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Abstract

The lack of data transparency in Large Lan-
guage Models (LLMs) has highlighted the
importance of Membership Inference Attack
(MIA), which differentiates trained (member)
and untrained (non-member) data. Though it
shows success in previous studies, recent re-
search reported a near-random performance
in different settings, highlighting a significant
performance inconsistency. We assume that
a single setting does not represent the dis-
tribution of the vast corpora, causing mem-
bers and non-members with different distri-
butions to be sampled and causing inconsis-
tency. In this study, instead of a single setting,
we statistically revisit MIA methods from var-
ious settings with thousands of experiments
for each MIA method, along with a study in
text features, embedding, threshold decision,
and decoding dynamics of members and non-
members. We found that (1) MIA performance
improves with model size and varies with do-
mains, while most methods do not statistically
outperform baselines, (2) Though MIA perfor-
mance is generally low, a notable amount of
differentiable member and non-member out-
liers exists and vary across MIA methods, (3)
Deciding a threshold to separate members and
non-members is an overlooked challenge, (4)
Text dissimilarity and long text benefit MIA
performance, (5) Differentiable or not is re-
flected in the LLM embedding, (6) Members
and non-members show different decoding dy-
namics. !

1 Introduction

Large Language Models (LLMs) (Minaee et al.,
2024) are trained with terabyte-level corpora
(Chowdhery et al., 2023) that are automatically
collected, even the data creators themselves can
hardly give instance-level analysis over the col-
lected corpora (Biderman et al., 2022). Such a

Tmplementation of MIA methods used in

this study is at https://github.com/11lm-jp/
11m-jp-membership-inference
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Figure 1: Sample with different settings may result in
MIA performance inconsistency.

situation has led to several issues, such as the data
leakage of evaluation benchmarks (Sainz et al.,
2023) and personal information (Yao et al., 2024).

Those concerns inspired the Membership In-
ference Attacks (MIA) research in LLMs (Hu
et al., 2022). Given a set of examples, MIA fo-
cuses on differentiating members (trained) and
non-members (untrained) by calculating a feature
value for each example and splitting them using
a threshold. Those methods operate on the LLM
outputs like generated tokens, probability distri-
butions, losses, etc., and utilize them to distin-
guish between members and non-members. De-
spite the success reported in their studies, recent
studies also suggested that these methods behave
randomly in another MIA experiment setting, or
that such benchmarks can be easily cheated (Duan
et al., 2024; Das et al., 2024). Those negative re-
sults raised an inconsistency with respect to the
performance of MIA methods, e.g., do those MIA
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methods really work or not ?

We see such an inconsistency comes from the
distribution of the enormous pre-train corpora size,
which is possible that members and non-members
sampled from one setting could be totally differ-
ent from another setting, leading to inconsistent
results. In this study, instead of a single setting, we
evaluate MIA methods statistically from multiple
perspectives, e.g., the split methods, domains, text
length, model sizes, and models. This led to thou-
sands of MIA experiments for one MIA method
and enabled a statistical analysis for MIA methods.
Additionally, we conducted an in-depth analysis to
study how the text feature, embedding, threshold
decision, and decoding dynamics in members and
non-members relate to MIA. Results show:

(I) MIA performance improves with model size
and varies with domains, while most methods do
not statistically outperform baselines.

(II) While MIA performance is generally low,
a notable amount of differentiable member and
non-member outliers exist and vary across MIA
methods, connecting the inconsistency regarding
the MIA performance.

(IIT) The threshold to separate members and
non-members changes with model size and do-
mains, raising it as an overlooked challenge when
using MIA in the real world.

(IV) While the actual relation varies based on
MIA methods, MIA performance generally posi-
tively relates to text length and text dissimilarity
between members and non-members.

(V) Whether members and non-members are
differentiable is reflected in LLM embedding with
an emergent change in a larger model that makes
them more separable. Specifically, the last-layer
embedding used by the current MIA methods has
a low embedding separability.

(VD) Domains with high MIA performance
show a faster increase in accumulated entropy dif-
ference for members and non-members.

2 Related Works

2.1 Membership Inference Attack Methods

Gray-Box Method This method requires the in-
termediate outputs to be observable, like loss, to-
ken probability, etc. Carlini et al. (2021) calculated
the loss difference with another reference model,
with the assumption that if two models are trained
under two samples of the same distribution, then
the loss of non-members should be significantly

different. Mink-£% (Shi et al., 2023) calculates
the average log-likelihood of the tokens with the
bottom-k% output probabilities, suggesting non-
member text has more outliers and thus higher
negative log-likelihood. Zhang et al. (2024b) im-
proved Mink-k% by standardizing with variance
and mean. Zhang et al. (2024c) compared pre-
dicted token probabilities against actual token prob-
abilities from open corpora, in which the member
data should have a closer distribution distance. Ad-
ditionally, some methods alter the input text, like
token swapping (Ye et al., 2024) or adding prefixes
(Xie et al., 2024), with the hypothesis that the like-
lihood of member data should be influenced more
by such text alternation.

Black-Box Method This method only observes
the output tokens from the LLM. Dong et al. (2024)
calculated a variant of edit distance with multiple
generations from the LLM, with the hypothesis
that those generations of a member text should
have a smaller lexical distance compared to non-
member text. Additionally, Kaneko et al. (2024)
made a similar hypothesis while they evaluated the
semantic similarity using the embedding model.

2.2 Membership Inference Attack Analysis

Regarding the MIA analysis, some research (Maini
et al., 2021; Carlini et al., 2022) suggests the MIA
difficulty increases with model size and corpora
size. Zhang et al. (2024a) showed with toy data that
it is hard to reliably operate an MIA method under
a certain false positive rate. Meeus et al. (2024)
found that some MIA benchmarks are flawed,
which can be easily cheated by just checking the
word differences (Das et al., 2024). Duan et al.
(2024) evaluated Gray-Box MIA methods in the
train and test sets of pre-train corpora of an LLM,
where they behave almost randomly.

Those negative findings show an inconsistency
with the performance reported by the previous MIA
methods. We assume such inconsistency comes
from the sampled member and non-member dis-
tribution under different settings, which could be
totally different due to the enormous size of the
corpora, leading to this inconsistency. In this study,
instead of using a single setting, we create various
settings, leading to thousands of experiments for
one MIA method. This allows a statistical-level
analysis of MIA methods from multiple perspec-
tives, which shows new findings and connects the
MIA performance inconsistency.

22855



Baseline Methods

Loss (Yeom et al., 2018)
Refer (Carlini et al., 2021)
Gradient

Zlib (Carlini et al., 2021)

Calibrates the loss by the Zlib compression entropy Z (x) of the input text, computed as

Collects the loss value L(M; ) for each input instance.
Calculates the loss gap L(My; ) — L(M,.; ) between the attacked model M, and a reference model M,..
Collects the gradient value G(My; =) for each input instance.

L(My;z)
Z(x)

Token Distribution Based Methods

Hypothesis: non-member text contains more rare tokens or has a distribution whose average log-likelihood differs from that of member text.

Min-k% Prob (Shi et al.,
2023) i
Min-k% Prob++ (Zhang et al.,
2024b)

DC-PDD (Zhang et al., 2024c)

t; EBot(z) logp(ti | t1,...

Calculates the average log-likelihood of Bot(z) tokens in the bottom-k% decoding probabilities in the whole input as
,ti—1), where E is the number of bottom-k% tokens.
Standardizes Min-k% Prob with its mean and standard deviation to stabilize the value range.

Computes the divergence between decoded token probabilities and a pre-computed large corpus frequency.

Text Alternation Based Methods

Hypothesis: the log-likelihood of altered member text is more sensitive than that of non-member text.

EDA-PAC (Ye et al., 2024)

For an original text = and its perturbed text & created by token swapping, it calculates their differences in the average log-

likelihood for top-k% and bottom-k% tokens. The hypothesis is that token swapping affects member texts more.

