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Abstract

Critical text assessment is at the core of many
expert activities, such as fact-checking, peer
review, and essay grading. Yet, existing work
treats critical text assessment as a black box
problem, limiting interpretability and human-
AI collaboration. To close this gap, we intro-
duce Structured Reasoning In Critical Text
Assessment (STRICTA), a novel specification
framework to model text assessment as an ex-
plicit, step-wise reasoning process. STRICTA
breaks down the assessment into a graph of
interconnected reasoning steps drawing on
causality theory (Pearl, 1995). This graph
is populated based on expert interaction data
and used to study the assessment process and
facilitate human-AI collaboration. We for-
mally define STRICTA and apply it in a study
on biomedical paper assessment, resulting in
a dataset of over 4000 reasoning steps from
roughly 40 biomedical experts on more than
20 papers. We use this dataset to empirically
study expert reasoning in critical text assess-
ment, and investigate if LLMs are able to imi-
tate and support experts within these workflows.
The resulting tools and datasets pave the way
for studying collaborative expert-AI reasoning
in text assessment, in peer review and beyond.1

1 Introduction

During critical text assessment, an expert evalu-
ates a document and arrives at a verdict about the
document’s quality. It is a key task in many expert
domains, and often serves as a cornerstone for qual-
ity assurance in the respective area (Lewandowsky
et al., 2020; Johnson et al., 2018; Royce Sadler,
2012). Critical text assessment is challenging: the
expert must analyze the document from multiple
perspectives, integrate background knowledge, and
form coherent reasoning to arrive at a judgment.
To support the experts, prior work has explored

1Code and data are publicly available at https://github.
com/UKPLab/acl2025-stricta
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Figure 1: Structured Reasoning in Critical Text Assess-
ment (STRICTA) represents critical text assessment as
a reasoning process decomposed into causally linked
steps. Based on the observed text, the expert produces a
verdict by filling-in each step.

various approaches to automated text assessment
in specific domains, such as document quality clas-
sification (Shen et al., 2019; Maillette de Buy Wen-
niger et al., 2020), peer review report generation
(D’Arcy et al., 2024; Yuan et al., 2022; Du et al.,
2024; Yu et al., 2024), or automatic essay grad-
ing (Misgna et al., 2025; Han et al., 2024). Yet,
prior work largely treats critical text assessment as
a black box, leaving a crucial question unanswered:
How do the experts arrive at their judgement? An-
swering this question is a key prerequisite for trans-
parent and reliable human-AI collaboration in criti-
cal text assessment. It would enable comparative
analysis of human decision-making, provide scaf-
folding for fine-grained evaluation of AI assistance,
and facilitate human-AI collaboration via enhanced
interpretability and human oversight (Luo et al.,
2024; Ferdaus et al., 2024). Yet, the lack of formal
models and datasets that capture expert reasoning
during critical text assessment prevents progress in
this area. Our work aims to address this gap.

To formalize expert reasoning, we introduce
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STRICTA: a specification framework that repre-
sents critical text assessment as a step-wise struc-
tured reasoning graph (workflow), capturing how
different aspects of a document contribute to the
final evaluation (Figure 1). We propose a three-step
process for constructing and populating workflows
based on expert interactions. Since many text as-
sessment tasks are partially subjective and allow for
multiple valid interpretations, we explore the use
of structural causal models (SCMs) (Pearl, 2000)
to explicitly account for this variance during rea-
soning. We also investigate how workflows can be
used to evaluate LLMs’ ability to imitate human
reasoning during critical text assessment, casting it
as an abductive reasoning problem.

The assessment of scientific papers underlying
the peer review process is arguably one of the most
challenging document assessment tasks requiring
complex reasoning. To demonstrate the use of
STRICTA in practice, we therefore focus on paper
assessment – a critical text assessment task closely
related to the emerging line of work on AI-assisted
peer review (Shah, 2022; Kuznetsov et al., 2024;
Goldberg et al., 2024). Specifically, we conduct a
large-scale study in biomedical paper assessment.
We construct reasoning workflows based on ex-
pert interviews, and engage over 40 biomedical
researchers and students to collect workflow-based
assessments for more than 20 papers. With over
4000 explicit reasoning steps, this unique dataset
provides an empirical foundation for studying how
experts reason during text assessment, and how
modern LLMs can assist them in this task. Overall,
we contribute:

• a model for STRICTA tasks rooted in causality,
and a framework for its application;

• a unique expert-generated multi-modal structured
reasoning dataset in biomedical paper assess-
ment;

• insights into human influence factors during pa-
per assessment and the potential of LLM assis-
tants in STRICTA applied to paper assessment.

Our analysis reveals that differences in prior knowl-
edge are a key source of disagreement among ex-
perts, while a paper’s writing style has a major im-
pact on the overall assessment. Experiments with
four state-of-the-art LLMs demonstrate that LLMs
are prone to error propagation, but human oversight
effectively mitigates this issue. Our study connects
research on causality, expert-AI collaboration, and

LLMs and paves the path towards transparent and
reliable AI assistance in expert domains.

2 Related Work

Our work offers a novel perspective on critical text
assessment with a practical focus on research paper
assessment. It directly relates to research on peer re-
view generation and other document quality assess-
ment domains such as fact-checking. The proposed
approach is also inspired by research on abductive
and diagnostic reasoning and relates to causality
in NLP, which we briefly cover in Appendix A.1.
Existing work on text assessment trains models to
predict the quality of documents such as scientific
papers or Wikipedia articles using external qual-
ity labels (e.g., citation counts) (Shen et al., 2019;
Maillette de Buy Wenniger et al., 2020; Wenniger
et al., 2023). However, these methods rely on proxy
indicators without human validation and treat doc-
ument assessment as a black-box problem. Our
work complements these approaches by focusing
on human assessments and the reasoning process
to enhance interpretability. Automatic review gen-
eration aims to produce full peer review reports
for papers using specialized model architectures
(D’Arcy et al., 2024; Yuan et al., 2022), testing
LLMs out-of-the-box (Du et al., 2024; Tyser et al.,
2024; Liu and Shah, 2023; Yu et al., 2024), or pro-
viding isolated feedback on paragraphs (Chamoun
et al., 2024). While these methods offer valuable in-
sights into downstream performance in peer review,
they neglect the fine-grained decision-making fac-
tors in humans and LLMs that shape the complex
assessment. Our study focuses on the underlying
structured reasoning process rather than generat-
ing a review report, enabling a deeper analysis.
Another related area of research is explanations
in fact-checking, focused on assessing the verac-
ity of text (Guo et al., 2022). Prior studies have
generated structured explanations for final verdicts
as rule chains (Gad-Elrab et al., 2019), argumen-
tation graphs (Si et al., 2024), multi-hop graphs
(Jiang et al., 2020), or verification programs (Pan
et al., 2023), focusing on short factual claims and
often ignoring ambiguity (Glockner et al., 2024). In
contrast, our approach explicitly models the uncer-
tainties induced by subjectivity and ambiguity, ex-
plores diverse decision-making factors in humans,
and focuses on whole documents.
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3 Framework

3.1 Background: Causal Models
As causal models are not ubiquitous in NLP, we
provide a short introduction. Causality offers a
formal framework for analyzing cause-and-effect
relationships, i.e., the impact of active changes to
one variable (interventions) on the likelihood of
another. This work adopts Structural Causal Mod-
els (SCMs, Pearl (2000)), a widely used class of
causal models. For brevity, we provide a high-level
overview of SCMs and their associated concepts.
Appendix A.2.1 provides the formal definitions.

Following Pearl (2000), an SCM M is a tuple
(U, V, F, PM) where U are the background vari-
ables distributed by PM, V are the modeled vari-
ables, and F is the set of structural equations. Each
modeled variable is given by a structural equation
vi = fi(pai, ui) where pai is the set of parent
variables from V and U . The background factors
U add randomness to the otherwise determinis-
tic structural equations. We represent SCMs by
a causal graph. An edge from v1 to v2 indicates
that v1 is input to the structural equation of v2 (the
child). For an intervention do(X = x), we alter
the SCM M by replacing X by x in F resulting
in MX=x. Counterfactuals pose what-if questions
on the SCM. For a query, "What value had Y if
X = x under the circumstances u?" we imagine
the effect of X = x on Y for a concrete instance
counter to the observed facts. The average causal
effect (ACE) of an intervention on a binary vari-
able X is the difference of expected values for Y
with ACE(X,Y ) = E[Yx=1] − E[Yx=0] for Yx(u)
the potential response of Y under MX=x. We use
ACE and counterfactuals during analysis (Sec. 4.3).

3.2 Structured Reasoning in Critical Text
Assessment (STRICTA)

We define our Structured Reasoning in Critical Text
Assessment framework to model a wide range of
document assessment tasks with minimal assump-
tions. This framework assumes an expert extracts
key information from the document as input for
a series of interconnected reasoning steps. These
steps culminate in a final verdict on the document’s
quality and provide explanations linking the text to
the outcome. The reasoning steps represent the typ-
ically unobserved mental processes that influence
the assessment, with specific steps and connections
varying based on the problem domain. We formal-
ize the STRICTA problem family using SCMs, as

they directly represent causal reasoning structures
and facilitate the analysis of explanatory behav-
ior in humans and AIs. Unlike purely statistical
models, SCMs allow reasoning about causal rather
than merely associational relationships between
reasoning steps. Thus, causal modeling is indis-
pensable for studying decision factors during text
assessment.2

Definition 1 A structured reasoning for critical
text assessment problem is given by an SCM M =
(U, V, F, PM), the workflow, with

i. inputs I ⊂ V and I ̸= ∅ in natural language.
ii. final verdicts on the document with T ⊆ V

and T ̸= ∅.
iii. reasoning components C ⊂ V with C∩I = ∅,

C ∩ T = ∅ and C ̸= ∅ forming the steps of
the workflow.

Furthermore, all inputs are roots of the workflow
graph and there is a path that connects each step
with at least one input. The final verdicts are ter-
minal nodes in the graph. The background vari-
ables determine the level of subjectivity and noise
in the task. Solving a STRICTA problem means
finding the most likely values for all unobserved
Ehidden ⊂ C∪T given I and partially observed val-
ues Eobserved ⊂ C ∪T with Ehidden ∩Eobserved = ∅.

Informally, a workflow describes a reasoning graph
that connects an input text to a final verdict. While
the assessment structure remains fixed, the answers
for each step vary by instance. The reasoning task
depends on the observed reasoning steps. In Sec-
tion 5, we present a challenging abductive reason-
ing problem, providing the LLM only with the
paper text and final verdict, and tasking it with
reconstructing the intermediate reasoning steps.

Notably, we assume that all problem instances
in a STRICTA problem class share the same rea-
soning structure, with variation arising only in the
graph’s variables. This contrasts with prior work
that constructs reasoning structures for each in-
stance individually (e.g. in fact checking Pan et al.,
2023). A fixed reasoning structure, where each step
has a well-defined, context-independent meaning,
enables quantitative comparison of human reason-
ing factors and fine-grained evaluation of automatic
methods across instances.

2In Section 4.3, we make use of these capabilities posing
complex causal queries on the constructed SCM for paper
assessment. Appendix A.2.2 discusses alternative formalisms.
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3.3 Instantiating a STRICTA Problem
STRICTA represents a family of document assess-
ment problems. Addressing a specific problem,
such as biomedical paper assessment, involves the
following steps:
Step 1. Designing the SCM’s Structure: First,
we specify the steps and causal links of the work-
flow graph. Ultimately, this means determining the
influence factors on the final verdict based on the
underlying document. This can either be done au-
tomatically through causal discovery (Verma and
Pearl, 1990) or through interaction with domain
experts. The steps of the workflow can be modeled
as boolean decisions, numerical scores, or text an-
swers.3 This process yields the graph structure and
variables of the workflow.
Step 2. Populating the SCM with Data: Next, we
determine the relationships between the workflow
steps by estimating the SCM’s structural equations.
To do this, human annotators follow the workflow
to assess the paper, answering each step after read-
ing the document and forming a verdict. By en-
forcing the step dependencies during annotation,
we ensure the assumed causal constraints. Varying
experiences and biases act as background factors.
If an assessment task is subjective, background
factors induce high variability in the answers. To
measure the level of noise, each step and input is
annotated redundantly. Using this data, we esti-
mate the structural equations by training machine
learning models on the input-output data per step.
Step 3. Analysis and Automation: Ignoring train-
ing error, the resulting SCM from Step 2 perfectly
models the human reasoning process for the given
problem. By formulating causal queries on the
SCM, we simulate counterfactuals and interven-
tions to describe how inputs and intermediate steps
influence the final verdict. Additionally, the work-
flow serves as a backbone for assessing new docu-
ments, either automatically or through human-AI
collaboration. Since the workflow decomposes the
assessment task into individual steps, various rea-
soning and assistance scenarios can be tested. In
Section 5 we demonstrate that LLMs integrate natu-
rally with the causal graph to solve STRICTA prob-
lems reconstructing human reasoning from partial
information by turning the causal graph into an
LLM program (Dohan et al., 2022).

3Causality-aware text representation is a hard research
problem without a general solution (Veitch et al., 2020; Feder
et al., 2022). In our case study (Section 4), we combine
boolean and natural language answers.

4 Paper Assessment as STRICTA

Paper assessment is a critical step in scholarly peer
review and can substantially benefit from AI assis-
tance (Kuznetsov et al., 2024). We apply the pro-
posed STRICTA framework to biomedical paper
assessment. In this task, a reviewer is given the pa-
per and arrives at an overall quality verdict through
a series of unobserved reasoning steps. The out-
put of this task is not a full peer review report but
the "thought process" underlying it. This framing
models the paper assessment process as supported
by our expert interviews (see below) and estab-
lishes a setting for human-AI collaboration with
full human agency over the process. We focus on
biomedical paper assessment because of two main
reasons: first, our expert interviews below show
that paper assessment in biomedicine follows rela-
tively consistent patterns across sub-communities,
increasing the flexibility and scope of the resulting
assessment workflow. Second, most studies in NLP
for peer review focus exclusively on machine learn-
ing and NLP domains (Staudinger et al., 2024); we
contribute to bridging the gap towards other less-
represented scientific domains (Kuznetsov et al.,
2024). Following Definition 1, a workflow for pa-
per assessment describes the mental model of what
constitutes a high-quality paper, connecting observ-
able text to the final verdict. We construct the work-
flow, i.e,. the SCM, reflecting this mental model,
populate it through a human annotation study, and
analyze human reasoning patterns following the
STRICTA framework.

