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Abstract

To facilitate robust and trustworthy deployment
of large language models (LLMs), it is essential
to quantify the reliability of their generations
through uncertainty estimation. While recent
efforts have made significant advancements by
leveraging the internal logic and linguistic fea-
tures of LLMs to estimate uncertainty scores,
our empirical analysis highlights the pitfalls of
these methods to strike a harmonized estima-
tion between indication, balance, and calibra-
tion, which hinders their broader capability for
accurate uncertainty estimation. To address this
challenge, we propose CUE ¢ (Corrector for
Uncertainty Estimation): A straightforward yet
effective method that employs a lightweight
model trained on data aligned with the tar-
get LLM’s performance to adjust uncertainty
scores. Comprehensive experiments across di-
verse models and tasks demonstrate its effec-
tiveness, which achieves consistent improve-
ments of up to 60% over existing methods.
Resources are available at https://github.
com/0-L1RU1/Corrector4UE.

1 Introduction

Uncertainty is the only certainty there is.
- by John Allen Paulos

Large Language Models (LLMs) have demon-
strated exceptional capabilities in handling a wide
range of downstream tasks (OpenAl, 2023; Tou-
vron et al., 2023a,b; Dubey et al., 2024). They
are gradually adopted as general-purpose API inter-
faces (e.g., ChatGPT!), providing valuable services
and assistance in human life. Despite these impres-
sive advancements, concerns persist regarding the
tendency of LLMs to generate hallucinations and
factual inaccuracies with confidence (Zhang et al.,
2023; Wachter et al., 2024), which may mislead
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users to overestimate the reliability of the informa-
tion provided by these models. To mitigate this is-
sue, uncertainty estimation (Loquercio et al., 2020)
proposed quantifying the reliability of model out-
puts so as to ensure the robustness and trustworthi-
ness of Al-driven services.

Harmonized uncertainty estimation is expected
to encompass three key aspects: 1) Indication. The
uncertainty score should clearly reflect the reliabil-
ity of model responses, with higher scores signaling
potential inaccuracies. This can be framed as a clas-
sification task, with “reliable” or “unreliable” as the
classes. 2) Balance. Within classification frame-
work, it’s critical to strike a balance between re-
call and precision, ensuring that challenging cases
are appropriately flagged while minimizing the re-
sources spent on false positives. 3) Calibration.
The uncertainty score should align with human
intuition and probabilistic expectations, to facili-
tate effective calibration. By striking a harmonized
balance between these three aspects, uncertainty es-
timation provides an ideal measure of the model’s
reliability, offering both usability and interpretabil-
ity.

There has been growing interest in developing
uncertainty estimation methods tailored for LLM:s.
However, with a thorough analysis across diverse
uncertainty estimation methods, we found that
there still remains a large performance gap between
existing methods to achieve the harmonized un-
certainty estimation. Specifically, methods that
excel in one aspect fall short in others. For in-
stance, SAR (Duan et al., 2023), the outstanding
and state-of-the-art method in the specific dataset
SciQA (Auer et al., 2023), achieves the best per-
formance in indication but performs poorly in the
view of calibration. Furthermore, we found that
the combination of uncertainty scores obtained by
existing methods provides little improvement in un-
certainty estimation performance, suggesting that
these methods are quite homogeneous. These find-
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ings highlight considerable room for refinement in
uncertainty estimation.

In this paper, we introduce CUE ¢ , a simple
yet effective framework for adjusting uncertainty
scores, which is orthogonal to existing uncertainty
estimation methods. Specifically, we begin by cu-
rating dataset that is closely aligned with the target
LLM’s performance within a particular domain of
knowledge. This dataset is then utilized to train
an auxiliary lightweight model, which serves as
a Corrector to adjust the uncertainty scores. By
integrating the Corrector trained on global align-
ment information with those uncertainty estimation
methods that rely solely on the intrinsic logic and
linguistic features of LLMs, we can significantly
refine the uncertainty scores.

Our main contributions are thus as follows:

* According to an empirical analysis of exist-
ing uncertainty estimation methods from both
classification and calibration views, we found
there is substantial room for improvement in
their performance regarding classification in-
dication, precision-recall balance, and calibra-
tion.

* We propose CUE ¢ , an uncertainty score cor-
rection framework that employs a classifier,
aligned with the model’s task performance, as
a Corrector to adjust uncertainty scores. This
Corrector allows for seamless integration with
existing uncertainty estimation methods.

» Extensive experiments and explorations are
also conducted in areas such as generalization.
The results demonstrate that our CUE ¢ con-
sistently enhances various existing uncertainty
estimation methods, showing significant im-
provements in a harmonized manner across
diverse data domains and target models.

2 Related Work

2.1 Uncertainty Estimation for LLMs

As illustrated in Figure 1, uncertainty estima-
tion methods for LLMs can be broadly catego-
rized into logit-based methods, verbalized methods,
consistency-based methods and internal state-based
methods.

Logit-based methods are the most widely used
and effective approaches in uncertainty estimation.
Predictive Entropy (PE) (Malinin and Gales, 2020)
defined uncertainty as the entropy of the output
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Figure 1: A concise overview figure of various uncer-
tainty estimation method categories, including logit-
based methods, verbalized methods, consistency-based
methods, and internal state-based methods.

logits distribution, which is widely adopted and
built upon in subsequent research. Following that,
Kuhn et al. (2023) introduced semantic entropy
(SE) that estimates uncertainty by marginalizing
over semantically-equivalent samples in NLG tasks.
Duan et al. (2023) proposed Shifting Attention to
Relevance (SAR), which focuses on relevant in-
formation and assigns significance weights to to-
kens based on their contributions to the overall
response. Yaldiz et al. (2024) introduced a Learn-
able Response Scoring Function (LARS), which
utilizes supervised data to capture complex token-
probability dependencies.

Verbalized methods (Xiong et al., 2023; Groot
and Valdenegro-Toro, 2024) leverage LLMs’ strong
language and instruction-following abilities to ex-
press uncertainty, often by prompting the model
to provide an uncertainty score. However, studies
(Ni et al., 2024; Madhusudhan et al., 2024; Becker
and Soatto, 2024) have shown that LLMs strug-
gle with faithfully conveying their uncertainties,
particularly due to overconfidence. Consistency-
based methods, such as those proposed by Li et al.
(2024b) and Becker and Soatto (2024), assess un-
certainty through multiple generated answers, us-
ing techniques like perturbation and aggregation
to improve reliability. Pedapati et al. (2024) fur-
ther reduced overconfidence by guiding LLMs to
justify their answers. Internal state-based meth-
ods (Azaria and Mitchell, 2023; Liu et al., 2024)
analyze LLM activations to predict errors, with Ka-
davath et al. (2022) and Ji et al. (2024) exploring
self-evaluation and probing estimators to enhance
uncertainty estimation.