RECALL (Xie et al., 2024)

Creates a non-member prefix p and concatenates it with  to compute the score

LL(z|p)
LL(z)

, where L L is the average log-likelihood.

Member texts are hypothesized to be more sensitive to this prefix perturbation.

Black-Box Methods

Hypothesis: the generated continuations of member-text are more similar to the actual continuations than those of non-member texts.

SaMIA (Kaneko et al., 2024)
generated and actual continuations.
CDD (Dong et al., 2024)

Inputs a partial prefix of the text and generates multiple continuations, then computes the average semantic similarity between

Generates multiple continuations for a given prefix, then calculates a variant of the lexical edit distance between the generated

continuations and the actual continuation to derive a “peakiness” score.

Table 1: Summary of MIA Methods used in this study.

3 Experiments Setting

Given a model M and text set X = {zg...xzy},
where each text x contains {¢g...t,,} tokens.
A MIA method calculates feature scores S =
f(M;X) = {sg...sp} for every text instance.
A threshold ¢ will be selected to classify whether
x; belongs to the training data D of the model M.
Data that are in the D (x; € D) are called mem-
ber data, otherwise called non-member data. MIA
methods used in this study are in Table 1.2

3.1 Datasets

We use one existing benchmark and sample data
from pre-train corpora with various settings.

WikiMIA (Shi et al., 2023) contains Wikipedia
text sampled at the timestamp of 2023/10. Text
samples before the time stamp are member text,
and those after it are non-member text. This
benchmark has been used by several MIA methods
(Kaneko et al., 2024; Zhang et al., 2024¢), which
shows that its member and non-member splits are
separable. Thus, we use it as a separable MIA
benchmark in some experiments for reference.

Pile (Gao et al., 2020) corpora contain texts col-
lected from domains like arXiv, GitHub, Freelaw,
PubMed, DM Math, etc, with the train, test, and
validation sets. The train set text and test set text

*We did not apply the Refer method in OLMo as no previ-
ous research on the suitable reference model for OLMo.

can be treated as member text and non-member
text, which will be the main focus of this study.

Dolma (Soldaini et al., 2024) corpora contain 3
trillion tokens from various domains. Unlike Pile,
most of the sub-domains in Dolma only provide
train splits. Therefore, we can only select domains
where valid splits are clearly illustrated accord-
ing to the introduction and training configuration
files, which are arXiv, Open Web Math, Wikipedia,
pes2o, Algebraic Stack, and Code Search Net. 3

3.2 MIA Experiments Construction

We provide three split methods to construct the
member and non-member sets.

Truncate Split (Duan et al., 2024) creates the
member set and non-member set by truncating
texts into a fixed range. We extend it by setting a
length range of 100 from O to 1000.

Complete Split samples member and non-
member texts whose whole length is in a text range
that follows the Truncate Split.

Relative Split calculates the ten-percentile text
length range based on the test set of each domain.
The member and non-member texts are sampled
from those ten-percentile length ranges. Each split
method is applied to all domains in the Pile, with
a minimum of 100 examples for both members
and non-members. As text distribution varies by

3https://github.com/allenai/OLMo
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Figure 2: ROC-AUC probability density in different dimensions while fixing other dimensions. Less area on the
left side means statistically better MIA performance. Shade area means variance from random seeds. We enlarge
Figures (d) and (f) to increase readability due to the number of MIA methods.

domain, not every domain meets this criterion. *

Moreover, most Dolma validation data are released
as a one-row array which we cannot recover their
original untruncated texts. Therefore, the Com-
plete and Relative Splits are not available for the
OLMo model. In total, we collected nearly 100
GBs of member and non-member texts sampled
from different settings for MIA experiments. °

Our statistical evaluation contains (1) more do-
mains (compared to WikiMIA(Shi et al., 2023),
ArxivMIA (Duan et al., 2024), BookMIA (Shi
et al., 2023)), (2) wider text length range (com-
pared to MIMIR (Duan et al., 2024)), (3) consid-
ered the truncation method and domain-specific
sampling, in which the previous MIA settings only
considered absolute truncated situations, which
ignored the domain-dependent length and how se-
mantic completeness affects MIA methods. We
run on every length split on domains in that split
for every model size in all random seeds, resulting
in 5,760 experiments (4,860 in Pythia and 900 in
OLMo) for a single MIA method.

3.3 Models

Pythia (Biderman et al., 2023) (160m, 410m, 1b,
2.8b, 6.9b, 12b) and OLMo (OLMo et al., 2024)
(I1b, 7b, 13b) trained on the Pile and Dolma are
used where valid and test sets are non-members.

3.4 Evaluation Metric

ROC-AUC (Fawcett, 2006) iterates every
threshold for binary classification to calculate the

“Domains in each split are in Appendix Table 5b.
OLMo Validation Data

True Positive Rate (TPR) and False Positive Rate
(FPR) to form a ROC curve. AUC is the area under
this curve and is used to analyze MIA performance.

Davies-Bouldin Score (Shi et al., 2023) (DB
Score) evaluates the separability of two clusters
of embeddings. A lower value indicates a better
separability. This is used to evaluate the separabil-
ity of embeddings for members and non-members.

4 Results

We first provide a statistical analysis between ROC-
AUC scores of MIA methods with multiple factors,
which generally aligns with previous negative stud-
ies, while also revealing new findings. Following
this, we also conduct an analysis of ROC-AUC
outliers not captured by the statistical approach, of-
fering both statistical and individual views of MIA.
Next, we discuss the existence of a unified good
threshold to analyze the practical effectiveness of
MIA methods. We then investigate how MIA re-
lates to input texts by examining its correlations
with text length and similarity. Finally, we study
MIA performance from the LLM structural level
by analyzing embedding separability and decoding
dynamics for members and non-members. ©

4.1 Effect of Different Factors

We aggregate ROC-AUC scores between 0.50 and
0.58, containing most experiments, and calculate
their probability density over the split method,
model size, domain, or MIA methods while fixing

®Appendix A contains all experiments in this study for
unlisted domains or MIA methods in the main contents.
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Pythia OLMo
Method
Model ROC-AUC Model ROC-AUC

410m 2.8b 12b Max Mean 1b 7b 13b Max Mean
Loss 12 20 30 .585 561 2 5 9 580 .559
Gradient 14 54 31 631 563 3 5 15 557 .552
Refer 12 12 11 572 559 - - - -
Zlib 12 22 47 590 562 17 16 21 .596 567
Min-k% 12 25 48 600 562 4 8 15 .568 .555
Min-k% ++ 11 94 173 631 564 13 9 19 .582 .559
DC-PDD 0 12 15 575 558 3 9 12 .563 .556
EDA-PAC 4 1 5 573 557 5 1 1 .567 .558
RECALL 15 24 33 806 572 4 6 9 923 651
SaMIA 37 37 34 647 569 11 10 19 .658 .612
CDD 17 12 6 .604 561 23 15 21 .742 .595

Table 2: The number of outliers across model sizes and
MIA methods. Max and Mean are the maximum and
average ROC-AUC scores of those outliers. The highest
value in each column is underscored.

the others in Figure 2. 7 While 0.50-0.52 occupies
most probability densities, we still observe:8

(I) In Figure 2 (a), the commonly used Truncate
Split shows the worst performance, while the Rela-
tive Split gives the best performance. Truncating a
text may cause outlier words to be lost, and such
contextual information loss affects MIA methods
that rely on alternating the original members. It
also affects the Black-Box method as the quality
of generated tokens deteriorates.

(II) In Figure 2 (b) and (e), MIA performance
improves with model size, particularly from 1b to
2.8b (Pythia) and 1b to 7b (OLMo), which con-
tradicts previous findings that suggest it should
decrease with model size. One possible explana-
tion is that small models struggle with learning
large corpora due to limited capacity, making most
members behave like non-members, thus reducing
MIA performance. As model capacity scales, more
member texts are well learned, which starts to dif-
fer from non-members and enhances performance.
However, this does not falsify previous research.
If a very strong LLM that even fits well with non-
member texts exists, it may again show a low MIA
performance. In this case, the model size and MIA
performance relation is an inverse U-curve.

