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Abstract

Long-context modeling is crucial for next-
generation language models, yet the high com-
putational cost of standard attention mecha-
nisms poses significant computational chal-
lenges. Sparse attention offers a promising
direction for improving efficiency while main-
taining model capabilities. We present NSA,
a Natively trainable Sparse Attention mecha-
nism that integrates algorithmic innovations
with hardware-aligned optimizations to achieve
efficient long-context modeling. NSA employs
a dynamic hierarchical sparse strategy, combin-
ing coarse-grained token compression with fine-
grained token selection to preserve both global
context awareness and local precision. Our ap-
proach advances sparse attention design with
two key innovations: (1) We achieve substantial
speedups through arithmetic intensity-balanced
algorithm design, with implementation opti-
mizations for modern hardware. (2) We en-
able end-to-end training, reducing pretraining
computation without sacrificing model perfor-
mance. As shown in Figure 1, experiments
show the model pretrained with NSA main-
tains or exceeds Full Attention models across
general benchmarks, long-context tasks, and
instruction-based reasoning. Meanwhile, NSA
achieves substantial speedups over Full Atten-
tion on 64k-length sequences across decoding,
forward propagation, and backward propaga-
tion, validating its efficiency throughout the
model lifecycle.

1 Introduction

The research community increasingly recognizes
long-context modeling as a crucial capability for
next-generation large language models, driven
by diverse real-world applications ranging from
in-depth reasoning (DeepSeek-AI, 2025; Zelik-
man et al., 2022), repository-level code genera-
tion (Zhang et al., 2023a; Zhang et al.) and multi-
turn autonomous agent systems (Park et al., 2023).
Recent breakthroughs, including OpenAI’s o-series
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Figure 1: Comparison of performance and efficiency be-
tween Full Attention model and our NSA. Left: Despite
being sparse, NSA surpasses Full Attention baseline
on average across general benchmarks, long-context
tasks, and reasoning evaluation. Right: For 64k-length
sequence processing, NSA achieves substantial com-
putational speedup compared to Full Attention in all
stages: decoding, forward, and backward propagation.

models, DeepSeek-R1 (DeepSeek-AI, 2025), and
Gemini 1.5 Pro (Google et al., 2024), enabling
models to process entire codebases, lengthy docu-
ments, maintain coherent multi-turn conversations
over thousands of tokens, and perform complex rea-
soning across long-range dependencies. However,
the high complexity (Zaheer et al., 2020) of Atten-
tion (Vaswani et al., 2017) mechanisms emerges
as a critical latency bottleneck as sequence length
increases. Theoretical estimates indicate that at-
tention computation with softmax architectures ac-
counts for 70–80% of total latency when decoding
64k-length contexts, underscoring the urgent need
for more efficient attention mechanisms.

A natural approach to efficient long-context mod-
eling is to take advantage of the inherent sparsity
of softmax attention (Ge et al., 2023; Jiang et al.,
2023), where selectively computing critical query-
key pairs can significantly reduce computational
overhead while preserving performance. Recent ad-
vances demonstrate this potential through diverse
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strategies: KV-cache eviction methods (Zhang
et al., 2023b; Li et al., 2024; Zhou et al., 2024),
blockwise KV-cache selection methods (Tang et al.,
2024; Xiao et al., 2024a; Gao et al., 2024), and sam-
pling, clustering or hashing-based selection meth-
ods (Chen et al., 2024b; Liu et al., 2024; Desai
et al., 2024). More related sparse attention meth-
ods are introduced in Appendix A. Despite these
promising strategies, existing sparse attention meth-
ods often fall short in practical deployments. Many
approaches fail to achieve speedups comparable
to their theoretical gains; moreover, most methods
lack effective training-time support to fully exploit
the sparsity patterns of attention.

To address these limitations, the deployment of
effective sparse attention must tackle two key chal-
lenges: (1) Hardware-aligned inference speedup:
Converting theoretical computation reductions into
actual speed improvements requires hardware-
friendly algorithm design during both prefilling
and decoding stages to mitigate memory access
and hardware scheduling bottlenecks; (2) Training-
aware algorithm design: Enabling end-to-end com-
putation with trainable operators to reduce training
costs while maintaining model performance. These
requirements are crucial for real-world applications
to achieve fast long-context inference or training.
When considering both aspects, existing methods
still exhibit a noticeable gap.

To achieve more effective and efficient sparse
attention, we present NSA, a Natively trainable
Sparse Attention architecture that integrates hi-
erarchical token modeling. As shown in Fig-
ure 2, NSA reduces per-query computation by
organizing keys and values into temporal blocks
and processing them through three attention paths:
compressed coarse-grained tokens, selectively re-
tained fine-grained tokens, and sliding windows
for local contextual information. Then we im-
plement specialized kernel to maximize its prac-
tical efficiency. NSA introduces two core innova-
tions corresponding to the key requirements above:
(1) Hardware-aligned system speedup: Optimize
blockwise sparse attention for Tensor Core utiliza-
tion and memory access, ensuring balanced arith-
metic intensity. (2) Training-aware design: Enable
stable end-to-end training through efficient algo-
rithms and backward operators. This optimization
enables NSA to support both efficient deployment
and end-to-end training.

We evaluate NSA through comprehensive ex-
periments on real-world language corpora. Pre-

training on a 27B-parameter transformer backbone
with 260B tokens, we assess NSA’s performance
across general language evaluations, long-context
evaluations, and chain-of-thought reasoning evalua-
tion. We further compare the kernel speed on A100
GPUs with optimized Triton (Tillet et al., 2019) im-
plementations. Experimental results demonstrate
that NSA achieves comparable or superior perfor-
mance to Full Fttention baseline, while outperform-
ing existing sparse attention approaches. Addi-
tionally, NSA delivers substantial speedups across
decoding, forward, and backward stages compared
to vanilla Full Attention, with the speedup ratio
increasing for longer sequences. These results val-
idate that our hierarchical sparse attention design
effectively balances model capability and computa-
tional efficiency.

2 Methodology

Our technical approach spans algorithm design and
kernel optimization. In the following subsections,
we first introduce the background of our method-
ology. Then we present the overall framework of
NSA, followed by its key algorithmic components.
Finally, we detail our hardware-optimized kernel
design that maximizes practical efficiency.