4.1 Designing the SCM

We derive the workflow for biomedical text assess-
ment based on expert interviews, followed by an
independent validation step, opting against the au-
tomatic causal discovery of the workflow from data
such as peer review reports. Hereby, we ensure
close alignment to the true human reasoning pro-
cess and ensure the quality of the workflow since
expert-elicited SCMs are commonly held as the
gold standard (Zanga et al., 2022; Zhang et al.,
2023). Following prior work on modeling com-
plex systems with expert-elicited SCMs (Rodrigues
et al., 2022; Ashdown and Petrou, 2023), we derive
a best-effort SCM that is agreeable with the mental
paper quality model of domain experts while ac-
counting for subjectivity via the SCM’s background
variables. We separately interview two experienced
biomedical researchers (postdoc and professor) to
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scientific community?

Are the results properly 
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EXAMPLE:  Overall, I do no…
FORMAT: truth

step47

paper

final verdict

READ
INFER

EXTRACT

node types

step6

step21

“influences”

VERDICT…

… Summarize the results 
of the paper

TASK:   Which interpret…
DESCRIPTION:  Please con…
EXAMPLE:  For experiment…
FORMAT: list

Which related work 
results are reported?

Read the 
results

…

Figure 2: Paper assessment workflow (excerpt). Each node is associated with a task, description, example, and
output format. ". . . " means there exists a path.

understand the criteria for assessing a scientific ar-
ticle in this field. We aggregate and structure their
responses to form a step-wise reasoning graph (de-
tailed below), which we revise together with the
two experts. Finally, we validate the graph with
three PhD students from the same field in a forma-
tive study where we ask them to assess a biomed-
ical article using the reasoning graph. Appendix
A.3.1 provides details.

The resulting workflow has 45 interdependent
paper quality assessment steps terminating in a final
verdict on the paper quality. Fig.2 shows an excerpt
of the workflow. Based on the expert interviews,
there are three key activities during assessment:

• for READ steps, humans read a portion of the
paper in detail.

• for EXTRACT steps, humans distill information
from the text, e.g., listing the results in a figure.

• for INFER steps, humans reason over prior an-
swers to combine or reduce information into as-
sessments, e.g., "Are the results plausible?".

We assign each workflow step one of these activi-
ties, a task prompt, a name, detailed instructions,
and an example (see Appendix A.3.2). The vari-
able ranges are up to design choice. Paper assess-
ment involves both text and figures, necessitating
a multimodal representation of inputs. In our for-
mative study, we observed that while some steps
have boolean values (e.g., "Are the experimental
results plausible given the related work?"), humans
often provide detailed, unstructured answers. Con-
sequently, we use textual representations for vari-
ables, supplementing them with boolean responses
for INFER nodes and image inputs for READ steps.

4.2 Populating the SCM
To estimate the structural equations of the SCM
from data, we collect a dataset of human reason-

ing steps following the causal graph structure. We
guide the participants through the workflow to as-
sess a range of papers while redundantly annotating
the same paper for the estimation of noise.
Source Data We use openly licensed biomedi-
cal manuscripts from bioRxiv4 filtered by recency
(06/2021 to 06/2023) and expertise keywords and
stratified by topic, world region, and publication
status (number of revisions and acceptance status
at a peer-reviewed venue). The resulting sample
of 200 papers is filtered manually by an expert an-
notator to ensure high expertise and is subject to
subselection by annotator preference, resulting in
22 papers. See Appendix A.4.1 for more details.
Tools and Guidelines The annotation study was
conducted in two stages, JUNIOR and SENIOR,
based on participants’ academic expertise. Both
stages used the same guidelines, setups, and anno-
tation interfaces. We converted the graphical work-
flow into a sequential questionnaire, ordered topo-
logically and matching the paper structure. This
ensured that prior answers required as inputs were
available at each step. The CARE annotation plat-
form (Zyska et al., 2023) was customized to guide
annotators through the assessment. Each step in-
cluded the reasoning prompt, an example, and rel-
evant prior answers or paper text as input. Partic-
ipants received guidelines and a training session
before the study (see Appendix A.4.2).
Annotation Study In the JUNIOR stage, the annota-
tion setup was validated within a university course,
where 36 postgraduate students in the biomedical
field participated voluntarily. After minor changes
to the guidelines and annotator training, the SE-
NIOR stage involved 8 further doctoral and post-
doctoral researchers in the biomedical field, as well
as 2 postgraduate students who received dedicated

4https://www.biorxiv.org/
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Dataset Statistics

# step answers 4371
# workflow executions 93

# papers 22
vocabulary 7962

# tokens 240110
avg. # tokens per answer 60.04

Krippendorff’s α 0.424

Table 1: Dataset statistics (SENIOR + JUNIOR subsets).
Krippendorff’s α calculated on boolean nodes.

training in biomedical paper assessment.5 After the
study, we post-processed the JUNIOR data to filter
out low-quality items (see Appendix A.4.2).
Dataset The resulting dataset consists of a JUNIOR

subset with 4 annotated papers and a SENIOR sub-
set covering 18 papers. At least three annotators
have annotated each paper and workflow step; 11
papers have annotations by five different annota-
tors. The amount of annotations per paper aligns
with prior work on measuring human variability in
a task (Giulianelli et al., 2023), which we rely on
during analysis in Section 4.3. Additionally, we
validate that the dataset size is sufficient for the
purposes of our study using statistical analysis and
report the details in Appendix A.4.1. The resulting
dataset uniquely supports the empirical study of
human decision-making and reasoning grounded
in text. Our analysis provides a template for ex-
amining any STRICTA problem, demonstrating
the framework’s versatility. Basic statistics for the
dataset are presented in Table 1.
Boolean Decision SCM To support the analysis,
we construct a condensed version of the workflow
that consists only of the boolean variables while
maintaining causal ancestry relations. Working on
Boolean variables makes standard causal estima-
tion tractable. We approximate structural equations
with Gaussian Process classifiers (Rasmussen and
Williams, 2006). Appendix A.6.2 provides details.

4.3 Analysis

To assist humans in STRICTA, we first study how
they perform the task. Using the populated SCM,
we analyze expert decision-making in biomedical
paper assessment empirically. While the workflow
steps are fixed, answers vary across annotators. We
evaluate the human answer variation in the work-
flow, indicating steps benefiting from AI assistance.
Answer Variability To investigate the variability

5We report the annotator compensation in Section Ethics.

in the boolean decisions, we compute the inter-
annotator agreement on the steps in the boolean de-
cision SCM. Krippendorff’s α per step and across
papers is 0.42, indicating moderate agreement.
This is in line with agreement levels reported for
peer review ratings (Bornmann, 2011; Dycke et al.,
2021) and typical for subjective annotation tasks.
To quantify variability in the natural language an-
swers, we follow Giulianelli et al. (2023) and mea-
sure the noise induced by background factors in
terms of the lexical variability (using lemma over-
lap), the syntactic variability (using part-of-speech
bi-gram overlap), and semantic variability (using
cosine similarity on SBERT embeddings (Reimers
and Gurevych, 2019)). We compute the metrics
between all annotators per step and paper, and
then take the average. Figure 3 (top) shows the
answer variability distribution for all steps. No-
tably, the low lexical and syntactical similarity sug-
gests that annotators employ their individual style
and register and do not use template language, as
has been previously observed for human-generated
explanations (Camburu et al., 2020). The seman-
tic similarity, on average, lies at 0.55, similar to
open-ended text production tasks, such as story
generation (Giulianelli et al., 2023). Overall, there
is a significant overlap between human responses,
but they do raise different points. The impact of
background variables is reasonably low, suggesting
that no important factors were left unmodelled in
the SCM.

Sources of Variation We hypothesize that answer
variability is not uniform across the workflow. Fig-
ure 3 (bottom) shows the semantic similarity distri-
bution for the different node types (INFER and EX-
TRACT) and inference steps that explicitly invoke
the annotators’ background knowledge (INFER-
KNOWLEDGE), such as "From your experience,
which plot properties are common for the given
plots?". Answers to the steps based on background
knowledge deviate the most, whereas EXTRACT

steps are most similar. The summarization-like ex-
traction steps invoke high consistency. As INFER-
KNOWLEDGE steps heavily depend on the in-
dividual’s knowledge, prior experience is one
major background factor leading to variability.
Considering variability as a proxy for step diffi-
culty, AI support during paper assessment on back-
ground knowledge shows great potential. Appendix
A.6.1 provides additional analysis, including the
variability propagation in the graph.
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Figure 3: Average lexical, syntactic, and semantic simi-
larity per step and paper (top) and per node type (bot-
tom). Vertical lines are mean values.

Impact of Decisions The previous analysis focuses
on the background variables. We now turn to the
modeled variables of the SCM. We simulate 200
samples using the Boolean decision SCM trained
on human data. Using average causal effect estima-
tion (ACE) (Section 3.1), we compare the effect of
interventions on different steps on the final verdict.
For each node x with a path to the final node y,
we compute ACE(x, y). Table 2 lists the ACEs for
selected steps. step33 (Alignment of Conclusions
and Research Questions) has the highest positive
impact on the final verdict. In other words, if the
findings align well with the posed questions, the
final verdict turns more positive. However, the clar-
ity and style of writing also play an important
role (step48). As the ACE directly measures the
strength of causation (not an associational relation),
we can conclude that annotators show a positive
bias towards well-phrased papers regardless of the
scientific content. This is consistent with findings
in scholarly peer review (Lee et al., 2013). This
result also shows that the style and writing of the
paper directly influence decision making and not
only lead to higher variability due to different in-
terpretations of potentially unclear or ambiguous
paper contents. This confirms our design decision
to include the style of writing as an explicit con-

Step Prompt ACE

Considering the correct conclusions and the
paper’s research questions, do the conclusions
fully answer the research questions? (step33)

0.37

Overall, do the conclusions appear relevant (i.e.
in-scope of the paper and its scientific field)?

(step46)
0.20

Is this paper written clearly and concisely?
(step48) 0.20

Is this a method paper? (step4) 0.02

Are the provided figures the common choice for
the given methods? (step19) −0.01

Is the result reporting overall adequate for the
given methods? (step20) 0.00

Table 2: Average causal effects (ACE) of workflow steps
on the final verdict on the paper. We list nodes with the
highest (top) and lowest (bottom) absolute effect.

founding factor in the workflow.
Counterfactual Analysis Finally, we explore the
use of the SCM for counterfactual analysis. How
would one need to change the underlying paper to
turn the final verdict positive? Focusing on cases
where annotators gave a negative verdict (25 in-
stances on 12 papers), we examine counterfactual
interventions. As studying all possible 218 interven-
tions is intractable (18 steps in the boolean decision
SCM), we focus on steps related to figure quality
(5), which we call G. For all possible interventions
on G, C = [fx = ix : x ∈ G], we determine
PMC

(t = True) for the final verdict t. In 40%
of the cases, the annotator would have maintained
their negative verdict. In the remaining 60%, an
intervention on a single step – the alignment be-
tween the figures and the text discussion (step12)
– would have changed the overall verdict. In other
words, the revision of figures would have frequently
improved the paper. Overall, this illustrates the im-
pact of specific paper traits on the final verdict.

5 LLM Assistance

The STRICTA framework decomposes complex
document assessment tasks, opening new opportu-
nities for targeted assistance and interpretable AI.
We investigate how LLMs can support STRICTA,
by testing their abilities on the collected dataset.
Following Definition 1, the exact reasoning task de-
pends on the data provided to the LLM. For our ex-
periments, we focus on an abductive setting where
the final verdict is given and all intermediate rea-
soning steps need to be reconstructed based on the

22693



paper.6 This models the case where humans have
full agency over the verdict but receive assistance
to find a valid explanation for it. Specifically, we
evaluate LLM alignment with human answers on
intermediate steps and in a simulated assistance
scenario. We highlight that our goal here is not
to introduce a new NLP method, but to explore
the boundaries and opportunities of existing LLMs
when applied to STRICTA problems. Nonethe-
less, our experiments shine a new light on LLMs
for causal reasoning, and suggest that a fixed rea-
soning structure may help address some of their
inherent limitations (Zečević et al., 2023).
Setup We split the dataset into 20 test papers (4089
answers) and reserve 2 papers (282 answers) for
prompt development. We experiment with LLama
3 (8B, 32k context window) (AI@Meta, 2024),
Mixtral (Jiang et al., 2024), GPT-3.5 turbo (Brown
et al., 2020), and GPT-4o (OpenAI, 2023). Ap-
pendix A.7.1 lists details on the LLMs and prompts.
All prompts are designed zero-shot. We assess
LLM outputs using automatic text similarity met-
rics to measure alignment with human answers
across multiple dimensions. While being imperfect
(Sottana et al., 2023), these metrics capture individ-
ual alignment in a human-AI collaboration setting,
consistent with prior work on peer review genera-
tion comparing automated and human-written re-
views (Du et al., 2024). We use BERT-F1 (Zhang
et al., 2020) for semantic similarity, SummaC (La-
ban et al., 2022) and TRUE (Honovich et al., 2022)
for factual alignment, and F1 score for boolean
decisions. Each annotator’s workflow execution
is treated as an individual problem instance, with
similarity metrics computed per annotator and av-
eraged across all instances. For validation, we com-
plement automatic metrics with a human evaluation
on a subset of the data (Appendix A.7.3). Results
show moderate agreement among humans – typ-
ical for challenging tasks – and a moderate but
significant correlation between metrics and human
judgment (between ρ = 0.37 and ρ = 0.54 for
BERT-F1, and ρ = −0.22 and ρ = 0.55 for Sum-
maC, depending on the step type) at similar levels
as related automatic evaluation metrics (Fu et al.,
2024). Yet, these findings highlight the need for
more metric development in the future for a tar-
geted evaluation of individual steps.
LLM Structured Reasoning The target task in-

6We experiment with multiple reasoning settings in Ap-
pendix A.7.2. The results are consistent.