(IIT) In Figure 2 (c) and (f), among shared do-
mains across split methods, Wikipedia (en) and
FreeLaw show statistically better performance
compared to other domains in Pythia. In OLMo,
Dolma Wiki, Dolma pes2o0, and arXiv show better

"The analysis over the numerical values of probability
mass is in Appendix Sec A.10

8We also formalized MIA as a hypothesis test for whether
members and non-members are differentiable. The results are
in Appendix Section A.6 and A.9.2.

Overlap Matrix on Outliers between MIA Methods
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Figure 3: MIA outliers overlap matrix across methods.

performance. We suggest this is related to token
diversity. Domains related to codes (Github, Stack-
Exchange, etc.) or math (Open Web Math, Alge-
braic Stack) have less token diversity compared to
those free text domains. This can be further vali-
dated within those free-text domains. Domains like
Pile-CC or arXiv, which contain code/text mixes or
mostly science papers, have lower performance
compared to Wikipedia (en) and Dolma pes2o,
which contain various text or paper topics.

(IV) In Figure 2 (d) and (g), the MIA method’s
performance is not consistent across models. Only
Min-k£% ++ and RECALL are still relatively better
in both Pythia and OLMo. Other methods lie be-
tween these baselines, and their performances are
within the variance from random seeds. Neverthe-
less, this does not reflect their peak performance
in particular setups since the probability density
assesses the overall effectiveness.

4.2 Analysis of Outliers in MIA

Though MIA performance is low, we observed
notable outliers with higher differentiability (ROC-
AUC > 0.55) not captured by the probability den-
sity. In Table 2, we list the number of these outliers
across different MIA methods and model sizes,
as well as their maximum and mean ROC-AUC
values. Figure 3 then illustrates whether different
MIA methods share the same outliers.

QOutliers and Model Size Scaling (I) ROC-AUC
outliers occupy only a small fraction overall (less
than 10% even for Min-k% ++), aligning with re-
ported low MIA performance in previous studies.
However, the existence of outliers also helps ex-
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Boxplot of Selected Thresholds in OLMo and Pythia models
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Figure 4: Threshold boxplot for different MIA methods across domains and model sizes in OLMo and Pythia.

plain cases where previous studies have observed
positive results in which the RECALL method has
the highest ROC-AUC performance of 0.81 and
0.92. Furthermore, this indicates that generally
successful MIA methods (e.g., Min-k% ++) are not
the best in every scenario, underscoring the impor-
tance of statistical MIA evaluations. (II) In most
MIA methods, the number of outliers increases
with model size, consistent with Section 4.1. As
this trend is observed in both probability density
(statistically) and outliers (individually), LLM in-
ternal structure may change in a way that favors
MIA as size scales. Additionally, methods that do
not rely only on internal states (e.g., SaMIA, CDD,
Refer) appear less sensitive to size scaling.

Overlap between MIA Methods (I) Even the
best-performing method (Min-k% ++) does not
generally have high overlap outliers with others,
which is only a 6% overlap with the Refer base-
line. SaMIA and CDD, which rely solely on out-
put tokens, exhibit a low overlap with the other
methods as their features differ significantly from
MIA methods relying on internal LLM states.® (IT)
While most methods do not outperform the base-
lines statistically, their low overlap implies that
each method works in different situations, suggest-
ing no “winner-takes-all” situation in MIA.

°As the size of outliers is small in OLMo due to its smaller

experiment size, so we only analyze the Pythia models while
we put the OLMo overlap matrix in the Appendix A.9.1.

4.3 Does a universal good threshold exist?

The ROC-AUC metric iterates feature values to dif-
ferentiate members from non-members, but does
not show how to decide a threshold and whether
the threshold is generally effective. We split
each set of member and non-member texts into
train/validation sets with a 4:1 ratio and use the Ge-
ometric Mean (Youden, 1950) to find a threshold
that balances the true positive rate and false posi-
tive rate. The distribution of this threshold across
model sizes and domains is shown in Figure 4. We
can obtain the following from those two figures:

(D In the top figure, the threshold varies not just
between domains but also within the same domain
with the existence of outliers. In the bottom figure,
the threshold changes with model sizes, as most
MIA methods rely on the output likelihood, which
is related to the model size. This trend can be ob-
served in both OLMo and Pythia. The SaMIA,
which relies on an external model to compare sen-
tence similarity, is less affected by the model size,
further confirming this point.

(I) These results show the generalizability of
the MIA threshold as an overlooked challenge. A
threshold may not work even within the same do-
main, may not transfer to another domain, and may
not work in another model size, leading to a high
possibility of performance deterioration when us-
ing the MIA method in the real world.
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Pythia: Text Length

Pythia: Text Similarity

OLMo: Text Length OLMo: Text Similarity

Method

Trunc Comp Rel Avg S-T Trunc Comp Rel Avg S-T  Trunc S-T Trunc S-T
Loss 12 23 21 17 v -.07 12 20 -13 v 15 v -28 v
Refer .01 -11 29 11 v .20 .05 33 -16 v - - - -
Zlib 13 .35 22 23 v .16 -.29 16 -20 v 13 v -39 v
Min-k% .30 24 3429 v 21 =17 22 -20 v .20 v =31 v
Min-k% ++ 57 .64 48 .56 v -.50 -53 -43 -48 v 22 v -39 v
DC-PDD .28 .14 22 21 v 27 -.14 .23 22 v 17 v -25 v
EDA-PAC -.07 11 .01 .06 X .09 -21 09 -.14 v 12 v -.16 v
RECALL 17 .23 d6 21 v .06 -.05 A2 -.08 X 23 v -.05 X
SaMIA -15 -28 -13 0 -8 X 17 -.14 A3 -14 v -.24 X -10 v
CDD .15 -.16 .09 .03 X 05 .02 Al -15 v -.03 X -35 v
Avg .16 14 17 .16  N/A 18 16 23 19 NA .10 N/A -23 N/A

Table 3: Average Spearman Correlation between ROC-AUC and Text Length/Text Similarity in OLMo and Pythia
models across MIA methods in all domains. Trunc, Comp and Rel means Truncate, Complete and Relative split.
S-T means whether the corresponding MIA method pass the significance test for the positive/negative correlation
with Text Length/Text Similarity. We underscore the highest/lowest value in columns in Text Length/Text Similarity.

4.4 Text Similarity and Text Length

Previous studies showed text length (Zhang et al.,
2024c) or token differences (Duan et al., 2024)
contribute to the MIA, but with results induced
from a single split, lacking general evidence. In
this section, we calculate the Spearman correlation
(Schober et al., 2018) between the ROC-AUC score
with text length and the 7-gram overlap occurrence
for every MIA split in Table 3.

(I) For most of the MIA methods, its aver-
age correlation with length is positive, indicating
longer text benefits MIA in general. However, it
also varies based on split methods and MIA meth-
ods. We see that SaMIA and CDD showed a nega-
tive and near-zero correlation. For such Black-Box
methods, the generated tokens will largely devi-
ate from the actual continuation for both members
and non-members in long text. The SaMIA used
semantic comparison, which is affected more by
such a deviation than the lexical distance of CDD.

(II) In the text similarity, we see a negative re-
lation, indicating that token differences between
members and non-members benefit the MIA perfor-
mance. This partly explains the general low MIA
performance, e.g., they detect word differences
rather than member and non-member differences.
Additionally, the general trend in correlation for
text length and similarity is consistent in the Pythia
and OLMo models.

(IIT) Additionally, some methods cannot pass
the significance test (p < 0.05). SaMIA and
CDD failed in the Text Length as generated tokens
largely deviate when inputting long texts. RECALL
inserts a prefix for both members and non-members

'"We also calculated the correlation coefficient using other
metrics in Appendix A.4 .

that increases the text similarity at a running time,
so it is naturally less sensitive to text similarity.