Due to space limitations, a more detailed discus-
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Figure 2: The performance of existing uncertainty estimation methods, evaluated on the SciQA dataset with the
LLaMA-3-8B-Instruct model as the target, and the improvements after applying the Corrector. Note that a lower
ECE score indicates better performance, so we report its reduction.
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Figure 3: AUROC improvement across uncertainty
scores combination from different existing methods.

sion of related work is provided in the Appendix
A.l.

3 Preliminary Study
3.1 Limitation of Existing UE Methods

We evaluate existing UE methods from both clas-
sification and calibration views, focusing on three
key aspects of uncertainty scores: indication, bal-
ance, and calibration. From the classification
view, uncertainty scores are utilized to guide the
classification process. Instances with scores above
a threshold are classified as ¢; (unreliable) and
those below as cg (reliable). We employ AUROC
to measure how well the scores indicate unreliabil-
ity and F1 score to evaluate their balance between
precision and recall. The calibration view involves
a more rigorous assessment and interpretation of
uncertainty scores. Well-calibrated scores should
align with human probabilistic intuition and pro-
vide more precise instance rankings. We use ECE
to assess calibration.

Basic methods exhibit poor indication per-
formance. Firstly, we focus on representative
but naive methods including Lexical Similarity
(LS) (Fomicheva et al., 2020), Verbal Confidence
(VC) (Xiong et al., 2023), P(true) (Kadavath

et al., 2022), and Predictive Entropy (PE) (Ma-
linin and Gales, 2020) that belong to four cate-
gories: consistency-based methods, verbal confi-
dence methods, internal state-based methods, and
logit-based methods, respectively. As shown in
Figure 2 and Table 1, the AUROC scores for these
methods across the target models and datasets ex-
hibit general low performance, which is even close
to random guessing.

Enhanced logit-based methods typically have
low F1 scores. Some enhanced methods such
as Length-normalized Predictive Entropy (LN-
PE) (Malinin and Gales, 2020), SAR-t, SAR-s,
SAR, and Semantic Entropy (SE) (Kuhn et al.,
2023), make tailored adjustments to refine predic-
tive entropy process, which show improvements
over PE in terms of AUROC. However, no one
is universally optimal for all target models and
datasets. Moreover, as depicted in Figure 2 and
Figure 5, the F1 scores of those methods are par-
ticularly low. This indicates that although those
methods provided uncertainty scores with some po-
tential to indicate the reliability of model response,
they still fall short in striking a balance between
precision and recall.

Most existing methods fall short in calibration.
As shown in Table 1 and Figure 6, it appears that
prior methods have overlooked the calibration as-
pect, resulting in relatively poor performance in
terms of ECE scores.

3.2 Inter-method Cooperation

We examined whether the uncertainty scores de-
rived from one uncertainty estimation method
could refine the scores obtained from another
method. Specifically, we integrated the uncertainty
scores from each method using the weighted com-
bination and compared its performance with the
top-performing method in the pair. As illustrated
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Figure 4: An overview of uncertainty score correction framework. Firstly, we construct a dataset that closely aligns
with the target model’s performance. This dataset is then utilized to train a lightweight auxiliary model that serves
as a correction module, enabling seamless integration with existing uncertainty estimation methods to produce

corrected uncertainty scores.

in Figure 3, these integrations do not enhance over-
all performance and may lead to a decline. This
underscores the limitations in the complementary
nature of existing methods.

Our analysis reveals a significant performance
gap among existing methods in achieving harmo-
nized uncertainty estimation, as individual methods
excel in specific aspects but underperform in oth-
ers. Furthermore, combining uncertainty scores
from different methods yields minimal to no im-
provement, underscoring their homogeneous and
non-complementary nature.

4 Method

In this section, we introduce CUE ¢ , a correction
framework featuring an intuitive approach to di-
rectly optimizing for uncertainty estimation, where
a Corrector is trained using a lightweight model to
refine the uncertainty score. Through this method,
we provide a more robust solution for uncertainty
estimation. As shown in Figure 4, Our method com-
prises three main steps including dataset crafting,
corrector training and uncertainty correcting.

4.1 Dataset Crafting

We begin by extracting data from existing datasets
to create an evaluation set for assessing the tar-
get model M’s performance in a specific domain.
This set consists of a collection of question-answer
pairs, denoted as D = {(¢;,a;) | i = 1,...,n}.
We then prompt M to generate responses 7; for
each question ¢;, forming a response set R = {r; |
i = 1,...,n}. Subsequently, each response 7;
is subjected to a rigorous evaluation against the
ground truth a;, employing a hybrid approach that
combines both rule-based and LLM-based meth-

ods. The rule-based method compares response r;
to the ground truth a; using the longest common
subsequence (LCS). A response r; is considered
equivalent to a; only if its ROUGE-L score, com-
puted as ROUGE-L(r;,a;) = ron(ia)
is greater than threshold value, formalized as
Mpuie(riai) = IrougeL(r;a;)>0.7- Addition-
ally, we utilize GPT-turbo-3.5-0613 (Ouyang
et al., 2022) to assess the equivalence between
r; and a; by directly prompting, formalized as
Moy (ris ai) = I in LLM(r;,a;)"

To mitigate false positives, we apply rigorous
thresholds and strict prompting rules. The fi-
nal judgment is determined using an “OR” logic:
M(ri,a;) = Mrue(r3, @) V Mrim(ri, a;), pre-
venting the omission of positive instances.

After that, a binary label ¢; is assigned to each
sample, defined as

ci = M(ri, a;) (D

By pairing question g; with the label ¢;, we form
a correction dataset Doy = {(qi,ci) | @ =
1,...,n}, which serves as a representation of
the target model’s performance in generating cor-
rect responses across a particular knowledge do-
main. To directly associate the questions with
uncertainty, we transform the dataset form into

D*cor = {(qi,l —Ci) ‘ 7 = 1,...,')”L}.
4.2 Corrector Training

Employing the correction dataset D*,, we
train a classifier to align with the performance
of the target model. Specifically, the classifier
integrates a fully connected layer following a
lightweight encoder model, such as RoOBERTa (Liu,
2019) and Deberta (He et al., 2021a), with the
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representation of the special token [C'LS] as its
input, denote as hjcys; € R% The output of the
classifier is given by §; = o (W -hcpg +b),
where o(z) is the sigmoid function, used to
compute the likelihood y; that a data point
belongs to label c¢;. During training, we minimize
the binary cross-entropy loss function £ =
=i =1 [y;log(§:) + (1 — i) log(1 — ;)]
across the correction dataset.

This results in a Corrector, an auxiliary compo-
nent that can be integrated with existing uncertainty
estimation methods to enhance their reliability.