2.1 Background
Attention Mechanism is widely used in language
modeling where each query token qt computes
relevance scores against all preceding keys k:t to
generate a weighted sum of values v:t. Formally,
for an input sequence of length t, the attention
operation is defined as:

ot = Attn (qt,k:t,v:t) (1)

where Attn denotes the attention function:

Attn (qt,k:t,v:t) =

∑t
i=1 αt,ivi∑t
j=1 αt,j

, αt,i = e
q⊤t ki√

dk .

(2)
Here, αt,i represents the attention weight between
qt and ki, and dk is the feature dimension of keys.
As sequence length increases, attention computa-
tion becomes increasingly dominant in the over-
all computational cost, presenting significant chal-
lenges for long-context processing.

Arithmetic Intensity is the ratio of compute
operations to memory accesses. It intrinsically
shapes algorithm optimization on hardware. Each
GPU has a critical arithmetic intensity determined
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Figure 2: Overview of NSA’s architecture. Left: The framework processes input sequences through three parallel
attention branches: For a given query, preceding keys and values are processed into compressed attention for
coarse-grained patterns, selected attention for important token blocks, and sliding attention for local context. Right:
Visualization of different attention patterns produced by each branch. Green areas indicate regions where attention
scores need to be computed, while white areas represent regions that can be skipped.

by its peak compute capability and memory band-
width, calculated as the ratio of these two hardware
limits. For computation tasks, arithmetic inten-
sity above this critical threshold becomes compute-
bound (limited by GPU FLOPS), while below it
becomes memory-bound (limited by memory band-
width).

Specifically for causal self-attention mechanism,
during training and prefilling phases, batched ma-
trix multiplications and attention computations ex-
hibit high arithmetic intensity, making these stages
compute-bound on modern accelerators. In con-
trast, auto-regressive decoding becomes memory-
bandwidth constrained because it generates one
token per forward pass while requiring loading the
entire key-value cache, resulting in low arithmetic
intensity. This leads to different optimization goals
— reducing computation cost during training and
prefilling, while reducing memory access during
decoding.

2.2 Overall Framework

To leverage the potential of attention with natural
sparse pattern, we propose replacing the original
key-value pairs k:t,v:t in Equation 1 with a more
compact and information-dense set of representa-
tion key-value pairs K̃t, Ṽt given each query qt.
Specifically, we formally define the optimized at-
tention output as follows:

K̃t = fK(qt,k:t,v:t), Ṽt = fV (qt,k:t,v:t) (3)

o∗t = Attn
(
qt, K̃t, Ṽt

)
(4)

where K̃t, Ṽt are dynamically constructed based
on the current query qt and the contextual memory

k:t,v:t. We can design various mapping strategies
to get different categories of K̃c

t , Ṽ
c
t , and combine

them as follows:

o∗t =
∑

c∈C
gct · Attn(qt, K̃

c
t , Ṽ

c
t ). (5)

As illustrated in Figure 2, NSA have three mapping
strategies C = {cmp, slc,win}, representing com-
pression, selection, and sliding window for keys
and values. gct ∈ [0, 1] is the gate score for cor-
responding strategy c, derived from input features
via an MLP and sigmoid activation. Let Nt denote
the total number of remapped keys/values:

Nt =
∑

c∈C
size[K̃c

t ]. (6)

We maintain a high sparsity by ensuringNt ≪ t.

2.3 Algorithm Design
In this subsection, we introduce the design of our
remapping strategies fK and fV : token compres-
sion, token selection, and sliding window.

2.3.1 Token Compression
By aggregating sequential blocks of keys or values
into block-level representations, we obtain com-
pressed keys and values that capture the informa-
tion of the entire block. Formally, the compressed
key representation K̃

cmp
t is calculated by:

f
cmp
K (k:t) =

{
ϕ(kid+1:id+l)

∣∣∣∣1 ≤ i ≤
⌊
t− l

d

⌋}

(7)
where l is the block length, d is the sliding stride
between adjacent blocks, and ϕ is a learnable MLP
with intra-block position encoding to map keys
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in a block to a single compressed key. K̃
cmp
t ∈

Rdk×⌊ t−l
d ⌋ is tensor composed by compresion keys.

Usually, we adopt d < l to mitigate information
fragmentation. An analogous formulation holds for
the compressed value representation Ṽ

cmp
t . Com-

pressed representations capture coarser-grained
higher-level semantic information and reduce com-
putational burden of attention.

2.3.2 Token Selection
Using only compressed keys, values might lose im-
portant fine-grained information, motivating us to
selectively preserve individual keys, values. Below
we describe our efficient token selection mecha-
nism that identifies and preserves the most relevant
tokens with low computational overhead.

Blockwise Selection. Our selection strategy pro-
cesses key and value sequences in spacial continu-
ous blocks, motivated by two key factors: hardware
efficiency considerations and inherent distribution
patterns of attention scores. Blockwise selection is
crucial to achieve efficient computation on modern
GPUs. That is because modern GPU architectures
exhibit significantly higher throughput for contin-
uous block accesses compared to random index-
based reads. Also, blockwise computation enables
optimal utilization of Tensor Cores. This archi-
tectural characteristic has established blockwise
memory access and computation as a fundamental
principle in high-performance attention implemen-
tations, as exemplified by FlashAttention’s block-
based design. Blockwise selection follows the inher-
ent distribution patterns of attention scores. Prior
works (Jiang et al., 2024) have shown that attention
scores often exhibit spatial continuity, suggesting
that neighboring keys tend to share similar impor-
tance levels. Our visualization in Appendix F also
shows this spatial continuous pattern.

To implement blockwise selection, we first di-
vide key, value sequences into selection blocks. To
identify the most important blocks for attention
computation, we need to assign importance scores
to each block. Below we present our method for
computing these block-level importance scores.