4.5 MIA and LLM Internal Strucutre

In this section, we study how MIA relates to the
LLM structure to answer the question of whether
members and non-members are initially indistin-
guishable in the internal states, and whether they
exhibit different decoding dynamics, and whether
such observations hold true in different LLMs.

4.5.1 Embedding Probing and Separability

We collect the average pooled hidden states for
both members and non-members for each layer.
Then, we use the DB Score and directly train a
Transformer classifier to evaluate embedding sepa-
rability as shown in Figure 5.

(I) The DB Score is around 10-20 for the dif-
ferentiable splits, where the Transformer classi-
fier obtains 70%—100% accuracy. By contrast, it
reaches around 40 for the in-differentiable splits,
where accuracy is near random. This indicates that
differentiable/in-differentiable splits can be readily
decided at the embedding level, and the degree of
embedding separability is related to the MIA per-
formance as it affects the behavior of LLM outputs.

(II) As model size increases, the DB
Score curve exhibits emergent behavior on
in-differentiable domains. PubMed and Pile-CC
do not show a DB Score decrease at 410m, but
their DB Scores suddenly drop in deeper layers at
2.8b size, indicating higher embedding separability
between member and non-member embeddings,
which is even more significant at 12b. A similar
pattern is also observed in OLMo models for arXiv
and Code Search Net when scaling from 1b to 7b
and 7b to 13b. This jump in separability explains
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Figure 5: The DB Score (solid triangle line) and Transformer Classifier Accuracy (dotted circle line) on the
member and non-member embeddings. Differentiable/In-differentiable outliers are selected from [DM Math,
GitHub, WikiMIA]/[arXiv, Pile-CC, PubMed] for Pythia. Differentiable/In-differentiable outliers are selected from

[WikiMIA, Dolma pes2o]/[arXiv, Code Search Net] for Pythia.

the ROC-AUC performance boost in Pythia
(from 1b to 2.8b) and OLMo (from 1b to 7b), as
larger models have more separable embeddings,
increasing overall ROC-AUC performance.

(III) The DB Score rebounds to a high DB score
in the final layer, indicating a decreased embedding
separability. Given that many MIA methods rely
on the computed outputs of the last layer (e.g.,
likelihood, tokens), this rebound helps explain why
MIA performance is generally low: the final layer’s
embeddings are not well suited for the MIA task.

4.5.2 Generation Entropy Dynamics

We calculate the token entropy for members and
non-members and their accumulated entropy differ-

t
ence Ay = g |H;"™ — H*°"| across decoding

i=1
steps in Figure 6. The H;"“™ and H;'°" means the
decoded entropy at step ¢ for member texts and
non-member texts, respectively.

() Firstly, we see that a low or high domain
entropy (GitHub, Code Search Net) does not relate
to its MIA performance in Figure 2. However, the
domain-dependent entropy (decoding probability)
means a domain-dependent log-likelihood, which

explains the low threshold generalizability of Gray-
Box methods. This also helps to explain the good
performance of Min-£% ++ as it standardizes the
log-likelihood of input tokens, erasing such domain
or input text dependency.

(II) Though decoding entropy at each step does
not show a clear relation with the MIA perfor-
mance, the accumulated entropy difference in-
creases during decoding, suggesting non-members
have a statistically higher entropy compared to the
member texts. Moreover, the domains with higher
MIA performance (FreeLaw, Dolma pes2o in Fig-
ure 2) have a higher increasing speed in the accu-
mulated entropy difference than other low MIA
performance domains (GitHub, arXiv).

5 Discussion

Fairer MIA Evaluation While the statistical
evaluation cannot be treated as a common eval-
uation benchmark, it does not mean that we are
running out of options to evaluate MIA transpar-
ently and fairly. Future benchmarks in this direc-
tion should cover more domains and also report
more statistical details like the token frequency of
benchmarks by checking them against packages
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Figure 6: Entropy and accumulated entropy difference over decoding steps in different domains. We only draw
average values for entropy to improve readability. The shaded area means the standard deviation across model sizes.

like infini-gram (Liu et al., 2024). Instead of claim-
ing a benchmark can disable previous MIA meth-
ods, making the benchmark itself transparent is
more important, since we could give an estimation
based on such information.

Direction for Future MIA Methods While this
study did not propose a new method for the MIA,
we think the following directions are worthy of dis-
cussion. (I) Optimally choose the MIA method for
different situations. Based on the results from the
Figure 3, we can tell that there is no "winner-takes-
all" situation in MIA, as we cannot expect one MIA
hypothesis to work across the diverse situations of
the pre-train corpora. Instead of trying to propose
an MIA hypothesis that works for every situation,
finding how to select a combination of methods
based on situations is more promising. (II) While
we are not able to assess the internal states for
close source models, based on the research results
presented in the Figure 5, the final embedding is
not an optimal layer for the MIA task, it is may be
worthy of developing methods that could integrate
information from different layers as different lay-
ers have different functionality in LLM (Jin et al.,
2025; Zhang et al., 2024d).

Stabilizing the Threshold Our results also sug-
gested the instability of the threshold when using
MIA methods. This poses a challenge for the MIA
method to be used in the real world. We cannot
decide on a threshold beforehand since we cannot
predict what kind of texts the user will input. If
a good uniform threshold cannot be decided, the
performance of those MIA methods will largely
deteriorate. To address this challenge, one solu-
tion is to standardize or normalize the output of
the LLMs and operate on such normalized outputs
instead of using the raw outputs of LLMs. This not

only helps to address the threshold variance across
domains but also may help address the threshold
variance across different model sizes.

6 Conclusion

In this study, we statistically revisited MIA with an
in-depth analysis from multiple perspectives to ad-
dress the performance inconsistency of MIA meth-
ods reported in recent literature. We constructed
a statistical evaluation of MIA methods without
thousands of experiment for one method to profile
their performances. Our results show that MIA
performance improves with model size and varies
across domains, with most MIA methods showing
no advantage compared to baselines. Our results
generally support previous negative results, but no-
table amounts of performance outliers make space
for positive results, connecting the MIA perfor-
mance inconsistency. We also found that deciding
on a unified good threshold is an overlooked chal-
lenge. Additionally, long text and text dissimilarity
benefit the MIA performance. The separability of
members and non-members is also reflected in the
LLM embedding with emergent change that bene-
fits MIA in large models. The final layer used by
current MIA methods may be suboptimal due to
low embedding separability. Finally, differentiable
members and non-members show faster accumu-
lated entropy differences.

Limitations

The analysis of the results is based on the statisti-
cal level. This means we do not either support or
negate the experiment results that were conducted
in a single setting or benchmark in previous stud-
ies, e.g statistical analysis should be a standalone
analysis. We cannot scale the model size further be-
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cause Pythia and OLMo only provide model sizes
up to 12b and 13b. Additionally, only very few
LLMs have released their pre-train data, and their
pre-train data is different, so it is hard to conduct
such experiments on more models. '

Though we tried to extend the experiment scale
further, the test size and valid data limited it.
Their texts will be exhausted with further sam-
plings and no longer satisfy the experiment re-
quirements, where we want sampled members and
non-members to be different each time.

Ethical Considerations

The original Pile data was reported to contain
domains related to copyright issues, which are
Books3, BookCorpus2, OpenSubtitles, YTSubti-
tles, and OWT2. We have made sure we did not
conduct any MIA experiment on any of those do-
mains, and we used processed Pile corpora that
removed those domains, which are accessible on-
line. ' The Dolma data was collected properly
according to their statements, and we also followed
the corresponding instructions.