volves answering each step in the workflow to en-
sure that the given verdict is validly derived from
the given paper text. We define a baseline LLM
architecture for this process. First, we use the work-
flow from Section 4 as a scaffold, running each
LLM as a program (Schlag et al., 2023; Dohan
et al., 2022). The LLM is called step-by-step, with
the answers from parent steps provided as inputs,
thereby enforcing the workflow’s reasoning struc-
ture. However, at this stage, the responses are not
conditioned on the verdict being explained. To
address this, in the second step, we adopt the self-
refinement paradigm (Madaan et al., 2024), incor-
porating previous model responses, the graph struc-
ture encoded with incident encoding (Fatemi et al.,
2024), and the true verdict to refine the answers.
We design tailored prompts for each workflow step
type (EXTRACT, INFER) and for the feedback and
refinement stages. We terminate the feedback-
refinement loop after one iteration. For READ steps,
the input consists of the paper text, with figures
and tables replaced by annotator descriptions for
language-only LLMs. For GPT-4o, we provide
figures and tables as images. Table 3 (top) summa-
rizes the performance of the LLM program. We
estimate the human baseline using leave-one-out
evaluation, where each annotator’s answers for a pa-
per are compared to those of their peers, averaged
across all comparisons. This approach provides a
conservative lower-bound estimate of human per-
formance.7 We calculate the F1 score based on
individual annotator responses. The GPT models
and Mixtral achieve high scores on factual con-
sistency (SummaC and TRUE), marginally above
the human baseline. However, BERT-Score ranks
LLMs consistently lower. The decision-making
performance on the Boolean nodes lies below the
average human performance by a large margin. We
manually examine the discrepancy between high
factual and low decision alignment in Appendix
A.7.4, showing that humans reserve negative de-
cisions for extreme cases and focus their answers
on a minimal set of facts relevant to the individual
assessment. However, LLMs tend to restate inputs,
split up facts into small components, and make
harsher decisions. These factors might affect the
factual alignment metrics, favoring the seemingly
more extensive and specific LLM answers. This is
also supported by the relatively low factual align-

7An accurate estimate would require humans to re-annotate
steps using inputs from their fellow annotators.
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ment of human answers to EXTRACT steps with the
original paper text compared to the more extensive
LLM responses (details in Appendix A.7.2). While
LLMs generate responses with high factual overlap
compared to the average annotator, they underper-
form in decision-making. This indicates that LLMs
weigh factors differently than humans during paper
assessment, highlighting the risks of using LLMs
without human oversight in STRICTA applications.
Simulating Human-LLM Collaboration The
STRICTA framework allows exploring simulated
human-AI collaboration scenarios. Here, we as-
sume the human oversees and corrects the LLM at
each step, providing the input as human-generated
answers from parent steps or the paper for EX-
TRACT steps. We exclude steps based on figures
and tables to compare all LLMs. This setup evalu-
ates the ability of LLMs to adapt to the individual’s
stepwise reasoning. We exclude self-refinement to
focus on model performance at individual steps. Ta-
ble 3 (bottom, io-condition) shows the results. All
LLMs demonstrate a notable performance increase,
effectively adapting to the annotator’s perspective
based on their step-by-step inputs and producing
more aligned responses. We further investigate the
reasons for these performance differences, focusing
on error propagation, in Appendix A.7.2. Overall,
our results show the potential of human-AI col-
laboration for STRICTA, but further research is
needed to integrate this approach with the SCM of
a STRICTA problem. Promising directions to miti-
gate error propagation include Graph-of-Thought
(Besta et al., 2024a) and similar architectures (Yao
et al., 2023; Besta et al., 2024b), which enable
backtracking during reasoning.

6 Transfer and Future Work

We design STRICTA as a general domain-
independent framework for critical text assessment.
To further validate the application to other tasks
besides the case study, we additionally test the gen-
erality of the STRICTA framework in a transfer
experiment to paper assessment in the natural lan-
guage processing domain. We adapt the biomedical
assessment workflow for the NLP domain with in-
put from two experts (PhD and Postdoc in NLP)
and conduct a formative study among PhD students.
We provide the detailed results in Appendix A.5.
Overall, participants found the workflow appropri-
ate, supporting the notion that the framework can
be transferred to other domains with reasonable

BERT-F1 ↑ SummaC ↑ TRUE ↑ F1 ↑
human∗† 0.799±.06 −0.151±.30 0.151±.27 0.801

Llama3 Prg† 0.752±.10 −0.274±.36 0.098±.30 0.170
Mixtral Prg† 0.761±.09 -0.149±.26 0.120±.32 0.559
GPT3.5t Prg† 0.759±.10 −0.178±.35 0.163±.37 0.531
GPT4o Prg† 0.780±.07 −0.186±.30 0.139±.35 0.720

majorityio 0.854
human∗io 0.799±.06 −0.158±.29 0.150±.27 0.801

Llama3io 0.786±.07 −0.141±.30 0.145±.35 0.657
Mixtralio 0.794±.07 -0.077±.27 0.161±.37 0.822
GPT3.5tio 0.805±.07 −0.125±.34 0.214±.41 0.789
GPT4oio 0.795±.07 −0.094±.28 0.194±.40 0.876

GPT4o§ 0.776±.07 −0.154±0.28 0.188±.39 0.828

Table 3: Performance under varying conditions. ·† =
LLMs as a program. ·io = with human oversight.
GPT4o§ does not use the graph. We average over steps
and papers, with the standard deviation in subscript.
SummaC lies in [−1, 1], the other metrics in [0, 1].

effort. Since the scope of this transfer study lies in
the validation of the adapted workflow, we do not
undertake quality assurance measures, making the
output dataset not suitable for evaluation or analy-
sis. Additional validation of STRICTA for other
text assessment tasks such as essay grading, fact
checking, or Wikipedia article quality assessment
is important future work. This entails performing
the three steps of the STRICTA framework (Sec-
tion 3.3): (1) defining a workflow, (2) collecting
data, and (3) using the resulting SCM and data for
analysis and evaluation. Following up on our as-
sistance experiments, humans and LLMs can be
employed to jointly generate data (Li et al., 2023)
for speed-up. To illustrate the process of transfer-
ring STRICTA to other text assessment tasks, we
describe how to instantiate STRICTA for automatic
essay scoring in Appendix A.2.3.

7 Conclusion

This paper introduced STRICTA– a novel speci-
fication framework for a family of structured rea-
soning problems over documents. We proposed
a causality-based model, a practical guide, and a
toolkit to help define and analyze such problems.
Our novel, unique expert reasoning dataset instan-
tiated the framework for biomedical paper assess-
ment. Our experiments demonstrated the versatility
of our framework for analysis and LLM assistance.
Bridging the research in causality, human-AI col-
laboration, and LLMs, our study paves the path
for more explainable, controlled, and grounded AI
assistance for assessment tasks.
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Limitations

Generalization and Domain Transfer Our
framework for STRICTA problems is designed to
be general and applicable to any text assessment
task. We demonstrate its application and share the
insights from our case study on biomedical paper
assessment. As peer review is one of the most chal-
lenging text assessment domains requiring deep
expert reasoning and observing ambiguity and sub-
jectivity, we deem it as most appropriate for the
purpose of our study. We elaborate on the domain
transfer and generality of STRICTA in Section 6.

Framework At the core of our framework lies
the definition of STRICTA problems via a struc-
tural causal model. Here, we assume that the final
verdicts and reasoning steps arise when consuming
the input text and do not exist on their own. This
perspective is subject to philosophical discussion
(Barthes, 1977). In practice, this means we assume
that a text is consumed, causing the verdict (e.g.,
"the paper is a valuable contribution.") and that the
reasoning steps in between give rise to this verdict.
However, one might argue that there should be an
objective verdict; for example, for paper assess-
ment, a paper is either objectively correct or not.
While we acknowledge these points, we emphasize
that the practical application of our framework in
the case study supports our design choices in that
text assessment problems give rise to variance in
the final verdict and in that the expert interviews
support the directionality of causation that under-
lies our framework.

Case Study The case study of this paper focuses
on the biomedical domain. The above transfer ex-
periments in Section 6 show that the developed
SCM is generally relevant to paper assessment in
other domains. Yet, the findings on the factors
that shape human text assessment are limited to the
biomedical domain; researchers from other fields
might put a different focus during the assessment;
for example, the contribution of datasets and open
resources is not considered in the biomedical paper
assessment workflow, but is an important criterion
in the assessment of NLP papers.

The data collection aims to cover a wide range
of biomedical papers from various institutions and
world regions to avoid biases toward a particular
style of writing, scientific agenda, or scientific
sub-community. However, some topical bias is
inevitable to ensure relevance to the annotators’

expertise. We ensured high redundancy during an-
notation to avoid biasing the dataset to the idiosyn-
crasies of individual annotators. Yet, the given
sample of papers and the annotator pool might still
introduce a certain level of bias to the dataset. We
highlight that the collected dataset is intended for
research on reasoning during peer review across
human subjects; it is not suitable for comparing
behavioral patterns between groups, e.g. by vary-
ing levels of experience, which would require a
different experimental design where annotators of
different groups annotate the exact same papers.

LLM Assistance Experiments In the evaluation
of LLMs as assistants for structured reasoning, we
rely on a range of automatic metrics for text gen-
eration. As our findings suggest, these metrics
might not cover all aspects of a suitable answer
in the workflow; for instance, they seem to favor
more extensive answers, putting efficient but con-
cise responses at a disadvantage. Likewise, the
human baseline is a conservative estimate of true
human performance; it is important to interpret our
findings accordingly. Automatic metrics that con-
sider the reasoning context of an answer, similar
to the evaluation of chain-of-thought reasoning in
LLMs (Hao et al., 2024), are a promising direction
of research to address these issues. We also con-
duct a human evaluation on a subset of the data
to validate the automatic metrics. Structured rea-
soning offers built-in interpretability and facilitates
human-AI collaboration by breaking down prob-
lems into smaller steps (Luo et al., 2024; Ferdaus
et al., 2024). The findings from our simulation
study on human-AI collaboration support this prin-
ciple. However, an important direction for future
research is to investigate how LLMs and humans
interact in real-world paper assessment scenarios.
We perform a small-scale user study to validate
that STRICTA-based assistance is practically use-
ful during paper assessment (see A.2). However, to
validate these findings, more and large-scale, dedi-
cated user studies and performance metrics focused
on human-computer interaction are needed, which
lie beyond the scope of this work.

Ethics

This study has been approved by the univer-
sity’s ethical board under the proposal number EK
41/2024. All senior annotators and experts partici-
pating in the study received adequate compensation
within their regular employment in the research
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project. For the junior annotators, the workflow an-
swers were collected as part of a university course
aiming to teach students critical reading skills. The
participation in the annotation study did not impact
the students’ grading in the underlying course. All
annotators could choose freely to reject participa-
tion in the study, and all human data were collected
based on explicit consent. The annotators involved
in the human evaluation received 10.40£ per hour.

We explore the use of LLMs to automatically
assess biomedical papers. This technology has
potential dual uses in peer review. A malicious
party could use the LLM to skip the manual paper
assessment process, which arguably requires the
most effort during peer review. This is clearly prob-
lematic because LLMs cannot entirely substitute
a human researcher, leading to incorrect or biased
peer reviews. We stress that the output of such
a system would be the answers to the reasoning
steps and not a full peer-review report, which also
covers questions to the authors or suggestions for
improvement. We argue that the risk of misuse
of this technology is relatively low. At the same
time, the benefit of enabling new research on the
reasoning underlying peer review and using paper
assessment workflows as a teaching or assistance
device for reviewers is considerable, and we be-
lieve that the benefits of the proposed technology
outweigh the risks.

Underlying our dataset is a set of publicly avail-
able papers with open licenses (CC-BY, CC0, ...)
that allow the redistribution and extension of the
contents. However, as we publish subjective assess-
ments of the papers by our study participants, this
could potentially harm the reputation of the publi-
cation authors when they are assessed unfairly. We
highlight that this is not the intended use of our
dataset, which is exclusively meant for research
on STRICTA. We partially mitigate this risk by
having at least three different researchers make
annotations per paper: as a result, the collected
dataset shows an opinion spectrum rather than a
singular verdict on the paper. Hereby, we deem the
risk of harming authors to lie below the day-to-day
risk for reputational damage in regular scientific
publishing; peer reviews are commonly released
to the public, and papers are discussed (and criti-
cized) publicly, for instance, on social media and
in subsequent publications.
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A Appendix

A.1 Broader Related Work

We propose a framework for describing, collecting
data, and assisting with structured reasoning during
text assessment. Our study relates to a range of ap-
plication domains of document quality assessment
and general work on decomposed explicit human
reasoning. Here, we extend the Related Work dis-
cussion in Section 2 to cover the broader related
literature.

Explanations and Abductive Reasoning We
frame the LLM experiments on the dataset as an ab-
ductive reasoning task, aiming to discover the struc-
tured explanation for a given verdict. We contribute
to the nascent area of abductive reasoning in NLP
(Bhagavatula et al., 2020). While prior work pri-
marily focuses on abduction based on formal logic
(e.g. Young et al., 2022), we focus on subjective
reasoning on a real-world task. Relatedly, Dalal
et al. (2024) evaluate LLMs’ ability to infer the
best explanation for an observation and provide its
reasoning as a free text. In our work, explanations
consist of answers to steps in a reasoning graph
imposing a consistent explanation structure. Our
work relates to explainability research in NLP (e.g.
Wiegreffe and Marasovic, 2021; Camburu et al.,
2018). Notably, Dalvi et al. (2021) evaluate models
on constructing reasoning paths (entailment trees)
to explain science facts. From an explainability
perspective, our framework generalizes entailment
trees into directed graphs that provide more flexible
and comprehensive explanations.

Diagnostic Reasoning For this study we take in-
spiration in work on diagnostic reasoning (Reiter,
1987; Peng and Reggia, 1990). Structured text as-
sessment can be considered as a form of diagnostic
reasoning where a given document is scrutinized to
identify the underlying issues in the text that lead to
a negative verdict on its quality, akin to a doctor’s
diagnosis of a patient.

Previous studies in this domain focus on medi-
cal (Richens and Buchard, 2022; Magnani, 2023)
and engineering (Koitz-Hristov and Wotawa, 2018)
problems, primarily using bipartite diagnosis
graphs with numerical or categorical variables. In
contrast, our framework considers multi-layered
graphs, incorporates natural language variables,
and leverages LLMs to model relationships be-
tween them.