Importance Score Computation. Computing
block importance scores could introduce significant
overhead. Fortunately, the attention computation
of compression tokens produces intermediate atten-
tion scores that we can leverage to induce selection
block importance scores, formulated as:

p
cmp
t = Softmax

(
qT
t K̃

cmp
t

)
(8)

where p
cmp
t ∈ R⌊ t−l

d ⌋ is the attention scores be-
tween qt and compression keys K̃

cmp
t . Let l′ de-

note the selection block size. When compression
blocks and selection blocks share the same block-
ing scheme, i.e., l′ = l = d, we can directly ob-
tain the selection block importance scores pslc

t by
pslc
t = p

cmp
t straightforwardly. For cases where

the blocking schemes differ, we derive the impor-
tance scores for selection blocks according to their
spatial relationship. Given d | l and d | l′, we have:

pslc
t [j] =

l′
d
−1∑

m=0

l
d
−1∑

n=0

p
cmp
t

[
l′

d
j −m− n

]
, (9)

where[·] denotes the indexing operator for access-
ing vector element. For models employing GQA
or MQA where key-value caches are shared across
query heads, consistent block selection across these
heads has to be ensured to minimize KV cache load-
ing during decoding. The shared importance scores
across heads in a group are formally defined as:

pslc
t

′
=

H∑

h=1

p
slc,(h)
t (10)

where (h) in the superscript denotes the head index,
and H is the number of query heads in each group.
This aggregation ensures consistent block selection
across heads within the same group.

Top-nnn Block Selection. After obtaining the se-
lection block importance scores, We retain tokens
within the top-n sparse blocks ranked by block
importance scores, formulated as:

It = {i | rank(pslc
t

′
[i]) ≤ n} (11)

K̃slc
t = Cat

[
{kil′+1:(i+1)l′ |i ∈ It}

]
, (12)

where rank(·) denotes the ranking position in de-
scending order, with rank = 1 corresponding to
the highest score, It is the set of selected blocks’
indices, Cat denotes the concatenation operation.
K̃slc

t ∈ Rdk×nl′ is tensor composed by compresion
keys. An analogous formulation applies to the fine-
grained value Ṽ slc

t . The selected keys and values
then participate in the attention computation with
qt as defined in Equation 5.

2.3.3 Sliding Window
In attention mechanisms, local patterns typically
adapt faster and can dominate the learning pro-
cess, potentially preventing the model from effec-
tively learning from compression and selection to-
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kens. To address this issue, we introduce a ded-
icated sliding window branch that explicitly han-
dles local context, allowing other branches (com-
pression and selection) to focus on learning their
respective features without being shortcutted by
local patterns. Specifically, we maintain recent
tokens K̃win

t = kt−w:t, Ṽ
win
t = vt−w:t in a win-

dow w, and isolate attention computations of dif-
ferent information sources (compression tokens,
and selected tokens, sliding window) into separate
branches. These branch outputs are then aggre-
gated through a learned gating mechanism. To
further prevent shortcut learning across attention
branches with marginal computational overhead,
we provide independent keys and values for three
branches. This architectural design enables sta-
ble learning by preventing gradient interference
between local and long-range pattern recognition,
while introducing minimal overhead.

After obtaining all three categories of keys and
values (K̃cmp

t , Ṽ
cmp
t ; K̃slc

t , Ṽ slc
t ; and K̃win

t , Ṽ win
t ),

we compute the final attention output following
Equation 5. Together with the compression, selec-
tion, and sliding window mechanisms described
above, this forms the complete algorithmic frame-
work of NSA.

2.4 Kernel Design

To achieve FlashAttention-level speedup during
the training and prefilling, we implement hardware-
aligned sparse attention kernels upon Triton. Given
MHA is memory-intensive and inefficient for de-
coding, we focus on architectures with shared KV
caches like GQA and MQA following the current
state-of-the-art LLMs. While compression and
sliding window attention computations are read-
ily compatible with existing FlashAttention-2 ker-
nels, we introduce the specialized kernel design
for sparse selection attention. Figure 3 illustrates
the forward pass implementation. If we were to
follow FlashAttention’s strategy of loading tempo-
rally continuous query blocks into SRAM, it would
result in inefficient memory access since queries
within a block may require disjoint KV blocks. To
address this, our key optimization lies in a different
query grouping strategy: for each position on the
query sequence, we load all query heads within a
GQA group (they share the same sparse KV blocks)
into SRAM. The proposed kernel architecture is
characterized by the following key features:

1. Group-Centric Data Loading. For each in-
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Figure 3: Kernel design for NSA. The kernel loads
queries by GQA groups (Grid Loop), fetches corre-
sponding sparse KV blocks (Inner Loop), and performs
attention computation on SRAM. Green blocks indicate
data on SRAM, while blue indicates data on HBM.

ner loop, load all heads’ queries Q ∈ R[h,dk]

in the group at position t and their shared
sparse key/value block indices It.

2. Shared KV Fetching. In the inner loop, Se-
quentially load continuous key/value blocks
indexed by It into SRAM as K ∈
R[Bk,dk], V ∈ R[Bk,dv ] to minimize memory
loading, where Bk is the kernel block size
satisfying Bk|l′.

3. Outer Loop on Grid. Since the inner-loop
length (proportional to the selected block
count n) remains nearly identical for different
query blocks, we put query/output loops in
Triton’s grid scheduler to simplify and opti-
mize the kernel.

This design achieves near-optimal arithmetic in-
tensity by (1) eliminating redundant KV transfers
through group-wise sharing, and (2) balancing com-
pute workloads of GPU streaming multiprocessors.

3 Experiments

We evaluate NSA through three lenses: (1) general
benchmarks performance, (2) long-context bench-
marks performance, and (3) chain-of-thought rea-
soning performance, comparing against Full Atten-
tion baseline and state-of-the-art sparse attention
methods. We defer the efficiency analysis of our
sparse computation paradigm to Section 4, where
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Model
MMLU MMLU-PRO CMMLU BBH GSM8K MATH DROP MBPP HumanEval

Avg.
Acc. 5-shot Acc. 5-shot Acc. 5-shot Acc. 3-shot Acc. 8-shot Acc. 4-shot F1 1-shot Pass@1 3-shot Pass@1 0-shot

Full Attn 0.567 0.279 0.576 0.497 0.486 0.263 0.503 0.482 0.335 0.443
NSA 0.565 0.286 0.587 0.521 0.520 0.264 0.545 0.466 0.348 0.456

Table 1: Pretraining performance comparison between the full attention baseline and NSA on general benchmarks,
across knowledge (MMLU, MMLU-PRO, CMMLU), reasoning (BBH, GSM8K, MATH, DROP), and coding
(MBPP, HumanEval) tasks. NSA achieves superior average performance on most benchmarks despite high sparsity.