4.3 Uncertainty Correcting

We derive the probability that an instance x belongs
to category c; from the Corrector. This probability,
denoted as the correction score C'(x), can be uti-
lized to adjust the uncertainty scores to align with
the target model’s performance, thereby refining
the uncertainty estimation process.

In the refinement process, we first normalize
the uncertainty scores generated from existing UE
methods to match human probabilistic intuition,
ensuring they fall within the range [0, 1]. Normal-

U(z)—min(U)
max(U)—min(U)”’
where U (z) represents the uncertainty score for
a specific instance x, computed by a chosen UE
method. The terms min(U) and max(U) denote
the minimum and maximum uncertainty scores
across the entire dataset, respectively. Following
normalization, we apply our correcting by combin-
ing the normalized score Upom () with the correc-
tion score C'(x) generated by the Corrector. The
combination employs a weighted approach, where
the corrected uncertainty score Ugor () is computed
as:

Ueor() = w* - Uporm () + (1 — w™) - C(x) (2)

ization is achieved via Uyorm () =

The optimal weight w* is determined through a
grid search on the development dataset. This
weighted method ensures that the corrected uncer-
tainty scores balance the contributions of both the
original and correction scores, thereby enhancing
the reliability of the uncertainty estimation.

5 Experiments

5.1 Experiments Setup
5.1.1 Models

Target models We selected the OPT-
6.7B> (Zhang et al., 2022), a model widely

huggingface.co/facebook/opt-6.7b.

utilized in previous studies (Kuhn et al., 2023;
Duan et al., 2023), and the advanced open-source
model LLaMA-3-8B-Instruct? (Dubey et al., 2024)
as the target models for our main experiments.

Base Models We employed lightweight encoder
models as the base model to train the Corrector,
including models from the RoBERTa series (Liu,
2019) and DeBERTa series (He et al., 2021a,b).

5.1.2 Metrics

AUROC We use the area under the receiver op-
erating characteristic curve (AUROC) to evaluate
uncertainty estimation methods from a classifica-
tion view. In our setting, an AUROC of 1 signifies
perfect indicative performance to distinguish be-
tween samples the target model can answer reliably
and those it cannot, while an AUROC of 0.5 indi-
cates that the estimation is no better than random
guessing.

F1 Score FI1 score is used to evaluate the bal-
ance between precision and recall in classification
tasks. It is the harmonic mean of precision and
recall, where both are equally important. The F1
score ranges from O to 1, with 1 indicating perfect
precision and recall.

Precision x Recall
F1S =2 3
core % Precision + Recall 3)

ECE We use Expected Calibration Error (ECE)
to evaluate the performance of calibration, which
is calculated by partitioning predicted confidence
scores into bins and comparing the average confi-
dence in each bin to the actual fraction of correct
predictions, formalized as

o~ |Bul
ECE = Z Tm lacc(By,) — conf(By,)| (4)

m=1

In the computing of ECE, we treat the confidence
score as 1 minus uncertainty score.

5.1.3 Datasets

We focus on the question-answering task using two
representative datasets in the main experiments:
TriviaQA (Joshi et al., 2017), and SciQA (Auer
et al., 2023). TriviaQA comprises 95,000 question-
answer pairs created by trivia enthusiasts, supple-
mented with independently sourced evidence doc-
uments. SciQA contains 2,565 question-answer

3huggingface .co/meta-1lama/
Meta-Llama-3-8B-Instruct.
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pairs fetched from the open research knowledge
graph, covering several research fields ranging
from science and technology like Computer Sci-
ence, Engineering, Chemistry, and Geology, life
sciences like Immunology and Genetics to social
sciences like Economics and Urban Studies.

5.1.4 Baselines

We select a variety of representative uncertainty
estimation methods as baselines, with a particular
focus on logits-based methods.

Among the baselines, we cover multiple cat-
egories, including logit-based, verbalized, inter-
nal state-based, and consistency-based methods,
including: Lexical Similarity (LS) (Fomicheva
et al., 2020), which computes the similarity be-
tween multiple sentences as a measure of con-
sistency; Verbal Confidence (VC) (Xiong et al.,
2023), which requires the target model to respond
and provide a confidence score; P(True) (Kada-
vath et al., 2022), which first asks the target model
to propose an answer and then evaluates it using
an internal probability mechanism; and Predictive
Entropy (PE) (Malinin and Gales, 2020), which
calculates uncertainty by measuring the entropy of
the predictive posterior.

We also explore a series of advanced logit-based
methods including: Length-normalized Predic-
tive Entropy (LN-PE) (Malinin and Gales, 2020),
which adjusts PE by normalizing it according to
sentence length; Semantic Entropy (SE) (Kuhn
et al., 2023), which clusters sentences with equiva-
lent meanings and calculating cluster-wise entropy;
and Shifting Attention to Relevance (SAR) (Duan
et al., 2023), which encompasses SAR-t, SAR-s
and SAR, donated as the token-shifted predictive
entropy, sentence-shifted predictive entropy, and
both token- and sentence-shifted predictive entropy
respectively.

5.1.5 Implementation Details

Dataset Splitting For the TriviaQA dataset, we
randomly selected 5,000 samples from the training
set for data crafting and corrector training. For
datasets with limited data, SciQA, we utilized the
entire training set. We then used half of the test
set to search for the optimal hyperparameter w,
while the other half was employed to evaluate the
method’s effectiveness.

Hyperparameter For each dataset and model
pair, we train a corresponding Corrector, which
is universally applicable across various methods.

Additionally, for every method, dataset, and model
combination, we derive the weight using the devel-
opment set respectively. The sensitivity analysis of
hyperparameter w* and its configuration within the
cross-domain experiments are elaborated upon in
Appendix A.6.

5.2 Main Result

We has evaluated existing methods in Section 3
and found that there still remains a large perfor-
mance gap between existing methods to achieve
the harmonized uncertainty estimation. In this part,
we present the performance of CUE ¢ from both
classification and calibration views, demonstrat-
ing that integrating a Corrector with existing UE
methods significantly enhances uncertainty estima-
tion across multiple dimensions, including classi-
fication indication, precision-recall balance, and
calibration.

Classification View As illustrated in Table 1, the
Corrector has resulted in significant improvements,
with an average AUROC score increase of 0.27 for
TriviaQA and 0.09 for SciQA. Even when applied
to challenging methods such as SE and SAR, the
Corrector boosts AUROC scores by 0.01 to 0.03.
Since AUROC reflects the UE method’s ability to
assign higher scores to instances where the target
model responds unreliably compared to those it
responds to reliably, these improvements indicate
that the deployment of the Corrector enhances the
overall indicative capacity of the uncertainty
scores, making it more effective for users in
determining whether to trust the model’s re-
sponses.