Recently, clinical NLP research has increasingly
focused on generating explanations for diagnoses
to explicitly evaluate a model’s reasoning, which
is most related to our study. Goh et al. (2024)
study human-LLM collaboration in medical diag-
nosis, investigating whether clinicians’ diagnostic
accuracy improves when supported by ChatGPT. In
our work, we simulate human-LLM collaboration
during diagnosis but limit LLM support to individ-
ual reasoning steps. This approach provides more
granular insights into the utility of LLMs for vari-
ous aspects of diagnostic reasoning. Savage et al.
(2024) use LLMs in a zero-shot setting, designing
prompts to mimic medical expert reasoning during
diagnosis. Complementing this, our study does
not focus on prompt design but instead introduces
an LLM program architecture informed by expert
reasoning processes. Most related to our work are
prior studies that use explicit reasoning structures
to guide LLMs. For instance, Yang et al. (2024)
develop DrHouse, a tool for interactive anamnesis
and diagnosis using LLMs augmented with a medi-
cal knowledge base. They structure LLM prompts
with diagnosis guidelines as binary decision trees
to support follow-up questioning and eventual di-
agnosis. Similarly, Wang et al. (2024a) propose an
augmented LLM-program architecture that itera-
tively generates a chain of diagnostic steps, form-
ing a reasoning trace for the final diagnosis in the
style of entailment trees (Dalvi et al., 2021). In con-
trast, our study employs directed acyclic graphs to
represent reasoning structures. Unlike trees, these
graphs allow reasoning steps to recombine multiple
prior observations, offering a more flexible frame-
work. Overall, we complement the field of clini-
cal diagnostic reasoning by applying similar tech-
niques to a new domain – diagnosing texts instead
of patients – and propose a modeling framework
that accommodates the subjectivity and ambiguity
inherent to the textual domain, which differs from
the medical diagnosis context.

Essay Grading Automatic essay grading aims
to score student essays’ quality and is usually cast
as a regression of classification problem (Misgna
et al., 2025). Most related to our study are ap-
proaches on feedback generation serving as an ac-
tionable explanation for the verdict and that score
along a rubric (Wang et al., 2024b). For example,
Han et al. (2023) score essays along multiple di-
mensions serving as an explanation for the overall
quality assessment, but they do not consider rea-
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soning structures. Wang et al. (2024b) design a
human-LLM collaboration system for rubric-based
scoring, but they do not structure the process. More
structured, Fiacco et al. (2022) design a system to
annotate essays with rhetorical tree structures serv-
ing as a means to identify problematic areas in the
essay and produce a quality judgement, but they do
not consider complex reasoning over these struc-
tures. Our framework connects the paper to the
output, so it comes with more expressive explana-
tions and is more fine-grained.

A.2 Discussion: Paper Assessment as a
Explicit Structured Reasoning Process

This Section offers an in-depth discussion of the
newly proposed perspective on document and paper
assessment as a structured reasoning task.

Paper Assessment as a STRICTA problem We
frame paper assessment as a structured reasoning
problem in critical text assessment. This framing is
plausible and flexible with respect to the partially
subjective nature of paper assessment. Specifically,
we motivate this framing from the expert discus-
sions and from an analysis of peer review data.

The expert interviews and formative study (see
A.3.1) revealed that assessing a biomedical paper
is largely independent of its specific topic. Ex-
perts repeatedly investigate the same components,
considering the line of argument and underlying
research of the paper to determine its quality. Each
review differs only in the weight that is assigned to
the different aspects, e.g., leaving some out some-
times when irrelevant to the paper type, and how
each aspect is determined. This justifies framing
paper assessment from the structured reasoning
angle because an interconnected set of reasoning
variables adequately describes the experts’ model
of paper quality.

Besides the evidence derived from the expert in-
terviews, we validate the proposed framing within
the context of peer review. We analyze 30 ran-
domly sampled reviews from the NLP domain of
the NLPEER corpus (Dycke et al., 2023) and man-
ually analyze their lines of argument. This anal-
ysis reveals that reviewers often employ what-if-
reasoning (e.g. "Without additional experiments
covering more models, the expressiveness of the
experiments is limited." implying that if the paper
had more experiments the reviewer would value the
soundness of the paper differently) and that many
weaknesses identified by reviewers reoccur across

a variety of papers. These observations support the
framing of paper assessment as a structured reason-
ing process and a strong alignment with the causal
framework proposed in this paper.

Advantages of the STRICTA Framing Fram-
ing paper assessment as a STRICTA problem opens
up safe and interpretable human-AI collaboration.
In such a scenario, the human expert reads the paper
and defines selected variables, and the AI is tasked
to fill in the remaining variables automatically or in
collaboration with the human. In our experiments,
we test different configurations, including provid-
ing only the final verdict, and providing full agency
to the human on the outcome decision. Since the
reasoning structure for the explanation is fixed, the
model output becomes easier to interpret.

Relation to Other Forms of Reasoning The
STRICTA framework allows for defining various
reasoning tasks on the underlying workflow de-
pending on the provided data. In the following, we
discuss the reasoning task considered during the
experiments in Section 5 – the task of explaining a
given verdict based on the paper text – in reference
to the broader reasoning concepts.

The work is inspired by diagnostic reasoning.
Diagnosis is a general activity that is not limited
to medical diagnosis by physicians. More gener-
ally, diagnosis refers to the task of identifying the
hidden cause of an observed (malfunctioning) be-
havior in a system (Reiter, 1987). For instance,
psychotherapists, programmers during debugging
of source code, or engineers analyzing machine
failures all use diagnostic reasoning (e.g. Mueller
et al., 2012; Wong et al., 2016; Hameed et al., 2009;
Magnani, 2023). By the above general definition,
paper assessment can be seen as a diagnostic task.
Figure 4 illustrates this in comparison with other
diagnostic activities.

Finally, we provide a short discussion on the
classification of the considered reasoning task. Ab-
ductive reasoning means inferring the most likely
explanation for a given set of observations (Peirce,
1955). Deductive reasoning means deriving a con-
clusion from a set of premises by applying a se-
quence of logic rules (Leighton, 2003). We argue
that the given problem setting is abductive reason-
ing rather than deductive. First, unlike deduction,
the reasoning process of paper assessment is prob-
abilistic, i.e., reviewers choose the best of all pos-
sible explanations for their verdict. The verdict is
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Figure 4: Diagnosis is a general concept used by many
professions. Scientists use it during paper assessment
(top), physicians use it during medical diagnosis (mid-
dle), and engineers apply it to analyze machine failures
(bottom). An observed failure behavior (yellow) given
the observable system states (red) is explained by as-
signing the hidden system states a most likely value
(grey area).

not derived from a set of formal rules from a set
of premises. The subjective nature of the task and
the complex interaction of quality criteria make
this impossible. Second, in the given task, fram-
ing the goal is to find the unobserved intermediate
steps that lead to the observed verdict, which aligns
precisely with the definition of abduction.

Practical Utility of STRICTA-based Assistance
Conceptually, STRICTA supports effective and in-
terpretable human–AI collaboration in two ways:
by enabling explainability and identifying opportu-
nities for human–LLM collaboration. Structured
explanations enhance interpretability and explain-
ability of NLP models by augmenting single-shot

black-box predictions with intermediate reasoning
steps, such as reasoning trees (Dalvi et al., 2021)
or multi-hop predictions (Jiang et al., 2020). By
design, they allow verification of model outputs,
promoting trustworthiness. Structured reasoning
also enables systematic analysis of human–LLM
collaboration potential (see Section 5). It helps
identify steps needing assistance, assess LLM com-
petence across reasoning stages, and estimate the
feasibility of dynamic task routing between humans
and AI.

Beyond these conceptual contributions, we em-
pirically test STRICTA’s practical utility during
paper assessment. We conduct a small-scale user
study with nine postgraduate biomedical students
who assess preprints in their field using the dataset
generation interface, augmented with GPT-3.5 as-
sistance. Participants could freely engage with the
workflow and request AI support at any step. Six
completed a post-study survey. On a scale from
1 (fully disagree) to 7 (fully agree), the structured
workflow received an average rating of 5.67 for
usefulness in paper assessment. The utility of AI
assistance during stepwise evaluation was rated 3.8
on a scale from 1 (worst) to 5 (best). These results
indicate the potential of STRICTA for effective
and satisfactory human–LLM collaboration in text
assessment. However, more analysis on the human-
LLM interaction dynamics based on large-scale
controlled user studies are needed to validate the
results of this small-scale study.

A.2.1 Background on Causality
Following the definition by Pearl (2000):

Definition 2 An SCM M is (U, V, F, PM), where

i. U is a set of exogenous variables determined
by factors outside of M. PM is a probability
function over the domain of U .

ii. V = {V1, ..., Vn} is a set of endogenous vari-
ables determined by variables in U ∪ V .

iii. F = {f1, ..., fn} is a set of functions, the
structural equations, on the domains of Ui ∪
pai to Vi, where pai ⊆ V \ Vi, and Ui ⊆ U
and F forms a mapping from U to V .

This means each endogenous (i.e., modeled)
variable is given by a structural equation vi =
fi(pai, ui) where pai is the set of parent variables
from V and arbitrary exogenous variables ui ⊆ U .
Exogenous variables are also called background
variables that add randomness to the otherwise de-
terministic structural equations.
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Causal Graphs Causal graphs are an intuitive
representation of SCMs where the nodes are given
by U ∪ V , and a directed edge indicates that the
antecedent is input to the structural equation of the
consequent (child). We read an edge from X to Y
as X (may) cause Y.

Interventions and Counterfactuals We notate
interventions using the do-operator. For an inter-
vention do(X = x), we alter the SCM M by re-
placing all occurrences of variable X by x in F .
We denote the altered model as MX=x. Counter-
factuals pose what-if questions on the SCM. For
a query "What value had Y if X = x under the
circumstances u?" we imagine the causal effect
of X on Y for a concrete instance counter to the
observed facts. The counterfactual distribution is

PMX=x
(Y = y) =

∑

{u|u∈Û∧Yx(u)=y}

P (u)

where Yx(u) denotes the potential response of Y
under MX=x. Finally, the average causal effect
(ACE) of an intervention on a binary variable X
is the difference of expected values of Y with
ACE(X,Y ) = E[Yx=1]− E[Yx=0].

A.2.2 STRICTA Design Choices
Characterizing Reasoning Problems For the
discussion of alternative formalisms for describing
STRICTA problems we refer to the literature on
the nascent field of diagnostic abductive reason-
ing (DAR) (Peng and Reggia, 1990) since it also
aims to make reasoning explicit and expresses the
reasoning as a structured graph.

One very established approach is to model DAR
as a set-covering problem (Bylander et al., 1991).
Here, the task is to select a minimal set of hy-
potheses that explain the observed behavior op-
timizing for a plausibility metric. Under this fram-
ing, the system model consists of a set of indepen-
dent boolean hypotheses and their relation to the
observable behavior. As another formalism, propo-
sitional logic has been proposed to describe the
system model (Nordh and Zanuttini, 2008). Here,
the hypothesis space is expressed as a set of propo-
sitional clauses from which a subset needs to be
selected such that it is faithful to the problem con-
text and logically implies the observations. The
system model hereby consists of multiple proposi-
tional logical clauses and solving the task means
finding a satisfiable configuration of hypotheses

given the observations. Similarly, logic program-
ming models the system as a logic program, pos-
ing the behavioral variables as known variables
and searching for an optimal answer (Lin and You,
2002).

While the above approaches model reasoning
as a purely logical and thereby discrete problem,
another line of research focuses on probabilistic
models of abductive reasoning that explicitly incor-
porate ambiguity and uncertainty and often sup-
port continuous variables. Fuzzy logic models
the space of explanations in terms of fuzzy sets,
and the solution is discovered by maximizing the
probability of the hypothesis set explaining the ob-
servable behavior (Berner, 2007; Suryanarayanan
et al., 1995). More prominently, Bayesian networks
and structural causal models (Richens et al., 2020).
Here, the underlying causes for observable behav-
ior are expressed in a network of interacting fac-
tors. While all formalisms allow for the encoding
of a system of components that jointly influence
behavioral variables, logic-based approaches can-
not handle ambiguity and uncertainty, whereas sta-
tistical approaches can only characterize associa-
tional strengths between factors. Only SCMs allow
for studying cause and effect relationships (Pearl,
2000), making them strictly more powerful than
the other approaches.

Design Choices The key challenge in approach-
ing a concrete STRICTA problem or family of
STRICTA problems lies in choosing an appropri-
ate structured reasoning model (i.e., the workflow)
which is sufficiently expressive yet computational
inferences on this model are feasible.

We opt to describe STRICTA problems using
SCMs. On one hand, the probabilistic elements
of this formalism can directly model the statistical
variance induced by the ambiguity and subjectivity
of most document assessment tasks. On the other
hand, the ability to pose causal and counterfactual
queries on SCMs enables a rich methodology to
study the reasoning process of humans and poten-
tially AI models in terms of explanations.

Additionally, for any reasonable text assessment
process, the final verdict should depend on the input
text of the problem. Therefore, we require the SCM
for an STRICTA problem to have three tiers, each
depending on the previous tier: the surface text
variables, the intermediate reasoning steps, and the
final verdict.
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A.2.3 STRICTA Beyond Paper Assessment

To exemplify the transfer of STRICTA to other
tasks, we outline the steps necessary to instanti-
ate it for multi-rubric essay scoring. Automatic
essay scoring (AES) can enhance teacher consis-
tency and enable large-scale student self-teaching
(Taghipour and Ng, 2016). Beyond predicting an
overall score, AES models often provide rubric-
specific scores that relate to the final grade (Kumar
et al., 2022). This task aligns well with STRICTA’s
scope, and we propose a streamlined protocol based
on our study. To instantiate STRICTA for essay
scoring, we follow these steps (see Section 3.3):
(1) design the causal graph, (2) populate it with
human data, and (3) perform analysis and partial
automation.