Model
SQA MQA Synthetic Code

Avg.
MFQA-en MFQA-zh Qasper HPQ 2Wiki GovRpt Dur PassR-en PassR-zh LCC

H2O 0.428 0.429 0.308 0.112 0.101 0.231 0.208 0.704 0.421 0.092 0.303
InfLLM 0.474 0.517 0.356 0.306 0.250 0.277 0.257 0.766 0.486 0.143 0.383
Quest 0.495 0.561 0.365 0.295 0.245 0.293 0.257 0.792 0.478 0.135 0.392
Exact-Top 0.502 0.605 0.397 0.321 0.288 0.316 0.291 0.810 0.548 0.156 0.423
Full Attn 0.512 0.623 0.409 0.350 0.305 0.324 0.294 0.830 0.560 0.163 0.437

NSA 0.503 0.624 0.432 0.437 0.356 0.307 0.341 0.905 0.550 0.232 0.469

Table 2: Performance comparison between our NSA and baselines on LongBench, including subsets in single
document QA, multi-document QA, synthetic and code task categories. NSA outperformed most of the baselines
including Full Attention.

we provides detailed discussions on training and
inference speed.

3.1 Pretraining Setup
Following the common practice in state-of-the-art
LLMs, our experiments adopt a backbone combin-
ing Grouped-Query Attention (GQA) and Mixture-
of-Experts (MoE), featuring 27B total parameters
with 3B active parameters. We chose this architec-
ture as it achieves an effective trade-off between
computation cost and model performance. More
details about our framework are provided in Ap-
pendix C. For NSA, we set compression block size
l = 32, sliding stride d = 16, selected block size
l′ = 64, selected block count n = 16 (includ-
ing fixed activating the 1 inital block and 2 local
blocks), and sliding window size w = 512. Both
Full Attention and sparse attention models are pre-
trained on 270B tokens of 8k-length texts, followed
by continued training and supervised fine-tuning
on 32k-length texts with YaRN (Peng et al., 2024)
to achieve long-context adaptation. Both models
are trained to full convergence to ensure fair com-
parison. We provide the loss curve in Appendix D.

3.2 Baselines Methods
In addition to comparing with Full Attention base-
line, we evaluate several state-of-the-art inference-
stage sparse attention methods: H2O (Zhang et al.,
2023b), infLLM (Xiao et al., 2024a), Quest (Tang

et al., 2024), and Exact-Top, which first computes
full attention score and select the top-n scores keys
corresponding to each query and then calculates
attention on these positions. These methods span
diverse sparse attention paradigms, including KV-
cache eviction, query-aware selection, and exact
top-n sparse selection.

For general evaluation, where most samples have
lengths within the local context window of sparse
attention baselines, these methods are effectively
equivalent to Full Attention. Therefore, we present
only the comparison results between NSA and
Full Attention baseline in this setting. In the long-
context evaluation, we conduct comparisons across
all baseline methods, with the sparsity of all sparse
attention methods set to the same to ensure a fair
comparison. For chain-of-thought reasoning eval-
uation, which requires long-text supervised fine-
tuning, we also limit our comparison to Full At-
tention, as most sparse attention baselines do not
support training.

3.3 Performance Comparison
General Evaluation. We evaluated the pretrained
NSA and Full Attention baseline, on a com-
prehensive suite of benchmarks spanning knowl-
edge, reasoning, and coding capabilities, includ-
ing MMLU (Hendrycks et al., 2020), MMLU-
PRO (Wang et al., 2024), CMMLU (Li et al.,
2023), BBH (Suzgun et al., 2022), GSM8K (Cobbe
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Figure 4: Needle-in-a-Haystack retrieval accuracy
across context positions with 64k context length. NSA
achieves perfect accuracy through its hierarchical sparse
attention design.

et al., 2021), MATH (Hendrycks et al., 2020),
DROP (Dua et al., 2019), MBPP (Austin et al.,
2021), and HumanEval (Chen et al., 2021). The
results are shown in Table 1. Despite its spar-
sity, NSA achieves superior overall performance,
outperforming all baselines including Full Atten-
tion on 7 out of 9 metrics. This indicates that al-
though NSA may not fully leverage its efficiency
advantages on shorter sequences, it shows strong
performance. Notably, NSA demonstrates signifi-
cant gains in reasoning-related benchmarks (DROP:
+0.042, GSM8K: +0.034), suggesting that our pre-
training helps models to develop specialized atten-
tion mechanisms. This sparse attention pretraining
mechanism force model to focus on the most im-
portant information, potentially enhancing perfor-
mance by filtering out noise from irrelevant atten-
tion pathways. The consistent performance across
diverse evaluations also validates NSA’s robustness
as a general-purpose architecture.

Long-Context Evaluation. As shown in Fig-
ure 4, NSA achieves perfect retrieval accuracy
across all positions in 64k-context needle-in-a-
haystack (Kamradt, 2023) test. This performance
stems from our hierarchical sparse attention de-
sign, which combines compression tokens for ef-
ficient global context scanning, and selection to-
kens for precise local information retrieval. The
coarse-grained compression identifies relevant con-
text blocks at low computational cost, while the
token-level attention on selected token ensures the
preservation of critical fine-grained information.
This design enables NSA to maintain both global
awareness and local precision.

We also evaluate NSA on LongBench (Bai et al.,
2023) against state-of-the-art sparse attention meth-

Generation Token Limit 8192 16384

Full Attention-R 0.046 0.092
NSA-R 0.121 0.146

Table 3: AIME Instruction-based Evaluating after su-
pervised fine-tuning. Our NSA-R demonstrates better
performance than Full Attention-R at both 8k and 16k
sequence lengths

Context Length 8192 16384 65536

Full Attention 8192 16384 65536
NSA 2048 2560 5632

Expected Speedup 4× 6.4× 11.6×

Table 4: Memory access volume (in equivalent number
of tokens) per attention operation during decoding. Due
to the low arithmetic intensity and memory-bound na-
ture of decoding, the expected speedup is approximately
linear with the volume of memory access.

ods and Full Attention baseline. To ensure consis-
tent sparsity, we set the token activated by each
query in all sparse attention baselines to 2560 to-
kens, which corresponds to the average number
of tokens activated in NSA when handling 32k se-
quence lengths. Following StreamLLM (Xiao et al.,
2023), this token budget includes the leading 128
tokens and 512 local tokens. We exclude certain
subsets from LongBench due to their low scores
across all models, which may not provide mean-
ingful comparisons. As shown in Table 2, NSA
achieves the highest average score 0.469, outper-
forming all baselines (+0.032 over Full Attention
and +0.046 over Exact-Top). This improvement
arises from two key innovations: (1) our native
sparse attention design, which enables end-to-end
optimization of sparse patterns during pretrain-
ing, facilitates synchronized adaptation between
the sparse attention module and other model com-
ponents; and (2) the hierarchical sparse attention
mechanism achieves an balance between local and
global information processing.

