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Abstract

Recent advancements in large language mod-
els (LLMs) have shown promising ability to
perform commonsense reasoning, bringing ma-
chines closer to human-like understanding.
However, deciphering the internal reasoning
processes of LLMs remains challenging due
to the complex interdependencies among gen-
erated tokens, especially in practical question-
answering. In this study, we introduce a two-
dimensional analysis framework—comprising
token back-tracing and individual token decod-
ing—to uncover how LLMs conduct factual
knowledge recall. Through explanatory analy-
sis of three typical reasoning datasets, we iden-
tify a consistent three-phase pattern: Subject
Augmentation and Broadcasting, Object Re-
trieval and Reranking, and Conclusion Fusion
and Generation. Our findings reveal that LLMs
do not lack relevant knowledge but struggle to
select the most accurate information based on
context during the retrieval and rerank phase.
Leveraging these findings, we apply represen-
tation engineering and selective fine-tuning to
target specific modules responsible for retrieval
and rerank errors. Experimental results show
large improvements in response accuracy for
both in-domain and out-of-domain settings, val-
idating the rationality of the interpreting result.

1 Introduction

Recent progress in large language models (LLMs)
have pushed machines closer to achieving human-
like capabilities (Krause and Stolzenburg, 2023;
Zhou et al., 2020). These models can not only
comprehend user queries, but also perform com-
monsense reasoning based on factual knowledge.
As a result, uncovering these abilities has become a
focal point of interest. It is crucial for interpreting
model behavior and analyzing unexpected errors
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Q: Is Ganesha associated with Thor? A: Ganesha is a Hindu god ... Thus ... So the answer is no.

Ganesha related knowledge:
god, Hindu, magic, ...

Subject augmentation Object retrieval and rerank

Conclusion fusion Answer generation

Figure 1: Model inner reasoning process on common-
sense reasoning tasks.

(e.g., reversal curse (Berglund et al., 2023)), ulti-
mately overcoming the limitations of LLMs.

Research on interpreting LLMs (Geva et al.,
2023; Wang et al., 2024; Dai et al., 2022; Xie
et al., 2024) often simplifies reasoning by focusing
on factual triplets like “Ganesha is a Hindu god”.
These studies examine how models derive the ob-
ject (“Hindu”) from the subject (“Ganesha”) as
well as the relation (“is”). However, in real-world
scenarios, model must go beyond these triplets to
understand the question, select relevant facts, and
synthesize information to provide an answer. For
example, when asked, “Is Ganesha associated with
Thor?”, the model must comprehend the context,
recognize that “Ganesha is a Hindu god” from all
Ganesha-related facts, and conclude they are not
related. In contrast, for the question, “Does Gane-
sha look like a tiger?”, the model in turn focuses
on appearance-related facts, such as “Ganesha is
depicted with an elephant head”. Understanding
how models select appropriate factual knowledge
and leverage it to reach conclusions is crucial for
comprehending the overall reasoning process. This
holistic approach extends beyond simple triplet
analysis and can better reflect the complexity of
real-world reasoning tasks.

In this study, we aim to decipher the common-
sense reasoning process within the response of
LLMs. Specifically, we focus on real-world sce-
narios where models typically generate complex
and multi-token rationales before producing the
final answer. The challenge lies in the dense inter-
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connectivity of token generation, where each gen-
erated token is influenced by multiple preceding
ones, leading to a recursive analytical complexity.
Existing interpretability tools cannot be directly
applied to analyze this complexity. To decipher
the multi-token generation process, we design a
new framework by breaking down the analysis into
two dimensions: token back-tracing and individual
token decoding. Token back-tracing starts from
the final answer and traces back to the original
question. It identifies intermediate key tokens with
significant direct impact through causal analysis.
This reveals a chain of crucial information transfers
between tokens, as shown in Fig. 1. For individ-
ual token decoding, following Wang et al. (2023),
we adopt an “explain then verify” strategy. We
first identify and decode the semantic information
within the key modules. Then these key modules
are knocked out to verify the reliability of results.

The interpreting analysis of three typical rea-
soning datasets revealed a consistent pattern in
models’ commonsense reasoning. The process un-
folds in three stages: 1) Subject augmentation
and broadcast: the model first generates exten-
sive subject-related information through attention
heads and MLP, and broadcasts it to subsequent
key positions (e.g., sentence endings); 2) Object
retrieval and rerank: the model retrieves the pre-
viously generated subject information with atten-
tion heads and reorders it using MLPs when pre-
dicting attributes; and 3) Conclusion fusion and
generation: the attributes are further transported
to the conclusion through heads and generate cor-
responding conclusions, ultimately forming the an-
swer. Based on this pattern, we further analyzed
the failure cases of current models. One key find-
ing is that LLMs are not unaware of relevant facts,
but rather struggle to select the most accurate fact
during retrieval and rerank based on contextual
cues. This motivated us to develop a direct appli-
cation of interpretability findings: by identifying
specific modules through explanatory localization,
we employed selective fine-tuning and representa-
tion engineering to optimize the attribute retrieval
and rerank. Results show significant improvement
in model performance, simultaneously validating
the rationality of the interpretability results.

We summarize our contributions as follows: (1)
We introduce an effective interpreting framework
that combines token back-tracing with individual
token decoding to understand how LLMs reason
across multiple tokens. (2) We break down how

language models perform commonsense reasoning
into human-understandable steps: LLMs first aug-
ment related facts and broadcast the information
into the proceeding key positions, subsequently re-
trieving and re-ranking these facts to predict correct
object, and finally fusing and generating conclu-
sions. (3) Using the interpreting result, we identify
that on commonsense reasoning tasks, LLMs of-
ten fail to retrieve and rerank correct facts, leading
to erroneous reasoning or conclusions. By selec-
tively fine-tuning key heads and MLPs, the per-
formance of reasoning is enhanced, especially for
out-of-domain samples. It validates the reliability
of the interpreting results.

2 Related Works

2.1 Mechanistic Interpretability

Mechanistic interpretability in LLMs aims to un-
derstand model behavior by reverse-engineering
the internal computational processes. Many inter-
pretability tools have been developed to analyze
language models. Logit attribution projects in-
ternal vectors into vocabulary space to interpret
encoded information, and has been successfully
applied in multiple studies to reveal various in-
terpretability findings (Geva et al., 2021b, 2022;
Dar et al., 2023; Belrose et al., 2023). Activation
patching employs causal interventions on internal
model components using corrupted inputs (Meng
et al., 2022; Wang et al., 2023; Goldowsky-Dill
et al., 2023; Conmy et al., 2023). This approach
identifies critical modules and computational cir-
cuits by analyzing changes in model predictions. It
has been effectively used to identify task-specific
modules across various LLM studies (Lieberum
et al., 2023; Zhang et al., 2024; Chen et al., 2024;
Hanna et al., 2023). Sparse autoencoders decom-
pose internal features into interpretable combina-
tions (Bricken et al., 2023; Templeton et al., 2024;
Lieberum et al., 2024; Gao et al., 2024), while
knockout techniques verify component importance
by analyzing prediction changes after component
removal (Wang et al., 2023; Olsson et al., 2022).
In our work, we adapt these tools to interpret the
model’s reasoning process. A detailed comparison
of existing interpretability tools and our selection
criteria is presented in §A.1.

2.2 Mechanism of Factual Knowledge Recall

Numerous studies have employed interpretability
tools to investigate model mechanisms in reasoning
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Data Type Input Case Output Related Research

Single-hop knowl-
edge recall

The singer of ‘Superstition’
is ___

Stevie Wonder (single token) Geva et al. (2023); Dai
et al. (2022); Yu and
Ananiadou (2024)

Multi-hop knowl-
edge recall

The mother of the singer of
‘Superstition’ is ___

Lula (single token) Yang et al. (2024); Bi-
ran et al. (2024)

Real world QA
with Rationale

Q: Can Harry Potter book
a flight on Asiana Airlines?
A:

Harry Potter is a fictional character. Fictional
characters cannot book flights. Thus, Harry
Potter cannot book a flight on Asiana Airlines.
So the answer is no. (complex multi-token)

None

Table 1: Comparison of factual knowledge recall tasks. Prior studies focused on single-token answer generation,
while the mechanism of how LLMs generate final answers through step-by-step reasoning in real-world queries
remains largely unexplored.

tasks. Geva et al. (2023) explored factual knowl-
edge recall, finding that subject information is en-
riched in the subject token in early layers, while
relation information is passed to the final token,
which then uses attention heads to extract the cor-
responding attribute from the subject representa-
tion. Building on this, Wang et al. (2024); Dai
et al. (2022); Yu and Ananiadou (2024); Geva et al.
(2022) further identified MLP neurons involved in
factual knowledge recall and demonstrated how
modulating their activations can control model be-
havior. Additionally, works such as Yu et al. (2024);
Ortu et al. (2024); Yu et al. (2023); Xie et al. (2024)
analyzed the balance between retrieved knowledge
and parametric memory. These studies largely fo-
cus on elementary retrieval tasks, such as recalling
a single fact o within a triplet (s, r, o). In this study,
we focus on interpreting the model’s reasoning pro-
cess in more complicated reasoning tasks.

3 Methods

As shown in Tab. 1, previous studies on factual
recall have primarily focused on single-token gen-
eration processes (Geva et al., 2023; Yang et al.,
2024; Dai et al., 2022) on single-hop and multi-
hop factual knowledge recall tasks. However, in
real-world knowledge question answering scenar-
ios (Geva et al., 2021a), language models typi-
cally generate complex, multi-token responses. Yet
current interpretability tools, designed primarily
for single-token generation analysis, are insuffi-
cient for explaining the intricate token interactions
within multi-token responses.

3.1 Preliminary

In our experiments, we uncovered several key to-
ken positions in the reasoning process through back

tracing: Subject, Object, Answer. These tokens are
observed special in experiments and therefore high-
lighted for better comprehension. (1) Subject (S):
The subject of inquiry in the question, represented
as a concept node in a knowledge graph (Speer
et al., 2017), denoting entity, idea, or object in com-
monsense reasoning (e.g., “Harry Potter” in Fig. 2).
(2) Object (O): The object, paired with S contains
some factual knowledge, is also a concept node.
These objects, according to their relevance in the
context of the question, can be categorized into
predicted objects Op (e.g., “Harry Potter is a ‘fic-
tional character’”) and candidate objects Oc (e.g.,
“Harry Potter is a ‘wizard’”). (3) Answer (A): The
answer to the question, which varies based on the
type of question. It may be a binary judgment (e.g.,
“yes/no”) or a selection (e.g., “(2) Kayla”). We
denote the correct and false answers as At and Af .

Furthermore, through back-tracing, we identified
several positions that entail reasoning-related infor-
mation: (4) Reasoning conjunctive adverb (R):
we find conjunctive adverbs that connect reason-
ing steps (e.g., “Thus”) encodes rich information
related to the answer. (5) Conclusion (C): terms
that convey the affirmative or negating essence of
the conclusion sentence, clarifying the stance to the
question. (e.g., “cannot” in “Thus, Harry Potter
cannot book a flight on Asiana Airlines.”) (6) Ques-
tion end (Qe): we find abundant subject-related
information encoded at the end of the question.

3.2 Methodology

As illustrated in Fig. 2, the interpretation process
is divided into two orthogonal pipelines. 1) Token
back-tracing: The horizontal pipeline traces the
path of tokens from the end to the start. Through
causal back-tracing, tokens that are strongly corre-
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A: Harry Potter is a fictional character ... So the answer is no..Q: Can Harry Potter book a flight on Asiana Airlines?

Mid tokens End tokenStart token

Decode parametric knowledgeTrace back

Interpret the module encoding
target information content

Decode semantic information
and pattern of module

Interpret the module encoding
target information content

Decode semantic information
and pattern of module

Interpret the module encoding
target information content

Decode semantic information
and pattern of module

::

Trace back Decode parametric knowledge

Harry Potter is a 
fictional character

Attention heads for
generating attribute

!