Furthermore, as illustrated in Figure 5, the F1
score is also boosted by the Corrector, achieving
an average increase of 38.97%. This notable im-
provement demonstrates the Corrector’s ability to
help balance precision and recall, effectively miti-
gating the polarization tendency in the uncertainty
scores observed in previous methods.

Calibration View Although calibration is not
the direct training objective of our Corrector, its
application yields favorable calibration results.
When employing the OPT-6.7B model as the target,
we observed average ECE reductions of 0.34 on
TriviaQA and 0.21 on SciQA. With the LLaMA-
3-8B-Instruct model as the target, the reductions
are 0.11 and 0.07, respectively—still considerable.
To further illustrate the calibration performance
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TriviaQA SciQA
AUROC(1) ECE(]) AUROC(1) ECE())
Method Vanilla +Corrector Improv ‘ Vanilla +Corrector Improv ‘ Vanilla +Corrector Improv ‘ Vanilla +Corrector Improv
OPT-6.7B
LS 46.49 65.11 +18.62 | 72.71 41.76 23094 | 44.12 49.40 +5.29 76.38 32.78 -43.60
vC 60.41 70.55 +10.15 | 49.13 27.61 -21.52 | 51.69 56.55 +4.86 62.65 38.99 -23.66
P(True) 66.74 72.29 +5.84 45.00 32.63 -12.80 | 56.12 59.49 +3.37 58.79 34.52 -24.27
PE 56.36 66.62 +10.25 | 42.39 20.28 -22.12 | 50.07 56.02 +5.95 62.05 36.92 -25.13
LN-PE 7837 79.93 +1.57 32.29 20.80 -11.49 | 60.88 64.23 +3.35 49.52 34.68 -14.84
SE 80.66 81.00 +0.34 36.64 27.05 -9.59 64.52 66.15 +1.63 52.66 42.23 -10.43
SAR-t 78.24 80.21 +1.97 40.14 37.85 -2.30 60.00 63.75 +3.74 45.33 44.19 -1.14
SAR-s 51.77 55.83 +4.06 53.78 49.65 -4.13 53.20 54.15 +0.95 76.21 34.83 -41.38
SAR 75.32 78.67 +3.35 40.61 31.02 -9.59 60.04 62.72 +2.68 49.40 38.99 -10.41
LLaMA-3-8B-Instruct
LS 19.57 69.82 +50.25 | 70.25 741 -62.84 | 53.67 65.38 +11.71 | 38.64 18.19 -20.45
vC 62.34 74.89 +12.55 | 23.41 16.78 -6.63 68.22 72.15 +3.93 31.88 19.47 -12.36
P(True) 57.14 72.29 +15.15 | 24.67 19.84 -4.83 65.63 71.41 +5.78 34.56 31.92 -2.64
PE 64.52 69.76 +5.25 21.38 17.24 -4.13 66.54 67.98 +1.44 40.67 34.07 -6.60
LN-PE 7255 74.79 +2.24 14.31 11.53 -2.79 69.48 71.56 +2.08 29.38 23.76 -5.62
SE 80.92 82.12 +1.20 13.07 12.76 -0.31 71.59 72.93 +1.34 30.54 25.23 -5.30
SAR-t 79.55 79.93 +0.38 16.40 13.70 -2.70 72.26 73.87 +1.61 30.37 26.81 -3.56
SAR-s 69.87 77.09 +2.95 23.17 20.00 -3.17 74.96 75.72 +0.76 38.54 36.18 -2.37
SAR 80.92 81.90 +0.98 16.17 13.76 -2.41 73.88 75.19 +1.31 28.97 25.60 -3.37

Table 1: AUROC and ECE scores (%) on the TriviaQA and SciQA datasets obtained by applying the Corrector
to existing uncertainty estimation methods. LS denotes the Lexical Similarity method. VC denotes the Verbal
Confidence method. PE denote the Predictive Entropy method. LN-PE denotes the Length-normalized Predictive
Entropy method. SE denote the Semantic Entropy. SAR-t refers to the token-level version of the SAR method,

while SAR-s denotes the sentence-level version.
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Figure 5: The performance gains of using the Corrector to adjust the uncertainty scores for various methods on the
datasets of TriviaQA and SciQA, and the target models of LLaMA-3-8B-Instruct and OPT-6.7B, are evaluated in

terms of F1 score.

facilitated by the Corrector, we provide calibration
plots in Figure 6.

We also conducted extensive experiments on the
generalization performance of the Corrector. Due
to space constraints, we put the detailed results and
analysis in the Appendix A.4.

In summary, integrating the Corrector helps
achieve harmonized uncertainty estimation. With
the Corrector, we can improve the reliability of
uncertainty scores and alignment with the actual
performance of the model. The analysis of the pure
Corrector’s performance can be found in Appendix
AT

5.3 Ablation Study

We conducted ablation studies to scrutinize the im-
pact of the base model, the correction score formats

and its acquisition methods.

Formats We compared the efficacy of probabilis-
tic values versus label values for correction. As
shown in Table 2, probabilistic correction scores
demonstrate clear superiority, as they allow finer-
grained adjustments by leveraging a broader spec-
trum for integration. Conversely, discrete values,
such as 0 and 1, tend to introduce significant biases
in the corrected uncertainty scores.

Base Model We utilized various encoder models
as base models to train the Corrector and assess
the impact on correction performance. Specifically,
we employed models from the RoBERTa series,
including RoBERTa-base* and RoBERTa-large?, as

4huggi ngface.co/FacebookAI/roberta-base
Shuggingface.co/FacebookAI/roberta-large

22944


huggingface.co/FacebookAI/roberta-base
huggingface.co/FacebookAI/roberta-large

vC P(ture)

o
o
o

LS PE SAR

o
o
°
o
°
o

Accuracy
°
S
Accuracy

Accuracy
°
=

0.4

o
N
o
N
o
N

°
°
°
°
°
°

° -

o )
° ° -
> o )

Accuracy

Accuracy
°
=

°
N
°
N

00 02 04 06 08 10
Confidence

°
°

02 04 06 08 10 00 02
Confidence

SAR-s SAR-t

Confidence

°
°
°
°

06 08 1.0 00 02 04 06 08 10
Confidence

°
°

02 04 06 08 10
Confidence

SE LN-PE Our Optimal

) -
® o
) -
© o
o I
® o

°
Y

Accuracy
Accuracy
Accuracy

°
=

0.2 0.2 0.2

) I
® o
) I
® o

Accuracy
Accuracy
°
S

°
=

0.2 0.2

00 02 04 06 08 10 00 02 04 06 08 10 00 02
Confidence Confidence

Figure 6: Calibration Plots.

