
this benchmark covers English (En), Chinese
(Zh), Japanese (Jp), Arabic (Ar), Korean (Ko),
Swahili (Sw) and Bengali (Bn).

• MGSM (Shi et al., 2023):7 Multilingual
Grade School Math Benchmark (MGSM) is

1https://huggingface.co/datasets/
HuggingFaceH4/mt_bench_prompts

2https://huggingface.co/datasets/shi3z/
MTbenchJapanese

3https://huggingface.co/datasets/StudentLLM/
Korean_MT-Bench_questions

4https://huggingface.co/spaces/QCRI/
mt-bench-ar/tree/main/data/mt_bench_ar

5https://github.com/HIT-SCIR/huozi
6https://huggingface.co/datasets/openai/MMMLU
7https://huggingface.co/datasets/juletxara/

mgsm
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a benchmark of grade-school math problems.
The same 250 problems from GSM8K (Cobbe
et al., 2021) are each translated via human an-
notators in 10 languages. The dataset was cre-
ated to support the task of question answering
on basic mathematical problems that require
multi-step reasoning. In our experimental
setup, we performance evaluation via 0-shot
CoT (Wei et al., 2022) and this benchmark
covers English (En), Chinese (Zh), Swahili
(Sw) and Bengali (Bn).

Detailed Results Here, we demonstrate the de-
tailed results and the comparison with baseline
methods. For MT-Bench, results on LLaMA-
3.1-8B-Instruct, Gemma-2-9B-it and Qwen2.5-7B-
Instruct are shown in Table 10. For M-MMLU,
results are shown in Table 11. For MGSM, results
are shown in Table 12. The results across three
backbones show that MPO consistently maintains
the general utility of both the dominant and tar-
get languages, demonstrating its effectiveness in
achieving multilingual safety alignment without
compromising the model’s multilingual utility.

Current preference learning methods typically in-
corporate a KL constraint during training to prevent
the model from deviating too far from its original
state, ensuring that multilingual general utility is
well preserved. As a result, these methods maintain
multilingual capabilities comparable to the original
model, even after alignment.

Under the same achievement of preserving mul-
tilingual general utility, MPO achieves significantly
superior multilingual safety performance compared
to these methods. By leveraging reward gap min-
imization with the dominant language as a high-
quality supervision signal, MPO effectively trans-
fers safety alignment across languages without de-
grading the model’s overall linguistic competence.
This highlights its advantage in balancing multi-
lingual safety and utility, making it a more effec-
tive approach for multilingual safety alignment in
LLMs. And the comparison of KL constraint and
the representation constraint used in MPO is further
discussed in Appendix H.3.

H.3 Ablation Study

Fixed Constants as the Supervision Signal Ta-
ble 13 presents the detailed results of multilingual
safety performance and general utility of the model
when replacing the dominant language reward gap
with a fixed value ranging from 0.1 to 20. Notably,

1.58 corresponds to the average reward gap of dom-
inant language samples in the training set. As the
constant increases, multilingual safety performance
steadily improves, even exceeding the performance
of models aligned using the actual dominant lan-
guage reward gap. However, this improvement
comes at a significant cost to multilingual general
utility, as excessive alignment strength induces sub-
stantial parameter shifts, leading to model collapse
despite the application of a retention constraint.
Additionally, setting the constant to 1.58 yields
only limited improvements, suggesting that fine-
grained supervision at the sample level is superior
to coarse-grained dataset-level alignment.

Reward Gap of Other Languages as the Super-
vision Signal Table 5 further demonstrates that
using the reward gap of a target language as the
alignment objective fails to yield meaningful safety
improvements. When selecting the second-best
safety-performing language (Arabic) or even low-
resource languages (Swahili, Bengali), no effective
multilingual safety enhancement is observed. This
reinforces that the dominant language’s reward gap
provides a more reliable and high-quality align-
ment supervision signal.

Comparison with Cross-Lingual Transfer Meth-
ods Cross-lingual transfer methods posit that
skills acquired in one source language can be effec-
tively transferred to other languages (Huang et al.,
2023; Ranaldi et al., 2023; Qin et al., 2023; Etxaniz
et al., 2024). This has been achieved through two
main approaches: aligning multilingual represen-
tations with the activation space of LLMs: CLA
(Li et al., 2024a) and LENS (Zhao et al., 2024a), or
distilling knowledge from the dominant language:
SDRRL (Zhang et al., 2024b). The details of these
recent advancements are as follows:

• CLA: It aligns internal sentence representa-
tions across languages through multilingual
contrastive learning and ensures output align-
ment by adhering to cross-lingual instructions
in the target language.