For other data we have used, we have made sure
the usage aligns with the data license and its in-
tended usage. Though we conducted experiments
over the Pile and Dolma corpora, we did not ob-
serve any personal information or offensive content
during the experiments.
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A Appendix
A.1 Experiment Setting

The experiment was conducted on over 8 H100
CUDA devices. Experiments to run one gray-box
method overall model sizes take roughly 2 days.
Experiments to run one black-box method over
one model size take roughly 20 days, which means
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Figure 7: Sampled memorization score distribution in 12b model across domains.

the Black-Box methods require more heavy com-
putation as they require the generation of tokens
rather than directly taking the intermediate outputs
like log-likelihood. Additionally, unlike Gray-Box
methods that can input the entire sentence, the
Black-Box requires the input of a partial sentence
and then requires the LLM to generate the follow-
ing continuations, in which the generation time
will be largely delayed when the input sentence is
long. The random seeds used to sample different
member and non-member sets are [47103, 28103,
58320]. For Dolma experiments, we used five ran-
dom seeds [47103, 28103, 58320, 423, 320] For
calculating 7-gram overlap, we used Llama 2 and
OLMo tokenizers to tokenize member and non-
member texts in Pile and Dolma, respectively, fol-
lowing Liu et al. (2024). With tokenized texts, we
counted the frequencies of 7-gram overlap between
member and non-member texts in each split. We
do not use the unique number of 7-gram overlap
since we assumed that the frequencies of 7-gram
overlap could explain more about text similarity.
However, the frequencies of the 7-gram overlap
appear to be dependent on the length of the target
texts. For example, a member and non-member
text length of 1,000 has possibly more members
than a text length of 100. Therefore, we normal-
ized it using the sum of the lengths of member and
non-member texts to remove the effect brought by
the text length.

The Transformer model that is used to predict

member and non-member embedding is configured
with 256 for its hidden dimension, 2 for the out-
put prediction (member and non-member), 4 for
the number of layers, and 8 for the number of at-
tention heads. It is trained for four epochs with a
binary classification objective to classify whether
the given input is member text or non-member text.

The entropy is collected by inputting the previ-
ous NNV tokens and asking the LLLM to generate the
N +1 tokens, and then we input the previous N +1
tokens. This process is repeated before reaching
the specified text length, which is set as 36 in this
experiment.

A.2 Experiment Setting for MIA Method

For the reference model, we use the best reference
model based on previous research (Duan et al.,
2024). For the Min-k%and Min-k% ++, we choose
K as 20, which means 20% of Box(x) are selected
from the whole input tokens. This metric is used
in their research paper and repositories. 314

For the DC-PDD, there is no hyperparameter,
and it relies on a pre-computed token frequency
from corpora, which is not released at the time of
writing. To reproduce this study, we used the infini-
gram package 1 as the pre-computed frequency.
However, their frequency is computed over the
LLaMa tokenizer, which is different from that of

Bhttps://github.com/zjysteven/mink-plus-plus

Yhttps://github.com/swj0419/
detect-pretrain-code

Bhttps://infini-gram.io/pkg_doc.html

22865


https://github.com/zjysteven/mink-plus-plus
https://github.com/swj0419/detect-pretrain-code
https://github.com/swj0419/detect-pretrain-code
https://infini-gram.io/pkg_doc.html

the Pythia tokenizer. We have to align their results,
but this causes inevitable errors, which we cannot
manage since the frequency is computed on a dif-
ferent tokenizer, and a sentence may be tokenized
into different tokens based on the tokenizer.

For the EDA-PAC, the percentage of words that
are swapped is set as 30%, and collect five per-
turbed sentences are collected.

For the RECALL, the number of shots (the num-
ber of prefixes) inserted into the input text is set as
12 while the maximum length is 1,000. If the pre-
fix combines the input text above the max length
of the model, we decrease the number of prompts
gradually until the length is acceptable.

For the SaMIA, for a given input prefix, we gen-
erate the ten possible continuations with 0.8 tem-
perature, which follows the setting in their original
repository. ' The model that is used to calculate
the semantic similarity is BLUERT-20.!7 As the
BLUERT-20 only accepts token lengths up to 512,
we are only able to run it up to a length of 500 for
this method.

For the CDD, for a given input prefix, we also
generate ten possible continuations with a 0.8 tem-
perature.

For both SaMIA and CDD methods, the maxi-
mum input tokens are 512 based on the input text
length, and we generate the rest of the tokens based
on the difference with the maximum text length
setting in our experiments (1,000 tokens).

A.3 Available Domains in Each Split Method

We have the Truncate, Complete, and Relative split
methods over the input text of all domains in the
Pile corpora. We only keep those splits that have
at least 100 examples for both member and non-
member text at all text lengths. If a domain does
not meet this requirement, it will be discarded. The
available domains for all those split methods are
presented in the following Table 5a and 5b.

For each MIA method, the results are run on
all of its split methods, length range, model size,
and random seeds. We are also able to see that the
Complete splitting methods have the lease domains
as the whole length of a text is a strict standard.
Additionally, we also see that the Relative split has
the most domains, as this split method suits the
distribution of the target domains. Thus, most data

Yhttps://github.com/nlp-titech/samia
Thttps://huggingface.co/lucadiliello/
BLEURT-20

are kept using this split method while following
the text distribution.

A.4 Detailed Correlation Analysis

A.4.1 Kendall-Tau and Pearson Correlation
Analysis in Pythia

For the correlation coefficient, we also use two
common metrics, Kendall-Tau and Pearson, to eval-
uate it. The results are in Table 6 and Table 7. For
the Pearson correlation, though it is originally ap-
plied to continuous values, as the text length is an
increasing ordinal value, the Pearson correlation
can also be used. From the results, we can see that:

There is a slight change due to a different compu-
tation method, which leads to a small fluctuation in
results. For example, there is a decrease in the pos-
itive coefficient when compared to the Spearman
correlation coefficient in the Kendall-Tau computa-
tion method.

However, the general trend in results remains
unchanged, which generally aligns with the results
in Table 3. The symbol of average value remains
the same as in the original Spearman correlation
analyses, which is still maintained in both Kendall-
Tau and Pearson correlation analyses. The SaMIA
retains its negative relation among other positive
relations in Text Length, and Min-k% ++ still has
both the highest and lowest values in the correla-
tion coefficient for Text Length and Text Similarity.

A.4.2 Hypothesis Test over Correlation
Analysis

To add further discussion on the analysis of the
correlation coefficient, we conduct a significance
test on the calculated correlation coefficients. For
the text length, the null hypothesis is that there is
no correlation between the ROC-AUC value and
the targeted factor (text length or text similarity).
For the alternative hypothesis, we had assumptions
about an expected relation between ROC-AUC per-
formance with text length (positive) and text sim-
ilarity (negative). Therefore, we choose the one-
sided alternative hypothesis rather than the two-
sided with a hypothesis for a positive correlation
coefficient in text length and a negative correla-
tion in text similarity. We chose the commonly
used P-value of 0.05 to conduct the significance
test. Since per-domain has limited samples, which
may not provide valid significance test results, we
performed the MIA method significance test.
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Name Category Calculated Feature
Loss Gray-Box Example Loss
Perplexity Gray-Box Example Perplexity
Gradient Gray-Box Example Gradient
Reference Model  Gray-Box LoSSTarget — LOSSReference
Zlib Entropy Gray-Box ﬁ‘(}m)
Min-k£% Prob Gray-Box = Zf;l log P(w;|w<;) for w; € Bottom-K%
Min-k% Prob ++  Gray-Box %
DC-PDD Gray-Box  Compare the decoded log-likelihood with statistics from large corpora.
RECALL Gray-Box %ﬂ‘)’) when insert p text prefix
SaMIA Black-Box L 5> | SemanticDistance(g;, a) -
CDD Black-Box = vazl EditDistance(g;, a).
Table 4: Collection of MIA methods evaluated in this study.
(a) Domains in shared split methods.
Split Method Shared Domains
Truncated Wikipedia (en), StackExchange, Pile-CC, GitHub, FreeLaw
Complete Wikipedia (en), StackExchange, Pile-CC, GitHub, FreeLaw
Relative Wikipedia (en), StackExchange, Pile-CC, GitHub, FreeLaw
(b) Domains in specific split methods.
Split Method Specific Domains
Truncated PubMed Central, HackNews, EuroParl, DM Mathematics, arXiv
Complete USPTO Backgrounds
Relative PubMed Central, NIH ExPorter, HackNews, Enron Mails, DM Mathematics, arXiv

Table 5: Domains included in different split methods across shared and specific datasets.