Confidence

06 08 1.0 00 02 04 06 08 10 00 02 04 06 08 10
Confidence Confidence

These plots depict the relationship between predicted confidence and observed

frequencies. The diagonal line represents perfect calibration, where predicted confidence aligns precisely with
actual outcomes. Bars extending above the diagonal indicate underestimation of confidence, while bars below the
diagonal reflect overestimation. The final plot highlights the optimal calibration performance achieved through our

Corrector.

well as models from the DeBERTa series, including
DeBERTa-base®, DeBERTa-v3-large’, DeBERTa-
v3-base®, DeBERTa-v3-small’, and DeBERTa-v3-
xsmall'?. These models represent different types,
series, and sizes. As illustrated in Figure 7, more
advanced, later-generation, and larger models yield
superior results.

o
=

Correction Scores
o
o

o
o

iy
¥d

0.0

i,
g

Figure 7: The overall AUROC score gains achieved
by Correctors trained on different base models across
various UE methods on the SciQA dataset and Llama-3-
8B-Instruct target model.

Acquisition We compare correction scores from
a lightweight classifier with those estimated using

co/microsoft/deberta-base
co/microsoft/deberta-v3-large
co/microsoft/deberta-v3-base
co/microsoft/deberta-v3-small
co/microsoft/deberta-v3-xsmall

6huggingface.
7huggingface.
8huggingface.
9huggingface.
Yhuggingface.

GPT-40. We attempt not to rigorously assess the
target model’s answers but to predict its reliabil-
ity. Despite GPT-4’s strong performance in ques-
tion answering, our results show it is less effective
than the classifier in directly predicting reliability
of target models when faced with questions. Ad-
ditionally, as detailed in Section 3.2, combining
uncertainty scores from different UE methods does
not improve and may even degrade performance.
This highlights the Corrector’s unique role as a
complement to existing UE methods.

We also conducted experiments to compare our
Corrector with other supervised methods specifi-
cally designed for uncertainty estimation. The ex-
perimental results demonstrated that our supervised
pipeline offered significant advantages in enhanc-
ing uncertainty estimation. Detailed results and
analysis can be found in Appendix A.3.

Methods AUROC (1) | ECE ()
Corrector 69.87 6.73
Original Best 80.92 11.53
+Corrector Probability 82.12 10.46
+Corrector Label 80.92 11.53
+GPT-40 Score 80.92 11.53

Table 2: Ablation Study. LLaMA-3-8B-Instruct as the
target model and TriviaQA as the test dataset. Original
Best refers to the peak performance achieved by various
baseline when the Corrector is not incorporated.

22945


huggingface.co/microsoft/deberta-base
huggingface.co/microsoft/deberta-v3-large
huggingface.co/microsoft/deberta-v3-base
huggingface.co/microsoft/deberta-v3-small
huggingface.co/microsoft/deberta-v3-xsmall

6 Conclusion

Our study highlights the limitations of current un-
certainty estimation methods in terms of classifi-
cation accuracy, precision-recall balance, and cal-
ibration. We introduce an innovative uncertainty
score correction framework that utilizes a classi-
fier as a Corrector to refine these scores, ensuring
alignment with the model’s true task performance.
This Corrector integrates seamlessly with exist-
ing methods, enhancing their effectiveness. Exten-
sive experiments validate that the Corrector con-
sistently improves performance across various met-
rics, data domains, and target models. Furthermore,
our ablation study underscores the Corrector’s ca-
pacity to provide substantial and heterogeneous
improvements to existing uncertainty estimation
techniques.

Limitations

Although the CUE method proposed in this paper
demonstrates good performance, its dependence on
labeled data and its generalization ability across
different data domains and target models may be
limitations. We only compared our method with
works that have open-source code, which are often
designed for white-box models. Therefore, the
effectiveness of our method on black-box models
has not been demonstrated through experiments.
However, our method does not necessitate access
to the inner states of target models, making it a
general enhancement strategy for both black-box
and white-box uncertainty estimation.

Ethics Statement

In this study, we introduce a method for improv-
ing uncertainty estimation in the context of LLMs,
which presents no immediate ethical concerns, but
certain considerations must be addressed. Uncer-
tainty estimation has significant potential to evalu-
ate the reliability and safety of LLM outputs. How-
ever, this potential benefit comes with the risk that
systematic mistakes in the uncertainty assessment
could foster unfounded and misplaced confidence.
Consequently, even re-calibrated uncertainty esti-
mates should be interpreted cautiously, particularly
in critical decision-making scenarios where the con-
sequences of inaccuracies can be profound.

The datasets used in our experiment are publicly
released and labeled through interaction with hu-
mans in English. In this process, user privacy is
protected, and no personal information is contained

in the dataset. The scientific artifacts that we used
are available for research with permissive licenses.
And the use of these artifacts in this paper is consis-
tent with their intended use. Therefore, we believe
that our research work meets the ethics of ACL.
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A Appendix
A.1 Related Work

Uncertainty estimation methods for LLMs have
gained significant attention, with approaches can
be broadly categorized into logit-based methods,
verbalized methods, consistency-based methods,
and internal state-based methods..

Logit-based methods Logit-based methods are
the most widely used and effective approaches in
uncertainty estimation. As a foundational method,
Predictive Entropy (PE) (Malinin and Gales, 2020),
defines total uncertainty as the entropy of the out-
put logits distribution. After that, researchers pro-
posed a series of methods based on the inherent
characteristics of natural language generation to
improve upon PE methods. Kuhn et al. (2023)
introduced semantic entropy (SE) that estimates

22948


http://papers.nips.cc/paper_files/paper/2022/hash/b1efde53be364a73914f58805a001731-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/b1efde53be364a73914f58805a001731-Abstract-Conference.html
https://arxiv.org/abs/2403.08819
https://arxiv.org/abs/2403.08819
https://doi.org/10.48550/arXiv.2302.13971
https://doi.org/10.48550/arXiv.2302.13971
https://doi.org/10.48550/ARXIV.2307.09288
https://doi.org/10.48550/ARXIV.2307.09288
https://arxiv.org/abs/2403.05973
https://arxiv.org/abs/2403.05973

uncertainty by marginalizing over semantically-
equivalent samples in NLG tasks. In the similar
framework, Nikitin et al. (2024) employed posi-
tive semi-definite kernels and von Neumann en-
tropy to capture semantic similarities. Furthermore,
Wang et al. (2024) proposed Word-Sequence En-
tropy (WSE) to adjust uncertainty proportions at
both the word and sequence levels based on seman-
tic relevance, ensuring that uncertainty is aligned
with the semantic importance of words within a
response. In addition to measuring the similarity
between generated responses, Wang et al. (2024)
proposed to judge the similarity between the target
response and the generations. Duan et al. (2023)
proposed Shifting Attention to Relevance (SAR),
which focus on relevant components and assigns
significance weights to tokens based on their con-
tributions to the overall response. Unlike these
carefully designed methods, Yaldiz et al. (2024)
introduced a Learnable Response Scoring Function
(LARS), which utilizes supervised data to capture
complex token-probability dependencies. While
effective, the above methods are computationally
expensive. To alleviate these computational cost,
Kossen et al. (2024) proposed Semantic Entropy
Probes (SEPs) to approximate semantic entropy by
leveraging hidden states from a single generation.