"

Q: Can Harry Potter ... A: Harry Potter ...

!Activation patching
" Examine attention score

Harry Potter is a 
fictional character

#

$

# Logit attribution of modules
$ Decoding semantic information

MLP

Feature 99851: references to characters and elements 
from the Harry Potter series
Feature 82918: concepts related to creation and 
storytelling in various media
Feature 102516: connections to ghostly or 
supernatural imagery

(a) (b) (c)

“wizard” Prob

“fictional” Prob

Figure 2: (a) Two dimensions of our interpretation framework: i) Tracing back (horizontal): we use activation
patching to identify the head with causal effect and trace the origin of the information iteratively. ii) Decoding
concept knowledge (vertical): we use logit attribution to identify the key module for generating concepts during
reasoning at the key position and decode the semantic information within it. (b) Example of Tracing Back: We first
identify the key attention heads responsible for generating the attribute “fictional”, then trace back to the source
information (“Harry Potter”) by analyzing the tokens these heads attend to. (c) Example of Decoding Concept
Knowledge: We locate modules specifically contributing to the predicted attribute (“fictional”) by comparing
prediction probabilities between the predicted and candidate attributes (e.g., “wizard”) in MLP outputs. We then use
SAE to identify and interpret important features in MLP, revealing semantic patterns related to fictional content.

lated with a target token can be effectively identi-
fied, allowing us to focus on the most relevant in-
formation flows rather than exhaustively analyzing
the dense connections across all tokens. This ap-
proach helps identify the key relationships between
tokens, thereby pinpointing the crucial positions
of key tokens in commonsense reasoning (as de-
fined in §3.1). 2) Decode parametric concept or
attribute: The second pipeline, shown vertically,
analyzes the patterns within LLMs when generat-
ing a specific token, including inner behaviors and
activation characteristics. It explains the behavior
of modules (i.e., residual blocks, attention heads,
and MLPs) by evaluating the information related
to the target content (e.g., At, Af , Op, and Oc)
within modules’ output. Subsequently, it decodes
the semantic information and patterns encoded in
these modules into human-understandable formats.

Instantiation of tracing token-to-token path. We
employ activation patching (Wang et al., 2023) for
causal back-tracing. This method, which originates
from causal mediation analysis (Vig et al., 2020),
enables us to identify significant attention heads
through direct effect analysis (as shown in the right
side of Fig. 2). We made several improvements
to the original method: (1) Developing a refined
metric to reduce noise in key module identification.
(2) Extending the analysis from final logits to the
middle layer outputs. (3) Automating the gener-
ation of counterfactual data to obtain large-scale
results (See §A.2 for details). In our implementa-

tion, we identify heads with the Top-5 direct effect
as key contributors to token generation. By analyz-
ing the attention patterns in these important heads,
we select the top 2 previous tokens with the highest
attention scores as being correlated with the current
token, serving as the basis for further tracing and
analysis. For instance, as show in Fig. 2 (b), we
identified the attention head responsible for gener-
ating O (“fictional”). Subsequently, by analyzing
the attention score distribution (i.e, the last row of
the attention score matrix), the most correlated to-
ken S (“Harry Potter”) is located. This process is
then iteratively applied to discover the complete
transition path across tokens.

Instantiation of decoding parametric concept or
attribute. We use logit attribution (nostalgebraist,
2021) to interpret the module behavior across lay-
ers. The method projects hidden states into the vo-
cabulary space using the model’s pretrained unem-
bedding matrix and obtains its distribution on the
vocabulary space. Therefore, the method reveals
the information contained in current hidden states
and explains the contribution of specific heads or
MLPs or residual blocks to the predicted token. To
address the false identification issue, we calculate
the softmax probability of the multiple tokens (Op,
Oc, At, or Af ) after projection. This improve-
ment ensures the identified key modules contribute
specifically to target prediction (e.g., Op) rather
than all related tokens (e.g., both Op and Oc). The
probabilities across layers will form the curves (see
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line plot in Fig. 2 (c) for illustration), indicating the
module’s inner reasoning process.

To validate the interpreting results obtained by
logit attribution, for MLP, we adopt Sparse Autoen-
coder (SAE) (Templeton et al., 2024) to decode the
semantic information embedded in the parameters
and activations. (e.g., information related to “fic-
tional characters” is decoded in MLP of deep layer
when predicting “fictional” as shown in Fig. 2 (c)).
More details are introduced in §A.2.2. Regarding
attention heads, we use logit attribution to decode
the semantic information. We project the outputs
of the heads into the vocabulary space and examine
the top-20 tokens in the head’s output distribution
to decode the semantic information. To validate
the functional roles of these key components, we
followed Wang et al. (2023) by knocking out these
modules to observe the influence on output.
Method selection and improvement details. Our
interpretability framework leverages a diverse set
of analytical tools, each selected to address specific
aspects of the explanation process. Tab. 5 provides
a concise overview of our tool selection rationale,
while a more comprehensive analysis and compari-
son of existing interpretability tools is detailed in
§A.1. Additionally, we have refined these tools
with detailed improvements described in §A.2.

4 Experiments

4.1 Experiments Overview

Consider a question: “Q: Can Harry Potter book
a flight on Asiana Airlines?” and Gemma2-9B’s
output is “Harry Potter is a fictional character. Fic-
tional characters cannot book flights. Thus, Harry
Potter cannot book a flight on Asiana Airlines. So
the answer is no.”. Through extensive experimental
results, we find the models’ internal reasoning pro-
cess consists of three distinct stages: (1) Subject
Augmentation and Broadcast, at subject token
position (S, “Harry Potter”), the model extends
from the subject to augment relevant object (e.g.,
“Wizard” and “fictional”). (2) Object Retrieval
and Rerank, when predicting object token (Op,
“fictional”) attention is responsible for retrieving
related objects while MLP layers rank the most
appropriate one as output. (3) Conclusion Fusion
and Generation, when predicting conclusion (C,
“cannot”) and answer (A, “no”) tokens, the model
integrates the previous information and generates
the final answer through attention heads and MLPs.

Given our analytical pipeline’s back-tracing na-

ture, we present the results in reverse chronological
order to align with the original investigation proce-
dure. We begin tracing back from A → C → O,
and decoding to find the conclusion fusion and
generation (§4.3). Diving deeper into O, we fur-
ther observe object retrieval and rerank (§4.4).
Further tracing the origin of O leads us to S, un-
covering subject augmentation and broadcast
(§4.5). Additionally, We extend our investigation
across different models and datasets in §4.6.

4.2 Experiments Settings
Models. We conducted experiments on two popu-
lar open-sourced models, Gemma2-9B (Team et al.,
2024) and Llama2-7B (Touvron et al., 2023). The
results in this section primarily focus on Gemma2-
9B, as Sparse Autoencoders (SAEs) have been
trained for all its layers (including residual and
MLP layers) (Lieberum et al., 2024), enabling com-
prehensive validation of our analyses. Gemma2-9B
consists of 42 layers, Llama2-7B consists of 32 lay-
ers. See Appendix A.8 for results on Llama2-7B.
Datasets. We selected three widely used
commonsense reasoning benchmark datasets:
StrategyQA (Geva et al., 2021a), Com-
monsenseQA (Talmor et al., 2018), and
SocialIQA (Sap et al., 2019). These three datasets
evaluate distinct reasoning capabilities of language
models (see Tab. 12 for details). Given that
StrategyQA presents more sophisticated reasoning
challenges, we primarily present the StrategyQA
results in the main text. Detailed results for the
other two datasets are presented in § A.6.
Settings. Following the experimental protocols
in Geva et al. (2023); Lieberum et al. (2023),
we randomly sampled 1,000 instances from each
dataset for our experiments. All figures presented
in this paper are averaged results across this sample
size, ensuring statistical reliability while maintain-
ing computational feasibility. Detailed analysis of
result stability across various sizes of samples is
presented in Appendix A.4. To elicit the step-by-
step rationale, we adopt the few-shot CoT prompts
from (Wei et al., 2022; Li et al., 2024).

4.3 Conclusion Fusion and Generation
We start from decoding the information of At and
Af (i.e. “yes” and “no”) in residual blocks, atten-
tion, and MLP layers at the position of predicting
A as shown in Figure 3a. The curves of residual
blocks depicts how the model predicts A across
layers while curves of attention and MLP layers de-
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Residual block

Attention

MLP

(a)

Residual block

Attention

MLP

(b)

Figure 3: (a) Logit attribution of At and Af at predict-
ing A on StrategyQA. (b) Logit attribution of Op and
Oc at predicting O on StrategyQA.

pict the module contribution to the At and Af . The
prediction of A can be divided into three stages: (i)
Stage 1 (l 0−24): Little to no answer-related infor-
mation is present in residual blocks, attention and
MLP layers, indicating the model is still process-
ing the input. (ii) Stage 2 (l 25− 33): Information
related to the answer increases, yet the probabili-
ties for At and Af are close across residual blocks.
Within the modules, attention heads begin to con-
vey answer-related information from layer 25 and
the MLP follows to encode this information from
layer 26. Notably, the outputs of attention and MLP
show similar information for both At and Af . In
this stage, the model starts to generate an answer
but has not yet identified the correct one. (iii) Stage
3: By layer 34, the model distinguishes the correct
answer At, with its probability sharply rising and
the Af ’s probability decreasing. At the same layer,
the attention output sharply spikes for At (prob-
ability near 1.0), while the MLP output is much
lower (≈ 0.1). Afterward, the outputs of MLPs fur-
ther increase At’s probability (l 37− 38), leading
to the final prediction. In conclusion, attention is
responsible for fusing related information, while
the MLP enhances the probability of the correct
answer, contributing to generating the final answer.

We further investigated the semantic information
encoded in the outputs of MLP and attention heads
for verification. In attention heads, we found that
in stage 2 and 3, the key heads encoded informa-

Head Top tokens in projection

28.06 yes, yeah, no, nil, Yes
32.07 Noah, node, Noah, no, Nora
34.09 denying, denied, denial, deny
35.14 ye, Ye, Yea, YE, yes, YES, Yeh

Table 2: Top-scoring tokens in the key attention heads
output when predicting A on StrategyQA.

Layer ID Feature Explanation

27 76551 questions and answers related to
decision-making and assessments.

30 21336 affirmative and negative responses
to questions.

38 101266 answers presented in a structured
format, particularly in multiple-
choice or quiz contexts.

Table 3: Top-scoring features decoded by SAE in the
output of the key MLP layers when predicting A on
StrategyQA.

tion related to both At and Af (see the outputs of
heads in Tab. 2). Meanwhile, numerous features re-
lated to decision-making (see Tab. 2) are identified
in MLPs. These findings provide additional evi-
dence supporting the critical role of the MLP and
Attention layer in the answer generation process.

Finally, we applied activation patching to iden-
tify key heads and trace the information for gen-
erating A. Tracing the information flow, the path
began at the conclusion S, progressed to the rea-
soning conjunctive adverb R, and finally arrived
at object O. In the process, we discovered that R
acts as anchors for the fusion and transport of
conclusion-related information in the reasoning
process. For a detailed examination of the trace
from A to O, and an in-depth analysis of answer-
related information at R, please refer to §A.5.

4.4 Object Retrieval and Rerank

The object information O decoded in the outputs
of the residual block, attention layers, and MLP
layers is shown in Fig. 3b. We examined the pre-
dicted object Op and candidate object Oc probabil-
ity within these modules. For the residual block,
the object information emerges at around layer 26.
However, Op is not dominant in the first place, as
the probabilities of Op and Oc increase alternately.
For attention, Op and Oc interleave, with neither
showing explicit dominance throughout the whole
layers. On the contrary, MLP shows obvious pref-
erence for Op, where correct object information
is prominent across almost all layers. Notably, at
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layer 37, Op is clearly dominant, while Oc remains
minimal. This sharp spike aligns with a key tran-
sition point in the curve of residual block. From
these observations, it seems that 1) both Op and Oc

are integrated during the process of object token
generation. 2) The attention heads initially retrieve
the information for both Op and Oc, while MLPs
subsequently rerank Op to the top position.