Notably, NSA demonstrates exceptional perfor-
mance on tasks requiring complex reasoning over
long contexts, achieving +0.087 and +0.051 im-
provements over Full Attention on multi-hop QA
tasks (HPQ and 2Wiki), exceeding the performance
of baselines on code understanding (LCC: +0.069),
and outperforming other methods on passage re-
trieval (PassR-en: +0.075). These results validate
NSA’s capability to handle diverse long-context
challenges, with its natively pretrained sparse at-
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Figure 5: Comparison of Triton-based NSA kernel with
Triton-based FlashAttention-2 kernel. Our implemen-
tation significantly reduces latency across all context
lengths, with the improvement becoming more pro-
nounced as input length increases.

tention providing additional benefits in learning
task-optimal patterns.

Chain-of-Thought Reasoning Evaluation. To
evaluate NSA’s compatibility with advanced down-
stream training paradigms, we investigate its ca-
pacity to acquire chain-of-thought mathematical
reasoning abilities via post-training. Given the
limited effectiveness of reinforcement learning on
smaller-scale models, we employ knowledge distil-
lation from DeepSeek-R1, conducting supervised
fine-tuning (SFT) with 10B tokens of 32k-length
mathematical reasoning traces. This produces two
comparable models: Full Attention-R (Full Atten-
tion baseline) and NSA-R (our sparse variant). We
assess both models on the challenging American
Invitational Mathematics Examination (AIME 24)
benchmark. We use a sampling temperature of 0.7
and a top-p value of 0.95 to generate 16 responses
for each question and obtain the average score. To
validate the impact of reasoning depth, we conduct
experiments with two generation context limits: 8k
and 16k, measuring whether extended reasoning
chains improve accuracy. Example comparisons of
model predictions are provided in Appendix G.

As shown in Table 3, NSA-R achieves signifi-
cantly higher accuracy than Full Attention-R under
the 8k context setting (+0.075), with this advantage
persisting at 16k contexts (+0.054). These results
validate the pretrained sparse attention enable ef-
ficient capture of long-range logical dependencies
critical for complex mathematical derivations.

4 Efficiency Analysis

We evaluate the computational efficiency of NSA
against Full Attention on an 8-GPU A100 system.

For both methods, we configure the model with
GQA group g = 4, head per group h = 16 ,
query/key dimension dk = 192, and value dimen-
sion dv = 128. The hyperparameters for NSA are
kept consistent with Section 3.

4.1 Training Speed

We compare the Triton-based implementations of
our NSA attention and Full Attention with Triton-
based FlashAttention-2 to ensure fair speed com-
parison across the same backend. As shown in
Figure 5, our NSA achieve progressively greater
speedups as context length increases, up to 9.0×
forward and 6.0× backward speedup at 64k
context-length. Notably, the speed advantage be-
comes more pronounced with longer sequences.
This speedup stems from our hardware-aligned al-
gorithm design to maximize the efficiency of sparse
attention architecture: (1) The Blockwise memory
access pattern maximizes Tensor Core utilization,
(2) The delicate loop scheduling in the kernel elim-
inates redundant KV transfers.

4.2 Decoding Speed

The decoding speed of Attention is primarily de-
termined by the memory access bottleneck, which
is closely tied to the amount of KV cache loading.
In each decoding step, Our NSA just needs to load
at most

⌊
s−l
d

⌋
compression tokens, nl′ selected to-

kens, and w neighbor tokens, where s is the cached
sequence length. As shown in Table 4, our method
exhibits a significant reduction in latency as the
decoding length increases, achieving up to 11.6×
speedup at 64k context-length. This advantage
in memory access efficiency also amplifies with
longer sequences.

5 Conclusion

We present NSA, a hardware-aware sparse atten-
tion architecture for efficient long-context model-
ing. By integrating hierarchical token compres-
sion with block selection within a trainable archi-
tecture, we achieve faster training and inference
while matching or surpassing Full Attention perfor-
mance. Our approach demonstrates that hardware-
aligned sparse attention can rival Full Attention im-
plementations in efficiency and performance. NSA
advances the state-of-the-art through: superior
base model performance, exceptional long-context
performance, and improved reasoning ability, all
while achieving significant reductions in compu-
tational latency. We present NSA, a hardware-
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aligned sparse attention architecture for efficient
long-context modeling. By integrating hierarchi-
cal token compression with blockwise token selec-
tion within a trainable architecture, our architecture
achieves accelerated training and inference while
maintaining Full Attention performance. NSA ad-
vances the state-of-the-art by demonstrating gen-
eral benchmark performance matches full-attention
baselines, exceeding modeling capability in long-
context evaluations, and enhanced reasoning abil-
ity, all accompanied by measurable reductions in
computational latency.

Limitations

In this work, we focus on sparsity within atten-
tion maps of a single layer. Exploring cross-layer
sparsity remains an intriguing avenue for future
research. Also, our Triton-based implementation,
while introducing some abstraction overhead com-
pared to native CUDA kernels, offers opportunities
for further hardware optimization.
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A Related Works

We review existing approaches that improve the ef-
ficiency of attention computation through sparse at-
tention. These methods can be broadly categorized
into three groups based on their core strategies:

(1) fixed sparse pattern, (2) dynamic token prun-
ing, and (3) query-aware selection. We introduce
several representative works from each category.