A.5 Memorization and MIA

A.5.1 Memorization Score Sample

Distribution

In this figure, we saw that LLM does not show a
very obvious distribution gap for most of the do-
mains. However, we notice that in the GitHub do-
main, many texts show high memorization scores,
meaning that most of the texts are well-memorized
by the LLM. A similar trend is also observed in
DM Mathematics, where most of the texts are not
distributed in the low memorization score area
(memorization score 0 - 0.2). A similarity between
those two domains is that both of those two do-
mains have low vocabulary diversity, considering
that both DM Mathematics and GitHub are more
oriented toward symbols (math) or fixed expres-
sions (coding). Thus, it is easier for the LLM to
memorize those texts.

JS Divergence on Memorization Score Across Domains and Model Sizes

—e— Freelaw
Github

—e— Pile-CC

—e— StackExchange

—e— Wikipedia (en)

0.14

0.12

0.10

Jensen-Shannon Divergence

0.06

< © © o ©
& > o o ¥

Model Size

Figure 8: Memorization Score Distribution Divergence
for Member and Non-Member Text

A.5.2 Memorization Score Distribution
Distance

This section examines whether MIA performance
is related to memorization by comparing the gener-
ated tokens with actual continuations when pro-
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Pythia: Text Length

Pythia: Text Similarity

OLMo: Text Length OLMo: Text Similarity

Method

Trunc Comp Rel Avg S-T Trunc Comp Rel Avg S-T Trunc S-T Trunc S-T
Loss 13 14 26 18 .10 -17 0 -23 -17 10 v 20 v
Refer .14 13 22 07 Vv 13 -12 12 .07 - - -
Zlib 18 32 19 23 .19 -13 15 -16 15 v -25 v
Min-k% .30 23 36 30 -.09 -11 18 13 22 v -21 v
Min-k% ++ .35 .35 38 36 -26 -21 34 227 32 v -28 v
DC-PDD .18 .08 16 14 .19 -.10 10 -13 11 v -17 v
PAC .05 12 -06 .04 X .08 -.15 21 -12 .05 X -.10 v
RECALL .14 .14 26 18 11 .07 08 .02 X .19 v -.04 X
SaMIA 12 -04 -06 -08 X .07 -.10 13 -10 Vv -.18 X -.06 X
CDD -.02 .03 .03 .01 X -.12 13 1 -12 v -.01 X -24 v
Avg 13 15 A7 15 N/A  -12 -12 15 -10 N/A 10 N/A -.19 N/A

Table 6: Kendall-Tau correlation coefficient between AUC and Text Length/Text Similarity across models.

Pythia: Text Length

Pythia: Text Similarity

OLMo: Text Length OLMo: Text Similarity

Method

Trunc Comp Rel Avg S-T Trunc Comp Rel Avg S-T Trunc S-T Trunc S-T
Loss .10 11 21 14 v 17 -23 15 -18 15 v 16 v
Refer 12 .10 28 .17 v 05 -20 32 19 - X - X
Zlib .10 23 A1 11 v 17 -17 03 -12 Vv 18 v -31 v
Min-k% 12 .20 25 .19 v -18 -17 05 -13 v .20 v -20 v
Min-k% ++ .26 23 22 24 v -17 -.26 32 =25 22 v -28 v
DC-PDD 13 13 16 14 v 17 -.18 13 -16 vV 17 v -.18 v
EDA-PAC 12 20 -10 .07 X 11 -31 04 -15 Vv 12 v -17 v
RECALL .08 11 A7 12 v 15 23 11 .06 X 11 v -.01 X
SaMIA -23 -08 -08 -13 X 18 -04 09 -02 X -.09 X .03 v
CDD -.01 .02 .04 .02 X -.04 -120 -14 -10 X 15 v -25 v
Avg .08 13 A3 11 N/A -14 -.09 10 -12 NA .12 N/A -.19 N/A

Table 7: Pearson correlation coefficient between AUC and Text Length/Text Similarity across models.

moting 32 tokens, known as the K-extractable
score, for both non-member and member text. We
compute the distribution distance between the K-
extractable score over the different domains on
member and non-member text using JS divergence,
as shown in Figure 8. We can see a correlation
between MIA performance and the JS distribution
difference between member and non-member texts.
The FreeLaw has the highest JS Divergence score
among those domains, suggesting that the mem-
orization score distribution between member text
and non-member text is large. This aligns with the
ROC-AUC score density distribution in Figure 2.
Additionally, we also see that GitHub and Stack-
Exchange have a low divergence, meaning their
memorization score distribution between member
text and non-member text is small, which makes it
hard to differentiate.

A.6 Membership Inference Attack as
Hypothesis Test

Besides directly analyzing the probability density
function of the ROC-AUC scores, we also try to
look at the MIA from a hypothesis test perspec-
tive. We treat the feature scores of member and
non-member texts as two distributions and use a
hypothesis test to verify whether those two distri-
butions are the same or not. If a distribution passes

such verification, it at least means the feature score
distribution of the member is different from the
feature distribution of the non-member text. Even
though it does not guarantee any MIA performance,
it does not directly evaluate MIA performance; it
just shows whether those two distributions are the
same or not. Such analysis at least provides a per-
spective to look at MIA differently. We divide the
number of splits whose feature scores of member
and non-member passed the verification into two
distributions with the total number of splits. The
results are presented from Table 8 to 10.

1. Similar to MIA performance, we observed
that the number of splits that pass the hypothesis
test increases with the model size. This confirms
the analysis of the results of the ROC-AUC score
using the probability density functions.

2. Further, we also see that in this evaluation
metrics, the best-performed method Min-k£% ++
does not also show the best performances in pass-
ing the hypothesis test. On the contrary, the best-
performed MIA method is the Refer, which actu-
ally has the lowest performance in the ROC-AUC
analysis. The reason is that the hypothesis test
method does not evaluate whether the two exam-
ples are separate or not; it evaluates how those two
distributions, consisting of the members and non-
members, are the same distribution or not. This
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Method 160m  410m 1b 2.8b 6.9b 12b Method 160m  410m 1b 2.8b 6.9b 12b
Loss 0.08 0.067  0.087  0.107 0.120  0.167 Loss 0.053 0.033 0073 0.127 0.100  0.113
Min-k% 0.08 0.087  0.073  0.153  0.207  0.220 Min-K 0.087  0.080 0.080 0.153  0.147  0.247
Zlib 0.013 0.020  0.040 0.080 0.113  0.173 Zlib 0.100  0.060  0.060 0.147  0.147  0.200
SaMIA 0.093 0.073  0.053  0.080  0.060  0.080 SaMIA 0.120  0.153  0.153  0.113  0.120  0.153
Min-k% ++  0.033 0.073  0.133 0273 0453  0.567 Min-k% ++  0.053 0.087  0.133 0387 0413  0.547
Refer 0.040  0.040 0.113 0533 0.740 0.787 Refer 0.040  0.040 0.107 0.500 0.607 0.633
Grad 0.033 0.033  0.053 0.133  0.160  0.047 Grad 0.027  0.020 0.027 0.193  0.147  0.053
DC-PDD 0.073 0.080  0.087 0.160 0.140  0.240 DC-PDD 0.067  0.073  0.073 0200 0213  0.300
CDD 0.033 0.060  0.093  0.027  0.087  0.060 CDD 0.040  0.093  0.060 0.060 0.013  0.060
RECALL 0.093 0.067  0.107  0.140  0.140  0.167 EDA-PAC 0.067  0.060 0.047 0.067 0.033  0.027
RECALL 0.053 0.033 0073 0.127 0.100 0.113

Table 8: Hypothesis test results across MIA methods
and model size in the Relative Split method.