To validate our finding, we look into the output
of attention heads and MLP. As shown in Tab. 15,
attention heads encode a rich set of attribute in-
formation relevant to the subject (e.g., “British”,
“wizard”, “book”, and etc). Meanwhile, in Tab. 13,
the features in MLP decoded by SAE are strongly
related to “identity and character” (Tab. 13). These
features are highly correlated to Op, but none of
them is related to Oc. These results validate the
retrieving function for the attention head and the
reranking function for the MLP.

Finally, we utilize activation patching to identify
the heads with causal effect (see Fig. 10a) and find
these heads focus on two critical token positions,
S and end of question. Therefore, we trace back to
S and Qe to investigate the origin of O.

Residual block

Attention

MLP

(a)

Residual block

Attention

MLP

(b)

Figure 4: (a) Logit attribution of Op and Oc at S in
StrategyQA. (b) Logit attribution of Op and Oc at the
end of question in StrategyQA.

4.5 Subject Augmentation and Broadcast
Generally, in commonsense reasoning datasets, the
S always appears in both the question and the ra-
tionale. Through analysis, we observe that the S
in the rationale can also be back-traced to the S in
the question. Therefore, we treat the position of S
in the question as a focal point for deeper analysis.

Figure 4a illustrates the information of Op and
Oc decoded in the outputs. Notably, we observe
that: 1) Residual block contains obvious informa-
tion regarding both Op and Oc across various lay-
ers, with Oc being more prominent at the end. 2)
Aanother two curves show that both attention heads
and MLPs have a large influence on Op and Oc.
To further decode information, we identifyies that
MLPs in layers 7 and 32 encode abundant features
related to O (see Tab. 14). Meanwhile, Probing
also reveals that heads in layers 29 and 39 rank the
Oc at top. In addition to diminishing the impact
of the information from any previous token, we
also examine the three corresponding curves at the
position before S (for instance, “Question: Can
Harry Potter”). The results (green line in Fig. 4a)
reveal that the information regarding O is virtually
zero. It indicates that the emergence of Op and
Oc is indeed contingent upon the appearance of
C and is independent of any previous tokens. In
conclusion, both the MLP and heads play essential
roles in assisting the model to associate and extend
from S to related Op and Oc. We refer to this stage,
along with the contributions of the MLP and heads,
as subject augmentation.

Regarding the question’s end position (Qe),
Fig. 4b also presents the three corresponding
curves. (1) In the residual, both Op and Oc ap-
pear across multiple layers. On Cthe contrary to
the concept token position, Op has a greater pres-
ence than Oc. (2) The curves for the MLP and
heads also encapsulate information about both Op

and Oc, and further enhance the importance of Op.
It indicates that even at unrelated token positions,
the O corresponding to the S (or the knowledge
they encompass) can be broadcast. The original
order of O may be broadcast based on the current
context, ultimately influencing the generation of
Op. We term this stage as subject broadcasting.

4.6 Verification and generalization of findings
To validate our interpretations, we conducted
knockout analysis on key model components.
Fig. 6 demonstrates the impact of sequentially
knocking out the top-10 attention heads on pre-
dicted token probabilities when the model outputs
Op (Fig. 6a) and At (Fig. 6b). Our findings reveal
substantial negative effects, with probability decre-
ments ranging from 30% to 60%. In contrast, ran-
domly knocking out 10 heads showed a negligible
impact on the results, with maximum degradation
of merely 2%. Additionally, we conducted knock-
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Question: Are the majority of Reddit users familiar with the Pledge of Allegiance?

Query Error Answer: The Pledge of Allegiance is a pledge to the United States. 
Reddit is a social media site. Thus, the majority of Reddit users are not familiar 
with the Pledge of Allegiance. So the answer is no.❌

Correct Answer: The Pledge of Allegiance is a pledge to the United States. The 
majority of Reddit users are from the United States. Thus, the majority of Reddit 
users are familiar with the Pledge of Allegiance. So the answer is yes. ✅

Question: Does The Hague border multiple bodies of water?

Conclusion Error Answer: The Hague is in the Netherlands. The Netherlands 
borders the North Sea. The North Sea is a body of water. Thus, The Hague 
borders a body of water. So the answer is yes.❌

Correct Answer: The Hague is in the Netherlands. The Netherlands borders the 
North Sea. The North Sea is a body of water. Thus, The Hague borders a body of 
water. So the answer is no. ✅

Question: Did Sony definitively win the video game war against Sega?

Logic Error Answer: Sony and Sega were both video game companies. Sony 
and Sega were competitors. Thus, Sony did not win the video game war against 
Sega. So the answer is no.❌

Correct Answer: Sony and Sega were both video game companies. Sony and 
Sega were competitors. At the height of the console wars, Sega Saturn sold 
9.5 million units while Sony Playstation sold 102 million units. Thus, Sony 
won the video game war against Sega. So the answer is yes.✅

Question: Would Persephone be a good consultant to a landscape architect?

Reference Error Answer: Persephone is the Greek goddess of the underworld. 
Landscape architects design gardens. Thus, Persephone would not be a good 
consultant to a landscape architect. So the answer is no.❌

Correct Answer: Persephone is the Greek goddess of the vegetation. 
Landscape architects design gardens. Thus, Persephone would not be a good 
consultant to a landscape architect. So the answer is no.✅

Case of Reference Error

Case of Conclusion Error

Case of Logic Error

Case of Query Error
74%

20%

5%

1%

Reference Error Logic Error
Conclusion Error Query Error

Figure 5: The distribution of the four types of errors encountered by Gemma2-9B on StrategyQA. 1) Reference
Error: The model retrieves irrelevant or wrong attributes. 2) Logic Error: incomplete reasoning steps. 3) Conclusion
Error: reaches an incorrect answer, but based on correct rationale. 4) Concept Error: incorrectly identifies the target
concept for analysis.

(a) (b)

Figure 6: Change in the rate of predicted object (Op)
(a) and correct answer (At) (b) when knocking out the
top-10 corresponding key attention heads identified by
activation patching.

out on the MLPs responsible for object reranking
(MLP 37 for Gemma2-9B and MLP 20 for Llama2-
7B). The results indicate significant drops in the
probability of Op , with reductions of 42% and 52%
respectively. These results provide strong causal
evidence supporting our identified key modules.

Further analysis of Gemma2-9B’s reasoning pro-
cess on CommonsenseQA and SocialIQA (§A.6)
using 1,000 samples revealed similar patterns of ob-
ject retrieval, reranking, and conclusion generation.
However, subject augmentation was less prominent
in these datasets, presumably due to the explicit
provision of factual knowledge within the question
context. These findings were also replicated us-
ing the Llama2-7B model across all three datasets
(detailed results in §A.8).

5 Application of Interpreting Results

5.1 Failure Case Analysis

In this section, we analyze the failure of LLMs in
commonsense reasoning (§5.1) and then introduce
two applications of interpreting results to enhance
the model’s reasoning capability (§5.2 and §5.3).

We manually analyze all failure cases (167) of
Gemma2-9B on StrategyQA training set. The re-

sults reveal four error types (Fig. 5): 1) Reference
Errors: retrieving irrelevant or incorrect objects;
2) Logic Errors: insufficient knowledge to support
conclusions; 3) Conclusion Errors: wrong answers
despite correct reasoning; and 4) Concept Errors:
misidentification of target concepts to analyze. Ref-
erence Errors dominate at 74% of all cases. Further
probing reveals that these errors primarily stem
from object reranking issues rather than knowledge
gaps (see §A.7 for details), as correct objects typi-
cally appear within the model’s top-5 predicted to-
kens. Based on this finding, we propose enhancing
commonsense reasoning by using selective super-
vised fine-tuning and representation engineering.

5.2 Selective Supervised Fine-tuning

Zhang et al. (2024); Chen et al. (2024) proposed
a method to enhance model’s capability through
updating a small set of parameters. Specifi-
cally, given a sequence of attention heads and
MLPs ordered by their significance, denoted
as (MLP.l1), (Head.l2.h2), (Head.l3.h3), . . .,
where li represents the layer index and hi repre-
sents the head index of the ith ranked head, only
parameters of top K heads and top M MLPs are
exclusively updated during fine-tuning. Following
the same setting, we selectively fine-tune the top
32 Attention heads (for knowledge retrieval, i.e.,
red squares in Fig. 21a) and top 1 MLP layers (for
knowledge reranking, i.e., peak in Fig. 3b MLP).
Considering the generalization, we introduce
another commonsense reasoning test dataset,
WinoGrande (Sakaguchi et al., 2021). See §A.9
for more detailed experiment settings.

Experiment Results. The comparative results
between SSFT and SFT are presented in Table
4. For the experiments of Gemma2-9B on Strate-
gyQA, both SSFT and SFT improved performance,
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Models ID Task OOD Task

Strategy CSQA SIQA Wino

Gemma2-9B 70.7 75.7 73.0 61.2
+ SFT (9B) 79.0 74.3 70.9 60.3
+ SSFT (0.3B) 80.3 76.2 74.0 65.2

Llama2-7B 62.5 68.3 67.9 55.5
+ SFT (7B) 77.3 54.8 59.0 52.7
+ SSFT (0.2B) 78.5 64.1 63.2 61.1

Table 4: Results on four commonsense reasoning tasks
(i.e., StrategyQA, CSQA, Winogrande, and SocialIQA)
before and after tuning on the StrategyQA dataset.

achieving gains of +8.3% and +9.6%, respectively.
While SFT shows a comparable enhancement for
the StrategyQA task, it adversely affected perfor-
mance on OOD tasks, with an average decrease
of −1.5%. In contrast, SSFT continued to bol-
ster the model’s reasoning ability across all OOD
commonsense reasoning tasks, improving the per-
formance by an average of +2.6%. These findings
suggest that selectively fine-tuning a small fraction
of key components for commonsense reasoning
can boost performance on ID tasks while main-
taining generalizability, highlighting the effective-
ness of our previous exploration. A similar trend
was observed in the Llama2-7B results. Through
mechanism analysis of the model before and after
SSFT, we further validate that SSFT enhances the
model’s knowledge retrieval and reranking capa-
bilities. (See Fig. 23). Additionally, we further
validate the effectiveness of SSFT through training
on two other datasets (Tab. 16 and 17).

5.3 Representation Engineering

Representation engineering, which adjusts the
model’s internal hidden states to influence its be-
havior, has proven to be an effective method for
modulating model performance (Zou et al., 2023).
Following the approach outlined in Xiao et al.
(2024); Templeton et al. (2024), we correct the
model’s erroneous behavior using:

h̃l = hl + kxt, (1)

where hl represents the original output of residual
block at layer l, xt is the feature direction corre-
sponding to the correct knowledge identified using
SAE, k is the steering magnitude which we set 5.
See §A.3 for more details.

Experiment Results. We utilize representation
engineering to correct the model’s (Gemma2-9B)
failure in recalling correct object. For example, in

question “Would Persephone be a suitable consul-
tant to a landscape architect?”. The model initially
defaults to identifying “Persephone as the Greek
goddess of the underworld”, leading to an incor-
rect assessment. The correct reference is “Perse-
phone is the Greek goddess of spring”. By intro-
ducing feature directions related to deities or nature
into the residual block at layer 37 (object retrieval),
we strengthened the model’s tendency to associate
“Persephone” with “spring”. This tendency can
largely contribute to the correct answer, and rec-
tify the model’s response. As a result, 93% failure
cases can be rectified, illustrating the rationality of
the identified interpreting results.