Verbal confidence methods Due to LLMs’
strong language abilities and adherence to instruc-
tions, Verbal confidence methods are proposed. For
instance, one may attach the question with a prompt
like “Please respond and provide your confidence
score ranging from 0 to 100.”. Xiong et al. (2023)
constructed a prompting, sampling, and aggrega-
tion framework to systematically evaluate various
strategies and their integration, enabling LL.Ms to
express their confidence in response. Groot and
Valdenegro-Toro (2024) proposed FaR prompting
strategy, which improves the confidence calibra-
tion of LLMs by separating the fact retrieval and
reflective reasoning steps. However, verbal con-
fidence methods face significant challenges with
over-confidence. Ni et al. (2024) found that LLMs
cannot convey their uncertainties faithfully in natu-
ral language. Becker and Soatto (2024) found that
combining language confidence and proxy model
probability estimation can improve the estimation
of uncertainty. Madhusudhan et al. (2024) noted
LLMs’ language perception accuracy often lags
behind probability perception, especially in spe-
cific domains Furthermore, Tao et al. (2024) found
that LL.Ms often exhibit a high degree of overcon-

fidence when expressing their own confidence by
comparing language-based methods, consistency-
based methods, and their hybrid benchmark test-
ing methods. Their research indicates that some
prompt strategies can improve the calibration of
verbal confidence.

Internal state-based method Internal state-
based methods suggest that the activation of the
target model can be analyzed to predict the model
errors. Azaria and Mitchell (2023) proposed
SAPLMA by training a classifier on the hidden
layer activations of an LLM to assess statement
truthfulness. Similarly, Liu et al. (2024) also in-
troduced a supervised method by training a model
on labeled datasets that analyze hidden layer acti-
vations and probability-related features. Focusing
on the self-assessment capabilities of LLMs, Ka-
davath et al. (2022) trained models to explore the
LLMs’ ability to evaluate the accuracy of their re-
sponses through calibration on multiple-choice and
true/false questions. Ji et al. (2024) employed a
probing estimator to analyze the internal mecha-
nisms of LLMs across various NLG tasks, assess-
ing uncertainty before response generation. Ad-
ditionally, some works introduced novel interven-
tions to refine the uncertainty estimation perfor-
mance during inference. Han et al. (2024) pro-
posed to learn from past experience (LePe) method
by leveraging historical performance records and
fine-tuning instructions. Li et al. (2024a) presented
Inference-Time Intervention (ITI) to adjust model
activations selectively during inference across a
limited number of attention heads, guided by a
predefined set of directions. Ulmer et al. (2024)
proposes a method to set confidence targets and
train an additional model that predicts an LLM’s
confidence based on its textual input and output.

Consistency-based method The consistency-
based method is to evaluate the uncertainty of the
large model through multiple generated answers.
Recently, Li et al. (2024b) employed UQ sampling
with perturbation and an aggregation module to
quantify sampling uncertainty in text generation
tasks. Pedapati et al. (2024) proposed a paradigm
to reduce overconfidence in incorrect answers by
having LLMs reflect on and justify each candidate
answer, then aggregating these justifications to cal-
ibrate confidence estimates. Becker and Soatto
(2024) proposed extracting semantic diversity and
syntactic similarity from perturbed prompts, train-
ing a model on these features to estimate confi-
dence. Yang et al. (2024) explored the stability of
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explanations generated by LLMs to estimate the
model’s confidence in its answers. Lin et al. (2023)
discussed combining observed consistency and self-
reflection to assess language model uncertainty.

Supervised method Notably, this is not an in-
dependent classification. For the convenience of
comparison, the four categories above that use su-
pervised methods are also summarized here.

Since our research follows a supervised learning
approach, we provide a complementary summary
of existing supervised methods. Compared with
these supervised methods, our work has fundamen-
tally different setup, scope and application timing.

First, Shen et al. (2024); Chaudhry et al. (2024);
Kapoor et al. (2024) primarily focus on specific
aspects of uncertainty estimation, such as classifi-
cation tasks or confidence calibration in verbal or
probabilistic forms, while our method aims to en-
hance overall performance rather than addressing
isolated uncertainty measures. Second, Azaria and
Mitchell (2023); Liu et al. (2024); Kadavath et al.
(2022) rely on accessible internal states for predic-
tion, providing insights into the LLM explainary
but limiting their applicability to black-box models.
In comparison, our Corrector is agnostic to both
response content and probability distributions, en-
abling broader adaptability across diverse settings.
Third, Ji et al. (2024); Tao et al. (2024) involve
more fine-grained and complex data creation pro-
cesses, such as probabilistic alignment and other
intricate algorithms. In contrast, our method em-
ploys a straightforward data creation and training
procedure, enabling broad applicability.

A.2 Background and Theory

In this section, we commence by clarifying the two
scales of uncertainty: relative uncertainty and ab-
solute uncertainty. We then formalize the relative
uncertainty estimation as a classification task to de-
termine whether the target model can correctly re-
spond to a given question. Subsequently, we delve
into the theoretical foundations of widely-used
logit-based uncertainty estimation methods, and
critically examine the inherent limitations shared
by those approaches that rely exclusively on target
model outputs.

A.2.1 Relative Uncertainty and Absolute
Uncertainty

Research on uncertainty estimation has led to two
key concepts (Kamath et al., 2020; Vazhentsev

et al., 2023): relative uncertainty and absolute
uncertainty, each providing distinct methods for
assessing and interpreting levels of uncertainty.
Given an input z, a ground truth answer y, and
the predictive distribution of Y, the predictive un-
certainty for the target model regarding the input x
is denoted as UE(x, 6). Relative uncertainty scores
emphasize the accuracy of sample ranking, espe-
cially in discerning questions that the target model
can correctly respond to from those it struggles
with. Ideally, for every pair (z;,y;) and (x;,y;)
with their predictive distributions Y; and Y}, we
should have

UE(:L',L,G) < UE(.TJ,H) —
P(Y; = yilz;,0) > P(Y; = yj|x;,0).