A.1 Fixed Sparse Pattern

SlidingWindow is a commonly used approach that
allows the query to compute attention only within
a fixed window. StreamingLLM (Xiao et al., 2023)
combines attention sinks with local windows to
process continuous text streams. MoA (Fu et al.,
2024a) and DuoAttention (Xiao et al., 2024b) also
adopt similar local and sink information for long
sequence modeling. Longformer (Beltagy et al.,
2020) interleaves local windowed attention with
global tokens to process long sequences. Compared
with them, our NSA does not rely on pre-defined
sparse patterns, but learns the patterns automati-
cally, unlocking the potential to utilize full context.

A.2 Dynamic Token Pruning

Some methods are designed to reduce memory
and computation costs during inference through
dynamic KV-cache pruning. H2O (Zhang et al.,
2023b), BUZZ (Zhao et al., 2024), and Se-
pLLM (Chen et al., 2024a) implement adaptive
approaches to reduce KV-cache memory usage dur-
ing decoding. These methods dynamically evict
tokens deemed less important for future predic-
tions. FastGen (Ge et al., 2023) and HeadKV (Fu
et al., 2024b) optimize computation by assigning
different strategies to individual attention heads.
SnapKV (Li et al., 2024) introduces a token prun-
ing strategy that reduces the KV-cache by selec-
tively retaining only the most crucial features,
enabling efficient memory usage. Unlike these
inference-focused approaches, our NSA incorpo-
rates sparsity natively during the training phase.

A.3 Query-Aware Selection

Other works focus on query-dependent token se-
lection methods to reduce attention computation
while preserving attention quality. Quest (Tang
et al., 2024) employs a blockwise selection strat-
egy where each chunk’s importance is estimated by
product between query and coordinate-wise min-
max of the key chunks. InfLLM (Xiao et al., 2024a)
combines fixed patterns with retrieval by maintain-
ing attention sinks, local context, and retrievable
chunks. This method selects representative keys
from each chunk to estimate chunk importance.
HashAttention (Desai et al., 2024) formulates piv-
otal token identification as a recommendation prob-
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lem by mapping queries and keys to Hamming
space using learned functions. ClusterKV (Liu
et al., 2024) achieves sparsity by firstly clustering
keys and then selecting the most relevant clusters
for attention computation based on query-cluster
similarity. MInference (Jiang et al., 2024) and To-
kenSelect (Wu et al., 2024) select KV pairs for com-
putation based on token-level importance scoring.
SeerAttention (Gao et al., 2024) separates queries
and keys into spatial blocks and performs block-
wise selection for efficient computation. Compared
to these methods, our NSA achieves hardware-
aligned sparse attention computation throughout
the full model lifecycle, including training, prefill-
ing, and decoding.

B Rethinking Sparse Attention Methods

Modern sparse attention methods have made sig-
nificant strides in reducing the theoretical compu-
tational complexity of transformer models. How-
ever, most approaches predominantly apply spar-
sity during inference while retaining a pretrained
Full Attention backbone, potentially introducing
architectural bias that limits their ability to fully
exploit sparse attention’s advantages. Before intro-
ducing our native sparse architecture, we systemat-
ically analyze these limitations through two critical
lenses.

B.1 The Illusion of Efficient Inference

Despite achieving sparsity in attention computa-
tion, many methods fail to achieve corresponding
reductions in inference latency, primarily due to
two challenges:

Phase-Restricted Sparsity. Methods such as
H2O (Zhang et al., 2023b) apply sparsity during au-
toregressive decoding while requiring computation-
ally intensive pre-processing (e.g. attention map
calculation, index building) during prefilling. In
contrast, approaches like MInference (Jiang et al.,
2024) focus solely on prefilling sparsity. These
methods fail to achieve acceleration across all in-
ference stages, as at least one phase remains com-
putational costs comparable to Full Attention. The
phase specialization reduces the speedup ability of
these methods in prefilling-dominated workloads
like book summarization and code completion, or
decoding-dominated workloads like long chain-of-
thought (Wei et al., 2022) reasoning.

Incompatibility with Advanced Attention Ar-
chitecture. Some sparse attention methods fail to

adapt to modern decoding efficient architectures
like Mulitiple-Query Attention (MQA) (Shazeer,
2019) and Grouped-Query Attention (GQA)
(Ainslie et al., 2023), which significantly reduced
the memory access bottleneck during decoding by
sharing KV across multiple query heads. For in-
stance, in approaches like Quest (Tang et al., 2024),
each attention head independently selects its KV-
cache subset. Although it demonstrates consistent
computation sparsity and memory access sparsity
in Multi-Head Attention (MHA) models, it presents
a different scenario in models based-on architec-
tures like GQA, where the memory access volume
of KV-cache corresponds to the union of selections
from all query heads within the same GQA group.
This architectural characteristic means that while
these methods can reduce computation operations,
the required KV-cache memory access remains rel-
atively high. This limitation forces a critical choice:
while some sparse attention methods reduces com-
putation, its scattered memory access pattern con-
flicts with efficient memory access design from
advanced architectures.

These limitations arise because many existing
sparse attention methods focus on KV-cache re-
duction or theoretical computation reduction, but
struggle to achieve significant latency reduction in
advanced frameworks or backends. This motivates
us to develop algorithms that combine both ad-
vanced architectural and hardware-efficient imple-
mentation to fully leverage sparsity for improving
model efficiency.

B.2 The Myth of Trainable Sparsity
Our pursuit of native trainable sparse attention
is motivated by two key insights from analyz-
ing inference-only approaches: (1) Performance
Degradation: Applying sparsity post-hoc forces
models to deviate from their prtrained optimiza-
tion trajectory. As demonstrated by Chen et al.
(2024b), top 20% attention can only cover 70% of
the total attention scores, rendering structures like
retrieval heads in prtrained models vulnerable to
pruning during inference. (2) Training Efficiency
Demands: Efficient handling of long-sequence
training is crucial for modern LLM development.
This includes both pretraining on longer documents
to enhance model capacity, and subsequent adap-
tation phases such as long-context fine-tuning and
reinforcement learning. However, existing sparse
attention methods primarily target inference, leav-
ing the computational challenges in training largely
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Figure 6: Pretraining loss comparison between Full Attention and our NSA on 27B-parameter model. Both models
exhibit stable convergence, with NSA achieving marginally lower loss values.

unaddressed. This limitation hinders the develop-
ment of more capable long-context models through
efficient training. Additionally, efforts to adapt
existing sparse attentions for training also expose
challenges:

Non-Trainable Components. Discrete opera-
tions in methods like ClusterKV (Liu et al., 2024)
(includes k-means clustering) and MagicPIG (Chen
et al., 2024b) (includes SimHash-based selecting)
create discontinuities in the computational graph.
These non-trainable components prevent gradient
flow through the token selection process, limiting
the model’s ability to learn optimal sparse patterns.