6 Conclusion

In conclusion, our research sheds light on the intri-
cate dynamics of commonsense reasoning within
LLMs, revealing a structured process that paral-
lels human cognitive reasoning. By meticulously
analyzing the hidden states across various trans-
former layers and token positions, we identified
a multi-faceted mechanism that integrates knowl-
edge augmentation, retrieval, and answer genera-
tion—essentially resembling a retrieval-augmented
generation framework. Our findings underscore the
pivotal roles played by both attention heads and
MLPs in the manifestation of factual knowledge,
highlighting a dual approach to knowledge process-
ing. Furthermore, our experiments demonstrated
that while LLMs often possess relevant factual
knowledge, they frequently struggle to retrieve the
correct information during inference. Through se-
lective fine-tuning of key components, we achieved
notable enhancements in reasoning performance
across diverse contexts, indicating that targeted ad-
justments can effectively optimize the reasoning
capabilities of LLMs.

Limitations

While our study provides valuable insights into
LLMs’ factual knowledge recall mechanisms, sev-
eral limitations warrant discussion. First, our anal-
ysis primarily focuses on commonsense reason-
ing tasks involving factual knowledge recall, and
the identified patterns may not fully generalize to
other types of reasoning tasks. Future research
could extend this framework to investigate more
diverse reasoning scenarios. Second, our back-
tracing methodology operates under the assump-
tion that only sparse connections between reason-
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ing tokens are significant, which may potentially
overlook some subtle information flows within
the network. Finally, although we propose func-
tional interpretations of different modules based
on observed patterns, we acknowledge the inherent
challenge of mapping complex neural mechanisms
to human-understandable explanations, potentially
leading to oversimplification of the actual processes
involved.

Acknowledgements

This work was supported in part by the Zhejiang
Provincial Natural Science Foundation of China
under Grant LDT23F01013F01 and in part by the
Fundamental Research Funds for the Central Uni-
versities.

References

Nora Belrose, Zach Furman, Logan Smith, and et al.
2023. Eliciting latent predictions from transformers
with the tuned lens. CoRR, abs/2303.08112.

Lukas Berglund, Meg Tong, Maximilian Kaufmann,
Mikita Balesni, Asa Cooper Stickland, Tomasz Ko-
rbak, and Owain Evans. 2023. The reversal curse:
Llms trained on “a is b” fail to learn “b is a”. In
The Twelfth International Conference on Learning
Representations.

Eden Biran, Daniela Gottesman, Sohee Yang, Mor Geva,
and Amir Globerson. 2024. Hopping too late: Explor-
ing the limitations of large language models on multi-
hop queries. In Proceedings of the 2024 Conference
on Empirical Methods in Natural Language Process-
ing, pages 14113–14130, Miami, Florida, USA. As-
sociation for Computational Linguistics.

Trenton Bricken, Adly Templeton, Joshua Batson,
Brian Chen, Adam Jermyn, Tom Conerly, Nick
Turner, Cem Anil, Carson Denison, Amanda Askell,
Robert Lasenby, Yifan Wu, Shauna Kravec, Nicholas
Schiefer, Tim Maxwell, Nicholas Joseph, Zac
Hatfield-Dodds, Alex Tamkin, Karina Nguyen,
Brayden McLean, Josiah E Burke, Tristan Hume,
Shan Carter, Tom Henighan, and Christopher
Olah. 2023. Towards monosemanticity: Decom-
posing language models with dictionary learning.
Transformer Circuits Thread. Https://transformer-
circuits.pub/2023/monosemantic-
features/index.html.

Wei Chen, Zhen Huang, Liang Xie, Binbin Lin,
Houqiang Li, Le Lu, Xinmei Tian, Deng Cai, Yong-
gang Zhang, Wenxiao Wan, et al. 2024. From yes-
men to truth-tellers: Addressing sycophancy in large
language models with pinpoint tuning. arXiv preprint
arXiv:2409.01658.

Arthur Conmy, Augustine Mavor-Parker, Aengus Lynch,
Stefan Heimersheim, and Adrià Garriga-Alonso.
2023. Towards automated circuit discovery for mech-
anistic interpretability. In Advances in Neural Infor-
mation Processing Systems, volume 36, pages 16318–
16352. Curran Associates, Inc.

Damai Dai, Li Dong, Yaru Hao, Zhifang Sui, Baobao
Chang, and Furu Wei. 2022. Knowledge neurons in
pretrained transformers. In Proceedings of the 60th
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 8493–
8502, Dublin, Ireland. Association for Computational
Linguistics.

Guy Dar, Mor Geva, Ankit Gupta, and et al. 2023. An-
alyzing transformers in embedding space. In ACL,
pages 16124–16170. Association for Computational
Linguistics.

Yao Fu, Hao Peng, Litu Ou, Ashish Sabharwal, and
Tushar Khot. 2023. Specializing smaller language
models towards multi-step reasoning. In Inter-
national Conference on Machine Learning, pages
10421–10430. PMLR.

Leo Gao, Tom Dupré la Tour, Henk Tillman, Gabriel
Goh, Rajan Troll, Alec Radford, Ilya Sutskever,
Jan Leike, and Jeffrey Wu. 2024. Scaling and
evaluating sparse autoencoders. arXiv preprint
arXiv:2406.04093.

Mor Geva, Jasmijn Bastings, Katja Filippova, and Amir
Globerson. 2023. Dissecting recall of factual associa-
tions in auto-regressive language models. In Proceed-
ings of the 2023 Conference on Empirical Methods in
Natural Language Processing, pages 12216–12235,
Singapore. Association for Computational Linguis-
tics.

Mor Geva, Avi Caciularu, Kevin Ro Wang, and et al.
2022. Transformer feed-forward layers build predic-
tions by promoting concepts in the vocabulary space.
In EMNLP, pages 30–45. Association for Computa-
tional Linguistics.

Mor Geva, Daniel Khashabi, Elad Segal, Tushar Khot,
Dan Roth, and Jonathan Berant. 2021a. Did aristotle
use a laptop? a question answering benchmark with
implicit reasoning strategies. Transactions of the
Association for Computational Linguistics, 9:346–
361.

Mor Geva, Roei Schuster, Jonathan Berant, and et al.
2021b. Transformer feed-forward layers are key-
value memories. In EMNLP, pages 5484–5495. As-
sociation for Computational Linguistics.

Nicholas Goldowsky-Dill, Chris MacLeod, Lucas
Sato, and Aryaman Arora. 2023. Localizing
model behavior with path patching. arXiv preprint
arXiv:2304.05969.

Michael Hanna, Ollie Liu, and Alexandre Variengien.
2023. How does gpt-2 compute greater-than?: In-
terpreting mathematical abilities in a pre-trained lan-
guage model. arXiv preprint arXiv:2305.00586.

23255

https://doi.org/10.18653/v1/2024.emnlp-main.781
https://doi.org/10.18653/v1/2024.emnlp-main.781
https://doi.org/10.18653/v1/2024.emnlp-main.781
https://proceedings.neurips.cc/paper_files/paper/2023/file/34e1dbe95d34d7ebaf99b9bcaeb5b2be-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/34e1dbe95d34d7ebaf99b9bcaeb5b2be-Paper-Conference.pdf
https://doi.org/10.18653/v1/2022.acl-long.581
https://doi.org/10.18653/v1/2022.acl-long.581
https://doi.org/10.18653/v1/2023.emnlp-main.751
https://doi.org/10.18653/v1/2023.emnlp-main.751


Jiaxin Huang, Shixiang Shane Gu, Le Hou, Yuexin Wu,
Xuezhi Wang, Hongkun Yu, and Jiawei Han. 2022.
Large language models can self-improve. arXiv
preprint arXiv:2210.11610.

Stefanie Krause and Frieder Stolzenburg. 2023. Com-
monsense reasoning and explainable artificial intel-
ligence using large language models. In European
Conference on Artificial Intelligence, pages 302–319.
Springer.

Jiachun Li, Pengfei Cao, Chenhao Wang, Zhuoran Jin,
Yubo Chen, Daojian Zeng, Kang Liu, and Jun Zhao.
2024. Focus on your question! interpreting and miti-
gating toxic CoT problems in commonsense reason-
ing. In Proceedings of the 62nd Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 9206–9230, Bangkok,
Thailand. Association for Computational Linguistics.

Tom Lieberum, Matthew Rahtz, J’anos Kram’ar, G. Irv-
ing, Rohin Shah, and Vladimir Mikulik. 2023. Does
circuit analysis interpretability scale? evidence from
multiple choice capabilities in chinchilla. ArXiv,
abs/2307.09458.

Tom Lieberum, Senthooran Rajamanoharan, Arthur
Conmy, Lewis Smith, Nicolas Sonnerat, Vikrant
Varma, János Kramár, Anca Dragan, Rohin Shah,
and Neel Nanda. 2024. Gemma scope: Open sparse
autoencoders everywhere all at once on gemma 2.
arXiv preprint arXiv:2408.05147.

Kevin Meng, David Bau, Alex Andonian, and Yonatan
Belinkov. 2022. Locating and editing factual asso-
ciations in gpt. In Neural Information Processing
Systems.

nostalgebraist. 2021. Interpreting gpt: The logit lens.

Chris Olah, Nick Cammarata, Ludwig Schubert, Gabriel
Goh, Michael Petrov, and Shan Carter. 2020.
Zoom in: An introduction to circuits. Distill.
Https://distill.pub/2020/circuits/zoom-in.

Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas
Joseph, Nova DasSarma, Tom Henighan, Ben Mann,
Amanda Askell, Yuntao Bai, Anna Chen, et al. 2022.
In-context learning and induction heads. arXiv
preprint arXiv:2209.11895.

Francesco Ortu, Zhijing Jin, Diego Doimo, Mrinmaya
Sachan, Alberto Cazzaniga, and Bernhard Schölkopf.
2024. Competition of mechanisms: Tracing how
language models handle facts and counterfactuals.
In Proceedings of the 62nd Annual Meeting of the
Association for Computational Linguistics (Volume 1:
Long Papers), pages 8420–8436, Bangkok, Thailand.
Association for Computational Linguistics.

Daking Rai, Yilun Zhou, Shi Feng, Abulhair Saparov,
and Ziyu Yao. 2024. A practical review of mecha-
nistic interpretability for transformer-based language
models. arXiv preprint arXiv:2407.02646.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavat-
ula, and Yejin Choi. 2021. Winogrande: An adver-
sarial winograd schema challenge at scale. Commu-
nications of the ACM, 64(9):99–106.

Maarten Sap, Hannah Rashkin, Derek Chen, Ronan
LeBras, and Yejin Choi. 2019. Socialiqa: Com-
monsense reasoning about social interactions. arXiv
preprint arXiv:1904.09728.

Robyn Speer, Joshua Chin, and Catherine Havasi. 2017.
Conceptnet 5.5: An open multilingual graph of gen-
eral knowledge. In Proceedings of the AAAI confer-
ence on artificial intelligence, volume 31.

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and
Jonathan Berant. 2018. Commonsenseqa: A question
answering challenge targeting commonsense knowl-
edge. arXiv preprint arXiv:1811.00937.

Gemma Team, Morgane Riviere, Shreya Pathak,
Pier Giuseppe Sessa, Cassidy Hardin, Surya Bhupati-
raju, Léonard Hussenot, Thomas Mesnard, Bobak
Shahriari, Alexandre Ramé, et al. 2024. Gemma 2:
Improving open language models at a practical size.
arXiv preprint arXiv:2408.00118.

Adly Templeton, Tom Conerly, Jonathan Marcus, Jack
Lindsey, Trenton Bricken, Brian Chen, Adam Pearce,
Craig Citro, Emmanuel Ameisen, Andy Jones, Hoagy
Cunningham, Nicholas L Turner, Callum McDougall,
Monte MacDiarmid, C. Daniel Freeman, Theodore R.
Sumers, Edward Rees, Joshua Batson, Adam Jermyn,
Shan Carter, Chris Olah, and Tom Henighan. 2024.
Scaling monosemanticity: Extracting interpretable
features from claude 3 sonnet. Transformer Circuits
Thread.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Jesse Vig, Sebastian Gehrmann, Yonatan Belinkov,
Sharon Qian, Daniel Nevo, Yaron Singer, and Stu-
art M. Shieber. 2020. Investigating gender bias in
language models using causal mediation analysis. In
NeurIPS.