To construct the causal graph (1), we first iden-
tify the relevant variables, starting with the final
verdict as the final score along with a rationale. We
model the rubric scores as INFER steps that are di-
rect parents to the final verdict. The key challenge
lies in defining the information flow from the essay
text via EXTRACT steps towards the scoring rubrics.
Here, we may involve teachers and grading experts
to understand their mental workflow. As an exam-
ple, a rubric score on “narrative quality” (Somasun-
daran et al., 2018) is determined by first extracting
the exact narrative of the essay and then deriving
partial judgements on its consistency and alignment
with the essay prompt. As an alternative to the man-
ual definition of the workflow, existing resources of
rubric assessments (e.g. (Yoo et al., 2024)) can be
used to determine the different factors impacting
essay scoring and their relation to the text. To pop-
ulate the structural causal model with data (2), we
replicate the annotation study with human experts
based on existing essay corpora, tasking teachers
to follow the workflow to grade an essay. Based on
our findings, a human-LLM collaborative approach
to data generation is promising to speed up this pro-
cess, and a combination of authentic human data
as well as LLM-generated data revised by humans
is promising. Finally, we perform an analysis and
evaluate LLMs on the task (3). The analysis can
be used to quantify the consistency of human rat-
ings (through variability analysis), determine the
weighing of rubrics and their localization in the
essay text (through average causal effect analysis).
Applying LLMs for automatic scoring according
to the grading workflow enables students to inspect
the specific rationales for the final score and to lo-

cate them in the paper. Conceivably, students can
use the resulting tool to iteratively improve their
paper by producing counterfactual versions that
improve their score as a learning exercise.

Overall, this example illustrates the application
of STRICTA to other critical text assessment sce-
narios and makes clear the potential for analysis
and automation in this domain.

A.3 Constructing an SCM for Biomedical
Paper Assessment

A.3.1 Interviews and Formative Study
We report on additional details of the interviews
and the formative study used to elicit the workflow
from the domain experts. The process was divided
into four major steps: before the interviews, the
actual interviews, consolidation, and the formative
study. For all stages, we worked with two biomedi-
cal experts on post-doctoral and professorial levels,
respectively. Both have reviewed numerous pub-
lications during their careers and have extensive
experience in the field.

Before the interviews Before the interviews for
deriving an SCM, we determine the critical points
during text assessment and characteristics of the
paper genre to ground all further steps on this in-
formation. After interrogating the two experts in a
joint session we converge to the following insights
on the domain at hand.

First, there are two general types of papers in
biomedicine relevant to their work: natural science
papers, which investigate natural phenomena, and
method papers, which propose a new approach to
conducting experiments. Second, biomedical pa-
pers follow a relatively rigid surface structure
with an introduction including background infor-
mation, the methods section as a detailed experi-
mental log, the results section reporting the exact
measurements, and the discussion section followed
by an overall conclusion. The results and discus-
sion section can be intermingled. Third, figures
and tables play a major role in the understanding
and assessment of a paper. Fourth, methodologi-
cal soundness and consistency of results are key
indicators during text assessment. Finally, several
heuristics exist to detect bad experiment design,
such as the lack of controls or suspiciously high
standard deviations on measurements.

Interviews We conducted the interviews with
each expert in isolation and oriented towards best
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practices of interview design by Knott et al. (2022).
To structure the interview, we discussed the as-
sessment criteria and process based on reviewing
checklists of the field, starting with a general and
intuitive description of the assessment process and
increasing the level of detail. For the first inter-
view, we considered the manuscript checklist by
Seals and Tanaka (2000) conceptualized for physi-
ology research. For the second interview, we use
the Portland Press review checklist8 for biomed-
ical sciences. We opted for two different check-
lists to encourage different perspectives during the
workflow elicitation and mitigate the impact of the
interviewer’s biases.

The result of these interviews is two different
step-wise manuals on how to iterate through a
biomedical paper and assess its methodological
soundness. We identify the there types of actions
taken during assessment (READ, EXTRACT, INFER)
which align between both manuals. While some of
the subordinate steps deviate and the researchers
put a different emphasize on each of these aspects,
the overall assessment approach is very similar. In
summary, first, the whole article is skimmed to
get an understanding of its contents. Then, the ex-
perts check the contextualization with related work
and background information in the introduction.
Afterward, they skip to the results section, which
includes figures and tables. They check the align-
ment of results and whether the reporting seems
plausible and follows best scientific practice. Sub-
sequently, they read the discussion in detail and
analyze if the provided interpretations and conclu-
sions align with their own readings of the results
and their context in related work. Then, they verify
that the method section covers all important meth-
ods and that they are described correctly. Finally,
they check the conclusion section, abstract, and
title to verify that they align with the findings and
methodology described in the other sections. Both
experts agree on the temporal ordering of these
major steps during assessment.

Consolidation After the interviews, we consoli-
date the sequential manuals into one manual cov-
ering all the mentioned points by both researchers.
We then interpret the temporal ordering and the sub-
ordination relationship between major and minor
steps as causal dependencies to answer follow-up
questions. For instance, to answer a sub-ordinate

8https://portlandpress.com/pages/peer_review_
checklist (accessed 08/2024)

step, "Is the description of the state-of-the-art com-
plete?" we require the input from the super-ordinate
step, "How do the authors describe the state-of-the-
art in the field?".

This results in a workflow of 106 reasoning steps
covering all sections of the paper. We discuss the
dependency structure and overall workflow with
one of the domain experts and incorporate sug-
gested changes. We use the resulting workflow as
input for the formative study.

Formative Study We perform the formative
study with three PhD students from the same re-
search lab as the two senior experts. Following a
similar setup as described in the final annotation
study (in Section 4.2), we linearized the workflow.
We asked them to assess a paper selected by their
preference, providing answers for each step. For
the formative study, the annotators work without
any specific annotation interface and simply append
the answers to a text document. We summarize our
findings from this formative study in the following.

First, the annotators did not finish the full
workflow of 106 steps within the three hours of
the study, suggesting that the workflow should
be subselected to keep the annotation practical.
Second, the annotators tended to not use the
causal dependencies explicitly between the steps,
meaning that they answered several steps based
on the paper and not referring to their own prior
answers. The main obstacle for this lied in the
lack of a tailored annotation interface that presents
prior answers and enforces the causal structure.
Third, annotators need training to get an overview
of the workflow graph to avoid redundantly stating
similar facts across multiple steps. An easy option
to revise prior answers might also be interesting
for that purpose.

In response to these observations, we designed
the final evaluation study setup to collect the dataset
underlying the SCM (as described in 4.2). More
details on the annotation interface can be found in
the Appendix A.4.2.

A.3.2 SCM for Biomedical Paper Assessment
We give a more extensive overview of the graphical
structure, the specific steps, and their prompts in
the biomedical paper assessment workflow.

Workflow Steps The full causal graph of the
biomedical workflow is illustrated in Figure 5. Ta-
bles 4 to 6 list all workflow steps, including their
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type and prompt. The description and example
are omitted for readability. We refer the reader to
the associated codebase for the complete workflow
step specifications.

Graph Structure The graph, as shown in Figure
5, is a directed and acyclic graph. The average
degree per node lies at 3.57; the mean number of
parents lies at 1.78; there are 3 roots in the graph
(the READ) nodes; there are 4 terminal nodes of
which one is the final verdict, whereas the others
are the assessment of clarity and the high-level
summary based on the skim. These only exist to
ease the annotation and have no meaning for the
overall SCM modeling of the DAR problem.

Upon qualitative inspection of the graph, it be-
comes clear that the two major sections (results and
discussion) form a dense network of descendants,
while there are only a few connections between
the nodes belonging to the different sections. Only
the nodes closer to the final verdict share parents
belonging to different sections. This allows the
graph to be divided into 5 layers of nodes, where
each layer contains only nodes that can be assessed
in parallel according to topological ordering. We
make use of this property for the batch-wise compu-
tation of the LLM programs during our experiments
described in Section 5.

Boolean Workflow Version For our causal anal-
ysis of impact factors on decision making (see Sec-
tion 4.3), we convert the full text-based workflow
into one that consists only of the boolean nodes to
estimate the structural equations from data.

Figure 6 shows the causal graph of the resulting
boolean workflow. This graph maintains the causal
ancestry relationships of the original graph. More
formally, the output graph maintains the transitive
closure of the original graph on the subset of se-
lected nodes. To arrive at this, we substitute all
text-only nodes (such as EXTRACT nodes) with an
edge, which means that we basically "skip" this
step but maintain the causal relationship from their
parents to their children. For nodes that would be
substituted and lie at the end of a path, we drop the
nodes. This is the case for read nodes. However,
as all read nodes depend on the paper, we add an
additional joint dependency of all children of read
nodes to the node assessing the clarity of the paper.
We make the assumption that the read nodes of
different sections are independent except for the
clarity of the paper acting as a confounder.

A.4 Data Collection
A.4.1 Underlying Paper Dataset
We crawl the underlying papers from bioRxiv and
ensure a high sample diversity along relevant di-
mensions. Here, we outline the details of this pro-
cess.

Data Acquisition We retrieve the index of all
papers on bioRxiv using a custom crawler based
on the recent paper list9. We deduplicated the list,
resulting in roughly 100k in preprint URLs. We
then retrieve all paper meta-data, including the
title, authors, corresponding author institution,
type of study, version, category tag, publication
information, license, abstract, and the number of
versions of each article, through the bioRxiv API.
We augment each entry by the country and world
region of the authoring institution10 and the paper
length estimated from the number of PDF pages.

Next, we filter all preprints to include only those
with a license that permits redistribution (CC0, CC-
BY, CC-BY-NC, CC0-NG), that belong to any of
the relevant categories in {biochemistry, bioengi-
neering, synthetic biology, microbiology, molecu-
lar biology, bioinformatics}, and whose abstracts
contain at least one of the terms {RNA, regula-
tory RNA, synthetic, RNA circuit, biosensor, ri-
boswitch, aptamer}.11 Finally, we filter by publica-
tion date (published between 06/2021 and 06/2023)
to ensure recency. This results in 1252 eligible ar-
ticles. Then, we estimate the covered topics using
LDA (Hoffman et al., 2010) on the abstracts of the
remaining preprints.

Sample Diversity Based on this dataset, we aim
to select a representative subset along the dimen-
sions of the world region of the authoring insti-
tution, the number of versions that exist of the
preprint, and the publication status. The latter two
criteria should ensure that there are preprints of
varying quality in the samples, whereas the first
should ensure that the papers come from diverse
institutions with different publication records and
writing styles. For this purpose, we take a stratified
sample of 200, which is then manually inspected
and filtered by one expert annotator, resulting in 57

9https://www.biorxiv.org/content/early/recent,
accessed 08/2024

10We match the institutions via the publicly available
university domain mapping https://github.com/Hipo/
university-domains-list

11Our expert annotators provided this list.
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Figure 5: Representation of the full workflow. For each step, the prompt is provided. The color of each node
indicates the node type. READ nodes are red, EXTRACT nodes are green and INFER nodes are blue. The turquoise
nodes are INFER nodes that rely on background information not present in the paper. The edges are colored to match
the parent node type and increase the readability.

eligible papers, of which 22 were annotated. Fig-
ures 7 to 9 show the sample diversity of the final
dataset along the key dimensions as compared to
the initial stratified sample of 200 papers. While
observing a light skew towards accepted papers, all
world regions, versions, and publication statuses
are present in similar proportions as in the full sam-
ple. All papers are written in English which is the
lingua franca across science.

Data Format For all resulting papers, we retrieve
the PDF and the XML from bioRxiv. To comple-
ment the XML with figures and tables, which are
represented as images, we reverse engineer their
URLs and retrieve those as JPG files. We parse the
XML together with the images and store them in

Intertext Graph Format (ITG)12.

A.4.2 Annotation Study Details
Overview We employed the following guidelines
and annotation interface to ensure maximal consis-
tency among annotators and to encourage step-wise
causal thinking. As another key quality measure,
we repeatedly engaged with individual annotators
and the whole annotator group to calibrate and pro-
vide feedback on their annotations.

Guidelines The guidelines consisted of the
following text extended by a sequence of images
explaining the annotation interface in detail.

12https://github.com/UKPLab/intertext-graph/
tree/main
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Figure 6: Representation of the boolean workflow. For each step, the name and ID are provided.

Figure 7: The ratio of each world region in the full paper
dataset and the subsample of 22 papers included in the
annotation study.

Figure 8: The ratio of versions in the full paper dataset
and the subsample of 22 papers included in the annota-
tion study.

Figure 9: The ratio of publication status in the full paper
dataset and the subsample of 22 papers included in the
annotation study.

A “reviewing workflow” is a formal way of reasoning about
the quality of a paper. A workflow consists of a sequence of
questions that build on top of each other. The workflow was
developed with experts of the field and while it might not
resemble your personal internal mindmap during peer review,
it is a good way of discussing an article’s quality.

Some of the questions in the workflow simply extract in-
formation from the article or your background knowledge,
others infer or combine quality judgements based on earlier
answers. you will encounter the following questions/tasks in a
workflow: read – here you read a section or part of the paper.
extract – based on the section you read (in an earlier question)
you try to extract certain information from that section. Usu-
ally this means you will need to highlight some information
in the paper and write a summary. infer – based on previous
answers to questions, you make a judgment on the question
(usually a yes/no question) by combining the previous answers
in the right way.

Your task in the annotation study is to strictly follow the
reviewing workflow as you are guided through its questions
step-by-step. While this seems unnatural at first, this makes
sure that all participants follow the same reasoning, while still
answering each question naturally and from their subjective
point of view. During the annotation there are several things
to keep in mind, which are explained in more detail below.
Most importantly, you should try to annotate each question
based on precisely the input that is provided to you during the
workflow; do not answer questions in isolation and by a vague
general feeling of the paper.

Reviewing Workflow Example
In the following you will be guided through a dummy work-
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flow to make you more familiar with the annotation interface
and the concept of workflows. Before you dive into CARE,
please have a look at the right example for the underlying
logic of workflow. When you do the annotation and in this
mini-tutorial this graph of dependent questions is converted
into a questionnaire.

Please click on the following link to go through the tutorial.
If you should have problems with stepping through the work-
flow, please refer to the section Annotation Interface or talk
to the study coordinators. We recommend Firefox for using
CARE.

Terminology
Some terminology re-occurs in many questions of the work-
flow and there is some room for misinterpretation. Please
briefly consider the following terms and “our” definition for
them.

• Research question (aka hypothesis): A research question
or hypothesis = a claim (possibly phrased as a question)
on the system under investigation which the authors try
to verify or falsify; example: ’is brain cancer caused by
this DNA sequence?’

• Method (aka approach): The methods or approach of
a paper = the (standardized) tools, technologies, and
actions the authors undertake to approach the research
question; example: modular cloning, Gibson assembly,
...

• Result: The results of a paper = the data mea-
sured/generated during the experiments of the paper.
The results comprise more or less the raw measurements,
possibly aggregated by statistics, but not interpreted.