Inefficient Back-propagation. Some theoreti-
cally trainable sparse attention methods suffer from
practical training inefficiencies. Token-granular se-
lection strategy used in approaches like HashAt-
tention (Desai et al., 2024) leads to the need to
load a large number of individual tokens from the
KV cache during attention computation. This non-
contiguous memory access prevents efficient adap-
tation of fast attention techniques like FlashAtten-
tion, which rely on contiguous memory access and
blockwise computation to achieve high throughput.
As a result, implementations are forced to fall back
to low hardware utilization, significantly degrading
training efficiency.

B.3 Native Sparsity as an Imperative

These limitations in inference efficiency and train-
ing viability motivate our fundamental redesign of

sparse attention mechanisms. In the main paper, we
proposed NSA, a natively sparse attention frame-
work that addresses both computational efficiency
and training requirements.

C Details of Backbone

We adopt a transformer framework based on GQA
and MoE. The model consists of 30 layers with
a hidden dimension of 2560. For GQA, we set
the number of groups to 4, with a total of 64 at-
tention heads. For each head, the query, key, and
value dimensions are configured as dq = dk = 192
and dv = 128, respectively. For MoE, we utilize
the DeepSeekMoE (Dai et al., 2024; DeepSeek-
AI, 2024) structure, with 72 routed experts and 2
shared experts, and set the top-k experts to 6. To
ensure training stability, the MoE in the first layer
is replaced by an MLP in the form of SwiGLU.

D Training loss curve

As shown in Figure 6, the pretraining loss curve of
our NSA and Full Attention baseline demonstrates
stable and smooth decline, with NSA consistently
outperforming the Full Attention model. This indi-
cates that our sparse model effectively maintains
training stability while achieving superior perfor-
mance.
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E Challenges with Alternative Token
Selection Strategies

Before designing NSA, we explored adapting exist-
ing sparse attention methods to the training stage.
However, these attempts encountered various chal-
lenges, prompting us to design a different sparse
attention architecture:

Key-Clustering Based Strategies. We ex-
amined clustering-based strategies like Clus-
terKV (Liu et al., 2024). These methods store Keys
and Values from the same cluster in contiguous
memory regions. While theoretically feasible for
training and inference, they face three significant
challenges: (1) Non-trivial computational overhead
introduced by dynamic clustering mechanisms; (2)
Operator optimization difficulties exacerbated by
inter-cluster imbalances, especially in Mixture-of-
Experts (MoE) systems, where skewed Expert Par-
allelism (EP) group execution times lead to per-
sistent load imbalances; (3) Implementation con-
straints arising from the need for mandatory peri-
odic reclustering and chunk-sequential training pro-
tocols. These combined factors create substantial
bottlenecks, significantly limiting their effective-
ness for real-world deployment.

Other Blockwise Selection Strategies. We also
considered blockwise key, value selection strate-
gies different from NSA, such as Quest (Tang et al.,
2024) and InfLLM (Xiao et al., 2024a). These
methods rely on computing an importance score for
each KV block and selecting the top-n blocks based
on their similarity with qt. However, existing meth-
ods face two critical issues: (1) Since the selection
operation is non-differentiable, importance score
computation based on neural networks relies on
auxiliary loss, which increases operator overhead
and often degrades model performance; (2) Heuris-
tic parameter-free importance score computation
strategy suffer from low recall rates, leading to sub-
optimal performance. We evaluate both approaches
on a 3B-parameter model with similar architecture
and compare their loss curve with NSA and Full
Attention. For the auxiliary loss-based selection
method, we introduce additional queries for each
token and representative keys for each block to es-
timate the block importance scores. We compute
block-level supervision signals by mean-pooling
attention scores within each key block, and use
KL divergence to supervise block importance pre-
diction. We maintain individual query granularity
instead of block-averaged queries to accommodate
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Figure 7: Compare training loss on a 3B-parameter model
with Full Attention and different token selection strategies
and . Our NSA achieves better performance.

Visualization for Attention Score Block Pattern

position

p
os

iti
on

Figure 8: Visualization of Attention Map on a Full
Attention transformer. Light-colored regions indi-
cate higher attention values. As shown in the figure,
attention scores exhibit blockwise clustering distri-
bution.

efficient decoding. This auxiliary loss-based impor-
tance estimation shares conceptual similarity with
SeerAttention (Gao et al., 2024). For the heuris-
tic parameter-free selection method, following the
strategy of Quest, we implement direct selection
using the product between queries and coordinate-
wise min-max of the key chunks, without intro-
ducing additional parameters. We also explore a
cold-start training approach where Full Attention is
applied for the initial 1000 steps before transition-
ing to the heuristic blockwise selection. As shown
in Figure 7, both methods exhibited inferior loss.

F Visualization

To explore potential patterns in transformer atten-
tion distributions and seek inspiration for our de-
sign, we visualize the attention map from our pre-
trained 27B Full Attention model in Figure 8. The
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visualization reveals interesting patterns where at-
tention scores tend to exhibit blockwise cluster-
ing characteristics, with nearby keys often show-
ing similar attention scores. This observation in-
spired our design of NSA, suggesting that select-
ing key blocks based on spatial continuity might
be a promising approach. The blockwise cluster-
ing phenomenon indicates that tokens adjacent in
the sequence may share certain semantic relation-
ships with query tokens, though the exact nature
of these relationships requires further investigation.
This observation motivated us to explore a sparse
attention mechanism that operates on continuous
token blocks rather than individual tokens, aiming
to enhance computational efficiency and preserve
high-attention pattern.
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G Example of AIME Results

Prompt:
“|User|Let x, y and z be positive real numbers that satisfy the following system of equations:

log2

(
x

yz

)
=

1

2

log2

( y

xz

)
=

1

3

log2

(
z

xy

)
=

1

4

Then the value of
∣∣log2(x4y3z2)

∣∣ is m
n where m and n are relatively prime positive integers. Find m+ n.