Kevin Ro Wang, Alexandre Variengien, Arthur Conmy,
and et al. 2023. Interpretability in the wild: a circuit
for indirect object identification in GPT-2 small. In
ICLR.

Yifei Wang, Yuheng Chen, Wanting Wen, Yu Sheng,
Linjing Li, and Daniel Dajun Zeng. 2024. Unveil-
ing factual recall behaviors of large language mod-
els through knowledge neurons. In Proceedings of
the 2024 Conference on Empirical Methods in Natu-
ral Language Processing, pages 7388–7402, Miami,
Florida, USA. Association for Computational Lin-
guistics.

23256

https://doi.org/10.18653/v1/2024.acl-long.499
https://doi.org/10.18653/v1/2024.acl-long.499
https://doi.org/10.18653/v1/2024.acl-long.499
https://api.semanticscholar.org/CorpusID:255825985
https://api.semanticscholar.org/CorpusID:255825985
https://www.lesswrong.com/posts/AcKRB8wDpdaN6v6ru
https://doi.org/10.23915/distill.00024.001
https://doi.org/10.18653/v1/2024.acl-long.458
https://doi.org/10.18653/v1/2024.acl-long.458
https://transformer-circuits.pub/2024/scaling-monosemanticity/index.html
https://transformer-circuits.pub/2024/scaling-monosemanticity/index.html
https://doi.org/10.18653/v1/2024.emnlp-main.420
https://doi.org/10.18653/v1/2024.emnlp-main.420
https://doi.org/10.18653/v1/2024.emnlp-main.420


Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. 2022. Chain-of-thought prompting elicits rea-
soning in large language models. Advances in Neural
Information Processing Systems, 35:24824–24837.

Yuxin Xiao, Chaoqun Wan, Yonggang Zhang, Wenx-
iao Wang, Binbin Lin, Xiaofei He, Xu Shen, and
Jieping Ye. 2024. Enhancing multiple dimensions of
trustworthiness in llms via sparse activation control.
In The Thirty-eighth Annual Conference on Neural
Information Processing Systems.

Jian Xie, Kai Zhang, Jiangjie Chen, Renze Lou, and
Yu Su. 2024. Adaptive chameleon or stubborn sloth:
Revealing the behavior of large language models in
knowledge conflicts. In The Twelfth International
Conference on Learning Representations.

Sohee Yang, Elena Gribovskaya, Nora Kassner, Mor
Geva, and Sebastian Riedel. 2024. Do large language
models latently perform multi-hop reasoning? In
Proceedings of the 62nd Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 10210–10229, Bangkok, Thai-
land. Association for Computational Linguistics.

Lei Yu, Meng Cao, Jackie CK Cheung, and Yue Dong.
2024. Mechanistic understanding and mitigation of
language model non-factual hallucinations. In Find-
ings of the Association for Computational Linguistics:
EMNLP 2024, pages 7943–7956, Miami, Florida,
USA. Association for Computational Linguistics.

Qinan Yu, Jack Merullo, and Ellie Pavlick. 2023. Char-
acterizing mechanisms for factual recall in language
models. In Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Processing,
pages 9924–9959.

Zeping Yu and Sophia Ananiadou. 2024. Neuron-level
knowledge attribution in large language models. In
Proceedings of the 2024 Conference on Empirical
Methods in Natural Language Processing, pages
3267–3280, Miami, Florida, USA. Association for
Computational Linguistics.

Wei Zhang, Chaoqun Wan, Yonggang Zhang, Yiu-ming
Cheung, Xinmei Tian, Xu Shen, and Jieping Ye.
2024. Interpreting and improving large language
models in arithmetic calculation. arXiv preprint
arXiv:2409.01659.

Xuhui Zhou, Yue Zhang, Leyang Cui, and Dandan
Huang. 2020. Evaluating commonsense in pre-
trained language models. In Proceedings of the
AAAI conference on artificial intelligence, volume 34,
pages 9733–9740.

Andy Zou, Long Phan, Sarah Chen, James Campbell,
Phillip Guo, Richard Ren, Alexander Pan, Xuwang
Yin, Mantas Mazeika, Ann-Kathrin Dombrowski,
et al. 2023. Representation engineering: A top-
down approach to ai transparency. arXiv preprint
arXiv:2310.01405.

23257

https://openreview.net/forum?id=auKAUJZMO6
https://openreview.net/forum?id=auKAUJZMO6
https://openreview.net/forum?id=auKAUJZMO6
https://doi.org/10.18653/v1/2024.acl-long.550
https://doi.org/10.18653/v1/2024.acl-long.550
https://doi.org/10.18653/v1/2024.findings-emnlp.466
https://doi.org/10.18653/v1/2024.findings-emnlp.466
https://doi.org/10.18653/v1/2024.emnlp-main.191
https://doi.org/10.18653/v1/2024.emnlp-main.191


A Appendix

A.1 Discussion about Interpreting Techniques

In this section, we provide a comprehensive review
of existing interpretation tools and present our ra-
tionale for selecting specific approaches to analyze
factual recall in real-world question answering sys-
tems. We conclude with a critical discussion of the
limitations inherent in these analytical frameworks.
The section concludes with a critical examination
of these interpretative tools’ limitations, particu-
larly focusing on their underlying simplifying as-
sumptions and their implications.

Existing tools: (1) Logit attribution (or logit
lens) projects intermediate activations to vocabu-
lary space, enabling researchers to understand how
predictions evolve across layers. (2) Probing tech-
niques employ shallow classifiers to detect specific
information encoded in model activations, though
they only reveal correlational rather than causal re-
lationships. (3) Sparse Autoencoders (SAEs) help
discover independent features from superposed rep-
resentations by mapping activations to a higher-
dimensional sparse space. (4) Visualization tools
aid in hypothesis generation and qualitative analy-
sis, particularly for understanding attention patterns
and neuron activations. (5) Automated feature ex-
planation leverage LLMs themselves to automati-
cally generate and validate feature labels, reducing
the need for manual annotation while providing
quantitative measures of explanation quality. (6)
Knockout: To identify crucial model components,
knockout/ablation methods systematically remove
or modify specific parts while observing behav-
ioral changes. (7) Activation patching, helps lo-
cate important components and connections within
model circuits by comparing clean and corrupted
runs. We recommend reading paper (Rai et al.,
2024) for a comprehensive overview of mechanis-
tic interpretability in LLMs. (8) Information flow
analysis, based on Taylor expansion, provides in-
sights into how information propagates between
tokens through attention mechanisms, though its
correlational nature limits causal interpretability.

This paper focuses on understanding the internal
mechanisms of how the model performs common-
sense reasoning. Specifically, we studied how the
model generates the final answers using complex
rationales. We break down this problem into three
sub-problems: 1) Locating the key token positions
in the rationale; 2) For each key token, identifying
the key components during its generation; 3) An-

alyzing the behavior of the key components. To
address each of these problems, we select distinct
tools from the candidate tools above. Tab. 5 pro-
vides justifications for our choices.

Simplifying assumptions of the tools While
our interpretability analysis yields valuable in-
sights, it is important to acknowledge the inherent
limitations of the tools employed. These tools nec-
essarily operate under certain simplifying assump-
tions. In Tab. 6, we systematically summarize the
assumptions and reliability of these tools. These
simplifying assumptions, while potentially not cap-
turing all nuances of LLM reasoning, provide a
structured framework for investigating specific as-
pects of rationale generation within LLMs. Based
on this, the analysis results are reliable, especially
when combined with the verification method out-
lined in Wang et al. (2023); Lieberum et al. (2023).
The only problem may lie in the lack of compre-
hensiveness in interpreting the whole reasoning
procedure.

In summary, based on the assumptions of cir-
cuits, similar embedding spaces, and sparse feature
representation, we utilized these interpretability
tools to explain the mechanism within the reason-
ing process. Indeed, some potential complex mech-
anisms should remain uncovered, necessitating the
design of more suitable tools and methods. Ad-
dressing this will be a focus of our future work.

A.2 Improvements to the Interpreting Tools

Due to the complex challenge (multi-token ratio-
nale and dense token connection) of interpreting
the reasoning mechanisms, directly applying these
tools to interpret the commonsense reasoning pro-
cess is infeasible. Therefore we made many im-
provements to existing interpreting tools. In Tab. 7,
we outline the key problems we encountered with
these tools and the modest improvements we made
to address them. Specifically, our detailed improve-
ment to activation patching and SAE are depicted
in §A.2.1 and §A.2.2 respectively.

A.2.1 Activation Patching Details
Counterfactual data generation We use GPT-4
to assist in automatically generating the counterfac-
tual data required for activation patching, with the
prompt shown in Fig. 7 and an example in Tab. 9.
Additionally, we implement a post-processing step:
if the predicted token for the counterfactual data
matches the prediction for the data under investi-
gation (which would fail to perturb the model’s
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Table 5: Analysis of interpretability tools selection for different investigation problems

Problems Candidate Tools Selected Tools Justification for not Using Other Tools Justification for Using the Selected Tools

Locate the key
token positions
in the rationale
of commonsense
reasoning

Activation patching,
information flow

Activation
patching

Not information flow: i) Lack of causal-
ity: Information Flow applies Taylor ex-
pansion to assess the importance of con-
nections between tokens, which lacks
causal interpretation. ii) Poor inter-
pretability: our preliminary experiments
indicate that the key heads identified
using the Information Flow do not of-
fer good interpretability. Furthermore,
knocking out these heads has no signifi-
cant impact on the model’s predictions.

Use activation patching: i) Causality:
activation patching pinpoints the key at-
tention heads using causal analysis by
directly modifying activations and ob-
serving output changes. ii) Robust in-
terpretability: Many works have suc-
cessfully interpreted the model’s spe-
cific behavior using activation patching,
such as mathematical calculation (Zhang
et al., 2024), multi-choice question an-
swering (Lieberum et al., 2023), and syco-
phancy (Chen et al., 2024)

Identify the key
components for
commonsense
reasoning

Probing, logit at-
tribution, activation
patching

Logit attribution Not probing: i) Hard to Probe Diverse
Knowledge: probing involves an external
classifier, and the outputs of knowledge
recall tasks are difficult to categorize due
to the diversity of knowledge. ii) Cor-
relation not causality: Probing primar-
ily analyzes correlation rather than causal
relationships. Not activation patching:
high cost (5 minutes to analyze a sample
on a 7B model using a single A100 GPU.)

Use logit attribution: high efficiency:
logit attribution has proven to be an ef-
ficient tool to identify and analyze the
key components within LLMs in many
works (Wang et al., 2023; Lieberum et al.,
2023; Zhang et al., 2024; Yu et al., 2023).

Analyze the behav-
ior of the key com-
ponents in common-
sense reasoning

Logit attribution,
automated feature
explanation, SAE,
knockout

Logit attribution,
SAE, knockout

Not neuron activation pattern explana-
tion: i) polysemanticity: neurons may
not be easily explainable because they of-
ten encapsulate multiple features and can
be polysemantic. ii) Interpretability il-
lusion: neuron analysis often focuses on
top-activating dataset examples, which
may create an illusion of interpretability
by neglecting the neuron’s varied behav-
iors across different activation levels

Use the combination of three tools:
Logit attribution is an efficient analyzing
tool but may cause false interpretation re-
sults. Therefore we introduce SAE and
knockout, which are used to verify the
correctness of the key components. We
use SAE to decode semantic information
in the module’s output to verify the se-
mantic consistency. We use knockout to
verify that the identified module can ac-
tually affect the generated result. If the
results are not consistent, the identified
module from the Logit attribution will be
discarded. Combining these two tools can
further improve the reliability of the iden-
tified modules and the analysis of their
behavior by removing noisy components.

behavior), GPT-4 is prompted to regenerate the
counterfactual data.