• Interpretation: An interpretation = based on results (raw
data) the authors provide an interpretation, i.e. an expla-
nation or conclusion within just the scope of this specific
experiment run, but without claiming correctness of the
statement for the whole natural science world; example:
the experiments show an upward trend in variable X.

• Conclusion (aka finding): A conclusion = based on the
interpretations of experimental results and the valid-
ity of the experimental setup, the authors generalize a
claim from the specific experiment to the natural science
world; example: variable X and variable Y correlate.

• Method Paper Type: A method paper introduces a new
experimental setup / technology / tool / technique to
solve a practical research problem; e.g. discovering
a new RNA lever to enable follow-up research or de-
signing an algorithm to measure quantity X. The cen-
tral research question usually is “Can we develop a
new tool for task X that has properties Y?”. The
method of such a paper comprises the newly proposed
tool/setup/technique. The results cover the measure-
ments on desired properties Y on task X (e.g. accuracy)
of the tool. The interpretations analyze the significance
of these properties (compared to related work) and the
conclusions are usually claims about whether the new
tool is an improvement to existing tools along certain
dimensions and for which scientific endeavors it should
be applied.

• Original Research Paper Type: An original research pa-
per investigates a research question on natural science
phenomena; e.g. checking if two molecules interact
with each other or searching for an explanation for cer-
tain behavior in cells. The central research question can
be diverse; they are usually a causal question (“does A
cause B?” / “why does X behave as observed?” / etc.).

The method of such a paper comprises the experimental
setup based on any prior tools/approaches and how they
are combined. The results cover measurements on the
observed variables and the interpretations analyze these
results to form specific claims about the experiments.
The conclusion usually puts the interpretations into per-
spective and makes claims about the underlying natural
science phenomenon.

Principles

• English Language – please answer the questions only in
English.

• Fluency – In general, answer all questions with fluent
text.

• Explanations – For yes/no answers, please always first
provide your assessment (yes / no), but then also add
an explanation that describes how you arrive at this
answer and contextualizes/constraints your assessment.
This is especially important when you cannot give a
clear yes/no response. E.g.: Q: “Are there outdated
references?” (good) A: "Yes. There are some references
to methods that are clearly outdated: they are more
than 5 years old. However, the references to the most
relevant work on the same issue are recent, so I judge the
references to be overall sufficiently new.” (bad, trivial
explanation) A: “Yes. Because the references are not
outdated.”

• Good reasoning (what-if) – on infer questions, where
you combine and weigh prior answers to respond to
the new question, you should ask yourself, what in-
put answers would turn my judgment positive/negative.
Likewise, you should check that all information in your
answer really comes only from the inputs.

• Uncertain Flag – You can mark an answer as uncertain
(flag icon), if you really don’t feel able to answer the
question. However, use this option very sparingly!

• Highlighting – For the extractive questions you should
try to highlight whole sentences and not on sub-sentence
level. Ideally, for each aspect you extract you can narrow
down the highlight to at most 4 consecutive sentences
– avoid selecting whole paragraphs, let alone pages. If
you need to highlight across two pages (not possible in
CARE), please simply make two highlights.

• Reading Tasks – if a reading task points you to a certain
paper section, do consider if this section is present as
such or if you should peek into others to answer the
questions; e.g. some discussion might appear in results
section.

• Comprehensive Answers – Remember that all your an-
swers to questions will form the input to later steps
in the workflow. This means your answers should be
comprehensive to allow all follow-up judgements. If
you notice at a later question that your earlier answer is
insufficient, do not hesitate to jump back to that earlier
question and flesh it out. With some practice in using
the workflow, this will become less frequent.

• Don’t be too picky and don’t be too nice. The purpose
of the reviewing workflow is to perform a mostly neu-
tral assessment of the paper at hand. It is not about
“destroying” the paper (even if you disagree with the
goals/ideas/. . . of it) and you shouldn’t naively trust ev-
erything the authors say or get distracted by the authors’
good or bad writing style.
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Examples
Q: What is the pool of related work you know?

Bad: I somewhat remember there are some other works
that deal with that phenomenon. → informal, vague

Better: There is a list of related works that deals with the
same phenomenon: X, Y, Z. → formal, precise

Better: I am not familiar with the detailed related work of
the field, however works X, Y, Z appear similar to the scope
of this work. → formal, objective

Q: Are there references missing? (based on 2 and 3)
Bad: Yes. → no explanation, no context
Bad: No, it really sounds like they cover all bases. →

informal, not derived from 2 + 3, but a general feeling on the
paper directly

Better: Yes. While they reference the most important
works (X, Y), they omit Z, which also investigates <subject>.
→ contextualized, explained

Q: Are there outdated references? (based on x, y)
Bad: Yes → no explanation, no context
Bad: Yes, because there are outdated references → trivial

explanation
Better: Yes. The references to the methodology are all

older than 10 years. In the given fast-paced area of research
such references are generally outdated. → contextualized,
explained

Annotation Interface Screenshots of the anno-
tation interface are shown in Figures 10 and 11.
On the right, the annotators can control how they
step through the workflow. They can jump back to
earlier steps if needed. In the view for INFER items,
annotators cannot see the paper and have to base
their answer on their prior answers.

Annotator Demographics We report selected
annotator statistics including demographics for re-
producibility. Due to the relatively small pool of
annotators, we report the annotators of the JUNIOR

and SENIOR study jointly and omit detailed char-
acteristics that could violate their anonymity. The
identities of all annotators are kept secret and we
assign random pseudonyms in the dataset to avoid
deanonymization.

The distribution of genders is nearly balanced
between male and female; diverse was never self-
reported. Nearly all annotators are from the age
group 20 − 29. Figure 12 reports the number of
years each annotator is engaged in biomedical re-
search in any form. Figure 13 shows the distri-
bution of biomedical papers read per week in the
whole pool. Several of the JUNIOR annotators do
not regularly read biomedical papers, but several
consume them occasionally. The SENIOR annota-
tors all consume papers regularly. Nearly all anno-
tators speak English as a second language.

Dataset Post-processing We pseudoynmize all
data and bring the annotations into a unified for-

mat. Because the JUNIOR annotators have less
experience with respect to academic review and
publishing, we filter this dataset by a set of quality
heuristics to ensure high quality. As a proxy for
quality, we manually inspect the answers of each
annotator. We discard annotators’ answers that pro-
vide a drastically different summary of the article
compared to other annotators and the abstract. We
further discard annotations by annotators that pro-
vide consistently shorter answers than the other
annotators. Finally, we discard annotations which
contain multiple trivial explanations ("A is because
A is.") or provide non-English answers. Overall,
we filter highly restrictively to ensure high quality
of the dataset. We discard annotations by 20 of the
JUNIOR annotators.

Dataset Size and Generalizability We take sev-
eral measures to ensure that the findigns from our
analysis (Section 4.3) and LLM experiments (Sec-
tion 5) on the dataset are general and representative.
As detailed beforehand, we ensure representativ-
ity of the paper sample by sampling biomedical
preprints across multiple dimensions. The dataset
captures roughly 4000 reasoning steps, with three
to five expert responses per paper, contributed by
roughly 40 experts in over seven hundred hours of
work. We deem this amount of data sufficient for
our analysis.

To investigate whether the dataset size is suf-
ficient to make general findings on LLM perfor-
mance, we perform a statistical analysis. Specifi-
cally, we investigate whether adding more papers
would affect our experimental findings. To exam-
ine this empirically, we investigate a proxy: the
impact of a single paper on LLM evaluation. If
removing or adding one paper to the dataset does
not significantly alter the results, the dataset can be
considered adequate and the findings generalizable.

We test this hypothesis using statistical analy-
sis. We focus on BERT-F1 scores as the evaluation
metric. The null hypothesis states that the mean
performance on the full dataset equals the mean per-
formance on subsets excluding one paper. Only if
the dataset is of sufficient size, leaving out a single
paper will not induce high variance in the results.
For each leave-one-paper-out subsampled dataset,
we compute the mean performance and compare it
to the overall mean performance computed on all
papers using a single-sample t-test. To account for
multiple models and therefore multiple testing, we
apply Bonferroni correction. At a significance level
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Figure 10: The annotation interface for an extract step. The paper with highlights is on the left; on the right, the user
receives the task for the given step. They can answer in a structure or free-text form, depending on the question.
Annotators can skip through the steps, flag them, and jump to prior steps as needed.

Figure 11: The annotation interface for inference steps. Here, a modal opens above the paper to block the view and
encourage annotators to concentrate only on the provided inputs of prior steps (on the left) to write their answers.
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Figure 12: Self-reported number of years concerned
with biomedical studies.

Figure 13: Self-reported number of papers read per
week on average.

of 0.05 (Bonferroni-corrected to 0.0163), the null
hypothesis is not rejected; p-values exceed 0.98
across all models (specifically 0.9872, 0.9852, and
0.9898). These results indicate no significant effect
on performance evaluation when omitting a paper
from the dataset. Thus, the dataset size is sufficient
for the objectives of this study since the results are
not sensitive to adding or removing a paper.

A.5 Transfer Study

To validate the generalizability of the framework,
we test the transfer of the framework to case of
paper assessment in natural language processing
with distinct requirements. We report the detailed
results here.

We employ in total 33 PhD students specialized
in NLP research to conduct a paper assessment
based on the adapted workflow. This resulted in
9 full executions (answering every item) and 24
partial executions of the workflow. We received
nearly 1000 answers to individual reasoning steps
on top of six NLP papers. To validate the workflow
for the domain, we conducted an optional survey
among the participants for which we received ten
responses.

Rated on a scale from 1 (strongly disagree) to
7 (strongly agree), 60% of respondents assigned a
score of at least 5 (above neutral) to the alignment
with personal assessment practices. In free-form
feedback, some of the participants noted that some
steps appear to discuss overlapping paper aspects.
Others noted that the provided schema worked very
well for them. Overall, the transfer study results
indicate that adapting the proposed approach to
paper assessment is feasible with reasonable effort.

A.6 Data Insights

A.6.1 Detailed Analysis of Answer Variability
We complement the analysis of answer variabil-
ity in the main paper with a detailed analysis of
variability throughout the graph.

Does variability depend on the areas of the pa-
per that are analyzed? When considering the se-
mantic variability along the workflow graph, we see
a weak negative correlation (Kendall’s τ = −0.36)
between the position of the step in the linearized
workflow and the average semantic similarity. Here,
the number of preceding steps seems to play a
role (Kendall’s τ = −0.15), but also the scope
of the steps focusing either on high-level informa-
tion (mean 0.60 cosine similarity), results (0.63),
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or interpretations and conclusions (0.48) in the pa-
per. This is plausible given that the discussion
section of a paper gives rise to more subjective
assessments than the raw results. All in all, the
variability depends on the elements of the paper
that are discussed.

Does variability propagate through the work-
flow graph? Considering the relatively high se-
mantic alignment between annotators on extraction
tasks (mean semantic similarity of 0.60), a lot of
the answer variability has to be the consequence
of deviating opinions during intermediate reason-
ing steps despite relying on the same evidence. To
discover the impact of deviating opinions, we inves-
tigate the propagation effect of answer variability
along paths of the workflow graph and for individ-
ual annotators.

We focus on answers that are substantially dif-
ferent from the ones of the other annotators for
a step. We define an answer as substantially dis-
agreeing (dis) if the mean semantic similarity to
the other annotators lies one standard deviation be-
low the average similarity across all papers for that
step. This means, if an annotator shows exception-
ally high dissimilarity with the other annotators
we flag this answer as a substantial disagreement.
Under this assumption, roughly 21% of all answers
show substantial disagreements. We can then com-
pute the probability of propagating disagreement as
P (dis| ≥ 1 parent with dis) = 0.72. As expected,
substantial disagreement propagates to the subse-
quent questions with a 72% chance as compared to
random disagreement with only 21%.

A.6.2 Structural Equation Approximation
from Data

We report on the boolean decision SCM for analy-
sis. Specifically, we outline the goodness of fit for
the resulting SCM trained on the human-generated
dataset.

Boolean SCM Representation The model is rep-
resented as an invertible structural causal model
within the do-why library13. The root nodes of the
graph are estimated as empirical distributions, and
the other nodes are assumed to be sampled with
additive noise. To learn the mechanism of a node,
we use Gaussian process classifiers. These assump-
tions allow us to estimate the structural equations
from data and determine the noise variables for

13https://www.pywhy.org/dowhy/v0.11.1/

counterfactual queries.

Goodness of Fit We rely on the
evaluate_causal_model function of the do-
why library to estimate how well the learned SCM
approximates the observed human decisions to
measure its validity.

The graph structure of the SCM aligns well with
the data, as there are no other permutations of the
DAG inside its Markov equivalence class. The
average KL divergence between the distribution
implied by the learned structural equations lies at
0.18 which shows an overall close fit to the data.
The invertibility assumption of the nodes is not
rejected for any of the nodes except the root node
step4, which determines if the paper is of the type
method paper. Notably, the Continuous Ranked
Probability Score is low for all nodes (below 0.31)
except for step4 at 0.39. While this hints at the
fact that the model might not perfectly reflect this
factor, the overall model fits the observed data well.

A.6.3 Implementation Details

We report on the implementation details for the
analysis of the SCM.

To determine the semantic similarity we use
SBERT (Reimers and Gurevych, 2019) provided
by the sentence-transformers library (version
2.7.0). We use the embedding model "sentence-
transformers/all-mpnet-base-v2" trained on MP-
NET. For the similarity by part-of-speech tags and
lemmas, we rely on spacy’s14 language process-
ing module specialized for the scientific domain
en_core_sci_lg.

A.7 LLM Assistance Experiments

We report on hyperparameters and all details used
for the different experiments. In total, the exper-
iments with commercial models invoked roughly
200 USD of API inference costs. The open models
were run on three A100 GPUs.

A.7.1 Experimental Configurations

We report on the detailed LLM versions, hyper-
parameters, and prompts for the three experimen-
tal scenarios (automation, human-LLM simulation,
and ablations on error propagation). Additionally,
we report on the evaluation metric versions used.

14https://spacy.io/ spacy-v3.6.1 and
scispacy-v0.5.3
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Open LLM Configurations We use the
langchain15 and huggingface transformers16

libraries to load the open LLMs for inference.
We use the instruction-tuned LLama-3 model

with 8B parameters and the extend 32k context win-
dow17 to fit full papers into the input for EXTRACT

nodes. For Mixtral, we use the mixture of 8 experts
with 8B parameters instruction-tuned18. We also
tested other models including Llama-3 with 70B
parameters but the context size was insufficient to
fit the relevant inputs.