Method 160m  410m 1b 2.8b 6.9b 12b

Loss 0.033 0.053  0.080 0.120  0.140  0.193
Min-K 0.033 0.073  0.113  0.187  0.227 0313
Zlib 0.040  0.027 0.040 0.107 0.167  0.260
SaMIA 0.180  0.153  0.160 0.153  0.140  0.140
Min-k% ++  0.053 0.027  0.093 0.293  0.460  0.553
Refer 0.027 0.020  0.147 0527  0.733  0.760
Grad 0.020  0.060 0.047 0.073  0.067  0.060
DC-PDD 0.060  0.073  0.100 0.187  0.240  0.360
CDD 0.033 0.040  0.053  0.047  0.080  0.040
EDA-PAC 0.033 0.080  0.060  0.047  0.060  0.047
RECALL 0.053 0.060  0.087  0.127  0.133  0.207

Table 9: Hypothesis test results across MIA methods
and model size in Truncate Split method.

means that they do not consider separating a spe-
cific example, but focus on identifying those two
distributions.

3. Even though the hypothesis test does not pro-
vide a method to differentiate members and non-
members specifically. It tells the performance of
MIA from another perspective, whereas the previ-
ous worst-performing method could actually have
the best performance. This shows the importance
of evaluating the MIA method from multiple per-
spectives rather than only focusing on certain met-
rics, which could be misleading.

4. In this metric, we are also able to observe the
same performance boost when transferring from
the 1b to the 2.8b model. This aligns with the
observation in the probability density analysis of
ROC-AUC scores across dimensions, which con-
firms the emergent embedding change that we have
discovered.

A.7 Detailed Results in Each Split Method

In this section, we present the detailed results for
Truncate Split, Complete Split, and Relative Split.
Each split contains all available domains. We shot
the probability density in the Domain, Model Size,
and MIA Method dimension in Figure 9.

1. In the first row, which shows the probability
density over domains, we saw some more high-
performance domains. For example, in the Trun-

Table 10: Hypothesis test results across MIA methods
and model size in Complete Split method.

cate split, the EuroParl performs very well com-
pared to other domains. One of the reasons may
be that the EuroParl contains some non-English
texts, which serve as an important feature for the
member and non-member classification. Still, in
the relative split, we are able to see more domains
with relatively high MIA performance compared
to other domains, which helps to explain why the
Relative Split can give better performance.

2. In the second row, which shows the proba-
bility density over model sizes, we saw a uniform
performance across different splits where the MIA
performance positively scales with the model size.

3. In the third row, which shows the probability
density over the different MIA methods. We are
also able to observe some split-based differences.
In the Relative and Complete split, we can see
that the Min-k% ++ performs better than other
methods. However, in the Truncate split, we see
mixed results where most methods do not show
obvious performance differences, where the Min-
k% ++ is no longer significantly better than other
methods.

A.8 Boxplot of the threshold for other MIA
methods

In this section, we show the boxplot of the thresh-
old for other MIA methods across model sizes and
domains in Figure 10. From this figure, we can
obtain the following:

1. The threshold still changes across domains,
with the existence of outliers for all those methods.
The Refer method shows an extreme trend where
the threshold in each domain is totally different,
indicating that a threshold decided from another
domain totally fails to generalize to other domains.

2. Regarding the model size, we still observe
that their thresholds change across model sizes.
However, the Refer model has a stable threshold
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Figure 9: Detailed Results in Each Split Method

that is generalized well in other model sizes. This
is probably because the referee relies on a refer-
ence model, which makes it less dependent on the
target model. However, it still contains outliers,
indicating that the threshold in one model size may
not work in another model size, depending on the
input members and non-members.

3. Additionally, while the trend is not general,
we are able to see that the change of threshold is
not random in some methods. We saw that the
perplexity, zlib, Min-k£%, and DC-PDD all showed
either a gradual increase or decreasing threshold
values. This can increase the predictability of the
threshold, making the decision of the threshold
less random. However, even if it indicates some
trend, it is still hard to make a correct prediction
regarding how the threshold would change across
model sizes.

A.9 Experiments on OLMo Series

A.9.1 Outliers Overlap Matrix

In this Figure 11, we are still able to conclude that
there is no method that could have a high over-
lap with all other MIA methods. This confirms
our conclusion that there is no "winner-takes-all"

situation in the MIA study, as every hypothesis
used by each MIA method has its pros and cons.
Additionally, we are also able to see that a clear
boundary exists between Gray-Box methods and
Black-Box methods, where Gray-Box/Black-Box
methods have a higher mutual overlap inside them
compared to overlap with Black-Box/Gray-Box
methods. This is due to the fundamental difference
between those two types of methods, where Gray
Box operates on the internal states, and Black-Box
Box operates on the output tokens.

A.9.2 MIA as Hypothesis Test in OLMo

Method 1B 7B 13B
Loss 0.19 020 021
Gradient 0.14 0.16 0.18
Zlib 0.19 023 024
SaMIA 032 033 032
Min-k% 023 024 024
Min-k% ++ 020 024 029
DC-PDD 023 020 0.18
CDD 038 043 045
EDA-PAC 013 0.13  0.14
RECALL 0.19 020 022

Table 11: Ratio of experiments that passed hypothesis
tests across model sizes in different MIA methods in
the Truncate split in OLMo models.
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Boxplot of Selected Thresholds in OLMO and Pythia
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Figure 10: Threshold boxplot of other MIA methods across model sizes and domains in OLMo and Pythia
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OLMo Overlap Matrix on Outliers between MIA Methods
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Figure 11: MIA outliers overlap matrix across methods
in OLMo models.

In this experiment, we also conducted experi-
ments using hypothesis tests in OLMo models. We
can see that the results are a little bit different from
the probability density function results. The rea-
son may be that the experiment that passed the
hypothesis test may already have a certain separa-
bility between members and non-members. There-
fore, the results are based on those experiments
that already have separability. In this hypothesis
test, the best performance method is CDD, SaMIA,
and Min-k% ++. We observed that Black-Box
methods performed better than Gray-Box meth-
ods in this evaluation. One explanation may be
that the OLMo method is a much stronger gener-
ation method compared to Pythia, as it is trained
on much larger corpora. With a higher generation
ability, the Black-Box method performs better than
the Gray-Box method as LLM starts to behave dif-
ferently in generations.

A.10 Numerical Results for Statistical
Analysis

In this section, we provide the calculated numerical
probability mass for the probability density results
presented in the main content page. We have the
following metrics:

MEAN: Average AUC value between 0.5-0.58
(outliers analysed in Section 4.2).

PROB MASS: Probability mass (area under the
density curve) between 0.5-0.54. Lower values
indicate fewer small AUC results.

Median: Median AUC value between 0.5-0.58.

Q1 (25%): 25th percentile of AUC results.

Q3 (75%): 75th percentile of AUC results.

STD: Standard deviation (provided only as a

reference due to uneven distribution).
Bold values indicate the highest Mean and low-
est PROB MASS within each table.

Table 12 Pythia Truncation The Relative split
achieves the highest mean value and lowest prob-
ability mass, aligning with the experiment’s con-
clusion. From the results, we can see there is a
significant improvement in the probability mass
when comparing the Relative split method and the
Truncate split method, showing that using the Rela-
tive split could increase performance. However, the
difference between Complete and Relative is very
close; it shows whether semantically complete is a
more important factor than comparing the sample
relatively based on domain statistics. The reason
may be that in the pre-training data of LLM, the
domain is a very wide concept, usually with tens
of gigabytes and much text noise. Thus, doing
this relative sampling based on domain length does
not perfectly make sure such sampling fits with
the actual text length distribution; thus, the bene-
fit in MIA performance is not obvious. Still, the
completeness of semantics affects the MIA perfor-
mance significantly.