We conduct experiments to compare the perfor-
mance of “GPT-4” and “human”. In our study, we
recruited ten graduate students pursuing master’s
degrees in NLP as participants. Five students were
assigned to manually generate counterfactual data,
while the remaining participants were tasked with
comparing these human annotations against GPT-4-
generated counterparts. The evaluation focused on
determining which method could effectively per-
turb model behavior with minimal alterations to the
original input. Overall, the results (Table 8) demon-
strate that GPT-4 is highly accepted by human eval-
uators, with the combination of “GPT wins" and
“Ties" exceeding 80%, underscoring its robust re-
liability. These indicate that GPT-4’s outputs are
almost consistent with those generated by humans.

Activation patching metric We design a spe-
cial metric to evaluate the causal effect: predicted
token’s probability divided by the sum of probabil-
ities of the top k tokens (k = 10). For example,
when LLM is generating the next token for input

“Harry Potter is a”, the top k predicting tokens
include “fictional, wizard, British, ...”. Then the
metric is:

prob(fictional)
prob(fictional) + prob(wizard) + prob(...)

. (2)

While directly using the logit change of “fictional”
leads to the identification of irrelevant modules that
increase all the logits of “fictional, wizard, British,
...”.

Trace the information source within the mid-
dle layers While standard activation patching re-
veals causal effects by modifying network activa-
tions and observing changes in the model’s output,
we identified a limitation during our experiments.
We discovered that answer-relevant information
(e.g., “no”) emerges strongly in intermediate lay-
ers at reasoning adverb positions R (e.g., “Thus”),
yet becomes almost imperceptible in the final layer
output (as shown in Fig. 14b). This phenomenon
renders traditional activation patching ineffective
for tracing information sources within middle lay-
ers, as it relies solely on observing the model’s
final output. To address this limitation, we pro-

23259



Tools Simplified Assumption Reliability of the Assumption

Activation Patching Analogous circuits assumption: Model can be viewed
as a computational graph M where nodes are terms in its
forward pass (neurons, attention heads, embeddings, etc.)
and edges are the interactions between those terms (resid-
ual connections, attention, projections, etc.), a circuit C
is a subgraph of M responsible for some behavior. Anal-
ogous circuits appear across different models and tasks,
which suggests that neural networks tend to converge on
similar mechanisms for solving similar problems.

1. Analogous features across different vision models: Cer-
tain low-level features, such as Gabor filters and curve detec-
tors, reliably appear in early layers across multiple vision models
(e.g., AlexNet, InceptionV1, VGG19, ResNet) trained on different
datasets like ImageNet and Places365 (Olah et al., 2020). This sug-
gests that neural networks converge on similar basic structures for
solving visual tasks. 2. Task-specific circuits identified in LLMs:
Many works have identified the circuit for different tasks (e.g.
Indirect object identification (Wang et al., 2023), multiple-choice
question answering (Lieberum et al., 2023) and greater-than com-
putation (Hanna et al., 2023)), which indicates analogous circuits
performing certain tasks appear across different models and tasks.
3. Function-specific components identified in LLMs: Research
has identified elements like induction heads, which are specialized
mechanisms within transformer models that perform specific func-
tions such as copying patterns from prior sequences (Olsson et al.,
2022) and neurons correlate with specific grammatical features are
discovered in (Geva et al., 2022).

Logit Attribution Projection assumption: the outputs of each module in the
model can be projected into the vocabulary space via the
unembedding matrix to encode the semantic information
within hidden states.

A bunch of work has proved the feasibility of understanding the
hidden state and weights within transformer-based LLMs through
projection to the vocabulary space (Wang et al., 2023; Lieberum
et al., 2023; Geva et al., 2022).

Sparse Autoencoder
(SAE)

Sparse representation assumption: The hidden state
within models can be efficiently represented by a small
number of interpretable salient monosemantic features

The SAE is based on sparse dictionary learning. Many
works (Lieberum et al., 2024; Gao et al., 2024) have trained SAE
to decompose and explain the hidden state within LLMs and prove
SAE to be an efficient interpreting tool.

Table 6: Comparison of Different Tools and Their Assumptions

Interpreting
stage

Sub steps Interpreting
Tools

Specific Problems Our Modest Improve-
ment

Detailed illustrations

Locate the key
token positions

Generate
xr, xc pairs

Activation
patching

High labor cost to scale
the results

Automate this process
using GPT-4 to get scal-
able results

When explaining how model
generates "fictional (character)"
given "Harry Potter is a", we
prompt GPT-4 to generate coun-
terfactual data

Locate the key
token positions

Compute logit
change of key to-
kens

Activation
patching

Noisy metric Design a special metric
to evaluate the causal ef-
fect

Using the same case above, the
top k predicting tokens include
"fictional, wizard, British, ..."

Locate the key
token positions

Trace the infor-
mation source
within the mid-
dle layers

Activation
patching

Unable to trace the
source of middle layer
information

Design a metric to exam-
ine perturbations effect

We identify rich answer-related
information responsible for gen-
erating conclusion token

Identify the key
components

Choose the tar-
get tokens for
observation

Logit attri-
bution

False identification of
the key modules

Introduce probabilities
of candidate tokens as
comparison

Using the same case above, we
identify the modules where logit
attribution of predicted token is
high

Analyze the be-
havior of the key
components

Verify the reli-
ability of key
components

Logit attri-
bution

Projection assumption
failure

Use SAE to decode se-
mantic information

Use the same case above, we use
logit attribution to evaluate each
modules’ contribution

Analyze the be-
havior of the key
components

SAE Training SAE High computation cost Logit attribution is first
used to identify key lay-
ers

For the LLaMA model, training
SAE for MLPs of every layer re-
quires substantial resources

Analyze the be-
havior of the key
components

Evaluating
the relevance
between SAE
features and
reasoning task

SAE High labor cost to select
the feature

Use GPT-4 to automati-
cally analyze correlation

When using SAE decomposing
the output of key MLP, we use
GPT-4 to select object-related
features

Table 7: Interpreting Tools and Improvements
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pose an enhanced activation patching framework:
when investigating information sources at layer k,
we iteratively corrupt the output of each attention
head from layers 0 through k using activations from
counterfactual data. By measuring the detrimental
effects on target token probabilities in the layer k
residual block output, we can identify key atten-
tion heads and effectively map the information flow
across intermediate layers.

A.2.2 SAE Details
Mechanism of SAE: Based on dictionary learning,
SAE translates the hidden states of LLMs into sev-
eral interpretable pieces, or termed features. These
features are activated on sparse token sequences
with specific patterns, and most can be interpreted
by GPT-4 (Lieberum et al., 2024) into concrete
semantic descriptions.

Strategic Training of SAE: While Google has
publicly released SAE checkpoints for all layers
of Gemma-7B, such resources remain unavailable
for the LLaMA-2 model family. Consequently,
we undertook the task of training our own SAE
models. Given the substantial computational re-
quirements, we strategically limited our training
to specific MLP layers (layers 16 and 20) that are
crucial for object reranking.

The training code for our Sparse Autoencoder
(SAE) builds upon the open-source implementa-
tion provided by OpenAI (https://github.com/
openai/sparse_autoencoder), which employs a
Top-K activation function to maintain sparse latent
representations. Our training configuration utilized
2 billion tokens from the Pile dataset, structured
in 64-token sequences. The SAE architecture in-
corporates 512,000 latent variables with a Top-K
activation parameter of 32. We implemented a dis-
tributed training setup with tensor parallelism of
2 and data parallelism of 8, processing batches of
131,072 tokens. The learning rate was set to 1.24e-
4, determined through scaling laws derived from
the GPT-2 architecture. The entire training process
consisted of a single epoch. The computational re-
quirements were still substantial: generating MLP
outputs for the LLaMA2-7B model across 2 bil-
lion tokens consumed approximately 5 hours on 64
A100 GPUs, while the subsequent SAE training
phase required an additional six hours utilizing 16
A100 GPUs.

SAE feature relevance evaluation: We primar-
ily use SAE to investigate the information con-
tained in the MLP and residual block outputs at the

concept token position. Specifically, we selected
the top 64 activated features (Top-64) based on
SAE activations. Since these features include a sub-
stantial number of general-purpose activations (e.g.,
those representing syntax, specific words, etc.), we
employed GPT to automatically analyze whether
these activated features are related to the concept.
The prompt used for this analysis is provided in
Fig. 8.

Table 8: Comparison of differences between GPT-4 and
human annotations for counterfactual data generation.

GPT-4 Wins Human Wins Ties

8% 12% 80%

A.3 Details of Representation Engineering

Representation engineering serves as a downstream
application of our interpretability results, primar-
ily to verify their reliability. This technique en-
ables behavioral adjustments of the model through
targeted modifications of internal representations.
For instance, Templeton et al. (2024) demonstrated
how introducing a security-related feature into the
model’s middle layer residual stream can guide it
toward generating safer content. Our experimen-
tal protocol consists of four key steps: (1) Ob-
ject Identification: Leveraging the ground truth
rationales provided in the StrategyQA dataset, we
employ GPT-4 to detect cases of incorrect object
retrieval by the model. In instances where errors
are identified, we determine the correct objects that
should have been retrieved. (2) Layer Selection:
We target the MLP layer that exhibits significant
contribution to the retrieval of predicted objects
(Op). Specifically, we focus on layer 36, which
corresponds to the peak responsibility for object
reranking, as shown in Fig. 3b. (3) SAE Feature
Selection: We decompose the hidden state at the
factual knowledge prediction position using SAE.
To identify steering-relevant features, we employ
GPT-4 for automated assessment of feature rele-
vance to the correct factual knowledge (detailed
methodology in A.2.2), selecting the most pertinent
feature for modification. (4) Magnitude Calibra-
tion: Through grid search across a range of 1-10,
we empirically determine the optimal perturbation
magnitude, settling on k = 5 for our interventions.
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Prompt Template for Counterfactual Data Generation

<Inputs><topic> The particular topic being studied</topic>
<input_sentence> The original sentence provided for analysis</input_sentence>
<predicted_content> The specific words reflecting model behavior</predicted_content>
<first_word_predicted> The first word initially predicted by the model</first_word_predicted></Inputs>

<Instructions Structure>
1. Instruct the assistant to begin by analyzing the original input sentence and why it leads to the specific predicted word.
2. Guide the assistant to think about changes that could alter the model's prediction.
3. Instruct the assistant to provide the reason for the model's original prediction.
4. Request the assistant to modify the original sentence so that the model’s prediction changes.
5. Instruct the assistant to explain the modification's rationale, focusing on why the modified sentence now influences a different predicted outcome.
6. Ensure the output is formatted in the specified JSON structure.
</Instructions Structure>

<Instructions>
Your task is to analyze and modify a sentence to influence the predictive behavior of a language model. You will be given a topic, an input sentence,
the specific words predicted by the model, and the model’s first predicted word.

Here is the topic and input sentence to modify: <topic>{$TOPIC}</topic> <input_sentence>{$INPUT_SENTENCE}</input_sentence>

Here are the words generated by model given the input sentence: <predicted_content>{$PREDICTED_CONTENT}</predicted_content>

Here is the first predicted word:
<first_word_predicted>{$FIRST_WORD_PREDICTED}</first_word_predicted>

Follow these steps carefully to complete the task:

1. **Analyze the Original Prediction**: Start by understanding the **input sentence** and why it leads the model to predict the
**first_word_predicted** as the output under the specific **topic**. Consider the context, tone, or structure of the sentence that prompts this
specific word choice by the model.

2. **Plan the Modification**: Think about how you could change the **input_sentence** minimally (by changing only 3-4 words) to alter the
model's behavior so that it no longer predicts the original word or instead predicts a word with an opposite meaning. It's acceptable to change some
of the sentence's meaning if it helps influence the output.