• LENS: It enhances multilingual capabilities
by leveraging LLMs’ internal language rep-
resentation spaces. LENS operates on two
subspaces: the language-agnostic subspace,
where it aligns target languages with the cen-
tral language to inherit strong semantic rep-
resentations, and the language-specific sub-
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MultiJail MT-Bench
En Zh Ko Ar Bn Sw AVG. En Zh Jp Ko Ar Bn Sw AVG.

LLaMA-3.1 14.60 20.32 52.38 16.83 49.52 37.78 31.91 7.31 5.38 4.88 5.22 5.43 3.98 3.98 5.17

Constant 0.1 25.08 46.67 61.90 63.38 59.37 85.08 56.91 7.13 5.18 4.72 4.47 4.67 4.16 3.39 4.82
Constant 0.5 10.16 8.89 26.98 14.29 21.59 45.08 21.17 7.34 5.49 4.77 5.23 5.04 4.08 3.68 5.09
Constant 1.0 2.86 1.59 11.11 1.90 7.30 18.41 7.20 7.12 5.26 4.71 5.09 5.08 3.97 3.71 4.99
Constant 1.58 2.86 1.27 6.03 0.32 6.35 13.97 5.13 7.26 5.16 5.16 5.18 5.02 4.27 4.14 5.17
Constant 2.0 0.32 0.00 0.63 0.00 5.71 6.03 2.12 7.04 4.43 4.01 5.26 3.43 3.61 3.54 4.47
Constant 5.0 0.32 0.00 0.63 1.90 7.30 9.21 3.23 7.34 4.81 4.53 5.22 3.88 4.00 3.02 4.69
Constant 10.0 0.32 0.32 0.95 0.63 6.35 6.03 2.43 6.88 4.16 3.64 4.20 3.06 3.63 3.58 4.16
Constant 20.0 0.32 0.32 0.63 0.63 14.60 3.81 3.39 7.21 4.94 4.31 5.16 4.03 3.26 3.61 4.65

MPO (Ours) 2.22 0.95 4.76 1.90 12.38 10.79 5.98 7.25 5.32 5.26 5.44 5.38 4.11 4.01 5.25

Table 13: Results of the multilingual safety performance and general utility of the model when replacing the
dominant language reward gap with a fixed value ranging from 0.1 to 20. The best results are highlighted in bold.

MultiJail

En Zh Ko Ar Bn Sw AVG.

LLaMA-3.1 14.60 20.32 52.38 16.83 49.52 37.78 31.91

SDRRL 4.76 4.13 18.41 3.81 21.90 21.59 12.43
CLA 11.75 15.24 43.49 12.87 42.54 55.56 30.24
LENS 16.09 60.95 55.24 25.08 60.95 80.32 49.77

MPO 2.22 0.95 4.76 1.90 12.38 10.79 5.98

Table 14: Comparison with cross-lingual transfer
method on MultiJail. The evaluation metric used is
the Attack Success Rate (ASR), where lower values
indicate better performance. The best results are high-
lighted in bold.

space, where it separates target and central
languages to preserve linguistic specificity.

• SDRRL: It leverages self-distillation from
resource-rich languages to effectively enhance
multilingual performance through the use of
self-distilled data.

Table 14 demonstrates that MPO consistently out-
performs these methods, maintaining strong multi-
lingual safety alignment. This further highlights the
advantage of leveraging the dominant language’s
reward gap as a fine-grained supervision signal. Un-
like MPO, which explicitly minimizes the reward
gap difference between the dominant language and
target languages, existing cross-lingual transfer ap-
proaches struggle with noisy preference signals
and suboptimal knowledge transfer. Additionally,
they often exhibit performance degradation in low-
resource languages, where data scarcity amplifies
alignment instability.