Stricter than relative uncertainty scores, absolute
uncertainty scores support to represent the model’s
accuracy. In cases where there is an 80% uncer-
tainty prediction, it implies that the question is
expected to be answered correctly only 20% of the
time under similar conditions. This relationship
can be mathematically expressed as

P(Y =ylUE(z,0) =q)=1—q.  (6)

&)

As relative uncertainty concerns solely with the
relative rankings of h(x) = UE(z,#), it can be
framed as a classification problem aimed at finding
a function h that minimizes the expected loss of
misclassification (Allikivi et al., 2024; Tao et al.,
2023). Consider two class labels, C = {cp,c1},
indicating whether the targrt model can correctly
answer the question or not, respectively. This leads
to the formulation of a decision rule

cop if h(xz) < 7 (confident)
g(h;7) = . -
c1 if h(x) > 7 (uncertain)

where h(x) is a scalar measure of uncertainty and
7T is the threshold.

Drawing from decision theory, we derive the
expected loss as conditional risk for the sample x:

RlSk(.fU) = )\Ci,C177;h01—i (x)v (8)

where ¢;,7 € {0,1} denotes the true label of the
sample x, and h,, ,(x) = P(c1—; | =) is the pos-
terior probability of misclassifying the sample x as
class c1—;. A¢; ¢,_; represents the loss associated
with this misclassification—specifically, a penalty
incurred when the sample with the label ¢; is clas-
sified as ¢;_;. Our task is to find ~A* that minimizes
the overall risk

Risk(h) = E; [Risk(h(z)) | z]. 9)
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A.2.2 Theoretical Foundations of Uncertainty
Estimation for LLM

LLMs typically generate outputs in an auto-
regressive manner, which iteratively predict the
probability distribution of the subsequent token
based on the evolving context (Gregor et al.,
2014). Given an input sequence x with the ob-
jective of generating an output sequence y =
{y1,92, ...,y }, the conditional probability of the
[-th token y; is denoted as P(y;|y<;, z;6). This
probability depends on all previously generated
tokens y<; = {y1,92,...,yi—1} as well as the in-
put . The probability of generating the entire
sequence y can be expressed as the product of the
conditional probabilities of each individual token:

L
P(ylz;0) = [[ P(wly<i,=:6),  (10)
=1
e#1/T

e
logit, and T is the temperature that controls the
smoothness of the probability distribution. This
posterior probability provides a probabilistic frame-
work for sequence generation. Moreover, accord-
ing to prior research (Malinin and Gales, 2020), the
total uncertainty for the generation of y is given by
the entropy of the predictive posterior:

where P(y|y<;, x;0) = z is the raw

PE(z) = H[P(y | z,0)]
= EP(y|ac,9)[_ lnp(y ’ T, 0)]
==Y P(y|z,60)InPy|z0).

yey

1D

In practice, due to the exponential computational
complexity of traversing the entire response set,
Monte Carlo approximation method (Papadopoulos
and Yeung, 2001) is employed via beam search
with a single target model for generation. The
approximate entropy is defined as

B
1
PE(z) % — > I P(ylz,0), (12)
b=1

where P(yp|z, 0) denotes the posterior probability
of the b-th beam search candidate. Base on these,
Kuhn et al. (2023) proposed to cluster generations
with similar meanings and compute entropy us-
ing the probabilities associated with each semantic
cluster. This approach is formulated as

C
1
SE(w,0) = -5 > InP(c|z,0),  (13)
=1

where ¢; denotes each semantic cluster and C' rep-
resents the set of all clusters.

Another form of improvement is to assign
weights to each token in the generation when cal-
culating posterior probabilities (Duan et al., 2023;
Bakman et al., 2024), either through a manually
designed algorithm or a training way, which can be
formulated as

L

Py | z:0) =] P(u | y<i,2;0) - w,
1=1

(14)

where w; represents the weight assigned to the [-th
token.

A.3 Compare with Other Supervised UE
Method

Following publicly available code and experimen-
tal settings, we compare our Corrector’s perfor-
mance with the supervised UE method provided by
Liu et al. (2024), which we refer to as Wb-S. We
focused on enhancement after applying the super-
vised method to the strong unsupervised baselines,
targeting model LLaMA-3-8B-Instruct on dataset
TriviaQA.

As shown in Table 3, our Corrector achieved
harmonized improvements on all strong baselines.
However, when we replaced Corrector with the
Wb-S method, integrated into our pipeline, only
marginal improvements were observed with the
Predictive Entropy (PE) method, and no signifi-
cant effects were noted with other unsupervised
methods, and thus the metrics are almost indis-
tinguishable from vanilla’s after using the Wb-S
method.

A.4 Generalization

The previous results indicate the Corrector’s effec-
tiveness on the in-distribution evaluation set. In
the subsequent analysis, we investigate its cross-
dataset and cross-model generalization capabili-
ties.

Cross-Dataset Generalization In terms of cross-
dataset (different domain) generalization, we tested
the Corrector’s generalization via cross-training
(training on TriviaQA and then testing on SciQA,
and training on SciQA and then testing on Trivi-
aQA, with OPT-2.7B as the target model). These
datasets differ significantly in question domain
(trivia vs. scientific) and size (10,000 vs. 1,000
examples), presenting a significant generalization
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Method AUROC (1) ECE (|) F1(1)
Vanilla +Corrector +Wb-S | Vanilla +Corrector +Wb-S | Vanilla +Corrector +Wb-S

PE 64.52 69.76 64.37 21.38 17.24 20.18 47.54 64.97 52.45
LN-PE 72.55 74.79 72.75 14.31 11.53 14.31 52.83 61.99 52.83
SE 80.92 82.12 80.92 13.07 12.76 13.07 57.14 65.75 57.14
SAR-t 79.55 79.93 79.55 16.40 13.70 16.40 51.67 57.60 51.67
SAR-s 69.87 77.09 69.87 23.17 20.00 23.17 53.44 66.22 53.44
SAR 80.92 81.90 80.92 16.17 13.76 16.17 51.20 59.54 51.20

Table 3: Comparison of performance between the Corrector and the Wb-S method.

challenge. We observed average absolute improve-
ments of 4%-6% over baselines.

To further investigate cross-dataset (same do-
main) generalization, we conducted additional ex-
periments using MedMCQA (Pal et al., 2022) and
MedQA (Jin et al., 2020) (distinct but related med-
ical datasets). Using the same setup as different
domain, we observed absolute improvements of 7-
11%. This demonstrates promising generalization
within the same domain. The results are shown in
the Table 4a.

Cross-Model Generalization In terms of cross-
model generalization, we tested the Corrector’s
generalization across models (OPT-2.7B, OPT-
6.7B, LLaMA-3-8B) on SciQA, reporting average
AUROC improvement over all baselines.

Experimental results show the Corrector gen-
eralizes well within the same model family (e.g.,
OPT-2.7B and OPT-6.7B, with average absolute
improvements of 6%-11%), likely due to their simi-
lar performance on the original SciQA dataset. We
observed limited transferability across LLMs with
significantly different performance and architec-
tures (e.g., LLaMA-3-8B and OPT-2.7B). However,
even in these scenarios, CUE achieves an average
absolute improvement of 3%, which demonstrates
the efficacy of our method.