3. **Provide Analysis and Modification**:
- Write the **reason for the original prediction** based on your analysis in Step 1.
- Rewrite the **input_sentence** in a modified form that will change or flip the model's predicted word.
- Explain your **reason for the modification**, focusing on how the changes you made will influence the model to predict a different word.

4. **Output the Final Result**: Format your response in JSON, as shown below:

```json
{

"Reason for original prediction": "Explain why the original input caused the model to predict the initial word.",
"Modified input": "Write the modified sentence here.",
"Reason for modification": "Explain why the modified input will lead to a different prediction from the model."

}
```
Make sure each section is clear and precise. End your response with this JSON structure.
</Instructions>

Figure 7: Prompt for using GPT-4 to generate counterfactual data in activation patching.

A.4 Stability Analysis of Interpretability
Results

To validate the robustness of our findings, we con-
ducted comprehensive scaling experiments. Take
the logit attribution of the answer generation stage
in StrategyQA as an example. We examined differ-
ent sample sizes (50, 100, and 1000 instances) and
included an additional random resampling of 1000
instances. As illustrated in Fig. 11, the progression
patterns of correct and false answers across differ-
ent model components (Residual block, Attention,
and MLP) remain remarkably consistent regard-
less of sample size. Specifically, the characteristic
peaks in the attention mechanism around layer 34
and the distinctive MLP activation patterns in the
later layers (30-40) are preserved across all sample
sizes. The resampled 1000-instance experiment fur-
ther corroborates these findings, exhibiting nearly
identical behavioral patterns to the original 1000-
instance sample. This consistency across different

sample sizes and random resampling strongly sug-
gests that our choice of 1000 instances provides
a reliable representation of the model’s behavior
patterns. Moreover, the clear separation between
correct and false answer trajectories remains stable
across all experimental conditions, indicating that
our interpretability findings are not artifacts of sam-
ple size but rather reflect genuine computational
patterns within the model. While we demonstrate
this stability using the answer generation phase,
similar consistency is observed in other reasoning
stages.

A.5 Tracing from Answer A to Object O

We found that the attention heads responsible for
generating A primarily focus on the conclusion
token C, as demonstrated by the pattern of head
25.08 in Tab. 10. Therefore, we traced back to the
C, Fig. 14a shows the probabilities of At and Af

in the residual block, attention, and MLP outputs
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Table 9: Example of probing data Xr and counterfactual data Xc generated by GPT-4. Counterfactual data change
the model (Gemma2-9B) prediction behavior by applying minimal change to the probing data.

Data Model Input Model Predict

Xr Question: Kendall opened their mouth to speak and what came out shocked
everyone. How would you describe Kendall? (1) a very quiet person (2) a
very passive person (3) a very aggressive and talkative person Answer: Kendall
opened their mouth to speak and what came out shocked everyone. Thus, Kendall
is a very __

aggressive

Xc Question: Kendall opened their mouth to speak and what came out was softer
than expected. How would you describe Kendall? (1) a very quiet person (2) a
very passive person (3) a very aggressive and talkative person Answer: Kendall
opened their mouth to speak and what came out was softer than expected. Thus,
Kendall is a very __

quiet

at the conclusion token position. It is evident that
the model distinguishes the correct answer At in
the deep layers, with both the attention and MLP
outputs containing substantial information related
to At.

Next, we identified the heads for generating C us-
ing activation patching and discovered that the key
attention heads primarily focus on the reasoning
conjunctive adverb R (i.e., “Thus” in head 31.03
pattern in Tab. 10). We also observed that the at-
tention head outputs contain information related
to the correct answer At, such as "yes," "indeed,"
and "true." Based on these findings, we conducted
further probing at R to trace the origin of At.

Through decoding information of At and Af at
R (Fig. 14b), we find that deep layers (30 − 34)
already encode rich information related to the cor-
rect answer At. To trace the origin of the answer-
related information, we employed a modified acti-
vation patching to identify the key Attention heads.
Specifically, we iteratively corrupted the output of
each attention head from layer 0 − 30 using the
activation in counterfactual data, then identified the
key attention heads that have a significant negative
influence on the probability of At in residual block
(layer 30) output. Three key Attention heads (25.7,
25.8 and 25.9) are identified that primarily focus on
the position of attribute A (e.g., “company”). From
the observation above, we conclude a key finding:
reasoning conjunctive adverbs serve as an anchor
for gathering and transferring conclusion-related
information in reasoning process. Therefore, our
investigation continuously traces back to the posi-
tion of object O prediction.

A.6 Results on CommonsenseQA and
SocialIQA

We further apply our interpreting method to
CommonsenseQA (Talmor et al., 2018) and So-
cialIQA (Sap et al., 2019) and find the model’s rea-
soning process within these two datasets consists of
attribute retrieval, attribute rerank, and answer
generation as shown in Fig. 9. Similarly, we start
by decoding the probability of At and Af at the po-
sition of predicting answer At. The decoding curve
of CommonsenseQA is in Fig. 20b and SocialIQA
result is in Fig. 22b. It is observed that the informa-
tion trend in residual block, Attention, and MLP
is similar across the two datasets. Specifically, the
probability of At increases significantly at layer 30,
while Attention output encodes At related infor-
mation before layer 30 and At relate information
emerges in MLP at layer around 32. Therefore, we
conclude the answer generation process as follows:
attention is responsible for copying and generat-
ing At related information and MLP is responsible
for augmenting this information. Through back-
tracing, we identified the key heads for generating
the correct answer (see key head distribution in
Fig. 19b and 21b). As shown in Tab. 11, we find
the head output encodes rich information related to
the correct answer and mainly attends to the object
in rationale and choices in question. Therefore, we
first trace back to the position of C.

Since both datasets are in the form of multiple-
choice questions, the answer (object) is already
provided as one of the options. Therefore, we treat
the correct answer as the predicted object Op and
the other options as candidate objects Oc. The
logit attribution curves for At and Af are shown
in Fig. 20a and 22a for CommonsenseQA and So-
cialIQA respectively. As shown in the figure, the
attention output contains both Op and Oc, while
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Prompt Template for SAE feature filtering

Instruction: evaluate the relevance of a feature that activates
on certain texts to the concept of `{concept}'.

You will be provided with a possible explanation of the feature,
a set of texts where the feature has been activated, along with
the most activated word(s) in each text.

$<$Example$>$
Concept: `Environmental Protection'

Possible explanation of the feature: feature identifies
texts related to protecting the natural environment.

Activated texts and most activated word:
- must take action to reduce carbon emissions and combat
climate change. | most activated word: emissions

- Deforestation is a major threat to biodiversity and
contributes to global warming | most activated word: deforestation

$<$/Example$>$

$<$Expected Output$>$
The feature is highly relevant to the concept of environmental
protection as it identifies texts discussing environmental
issues and solutions.
Relevance Score: 10
$<$/Expected Output$>$

Based on the given explanation of the feature and the activated
texts, please rate the relevance of the feature to the concept
of `{concept}' on a scale of 0 to 10.
- 0: Not at all relevant, the feature is not related to the concept.
- 5: Neutral, the feature is not directly related to the concept

but share some common traits with the concept, e.g. apple
and banana are both fruits.

- 10: Very relevant, the feature is directly related to the concept.

Please conclude your response in the following format:
`Relevance Score: [SCORE]', where [SCORE] is an integer between
0 and 10.

Here is the concept: {concept} and the explanation of the feature:

Concept: {concept}

Possible explanation of the feature: {explanation}

Activated texts and most activated word: {texts}
</Instructions>

Figure 8: Prompt for using GPT-4 to evaluate the rele-
vance between feature and task.

the MLP output only contains the Op. This find-
ing aligns with our previous discovery on Strate-
gyQA regarding the object retrieval and rerank-
ing mechanism: attention heads first aggregate all
relevant objects, and then the MLP ranks these ob-
jects based on their relevance, selecting the Op for
the final output. These results further validate the
generalizability of our approach and findings.

Finally, we used activation patching to identify
the key attention heads responsible for generating
Op. The distribution of important heads is shown
in Fig. 19a and 21a. We found that the key heads
primarily focus on the options in the question (see
head pattern of 34.14 in Tab. 11), which serve as
the source for all objects. With this, the complete
reasoning process is concluded.

A.7 Results of Logit Attribution on Failure
Cases

Our interpretability framework was applied to ana-
lyze cases of Reference Errors, where the model re-
trieves irrelevant or incorrect objects. As shown in
Fig. 13, several noteworthy patterns emerge: First,
although the model ultimately outputs incorrect
objects, information related to the correct answer
remains present in the final layers. This observation
is also supported by our examination of the model’s
top-5 token predictions, which consistently include
the correct object among the candidates, albeit not
as the primary prediction. Second, we observe a
distinct pattern in the information flow: Layer 35’s
attention mechanisms exhibit strong signals related
to the correct object (a pattern absent in earlier
layers), while Layer 32’s MLP shows pronounced
activation patterns associated with incorrect object.
This pattern diverges from our previously observed
object recall process in successful cases, where
attention heads first gather relevant object infor-
mation (object retrieval), and MLPs subsequently
rerank the most pertinent object for output (object
rerank).

Based on these observations, we hypothesize that
Reference Errors stem from two primary mecha-
nisms: (1) Insufficient information gathering by
attention mechanisms in the middle-to-late layers
(25-35), leading to incomplete object collection.
(2) Incorrect reranking by MLP layers, which erro-
neously prioritizes irrelevant objects over pertinent
ones. This mechanistic understanding informed
our fine-tuning strategy, where we simultaneously
target both attention heads and MLP layers for op-
timization.

A.8 Experiment Results on Llama2-7B

On Llama2-7B, we apply the same method to
interpret the reasoning process in StrategyQA
(Fig. 12), CommonsenseQA (Fig. 17), and So-
cialIQA (Fig. 22). Three phases of reasoning, i.e.
subject augmentation and broadcast, object re-
trieval and rerank, conclusion fusion and gen-
eration are observed on StrategyQA. Similarly,
object retrieval and rerank and conclusion gen-
eration are observed on CommonsenseQA and So-
cialIQA.

Taking StrategyQA as an example, the reasoning
process can be divided into three distinct phases:
(1) Subject Augmentation and Broadcast: At
the subject token position (S), the shallow MLPs
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Q: She was always helping at the senior center, it brought her what? (A) satisfaction ... (D) pay (E) happiness A: Helping others is a good thing. It can bring us satisfaction and happiness. So the answer is: (A) satisfaction.

Attribute retrieval Attribute rerank Answer generation

Figure 9: Model inner reasoning process on CommonsenseQA.

(a) Trace back at O (to S) (b) Trace back at R (to O) (c) Trace back at C (to R) (d) Trace back at A (to C)

Figure 10: Distribution of key heads during tracing back at different token positions on StrategyQA (averaged on
100 samples). The red squares indicate heads that have a significant positive impact on predicting the output token.

(layers 6-8) extend from the subject to augment
relevant object information. Subsequently, this aug-
mented information is propagated to the question’s
end position through attention mechanisms in the
middle-to-late layers (20-26). (Fig. 12a and 12b)
(2) Object Retrieval and Rerank: During the
prediction of object tokens (Op), attention mecha-
nisms (layers 19-25) are responsible for retrieving
related objects, while MLPs (layers 19-22) rank
and select the most appropriate one for output.
(Fig. 12c) (3) Conclusion Fusion and Genera-
tion: Prior to answer prediction, the correct an-
swer information is prepared in the middle layers
(around layer 20) at the Reasoning adverb position
(R). This information is then transported to the
Conclusion position (C) through mid-layer atten-
tion mechanisms (layers 19-25), where mid-layer
MLPs (layers 19-25) enhance the correct answer
information to generate the conclusion. Finally, at
the answer generation position, attention (layers 19-
25) transfers the correct answer information from
the conclusion position to produce the final answer
output (A). (Fig. 12e and 12f)

A.9 Details of SSFT

In selective supervised fine-tuning, a sequence
of attention heads and MLPs ordered by
their significance will be given, denoted as
(MLP.l1), (Head.l2.h2), (Head.l3.h3), . . .,

where li represents the layer index and hi repre-
sents the head index of the ith ranked head, only
parameters of top K heads and top M MLPs
are exclusively updated during fine-tuning. We
optimize both the corresponding input mapping
matrix {W h1

l1
,W h2

l2
, ...,W hK

lK
} and the output

mapping matrix {Oh1
l1
, Oh1

l2
, ..., OhK

lK
} in top K

heads simultaneously. For the selected MLP layer,
we update all parameters in this layer.