Please reason step by step, and put your final answer within .|Assistant|”

Our Result:

⟨think⟩...⟨/think⟩ (2275 tokens)

Given the system of equations:

1. log2
(

x
yz

)
= 1

2 2. log2
( y
xz

)
= 1

3 3. log2
(

z
xy

)
= 1

4

We convert these logarithmic equations to their exponential forms:

1. x
yz =

√
2 2. y

xz = 21/3 3. z
xy = 21/4

Expressing each variable in terms of x, y, and z:

1. x =
√
2 · yz 2. y = 21/3 · xz 3. z = 21/4 · xy

Substituting these expressions into each other, we find:

- From x =
√
2 · yz and y = 21/3 · xz, we get x =

√
2 · (21/3 · xz) · z, leading to z = 2−5/12. -

Substituting z into the equation for y, we get y = 2−3/8. - Substituting z and y into the equation
for x, we get x = 2−7/24.

Next, we compute x4y3z2:

- x4 = (2−7/24)4 = 2−7/6 - y3 = (2−3/8)3 = 2−9/8 - z2 = (2−5/12)2 = 2−5/6

Multiplying these together:

x4y3z2 = 2−7/6 · 2−9/8 · 2−5/6 = 2−75/24 = 2−25/8

Taking the logarithm base 2:

log2(x
4y3z2) = −25/8

The absolute value is:

| log2(x4y3z2)| = 25/8

Thus, m = 25 and n = 8, giving m+ n = 33.

33
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Baseline Result:

⟨think⟩...⟨/think⟩ (9392 tokens)

Given the system of logarithmic equations:

log2

(
x

yz

)
=

1

2

log2

( y

xz

)
=

1

3

log2

(
z

xy

)
=

1

4

We convert these equations to exponential form:

√
2 =

x

yz
=⇒ x =

√
2 · yz

2
1
3 =

y

xz
=⇒ y = 2

1
3 · xz

2
1
4 =

z

xy
=⇒ z = 2

1
4 · xy

Substituting these into each other, we find:

1. x =
√
2 · yz 2. y = 2

1
3 · xz 3. z = 2

1
4 · xy

By solving these equations step-by-step, we find:

- z = 2−5/12 - xy = 2−2/3 - y = 2−1/24 - x = 21/24

However, upon verifying the third equation, we realize the system might not have a solution.
Therefore, we use matrix inversion to solve the system:





log2(x)− log2(y)− log2(z) =
1
2

log2(y)− log2(x)− log2(z) =
1
3

log2(z)− log2(x)− log2(y) =
1
4

Let A = log2(x), B = log2(y), C = log2(z). The system becomes:





A−B − C = 1
2

B −A− C = 1
3

C −A−B = 1
4

We solve this system using Cramer’s rule and matrix inversion. The determinant of the matrix is
-2, and the solutions are:

A =
61

48
, B =

13

16
, C = −1

6

Thus, we have:

x = 261/48, y = 213/16, z = 2−1/6
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We need to find
∣∣log2(x4y3z2)

∣∣:

4 log2 x+ 3 log2 y + 2 log2 z = 4 · 61
48

+ 3 · 13
16

+ 2 ·
(
−1

6

)

Converting to a common denominator (48):

4 · 61
48

=
244

48
, 3 · 13

16
=

117

48
, 2 ·

(
−1

6

)
= −16

48

Summing these:

244

48
+

117

48
− 16

48
=

345

48
=

115

16

The fraction 115
16 is in simplest form, so m = 115 and n = 16. Therefore, m+n = 115+ 16 =

131.

131

Prompt:

“|User |Real numbers x and y with x, y > 1 satisfy logx(y
x) = logy(x

4y) = 10. What is the
value of xy?
Please reason step by step, and put your final answer within . |Assistant|”

Our Result:

⟨think⟩...⟨/think⟩ (15147 tokens)

Given the equations:

1. logx(y
x) = 10

2. logy(x
4y) = 10

We start by applying the logarithm power rule to both equations.

For the first equation:

logx(y
x) = x · logx(y) = 10

Let z = logy(x). Then, logx(y) =
1
z . Substituting this into the equation, we get:

x · 1
z
= 10 =⇒ x = 10z

For the second equation:

logy(x
4y) = y · logy(x4) = 10
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Using the power rule, we get:

y · 4 logy(x) = 10 =⇒ 4y logy(x) = 10

Since logy(x) = z, this simplifies to:

4yz = 10 =⇒ yz =
5

2

We now have two expressions:
1. x = 10z
2. y = 5/2

z

Substituting x = 10z and y = 5/2
z into the product xy, we get:

xy = (10z) ·
(
5/2

z

)
= 10z · 5

2z
= 10 · 5

2
= 25

Thus, the value of xy is 25 .

Baseline Result:

⟨think⟩...⟨/think⟩ (16223 tokens)

Given the problem where real numbers x and y with x, y > 1 satisfy the equations
logx(y

x) = 10 and logy(x
4y) = 10, we need to find the value of xy.

First, we convert the logarithmic equations to their exponential forms using the change of base
formula.

1. logx(y
x) = 10

x logx(y) = 10

Using the change of base formula, logx(y) =
ln y
lnx . Since logy x = 9

4 , we have logx y = 4
9 . Thus,

x · 4
9
= 10 =⇒ x =

10 · 9
4

=
90

4
=

45

2

2. logy(x
4y) = 10

4 logy x+ 1 = 10 =⇒ 4 logy x = 9 =⇒ logy x =
9

4

Again, using the change of base formula, logx y = 4
9 .

Next, we express x and y in terms of each other:

x =
45

2
and y =

(
45

2

)4/9
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We then compute the product xy:

xy =

(
45

2

)
·
(
45

2

)4/9

=

(
45

2

)1+4/9

=

(
45

2

)13/9

However, upon re-evaluating and using another approach by setting x = 2a and y = 2b, we
find:

logx(y
x) = 10 =⇒ x logx y

logx y
= 10 =⇒ x · 4

9
= 10 =⇒ x =

45

2

logy(x
4y) = 10 =⇒ 4 logy x+ 1

logy x
= 10 =⇒ 4 · 9

4
+ 1 = 10 =⇒ 9 + 1 = 10 consistent

Finally, we find that the product xy simplifies to:

xy =

(
45

2

)
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