Effect of Constant Reward Gap from the Domi-
ant Language We consider an alternative design
of MPO—namely, computing the dominant lan-
guage reward gap using the policy model instead

of the reference model (MPO-Policy).
We implement MPO - Policy on all three

backbones, LLaMA-3.1, Gemma-2 and Qwen2.5,
where the dominant reward gap is computed using
the policy model during training. We performed
an equivalent hyperparameter search over learning
rates [3e-7, 4e-7, 5e-7, 6e-7], training epochs [1, 2,
3], and values [1.0, 1.5, 2.0], and report the best-
performing configuration. The results, shown in
the Table 15, indicate that MPO - Policy consis-
tently underperforms compared to our proposed
method across all three backbones, both in terms
of safety alignment (as measured by MultiJail, the
lower score is better) and general capabilities (as
measured by MT-Bench, the higher score is bet-
ter). This empirically supports our choice to use
the reference-based reward gap.

We further provide theoretical justification.
When computing RGd using the current model πθ
instead of the reference model πref , The gradient
of this loss function becomes:

∇θL1 = 2β ED
[
(β · RGt − RGd)·

((
1

|yt
w|

∇θ log πθ(y
t
w|xt)− 1

|yt
l |
∇θ log πθ(y

t
l |xt)

)
−

(
1

|yd
w|

∇θ log πθ(y
d
w|xd)− 1

|yd
l |
∇θ log πθ(y

d
l |xd)

))]

(28)

By comparing the gradients of the two formula-
tions, Equation 27 and Equation 28, obtaining dom-
inant reward gap from the policy model has the
following drawbacks:

• Optimization instability: the direction of the
gradient can fluctuate significantly as both
sides of the loss are functions of θ.

• Lack of anchoring: without a stable refer-
ence, the loss can converge to trivial solutions
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MultiJail MT-Bench
En Zh Ko Ar Bn Sw AVG. En Zh Jp Ko Ar Bn Sw AVG.

LLaMA-3.1 14.60 20.32 52.38 16.83 49.52 37.78 31.91 7.31 5.38 4.88 5.22 5.43 3.98 3.98 5.17

MPO 2.22 0.95 4.76 1.90 12.38 10.79 5.98 7.25 5.32 5.26 5.44 5.38 4.11 4.01 5.25
MPO - Policy 56.51 48.89 70.79 46.35 81.27 84.13 64.66 7.04 5.23 5.03 5.34 5.36 4.11 3.97 5.15

Gemma-2 2.54 9.52 14.61 4.13 20.32 14.60 10.95 7.71 7.07 6.84 6.81 7.06 5.66 6.15 6.76

MPO 0.63 4.76 6.98 3.81 16.51 7.94 6.77 7.83 6.81 7.07 6.88 7.05 5.78 6.16 6.80
MPO - Policy 1.59 5.08 7.30 5.40 17.78 10.83 7.99 7.81 6.77 6.73 6.59 6.84 5.71 6.01 6.64

Qwen-2.5 12.70 10.16 15.87 15.87 73.02 98.10 37.62 7.77 7.36 6.43 6.21 6.60 4.49 2.37 5.89

MPO 7.30 6.67 8.89 13.02 53.65 92.38 30.32 7.77 7.39 6.71 6.19 6.56 4.43 2.28 5.90
MPO - Policy 14.60 10.48 12.70 13.33 60.63 98.73 35.08 7.69 6.83 6.57 6.16 6.48 4.13 2.17 5.72

Table 15: Results of the multilingual safety performance and general utility of the model when replacing the
computation of the dominant language reward gap with the policy model itself.

MultiJail

En Zh Ko Ar Bn Sw AVG.

MAPO - DPO 5.40 3.49 15.87 3.17 27.71 42.86 16.42
MAPO - MPO 2.46 1.59 3.17 3.17 9.52 8.25 4.69

LIDR - DPO + NLL 1.90 6.03 18.10 19.37 80.00 81.27 34.45
LIDR - MPO 2.22 2.86 1.90 6.67 8.89 11.12 5.61

Table 16: Results of the multilingual safety performance
on MultiJail. The evaluation metric used is the Attack
Success Rate (ASR), where lower values indicate better
performance. The best results are highlighted in bold.

where both RGt and RGd collapse toward
zero, rather than aligning their structure.

In summary, our current design using reward gap
from reference model not only improves training
stability but also provides a clearer learning signal,
enabling more reliable cross-lingual safety align-
ment. This design choice is well-justified, as the
dominant language in the original model typically
exhibits the strongest safety alignment

H.4 Impact of Data Source
Recent studies explore the use of LLMs themselves
to generate multilingual preference data, rather
than relying on external translation tools. Two no-
table approaches in this direction are MAPO (She
et al., 2024) and LIDR (Yang et al., 2024b).