For the format of training data, following Fu
et al. (2023) and Huang et al. (2022), each sample
in our training data is organized with the format
of “{Few-shot CoT prompt} Q: {Question}.
A: {Rationale}". We train the model using a
learning rate of 5e− 5 and a batch size of 32 for 2
epochs. For supervised fine-tuning, a learning rate
of 1e− 5 is utilized, while all other configurations
remain consistent with SSFT training. Experiments
are conducted on 8 NVIDIA A100 (80GB) GPUs.
Given that both SocialIQA and CommonsenseQA
datasets only provide answer labels without ex-
plicit reasoning rationales, we employed GPT-4 to
synthesize reasoning rationales using the few-shot
exemplars from Li et al. (2024). To ensure the qual-
ity of the synthesized rationales, we implemented
a filtering mechanism that verifies the consistency
between the answers within these generated ratio-
nales and the original labels.
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Pos. Head Attention score Projection

O 25.02
Japan, Japanese, Jepang,
Japón, japan, Tokyo

R 25.08
confirmation, confirmación,
Personendaten, verification

S 31.03
yes, Yes, indeed
YES, true, Indeed

A 25.08
confirmation, confirmación,
confirmer, verification

Table 10: Attention score of the key attention heads (on StrategyQA in Gemma2-9B) on different tokens and top-k
tokens after projecting the output of heads into the vocabulary space. The attention heads are obtained according to
the activation patching result in Figure 10. The term Head 25.02 denotes the 2nd head in the attention layer of the
25th layer of the model.

Pos. Head Attention score Projection

O 34.14
construction, Konstruktion,
autorytatywna, Construction

A 31.15
construction, constructions,
struction, traction, construcción

Table 11: Attention score of the key attention heads (on CommonsenseQA in Gemma2-9B) on different tokens
and top-k tokens after projecting the output of heads into the vocabulary space. The attention heads are obtained
according to the activation patching result in Figure 19. The term Head 34.14 denotes the 14nd head in the attention
layer of the 34th layer of the model.

Table 12: Examples of Reasoning Cases from StrategyQA, CommonsenseQA, and SocialIQA Datasets. Three
datasets evaluate distinct aspects of reasoning capabilities: CommonsenseQA focuses on basic conceptual un-
derstanding, SocialIQA assesses social and emotional intelligence, and StrategyQA tests multi-hop reasoning
abilities that require the integration of multiple pieces of evidence through complex inference chains. The answer is
generated by Gemma2-9B. In CommonsenseQA and SocialIQA, the entities are often abstract names or professions
with no specific meaning. Therefore, we treat the options in the context as attributes, the final predicted option as
the predicted attribute, and the remaining options as candidate objects.

Dataset StrategyQA CommonsenseQA SocialIQA

Question Can Harry Potter book a flight
on Asiana Airlines?

The artist was sitting quietly
pondering, then suddenly he be-
gan to paint when what struck
him? (A) sadness (B) anxiety
(C) inspiration (D) discomfort
(E) insights

remy had a good talk with
aubrey so aubrey understood
remy better now. How would
Remy feel as a result? (1) unsat-
isfied (2) calm (3) anxious

Answer Harry Potter is a fictional char-
acter. Fictional characters can-
not book flights. Thus, Harry
Potter cannot book a flight on
Asiana Airlines. So the answer
is no.

The artist was sitting quietly
pondering, then suddenly he be-
gan to paint when inspiration
struck him. So the answer is:
(C) inspiration.

Remy had a good talk with
Aubrey. Thus, Aubrey under-
stands Remy better. Remy will
feel calm as a result. So the an-
swer is: (2) calm.

Answer Type Yes / No Multiple Choice Multiple Choice
Answer Token no (C) inspiration (2) clam
Subject Harry Potter artist Remy
Predicted Object ficional character inspiration calm
Candidate Object wizard, British, magic sadness, anxiety, discomfort unsatisfied, anxious
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Sample size: 50 Sample size: 100 Sample size: 1000 Sample size: 1000 (resample)

Figure 11: Scaling analysis of model behavior patterns across different sample sizes during answer generation on
StrategyQA.

(a) (b) (c) (d) (e) (f)

Figure 12: Logit attribution results on StrategyQA of Llama2-7B. (a) Probability of Op and Oc at S . (b) Probability
of Op and Oc at the end of question (Qe). (c) Probability of Op and Oc at O prediction. (d) Probability of At and
Af at R. (e) Probability of At and Af at C prediction. (d) Probability of At and Af at A prediction.

ID Feature Explanation

115620 Phrases related to confrontation and dynam-
ics involving identity.

99851 References to characters and elements from
the Harry Potter series.

82918 Concepts related to creation and storytelling
in various media.

114490 Elements related to character dynamics and
development in storytelling.

Table 13: Top-scoring features decoded by SAE in the
output of MLP at layer 37 when predicting O.

Layer ID Feature Explanation

7 106518 References to specific characters
and items from a fictional universe.

7 113897 References to characters and loca-
tions from the Harry Potter series.

32 5548 References to specific characters
and events from the Harry Potter se-
ries.

32 94534 References to the concept of "world"
or "global" themes

Table 14: Top-scoring features decoded by SAE in the
output of MLP at layer 7 and 37 at S.
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Residual block

Attention

MLP

Figure 13: Comparative analysis of model behavior dur-
ing reference errors. The plots show logit attributions
for correct (orange) and wrong (blue) objects across dif-
ferent layers in Residual blocks, Attention mechanisms,
and MLPs.

(a) (b)

Figure 14: Logit attribution results on StrategyQA of
Gemma2-9B. (a) Probability of At and Af when pre-
dicting C. (b) Probability of At and Af when at R.

(a) (b)

Figure 15: Logit attribution results on SocialIQA of
Llama2-7B. (a) Probability of Op and Oc at the position
of predicting O. (b) Probability of At and Af at the
position of predicting A.

(a) Trace back at O (b) Trace back at A (to O)

Figure 16: Distribution of key heads (Llama2-7B) dur-
ing tracing back at different token positions on So-
cialIQA (averaged on 100 samples). The red squares
indicate heads that have a significant positive impact on
predicting the output token.

Head Top tokens in projection

25.01 Hogwarts, wizard, wizards, children,
25.02 Brito, British, London, Westminster
29.06 book, chapters, books, Book, bookId
29.14 wizards, wizard, Hogwarts, Harry

Table 15: Top-scoring tokens in the key attention heads
output when predicting O. (i.e., “fictional character”
for “Harry Potter”.)
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Table 16: SSFT results using CommonsenseQA as the training dataset.

ID Task OOD Task

CSQA Winogrande StrategyQA SocialIQA Average

Models Tuned
Params. Acc. ∆ Acc. ∆ Acc. ∆ Acc. ∆ Acc. ∆

Gemma2-9B - 75.7 - 61.2 - 70.7 - 73.0 - 68.3 -
+ SFT 9B 81.3 +5.6 59.8 -1.4 71.0 +0.3 77.4 -5.6 66.1 -2.2
+ SSFT 0.2B 82.1 +6.4 65.1 +3.9 70.7 - 74.3 +1.3 70.0 +1.7

Llama2-7B - 61.1 - 62.5 - 53.4 - 60.2 - 58.7 -
+ SFT 6.7B 72.3 +11.2 57.8 -4.7 53.5 +0.1 55.7 -3.0 56.2 -2.5
+ SSFT 0.2B 73.5 +12.4 63.1 +0.6 56.2 +2.8 63.2 +3.0 61.8 +3.1

Table 17: SSFT results using SocialIQA as the training dataset.

ID Task OOD Task

SocialIQA Winogrande StrategyQA CSQA Average

Models Tuned
Params. Acc. ∆ Acc. ∆ Acc. ∆ Acc. ∆ Acc. ∆

Gemma2-9B - 73.0 - 61.2 - 70.7 - 75.7 - 69.2 -
+ SFT 9B 80.2 +7.2 59.0 -2.2 72.0 +1.3 72.1 -3.6 67.7 -1.5
+ SSFT 0.2B 81.1 +8.1 64.2 +3.0 70.9 +0.2 77.0 +1.3 70.7 +1.5

Llama2-7B - 61.1 - 62.5 - 53.4 - 60.2 - 58.7 -
+ SFT 6.7B 72.3 +11.2 57.8 -4.7 53.5 +0.1 55.7 -3.0 56.2 -2.5
+ SSFT 0.2B 73.5 +12.4 63.1 +0.6 56.2 +2.8 63.2 +3.0 61.8 +3.1

(a) (b)

Figure 17: Logit attribution results on Common-
senseQA of Llama2-7B. (a) Probability of Op and Oc

at the position of predicting O. (b) Probability of At

and Af at the position of predicting A.

(a) Trace back at O (b) Trace back at A (to O)

Figure 18: Distribution of key heads (Llama2-7B) dur-
ing tracing back at different token positions on Common-
senseQA (averaged on 100 samples). The red squares
indicate heads that have a significant positive impact on
predicting the output token.
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(a) Trace back at A (to O) (b) Trace back at O (to choices)

Figure 19: Distribution of key heads (Gemma2-9B) dur-
ing tracing back at different token positions on Common-
senseQA (averaged on 100 samples). The red squares
indicate heads that have a significant positive impact on
predicting the output token.

(a) (b)

Figure 20: Logit attribution results on Common-
senseQA of Gemma2-9B. (a) Probability of Op and
Oc at the position of predicting O. (b) Probability of
At and Af at the position of predicting A.

(a) Trace back at A (to O) (b) Trace back at O (to choices)

Figure 21: Distribution of key heads (Gemma2-9B)
during tracing back at different token positions on So-
cialIQA (averaged on 100 samples). The red squares
indicate heads that have a significant positive impact on
predicting the output token.

(a) (b)

Figure 22: Logit attribution results on SocialIQA of
Gemma2-9B. (a) Probability of Op and Oc at the posi-
tion of predicting O. (b) Probability of At and Af at
the position of predicting A.
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Question: John cannot run the entire length of the track, he had been used 
to the field. The _ is short.
(1) track (2) field
Answer: A person who cannot run the entire length of a track likely feels 
uncomfortable or out of practice on a surface that is different from what 
they are used to. If John had been used to the field, it suggests that he is 
more accustomed to that environment. Therefore, the track must be

Input

longer than the field, making it difficult for him to run its entire length.✅SSFT model output

shorter than the field, as he struggles to run its entire length.❌Base model output

(a) Case study: output of SSFT and Base model

(b) Probing attention layer output for
“shorter” and “longer” on SSFT model

(c) Probing attention layer output for
“shorter” and “longer” on Base model

(d) Probing MLP layer output for “shorter”
and “longer” on SSFT model

(e) Probing MLP layer output for “shorter”
and “longer” on Base model

Figure 23: Comparison between the SSFT and Base models: (a) Case study highlights that the SSFT model correctly
predicts the answer, while the Base model fails. (b, c) Probing results for attention layers show enhanced knowledge
retrieval in the SSFT model compared to the Base model. (d, e) Probing results for MLP layers demonstrate
improved reranking capability in the SSFT model. These findings confirm that the identified modules—attention
heads for knowledge retrieval and MLP layers for reranking—are critical for accurate reasoning and were effectively
strengthened through SSFT.
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