We run all open models with the generation con-
figuration specified in Table 7. For Llama we add
the necessary special tokens for termination.

Closed LLM Configurations For the closed
LLMs we use the AZURE OpenAI API19. We use
the models GPT-3.5-turbo with a 16k context win-
dow 20 and GPT-4o21 with default generation pa-
rameters.

Prompts and Prompt Selection We design two
prompts for each model, one for the EXTRACT

steps and one for the INFER steps. Table 10 shows
the prompts for LLama-3, Table 11 for Mixtral,
Table 8 for GPT-3.5-turbo, and Table 9 for GPT-
4o. The template parameters are substituted before
inference: the parent parameter is replaced by the
paper text or prior answers in the graph; the task
parameter is replaced by the prompt for that step
in the workflow; the description is replaced by the
detailed task description of that step in the work-
flow; the format specifies a json object matching
the expected output type (e.g. including a boolean
field for boolean questions); example is substituted
by the same example that annotators saw during an-
notation but in a suitable json format. For feedback
and refinement, we use the prompts specified in
Table 12 and in Table 13 for all models. Here, the
true verdict is replaced by the decision and associ-
ated explanation of the task’s verdict. The graph is
specified using incident encoding on integer num-

15https://www.langchain.com/, langchain-v0.2.8,
langchain-openai-v0.1.19

16https://huggingface.co/, transformers-v4.35.2
17https://huggingface.co/NurtureAI/

Meta-Llama-3-8B-Instruct-32k
18https://huggingface.co/mistralai/

Mixtral-8x7B-Instruct-v0.1
19https://azure.microsoft.com/en-us/products/

ai-services/openai-service
20https://platform.openai.com/docs/models/

gpt-3-5-turbo, gpt-35-turbo-0613-16k
21https://platform.openai.com/docs/models/

gpt-4o, gpt-4o

bered nodes; i.e. node connections are provided
in the format "node x is parent of node y". The
title takes the paper’s title and the answers it the
list of initial answers as JSON objects including a
restatement of the task prompt and dependencies
for each step.

We first tune the prompts by manual inspection
until the output format and answers appear plausi-
ble. We then tune them manually for an optimal
BERT-Score on the development set of the data.
We do not perform an extensive search for the best
prompt templates; conceptually, we could tune a
prompt for each step individually. This is infeasible
within the scope of this work.

Evaluation Metrics For evaluation, we use the
BERT-F1-Score from the huggingface evaluate li-
brary22 and choose distilbert-base-uncased
as the base model. We use the hug-
gingface version of the TRUE score23 and
choose google/t5_xxl_true_nli_mixture as
the model. We parse the first character as the output
of the model and assume a default score of zero if
the answer cannot be parsed. For SummaC we use
the author provided version24.

A.7.2 Extended Results
In this section we report on more results mentioned
in the main paper.

Additional Ablations and Metrics Table 14
shows the full results including additional abla-
tions and all metrics. Besides measuring the perfor-
mance of models in the self-refinement paradigm,
we test them by executing them just as LLM pro-
grams without any form of backtracking to ensure
consistency to the final verdict. Furthermore, we
report the F1-score both considering the individ-
ual annotators answer as ground truth and when
aggregating them to a majority label.

Finally, we also consider the factual alignment
of humans and LLMs to the paper text for EX-
TRACT steps in terms of the SummaC score (Table
14 shows it as SummaCp). We compute it using
the paper text as a reference to determine if the
responses summarize the paper well. However, EX-
TRACT steps do not describe a classical summariza-
tion tasks, instead they aim to reduce the amount

22https://huggingface.co/docs/evaluate/en/index
evaluate-v0.4.2

23https://huggingface.co/google/t5_xxl_true_
nli_mixture

24https://github.com/tingofurro/summac
summac-v0.0.4
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of presented information to a specific aspect such
as the interpretations in the paper. Seemingly, hu-
mans compress information more than LLMs since
the SummaC score is notably lower than for the
LLMs. This supports our findings from the manual
inspection that LLMs tend to create an exhaustive
list of facts as opposed to humans that focus on
facts relevant to their assessment.

Error Propagation in the Graph The stark per-
formance gap between LLMs run as a program
and human-LLM joint performance suggests error
propagation as a factor. To examine, we discard
the graph structure and run GPT-4o independently
for each step, using the full paper as input and
applying the same self-refinement loop. Results,
shown in the last line of Table 3, reveal improved
performance compared to GPT-4o operating as a
program, though still below its performance with
human oversight. This suggests that errors on ear-
lier steps in the workflow deprive later steps of
information or provide incorrect information for
prediction.

A.7.3 Human Evaluation
The use of automatic evaluation in our study is a
necessity, as human evaluation of all system out-
puts would be prohibitively expensive and prevent
iterative development. While the automatic metrics
used in this work are widely adopted in the commu-
nity, they still remain only imperfect approximators
of the real performance perceived by the users. To
gain deeper insights into the relationship between
our automatic metrics and human judgements for
the tasks at hand, we conducted a pilot study with
human evaluators.

Annotator Pool We hire 7 human annotators
with biomedical experience through the Prolific
platform25. All annotators are paid at least
10.40£ per hour and their payment approved re-
gardless of their annotation performance. We re-
quire the annotators to have at least a post-graduate
degree in biomedical or biochemical sciences to
ensure relevant expertise. All annotators self-report
being proficient in English; half of them are native
speakers. All annotators indicate that they read
biomedical papers regularly. We provide two ab-
stracts of papers included in the study asking anno-
tators to verify their expertise with respect to the
specific field (synthetic biology) before taking up

25https://app.prolific.com/

the task.

Setup The objective of the human evaluation is to
assess how closely the LLM-generated responses
and other human answers align with the true human
answer for a given workflow step. To streamline
this process, we select 8 out of the 45 workflow
steps, focusing on early-stage steps (extract steps)
and critical boolean decision steps identified by
their average causal effect on the final outcome
(see Section 4.3). The evaluation is divided into
two parts based on these step types. In the first part,
annotators determine which facts extracted by the
LLM are implied by the original human answer.
A dedicated interface displays the predicted and
the ground-truth facts. Annotators assess whether
each predicted fact is implied by one, multiple, or
none of the original facts. We call this task the
matching task. In the second part, annotators eval-
uate the alignment of two explanations for boolean
decisions. They assess whether the facts in the ex-
planations contradict or align and whether similar
points are raised, ignoring the decision outcome
itself. We call this task the explanation alignment
task.

For each workflow item, we compare the true
human answer with two other human answers, the
response from Mixtral (using self-refinement and
paper text with human figure descriptions), and
the response from GPT-4o (using self-refinement
and paper text with figures as images). We choose
these models because they are the top-performing
LLMs. For all 8 workflow steps, we select 3 pa-
pers and pick the response of one annotator from
the original study as the ground truth. For each
item, annotators view one combination of these
outputs alongside the true human answer to assess
alignment. Annotation items are randomly sam-
pled and presented in random order. Annotators
first evaluate EXTRACT steps, then boolean INFER

steps, using provided guidelines and examples. We
screen the annotator answers considering the time
of annotation per item and selected items with a
known correct solution.

Resulting Data The annotation study results in
40 annotation items of which 14 items across the
8 workflow steps have at least two annotations. 7
annotators participated in the study; we filter out
one annotator based on the described screening.

We measure the level of inter-annotator agree-
ment using Krippendorff’s α with categorical la-
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bels for each of the tasks. For the matching task,
the IAA lies at α = 0.412 computed on all pairwise
comparisons of facts, for explanation alignment at
α = 0.444. This moderate level of agreement is
similar to other tasks aiming to identify links be-
tween two texts (e.g. implicit linking in Kuznetsov
et al. (2022)) and point to the difficulty of the task
similar to annotation scenarios in argumentation
mining (Lawrence and Reed, 2020; Iskender et al.,
2021). Extensive annotator training, paper con-
text, and a rectification protocol are appropriate
measures to foster consistency (Klie et al., 2024).
We leave this to future work because we deem the
given level of consistency sufficient to estimate the
relative performance differences on the task.

Evaluation Results We aggregate the matching
annotations to compute the average overlap be-
tween the facts of the predicted answer and the
original human answer. We compute the Jaccard
metric considering matched items as shared items
for each annotator and then average over all. For ex-
planation alignement we take the majority vote by
all annotators on an item and compute the average
amount of aligned explanations. Table 15 shows
the results. The results closely resemble the find-
ings based on the automatic metrics with Mixtral
and GPT-4o performing nearly on-par and the hu-
man conservative baseline lagging slightly behind.
GPT-4o’s performance is better on boolean deci-
sion steps than Mixtral but worse during extraction
of facts.

Finally, we estimate how well the human evalua-
tion scores align with the automatic metrics. Specif-
ically, we compute the Pearson correlation to deter-
mine whether there is a linear relationship with the
automatic metrics. Table 16 shows the correlation
coefficients for the two evaluation scenarios. BERT-
F1 overall correlates moderately with human judge-
ment in both scenarios. As a general purpose text
similarity metric, BERT-F1 captures the answer
similarity well regardless of the underlying work-
flow step. SummaC, on the other hand, appears
inappropriate for matching evaluation (weak nega-
tive correlation), but well-suited for alignment. The
TRUE score show overall low to moderate align-
ment with human judgement. In conclusion, the
used automatic metrics capture human judgement
to some extend and can serve as a solid estimate
for performance. The differences in correlation to
human judgement for the two different task types
in the workflow suggest that a more fine-grained,

step-specific evaluation is a promising direction of
future research.

A.7.4 Extended Analysis
In this subsection we report on further analysis
conducted to gain insights into the reasons for the
measured performance of LLMs.

Decision Making Humans mostly lean towards
positive decisions (67% ’yes’ answers), whereas
most LLMs are more restrictive (44%-59% ’yes’
answers). A manual answer analysis reveals that
human annotators often decide positively despite
raising several negative points. They frequently
weigh the raised negative points more lightly, re-
serving a negative decision for extreme cases.
LLMs appear to make more harsh conclusions
when the accompanying textual answer contains
several points of criticism. This difference in
weighing weaknesses in the paper explains the com-
paratively low performance on decision making for
the boolean nodes. Additionally, this points to the
risk of a potential negativity bias of LLMs while
assessing a paper.

Answer Language We turn to a language anal-
ysis of the textual answers. LLMs consistently
generate longer answers (67 tokens on average
for GPT-3.5) than humans (55 average tokens).
Upon manual inspection, we find that the automati-
cally generated answers to EXTRACT steps tend to
split up facts exhaustively, whereas humans make
broader and summarizing statements. For INFER

steps, LLMs often restate the inputs from prior
steps, unlike human annotators. Both factors might
contribute to the high factual alignment by auto-
matic metrics because LLMs appear more specific
and cover many facts, whereas humans tend to
select a minimal set of facts relevant to their indi-
vidual assessment process. This encourages further
research on automatic evaluation metrics for this
setting that can account for the reasoning context
of a step.

AI-Assistance Disclosure Statement

We employed LLMs to prepare this paper in a lim-
ited and specific capacity. We used LLMs to assist
in revising the writing style of this document. Addi-
tionally, we employed them as assistants during the
coding phase of the experiments. LLMs were not
involved in the ideation process, the formulation
of hypotheses, or the performance of any experi-
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ments. All scientific and intellectual contributions
are solely the work of the authors.
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Id Name Type Prompt

step001.42 Skim read Skim the whole paper briefly (10-15min).

step002.44 High-level Idea extract
Summarize the high-level idea of the article in 4-5

sentences.

step034.50 Research Questions extract
What research questions (a.k.a. hypotheses) do the

authors investigate? Please highlight and list

step003.43
High-level
Methods

extract
Summarize the used methods of the article briefly and

on a high-level.

step004.8 Method Paper Type extract
Is this a method paper (as opposed to an original

research paper)?

step048.x
Overall Clarity of

the Paper
extract Is this paper written clearly and concisely?

step006.4 Results Section read
Read the Results section (and associated figures in the
appendix) in detail. Highlight the caption of the section

to indicate where it starts.

step007.7 Figures extract

Highlight all figure captions relevant to the result
section and summarize the figures briefly without

interpreting them. If there are no figures, respond with
’none’ as a list step.

step016.25
Expected Figures

for Methods
infer

What types of plots/figures/tables would you expect for
the methods used in the paper?

step019.60 Choice of Figures
infer

knowl-
edge

Are the provided figures the common choice for the
given methods?

step017.58 Missing Figures infer Are there any important figures missing?

step008.6 Results in Figures extract
Consider all figures/plots relevant to the results section.

Summarize the results implied by the figures; i.e.
specific observations on the plotted data.

step009.71
Typical Figure

Properties

infer
knowl-
edge

From your experience, which plot properties (such as
standard deviation, value ranges, ...) are

common/expected in your research field for the given
result plots?

step010.72
Plausibility of

Figures
infer

Considering how you imagine typical plots and the
actual plots you observed in the results section, do the

plots seem plausible?

step011.28 Results in the Text extract
What results/observations do the authors report in the

TEXT based on the experimental data and figures?
Please highlight and list.

step012.41
Matching Figures

and Text
infer

Considering what the authors report in the text and the
results you read from the figures, do they match?

Table 4: The first steps of the workflow with ID, type, and prompt.
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Id Name Type Prompt

step013.29
Summary of

Results
infer

Based on your prior observations regarding the results
the authors report, the figures imply and their

consistency, please summarize the main results in a
short paragraph.

step014.5 Figure Tempering extract Do the figures show signs of tempering?

step015.73 Truthful Figures infer
Do the provided figures appear truthful and adhere to

best scientific practice?

step018.59
Result Reporting

Completeness
infer

Is the result reporting complete (i.e. no important
results are ommitted)?

step020.74
Overall Impression
Result Reporting

infer
Is the result reporting overall adequate for the given

methods?

step021.12 Discussion Section read

Read the discussion section in detail. Highlight the
section caption to indicate where it starts. If there are

also interpretations and conclusions in the result section,
please consider that too.

step022.20 Interpretations extract
Which interpretations do the authors provide?
Interpretations = explanations for a specific

experimental result

step023.19 Direct conclusions extract
Which direct conclusions do the authors draw? Direct
conclusions = general knowledge claims based on an

experiment

step024.18
Projective

conclusions
extract

Which projective/speculative conclusions do the authors
make? Speculative conclusions = opinions = plausible

claims that are not fully backed by the data

step025.26
Method

confounders

infer
knowl-
edge

Which confounding factors for the used methods are
known to you?

step026.30
INVALID

interpretations
infer

Which interpretations of the authors are invalid
considering potential confounders of the experiments

and actual reported results?

step027.33
VALID

interpretations
infer

Which interpretations of the authors are justified by the
actually reported results?

step028.34
ALTERNATIVE
interpretations

infer
knowl-
edge

Considering the valid interpretations, can you imagine
additional or alternative interpretations that are equally

justified by the data?

step029.98
Incompleteness of

interpretations
infer

Considering your alternative and additional
interpretations, are they actually missing in the valid

interpretations of the authors? Judge the overall
completeness of interpretations based on this.

step030.35 VALID conclusions infer
Considering the authors’ direct conclusions, which are
valid and derive validly from the correct interpretations?

step031.31
INVALID

conclusions
infer

Considering the authors’ conclusions, which are invalid
given the interpretations?