• MAPO constructs multilingual preference
data by sampling multiple responses from an
LLM in a given target languages and ranking
them based on an alignment score computed
via an external translation model, which mea-
sures their consistency with the response in
the dominant language. The ranked responses
form preference pairs that are then optimized
using DPO (Rafailov et al., 2023).

• LIDR relies on the LLM’s own translation
capability to convert English preference data
into target languages, followed by DPO opti-
mization with an additional NLL loss.

While both methods explore multilingual prefer-
ence data generation, they do not propose improve-
ments to the multilingual preference optimization
process itself, instead relying solely on DPO.

To evaluate whether MPO remains effective
when trained on preference data obtained using
these methods, we conduct experiments using
MAPO- and LIDR-generated data. As shown in
Table 16, MPO consistently achieves the best mul-
tilingual safety alignment results across both data
sources, demonstrating its robustness to variations
in preference data. These results emphasize that
while MAPO and LIDR explore multilingual pref-
erence data construction, they do not address the
fundamental challenges of multilingual preference
optimization. MPO, in contrast, not only adapts
to different multilingual data sources but also im-
proves the optimization process, ensuring stable
and effective multilingual safety alignment.

H.5 Visualization Analysis

To further understand what MPO brings for the
multilingual safety alignment of LLMs, as shown
in Figure 6, we perform Principal Component Anal-
ysis (PCA) to visualize the multilingual represen-
tations in the activation spaces. Specifically, the
multilingual harmful inputs are sourced from the
AdvBench-X dataset. For each input, we append
both a corresponding safe response and an unsafe
response to visualize the model’s representation.
All representations are extracted from the final
layer of the model’s output and the backbone model
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(a) The visualization of multilingual rep-
resentations for English and Chinese on
LLaMA-3.1-8B-Instruct.
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(b) The visualization of multilingual rep-
resentations for English and Arabic on
LLaMA-3.1-8B-Instruct.
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(c) The visualization of multilingual rep-
resentations for English and Swahili on
LLaMA-3.1-8B-Instruct.

60 40 20 0 20 40 60
60

40

20

0

20

40

60 safe_en
safe_zh
unsafe_en
unsafe_zh

(d) The visualization of multilingual rep-
resentations for English and Chinese on
LLaMA-3.1-8B-Instruct after multilin-
gual safety alignment via MPO.
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(e) The visualization of multilingual rep-
resentations for English and Arabic on
LLaMA-3.1-8B-Instruct after multilin-
gual safety alignment via MPO.
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(f) The visualization of multilingual rep-
resentations for English and Swahili on
LLaMA-3.1-8B-Instruct after multilin-
gual safety alignment via MPO.

Figure 6: The visualization of multilingual representations for safe and unsafe inputs across different languages.
The upper row (a-c) illustrates the representation space of the original LLaMA-3.1-8B-Instruct model for English
(En) and three additional languages: Chinese (Zh), Arabic (Ar), and Swahili (Sw). The lower row (d-f) presents
the corresponding representation space after applying multilingual safety alignment via MPO. The visualizations
highlight the structural changes in the representation space induced by MPO alignment.

X-AdvBench

En Zh Jp Ko Ar Bn Sw AVG.

Aya-101 17.88 20.00 42.69 45.38 20.32 58.08 53.93 36.90
+ MPO 8.65 14.04 20.19 25.19 9.81 31.35 39.23 21.21

Table 17: Results of the multilingual safety performance
on X-AdvBench. The backbone is Aya-101. The best
results are highlighted in bold.

is LLaMA-3.1-8B-Instruct.

Notably, in all cases, the boundary between safe
and unsafe inputs in English remains consistently
clear. However, in the original model (a-c), the dis-
tinction between safe and unsafe inputs in the target
languages (Zh, Ar, Sw) appears less structured and
more entangled. After applying MPO alignment (d-
f), the model demonstrates a significantly improved
separation of safe and unsafe inputs in the target
languages. This indicates that MPO enhances the
multilingual safety alignment of the model, allow-
ing it to develop clearer decision boundaries in
languages beyond English.

H.6 Results on Aya-101
We includes results on an explicitly multilingual
model Aya-101, providing more valuable empirical
insights. The results are summarized in Table 17.

Although Aya-101 supports a wide range of lan-
guages, its multilingual safety alignment is still
limited. After applying our MPO method—with
English as the dominant language, given its well-
established safety alignment—we observe a sig-
nificant improvement in safety performance on X-
Advbench across all 7 languages.
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