Table 13 Pythia Model Size Mean performance
increases consistently with model size. Notably, a
significant drop in probability mass and a substan-
tial increase in mean occur when scaling from 1b to
2.8b, confirming enhanced MIA performance with
larger models. This significant boost also aligns
with a similar change in the probability density
figure in Figure 2 (b).

Table 14 Pythia Domain FreeLaw demonstrates
the best performance (highest mean, lowest proba-
bility mass). Wikipedia (en) ranks second, while
GitHub exhibits the lowest performance metrics.
This analysis does not change when using the nu-
merical values.

Table 15 Pythia Feature Min-K% ++ notably
outperforms all other MIA methods, having the
highest mean and significantly lowest probability
mass. Min-K% and RECALL follow closely be-
hind. The DC-PDD and EDA-PAC show no dif-
ference in the mean value and probability mass.
Other methods show close or nearly the same per-
formance as baseline methods (Loss, Zlib, Refer,
Gradient), indicating that the reported good perfor-
mance of some MIA methods in previous research
may be an illusion.
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TRUNCATION MEAN PROBMASS MEDIAN Q1(25%) Q3(75%) STD
Truncate 0.5130 0.9401 0.5107 0.5050 0.5182 0.0106
Complete 0.5156 0.9195 0.5127 0.5060 0.5184 0.0129
Relative 0.5164 0.9030 0.5106 0.5058 0.5185 0.0109

Table 12: Pythia model truncation analysis. Bold values denote the highest Mean and the lowest PROB MASS.

MODEL SIZE MEAN PROBMASS MEDIAN Q1(25%) Q3(75%) STD

160m 0.5115 0.9443 0.5093 0.5044 0.5164 0.0094
410m 0.5120 0.9485 0.5101 0.5047 0.5167 0.0096
1b 0.5126 0.9443 0.5105 0.5048 0.5180 0.0101
2.8b 0.5152 0.9089 0.5123 0.5058 0.5215 0.0125
6.9b 0.5164 0.9057 0.5136 0.5062 0.5236 0.0130
12b 0.5175 0.8788 0.5139 0.5065 0.5250 0.0141

Table 13: Pythia model size analysis.

Table 16 OLMo Size For the model size scal-
ing in the OLMo model, we also saw the perfor-
mance increase with the model size. The mean
value increases, and the probability mass decreases.
The probability mass and mean value change be-
tween 1b — 7b is also more obvious than that of
7b — 13b, showing a similar trend with the Pythia
model series. Interestingly, in the probability mass
metric, we are able to see that its performance is
better than the comparable model size in the Pythia
series. The 1b, 7b, and 13b model sizes in the
OLMo series all have a lower probability mass,
showing better statistical performance. As OLMo
is an instruction-tuned LLM and Pythia is a pre-
trained LLM, OLMo has a stronger ability in natu-
ral language; this suggests not only model scaling
but also the post-instruction tuning may positively
benefit the MIA performance. One possible reason
for this may be the instruction tuning or additional
training after the pre-train stage, which may help
the LLM to recall its knowledge during the pre-
train stage. Some research also discusses similar
findings on how instruction/post-fine-tuning could
help LLM reorganize its learned knowledge during
pre-training and increase the chance of eliciting its
knowledge learned in pre-training.[1, 2, 3, 4]

Table 17 OLMo Domain This table basically
aligns with its corresponding Figure 2 (f), where
the Dolma pes2o shows the best performance with
the highest mean value and lowest probability mass.
The reason is still about the text diversity. The
pes2o contains various research papers comparing
the arXiv, which only contains scientific research
papers. The Code Search Net, Open Web Math,
and Algebraic Stack have low textual diversity.

Table 18 OLMo Feature In the OLMo models,
the absolute best method among evaluation meth-
ods does not exist. The Min-K% ++ has the best
average, while the CDD has the best probability
mass. We saw that SaMIA and CDD have much
better results in the OLMo models; this is probably
because OLMo is much better at generating tokens
due to the large pre-train data size and instruction
tuning, so it is more sensitive to black-box MIA
methods like SaMIA and CCD, while methods like
Min-K% ++ and RECALL still show relatively
decent performance among those two model se-
ries compared to baselines. This shows that their
hypothesis about how to split members and non-
members may be more general.
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DATASET MEAN PROB MASS MEDIAN Q125%) Q3(75%) STD
FreeLaw 0.5162 0.8966 0.5129 0.5059 0.5228 0.0137
Github 0.5117 0.9452 0.5094 0.5045 0.5168 0.0095
Pile-CC 0.5137 0.9352 0.5114 0.5056 0.5187 0.0108
StackExchange  0.5129 0.9418 0.5107 0.5048 0.5185 0.0103
Wikipedia (en) 0.5153 0.9087 0.5123 0.5056 0.5217 0.0126
Table 14: Pythia domain analysis.
FEATURE MEAN PROB MASS MEDIAN Q1(25%) Q3 (75%) STD
Loss 0.5146 0.9220 0.5124 0.5057 0.5204 0.0116
Zlib 0.5141 0.9189 0.5114 0.5053 0.5200 0.0116
Gradient 0.5142 0.9148 0.5115 0.5053 0.5197 0.0118
Refer 0.5121 0.9409 0.5103 0.5046 0.5167 0.0099
Min-K% 0.5156 0.9083 0.5125 0.5061 0.5219 0.0124
Min-K% ++  0.5204 0.8059 0.5159 0.5069 0.5299 0.0166
DC-PDD 0.5130 0.9467 0.5109 0.5050 0.5184 0.0102
EDA-PAC 0.5110 0.9466 0.5090 0.5043 0.5155 0.0088
RECALL 0.5147 0.9103 0.5123 0.5058 0.5205 0.0117
SaMIA 0.5140 0.9021 0.5108 0.5049 0.5195 0.0121
CDD 0.5118 0.9421 0.5095 0.5047 0.5167 0.0096
Table 15: Pythia feature analysis.
MODEL SIZE MEAN PROBMASS MEDIAN Q1 25%) Q3 (75%) STD
1b 0.5143 0.8938 0.5111 0.5047 0.5228 0.0148
7b 0.5153 0.8531 0.5123 0.5040 0.5225 0.0140
13b 0.5159 0.8466 0.5117 0.5044 0.5219 0.0132
Table 16: OLMo model size analysis.
DATASET MEAN PROB MASS MEDIAN Q1 25%) Q3 (75%) STD
Algebraic Stack 0.5103 0.8860 0.5075 0.5032 0.5150 0.0102
arXiv 0.5155 0.8739 0.5133 0.5060 0.5230 0.0120
Code Search Net  0.5112 0.9038 0.5095 0.5036 0.5165 0.0100
Dolma pes2o 0.5294 0.6440 0.5286 0.5179 0.5407 0.0181
Dolma wiki 0.5164 0.8547 0.5153 0.5060 0.5244 0.0124
Open Web Math 0.5088 0.9074 0.5065 0.5028 0.5122 0.0084
Table 17: OLMo domain analysis.
FEATURE MEAN PROB MASS MEDIAN Q1 (25%) Q3 (75%) STD
Loss 0.5157 0.9075 0.5136 0.5057 0.5235 0.0120
Zlib 0.5158 0.7721 0.5129 0.5059 0.5229 0.0184
Gradient 0.5162 0.8907 0.5138 0.5062 0.5239 0.0123
Min-K% 0.5166 0.9053 0.5142 0.5063 0.5232 0.0123
Min-K% ++  0.5168 0.7108 0.5128 0.5061 0.5247 0.0137
DC-PDD 0.5153 09131 0.5124 0.5062 0.5218 0.0116
EDA-PAC 0.5132 0.9015 0.5091 0.5045 0.5189 0.0118
RECALL 0.5156 0.7228 0.5136 0.5056 0.5237 0.0121
SaMIA 0.5102 0.6511 0.5035 0.5000 0.5171 0.0135
CDD 0.5139 0.6054 0.5051 0.5000 0.5226 0.0187

Table 18: OLMo feature analysis.
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