Table 5: The intermediate steps of the workflow with ID, type, and prompt.
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Id Name Type Prompt

step033.99
Completeness of

conclusions
infer

Considering the correct conclusions and the paper’s
research questions, do the conclusions fully answer the

research questions?

step035.17
Related work

results
extract

What related work RESULTS do the authors report?
Please highlight in the paper and summarize the

reporting briefly.

step36.14
Related work

results differences
extract

Do the authors observe and explain differences and
commonalities of their results compared to related

work? Please highlight and summarize briefly.

step37.102
Related work

results missing

infer
knowl-
edge

Based on your knowledge of the related work and the
related work results the authors report, is there anything
missing? In that case, please list the results of related

work that are missing.

step38.103
Results

contextualization
infer

Are the results appropriately contextualized in the
related work? Please also consider the paper type to

weight your judgement.

step39.104 Results plausibility infer
Are the experimental results plausible given the results
of related work? Please weight your judgement by the

paper type.

step44.105 Result validity infer
Overall, do the RESULTS appear scientifically sound?

Consider the adequacy of reporting, plausibility of
results, and the related work context.

step40.13
Related

conclusions
discussion

extract

Do the authors discuss and explain differences and
commonalities to CONCLUSIONS in related work?

Please highlight in the paper and summarize the
discussion for each aspect briefly.

step42.x

Related
conclusions
comparison
adequacy

infer

Is the discussion of the related work CONCLUSIONS
appropriate? Consider if there are alternative

explanations possible or if there are errors in the
argumentation.

step41.15
Related

conclusions
missing

infer
knowl-
edge

Based on your knowledge of the related work and the
related work CONCLUSIONS the authors discuss, is

there anything missing?

step43.96
Conclusions

contextualization
adequacy

infer
Overall, are the conclusions properly contextualized

with related work? Take the paper type into account to
weight your response.

step45.106 Conclusion validity infer

Overall, do the correct conclusions seem scientifically
sound and answer the research questions? Consider if

conclusions cover all research questions, the correctness
of underlying results, and the authors’ projective

conclusions.

step46.100
Conclusion
relevance

infer

Overall, do the conclusions appear relevant (i.e.
in-scope of the paper and its scientific field)? Consider
if the conclusions answer the research questions and the

related work context.

step47.x Overall impression infer
Overall, do you consider the paper a valuable

contribution to the scientific community?

Table 6: The final steps of the workflow with ID, type, and prompt.
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parameter value

max new tokens 2048
temperature 0.0001

top p 0.95
do sample True

repetition penalty 1.15

Table 7: LLM Generation Configuration

Type Prompt

EXTRACT

"system": "You are a biomedical
researcher assessing the quality of a
research article." "human": "This is
the research article text: {parents}

Based on the article text, answer the
following question: {task} More

specifically, this means: {description}
Keep your answer concise. Return the

answer as a JSON object in the
following format: {format}

Here’s an example output for the
given question: "{example}". "

INFER

"system": "You are a biomedical
researcher assessing the quality of a

research article." "human": "You
already gathered the following

insights on the paper by answering a
sequence of prior questions:

Your insights: {parents}
Based on these prior insights, answer
the following question: {task} More
specifically, this means: {description}
Keep your answer concise. Return the

answer as a JSON object in the
following format: {format}

Here’s an example output for the
given question: "{example}". "

Table 8: GPT-3.5-turbo prompts in chat format. {...}
mark template parameters.

Type Prompt

EXTRACT

"system": "You are a biomedical
researcher assessing the quality of a
research article." "human": "This is
the research article text: {parents}
Based on the article text and figure
descriptions, answer the following
question: {task} More specifically,

this means: {description}
Keep your answer concise. Return the

answer as a JSON object in the
following format: {format}

Here’s an example output for the
given question: "{example}". "

"human": {img_caption} "human":
{img_base64}

INFER

"system": "You are a biomedical
researcher assessing the quality of a

research article." "human": "You
already gathered the following

insights on the paper by answering a
sequence of prior questions:

Your insights: {parents}
Based on these prior insights, answer
the following question: {task} More
specifically, this means: {description}
Keep your answer concise. Return the

answer as a JSON object in the
following format: {format}

Here’s an example output for the
given question: "{example}". "

Table 9: GPT-4o prompts in chat format. {...} mark
template parameters. The INFER prompt is identical
to the one of GPT-3.5-turbo. For EXTRACT steps, the
image caption and data messages are repeated for each
figure and table relevant to multimodal steps.
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Type Prompt

EXTRACT

"system": "You are a biomedical
researcher assessing the quality of a

research article." "human": "The
research article text: {parents}

Based on the article text, answer the
following question: {task} More

specifically, this means: {description}
Keep your answer concise. Return the

answer as a JSON object in the
following format: {format}

Here’s an example output for the
given question: "{example}"."

INFER

"system": "You are a biomedical
researcher assessing the quality of a

research article." "user":"You already
gathered the following insights on the

paper by answering a sequence of
prior questions:

Your insights: {parents}
Based on these prior insights, answer
the following question: {task} More
specifically, this means: {description}
Keep your answer concise. Return the

answer as a JSON object in the
following format: {format}

Here’s an example output for the
given question: "{example}"."

Table 10: Llama3 prompts in chat format. {...} mark
template parameters.

Type Prompt

EXTRACT

"human": "You are a biomedical
researcher assessing the quality of a
research article. The research article

text:
{parents}

Based on the article text, answer the
following question: {task} More

specifically, this means: {description}
Keep your answer concise. Return the

answer as a JSON object in the
following format: {format}

Here’s an example output for the
given question: "{example}"."

INFER

"human": "You are a biomedical
researcher assessing the quality of a

research article. You already gathered
the following insights on the paper by

answering a sequence of prior
questions:

Your insights: {parents}
Based on these prior insights, answer
the following question: {task} More
specifically, this means: {description}
Keep your answer concise. Return the

answer as a JSON object in the
following format: {format}

Here’s an example output for the
given question: "{example}"."

Table 11: Mixtral prompts in chat format. {...} mark
template parameters.

Feedback Prompt

"system": "You are a specialized AI assistant focused on
biomedical research quality assessment and scientific

paper evaluation. You have expertise in analyzing
research methodology, study design, and the logical

relationships between different quality metrics.",
"human": "Task: Evaluate and provide feedback on a set

of dependent answers assessing the quality of the
biomedical article "{title}".

Context: - You are reviewing answers to a sequence of
quality assessment questions - The questions form a

directed acyclic graph (DAG) of dependencies - Each
answer should only depend on its parent nodes in the

graph - The final goal is to validate or correct the
assessment to match the known true verdict *exactly* (i.e.

not only the decision, but the explanation for it)
Input Structure: 1. Article Title: "{title}" 2. Set of

Answers: {answers} Format expected for answers: {{
"question_id": {{ "node": "question_id", "question":

"question", "question_type": "type of question",
"answer": json object with answer, "parent_nodes": [list
of parents] }} }} 3. Dependency Graph: {graph} 4. True

Final Verdict: {true_verdict}
Required Analysis: 1. Consistency Check: - Verify that

each answer only uses information from its parent nodes -
Identify any circular reasoning or skipped dependencies
2. Logical Flow Analysis: - Trace the path from initial
answers to final verdict - Identify breaks in the logical
chain - Flag contradictions between connected answers

3. Verdict Alignment: - Compare the current final verdict
with the true verdict - If different, identify the minimal set

of answers that need revision
Output Requirements: 1. Start your response with

"Feedback:" 2. For each suggested revision: - Identify the
specific answer(s) needing change - Explain why the
change is needed - Describe how the change affects

dependent answers - Provide specific suggestions for
improvement 3. Prioritize changes that: - Maintain the
dependency structure - Require minimal modifications -

Lead to the correct final verdict
Example Answer Format: Feedback: 1. Critical Issues: -
[List of major inconsistencies] 2. Required Revisions: -
Answer X: [Current] → [Suggested revision] Reason:

[Explanation] Impact: [Effects on dependent answers] 3.
Optional Improvements: - [Additional suggestions for

clarity/completeness]"

Table 12: Feedback prompt used by all models during
self-refinement. {...} Mark template parameters. For
Mixtral the system prompt is presented as a regular
human prompt. The graph is provided using incident
encoding using integer indexes to describe the nodes.
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Refine Prompt

"system": "You are a helpful AI assistant specializing in
biomedical research and academic paper quality

assessment. You are skilled at analyzing complex
dependency relationships and ensuring logical

consistency in multi-step evaluations.", "human": "Task:
Revise a set of interdependent answers evaluating the

quality of a biomedical article based on provided
feedback and a known final verdict.

Input Format: - title: The title of the biomedical article
being evaluated: "title" - answers: JSON object

containing question IDs and their current answers
{answers} - graph: Directed acyclic graph in adjacency

list format showing question dependencies {graph} -
true_verdict: The validated final quality assessment of the

article: {true_verdict} - feedback: List of specific
comments on the current answers: {feedback}

Dependencies: - The graph shows how questions relate:
an edge from X→Y means Y’s answer should only

depend on X and other parent nodes - All revised answers
must maintain logical consistency with their dependent

nodes - The final verdict must be *exactly* supported by
the chain of revised answers; i.e. the decision and the
explanation must be supported - The new final verdict

should use the true verdict verbatim
Constraints: 1. Maintain the original graph structure 2.

Make minimal necessary changes to align with feedback
3. Ensure all answers support the true_verdict 4. Preserve
the logical flow from parent to child nodes 5. Keep the

original answer format unless feedback specifically
suggests changes

Expected Output Format: {{ "question_id": {{ "node":
"question_id", "question": "question", "question_type":
"type of question", "answer": json object with answer,

"parent_nodes": [list of parents] }} }}
Please maintain this structured format in your revised

answers and ensure all changes are traceable to either the
feedback or the need to align with the true verdict. Return
only the JSON object containing the corrected answers

with the true verdict.

Table 13: Refine prompt used by all models during
self-refinement. {...} Mark template parameters. For
Mixtral the system prompt is presented as a regular
human prompt. The graph is provided using incident
encoding using integer indexes to describe the nodes.
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BERT-F1 ↑ SummaC ↑ TRUE ↑ SummaCp ↑ F1-maj ↑ F1-ind ↑
human∗† 0.799±.06 −0.151±.30 0.151±.27 −0.235±0.34 0.859 0.801

Llama3 Prg† 0.752±0.10 −0.274±0.36 0.098±0.30 −0.138±0.274 0.151 0.170
Mixtral Prg† 0.761±0.09 -0.149±0.26 0.120±0.32 −0.109±0.22 0.553 0.559
GPT3.5t Prg† 0.759±0.10 −0.178±0.35 0.163±0.37 -0.102±0.262 0.529 0.531
GPT4o Prg† 0.780±0.07 −0.186±0.30 0.139±0.35 −0.138±0.28 0.718 0.720

Llama3 Prgβ 0.752±.10 −0.274±.36 0.098±.30 0.151 0.170
Mixtral Prgβ 0.761±.09 -0.149±.26 0.120±.32 0.553 0.559
GPT3.5t Prgβ 0.750±.11 −0.165±.33 0.159±.37 0.513 0.512
GPT4o Prgβ 0.779±.07 −0.196±.29 0.133±.34 0.696 0.699

majorityio 0.854
human∗io 0.799±.06 −0.158±.29 0.150±.27 0.801

Llama3io 0.786±.07 −0.141±.30 0.145±.35 0.657
Mixtralio 0.794±.07 -0.077±.27 0.161±.37 0.822
GPT3.5tio 0.805±.07 −0.125±.34 0.214±.41 0.789
GPT4oio 0.795±.07 −0.094±.28 0.194±.40 0.876

GPT4o§ 0.776±0.07 −0.154±0.28 0.188±0.39 0.843 0.828
GPT4oγ 0.775±.07 −0.156±.28 0.187±.39 0.842 0.827

Table 14: Performance under varying conditions. ·† = LLMs run as a program with feedback and revise loop
that considers the final verdict. ·β = LLMs run as a program without feedback or refinement neglecting the true
final verdict. ·io = LLMs receive the human input for each step. GPT4o§ receives prompts and the full paper
text, answers them sequentially without using the graph structure, and applies feedback and refine on top of those.
GPT4oγ receives prompts and the full paper text sequentially and does not use feedback and refinement. We
average over eligible steps and papers, with the standard deviation in subscript. For all metrics, the higher, the better.
The human baselines are lower bound estimates of human performance because all answers are compared despite
different verdicts. F1-maj refers to the F1 score comparing decisions to the majority voted decisions per node and
F1-ind refers to the F1 score comparing decisions to the individual annotator’s answers as groundtruth. . SummaCp
computes SummaC against the paper text computed only on EXTRACT steps. All scores except SummaC lie in the
range [0, 1]. SummaC lies in [−1, 1].

matching alignment avg

human 0.339 0.5 0.42

Mixtral 0.477 0.667 0.572

GPT-4o 0.351 0.75 0.551

Table 15: Based on the human evaluation data we com-
pute the Jaccard metric on facts for matching items and
compute the average amount of aligned explanations.
To aggregate into a single metric, we take the average
of both.

matching alignment

BERT-F1 0.37 0.54

SummaC −0.22 0.55

TRUE 0.30 0.20

Table 16: Spearman’s ρ comparing the human eval-
uation scores with the automatic metrics for the two
scenarios.
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