A.5 Statistical Hypothesis Testing

Regarding the performance improvements com-
pared to other robust UE methods, our approach
provided harmonized, multi-dimensional enhance-
ments across various aspects of uncertainty estima-
tion, including indication, balance, and calibration.
To statistically validate the significance of these im-
provements across all metrics, we conducted t-tests
on the TriviaQA and SciQA datasets, comparing
our method against strong baselines (SE, t-SAR,
s-SAR, SAR). The results yielded p < 0.05 for
each baseline on both datasets, demonstrating that

the performance improvements were statistically
significant.

It was also essential to clarify that the reported
performance of the SE and SAR methods reflected
their saturation point. This indicated that further in-
creasing the number of samples—commonly used
to enhance their performance—no longer resulted
in additional gains. In contrast, our method sur-
passed this saturation point, effectively addressing
the limitations of these methods and delivering con-
tinued improvements.

A.6 Detail of Hyperparameter w*
A.6.1 Sensitivity of Hyperparameter w*

To address test the sensitivity of the hyperparam-
eter w*, we conducted a sensitivity analysis by
performing tests on the opt-6.7b and llama3-8b
models using the TriviaQA dataset. We adjusted
the w* values around the original optimal value in
thousandth-increments and recorded the AUROC
performance under different w* values. When the
performance change was within 1%, we recorded
this range as the “stable range”. Table illustrates
the w* stable ranges for various UE methods. We
observed that, in the majority of cases, performance
fluctuations remained below 1% within a w* range
of 0.107 to 0.442, indicating a degree of robustness
in the model to w*.

A.6.2 Hyperparameter w* Setting in
Cross-domain Experiments

By default, we select the optimal weight w™* using
the same (training) domain dev set. However, as
shown in the supplementary experiments address-
ing R1, w* exhibits elasticity. Thus, theoretically,
using w* from a truly cross-domain set would par-
tially retain the Corrector’s enhancement effect.
We validated the cross-domain experiment setup
(train on SciQA/TriviaQA and test on Trivi-
aQA/SciQA) mentioned by the reviewer, select-
ing w* using both in-domain and cross-domain
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TriviaQA  SciQA

MedMCQA MedQA

OPT-2.7B  OPT-6.7B LLaMA3-8B

TriviaQA 19.59 4.05
SciQA 6.03 10.20

MedMCQA 15.54
MedQA 6.93

10.70
11.21

OPT-2.7B 19.59 11.80 3.23
OPT-6.7B 6.08 11.21 3.43

(a) Generalization for Domain of Data

(b) Generalization for Target Model

Table 4: Average AUROC scores (%) improvement of after appling our method to baselines. (a) The leftmost
column indicates the domains of data used in training, while the topmost row represents the domains of data used
for evaluating, with OPT-2.7B serving as the target model. (b) The leftmost column denotes the target model during
training, whereas the topmost row signifies the target model during evaluating, with TriviaQA utilized as the target

domain of data.

Method TriviaQA AUROCT TriviaQA ECE | SciQA AUROCT SciQA ECE |

Vanilla w/ Corrector Improv ‘ Vanilla w/ Corrector Improv ‘ Vanilla w/ Corrector Improv ‘ Vanilla w/ Corrector Improv
Correcter  69.87 - - 6.73 - - 65.38 - - 18.19 - -
LS 19.57 69.82 50.25 | 70.25 7.41 -62.84 | 53.67 65.38 11.71 38.64 18.19 -20.45
vC 62.34 74.89 12.55 | 23.41 16.78 -6.63 | 68.22 72.15 3.93 31.88 19.47 -12.36
P(True) 57.14 72.29 15.15 | 24.67 19.84 -4.83 | 65.63 71.41 5.78 34.56 31.92 -2.64
PE 64.52 69.76 5.25 21.38 17.24 -4.13 | 66.54 67.98 1.44 40.67 34.07 -6.60
LN-PE 72.55 74.79 2.24 14.31 11.53 2279 | 69.48 71.56 2.08 29.38 23.76 -5.62
SE 80.92 82.12 1.20 13.07 12.76 -0.31 71.59 72.93 1.34 30.54 25.23 -5.31
SAR-t 79.55 79.93 0.38 16.40 13.70 -270 | 72.26 73.87 1.61 30.37 26.81 -3.56
SAR-s 69.87 77.09 722 23.17 20.00 -3.17 | 74.96 75.72 0.76 38.54 36.18 -2.37
SAR 80.92 81.90 0.98 16.17 13.76 -2.41 73.88 75.19 1.31 28.97 25.60 -3.37

Table 5: Comparison of Pure Corrector Performance with the Baseline, and the Performance Gains from Using

Corrector Scores as Corrections to the Baseline.

Method+Cor OPT-6.7B LLaMA3-8B
w* Range  Range Difference w* Range  Range Difference

SAR 0.12-0.362 0.242 0.367 - 0.809 0.442
SAR-s 0.028 - 0.427 0.399 0.539-0.844 0.305
SAR-t 0.038 - 0.318 0.28 0.447-0.733 0.286
SE 0.246 - 0.51 0.264 0.701 - 0.808 0.107
LN-PE 0.223-0.374 0.151 0.797 - 0.926 0.129
PE 0.117-0.323 0.206 0.759 - 0.945 0.186
LS 0.458 - 1.0 0.542 0.993 - 1.0 0.007

Table 6: Stable Ranges of w* for Different UE Methods
on TriviaQA (within 1% AUROC change).

validation sets, and recorded the resulting average
AUROC improvements across methods. The exper-
imental results are shown in Table 7.

Training => Testing Domain ~ Same (training) domain w*  Cross-domain w*

SciQA => TriviaQA 6.03 3.92
TriviaQA => SciQA 4.05 2.75

Table 7: Average AUROC improvements (%) across
methods when selecting w™ using in-domain and cross-
domain validation sets for cross-domain experiments.

A.7 Pure Corrector Performance

To provide more insights about pure Corrector per-
formance, we combine and present relevant data
from Table 1 and Table 2 of our paper, as shown in
the table 5.

On TriviaQA, the pure performance of the Cor-
rector outperformed LS, VC, P(True), and PE, but
underperformed SE, SAR-t, SAR-s, and SAR. On
SciQA, the pure performance of the Corrector out-
performed LS, performed similarly to VC, P(True),

PE, and LN-PE, but underperformed SE, SAR-t,
SAR-s, and SAR. Across all “w/ Corrector” set-
tings, we saw universal improvement, showing Cor-
rector’s great complementarity with unsupervised
methods. Regarding the ECE metric, we observed
that the calibration of the lightweight model is sig-
nificantly better than strong UE methods, which
makes the combination of the two even more ad-
vantageous.
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