S?R: Teaching LLMs to Self-verify and Self-correct
via Reinforcement Learning

Ruotian Ma'*, Peisong Wang?*, Cheng Liu', Xingyan Liu’,
Jiaqi Chen®, Bang Zhang', Xin Zhou*, Nan Du!" , Jia Li 3*
"Tencent 2Tsinghua University
3The University of Hong Kong “Fudan University
SThe Hong Kong University of Science and Technology (Guangzhou)

ruotianma@tencent.com, wps22@mails.tsinghua.edu.cn

Abstract

Recent studies have demonstrated the effective-
ness of LLM test-time scaling. However, ex-
isting approaches to incentivize LLMs’ deep
thinking abilities generally require large-scale
data or significant training efforts. Meanwhile,
it remains unclear how to improve the thinking
abilities of less powerful base models. In this
work, we introduce S2R, an efficient framework
that enhances LLM reasoning by teaching mod-
els to self-verify and self-correct during infer-
ence. Specifically, we first initialize LLMs with
iterative self-verification and self-correction be-
haviors through supervised fine-tuning on care-
fully curated data. The self-verification and
self-correction skills are then further strength-
ened by outcome-level and process-level rein-
forcement learning with minimized resource
requirements. Our results demonstrate that,
with only 3.1k behavior initialization samples,
Qwen2.5-math-7B achieves an accuracy im-
provement from 51.0% to 81.6%, outperform-
ing models trained on an equivalent amount of
long-CoT distilled data. We also discuss the
effect of different RL strategies on enhancing
LLMs’ deep reasoning. Extensive experiments
and analysis based on three base models across
both in-domain and out-of-domain benchmarks
validate the effectiveness of S?R!.

1 Introduction

Recent advancements in Large Language Models
(LLMs) have demonstrated a paradigm shift from
scaling up training-time efforts to test-time com-
pute (Snell et al., 2024a; Kumar et al., 2024; Qi
et al., 2024; Yang et al., 2024). The effectiveness
of scaling test-time compute is illustrated by Ope-
nAl ol (OpenAl, 2024), which shows strong rea-
soning abilities by performing deep and thorough

* Equal contribution. This work was done during Peisong,
Cheng, Jiaqi and Bang were interning at Tencent.

¥ Corresponding authors.

'0ur code and data are available at https://github.
com/NineAbyss/S2R.

MATH500
86

Qwen2.5-Math-7B-S2R-ORL(ours)

3
>
L

Qwen2.5-Math-7B-Instruct

<)
[N

Accuracy (%)

o
=3
!

Eurus-2-7B-PRIME
rStar-Math-7B

~
@

] Qwen2.5.-7B-SimpIeRL-Zero

76

3 4 5 6 7 8
Data Size (log1o)

Figure 1: The data efficiency of S2R compared to com-
petitive baseline methods.

thinking, incorporating essential skills like self-
checking, self-verifying, self-correcting and self-
exploring during the model’s reasoning process.
This paradigm not only enhances reasoning in do-
mains like mathematics and science but also offers
new insights into improving the generalizability,
helpfulness and safety of LLMs across various gen-
eral tasks (OpenAl, 2024; Guo et al., 2025).
Recent studies have made various attempts to
replicate the success of ol. These efforts in-
clude using large-scale Monte Carlo Tree Search
(MCTS) to construct long-chain-of-thought (long-
CoT) training data, or to scale test-time reason-
ing to improve the performance of current models
(Guan et al., 2025; Zhao et al., 2024; Snell et al.,
2024b); constructing high-quality long-CoT data
for effective behavior cloning with substantial hu-
man effort (Qin et al., 2024); and exploring rein-
forcement learning to enhance LLM thinking abili-
ties on large-scale training data and models (Guo
et al., 2025; Team et al., 2025; Cui et al., 2025;
Yuan et al., 2024). Recently, DeepSeek R1 (Guo
et al., 2025) demonstrated that large-scale reinforce-
ment learning can incentivize LLM’s deep thinking
abilities, with the R1 series showcasing promis-
ing potential of long-thought reasoning. However,
these approaches generally require significant re-
sources to enhance LLMs’ thinking abilities, in-
cluding large datasets, substantial training-time

22632

Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 22632-22654

July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

https://github.com/NineAbyss/S2R
https://github.com/NineAbyss/S2R

compute, and considerable human effort and time
costs. Meanwhile, it remains unclear how to in-
centivize valid thinking in smaller or less power-
ful LLMs beyond distilling knowledge from more
powerful models.

In this work, we propose S2R, an efficient alter-
native to enhance the thinking abilities of LLMs.
Instead of having LLMs imitate the thinking pro-
cess of larger, more powerful models, S%R focuses
on teaching LLMs to think deeply by iteratively
adopting two critical thinking skills: self-verifying
and self-correcting. By acquiring these two capa-
bilities, LLMs can continuously reassess their solu-
tions, identify mistakes during solution exploration,
and refine previous solutions after self-checking.
Such a paradigm also enables flexible allocation of
test-time compute to different levels of problems.
Our results show that, with only 3.1k training sam-
ples, Qwen2.5-math-7B significantly benefits from
learning self-verifying and self-correcting behav-
iors, achieving a 51.0% to 81.6% accuracy improve-
ment on the Math500 test set. This performance
outperforms the same base model distilled from
an equivalent amount of long-CoT data (accuracy
80.2%) from QwQ-32B-Preview (Team, 2024).

More importantly, S?R employs both outcome-
level and process-level reinforcement learning (RL)
to further enhance the LLMs’ self-verifying and
self-correcting capabilities. Using only rule-based
reward models, RL improves the validity of both
the self-verification and self-correction process, al-
lowing the models to perform more flexible and
effective test-time scaling through a self-directed
trial-and-error process. By comparing outcome-
level and process-level RL for our task, we found
that process-level supervision is effective in im-
proving accuracy of the thinking skills at interme-
diate steps, benefiting less capable base models. In
contrast, outcome-level supervision allows mod-
els to explore more flexible trial-and-error paths
towards the final answer, leading to consistent en-
hancement in the reasoning abilities of more ca-
pable base models. Additionally, we show the po-
tential of offline reinforcement learning as a more
efficient alternative to the online RL training.

We conducted extensive experiments across 3
LLMs on 7 math reasoning benchmarks. Experi-
mental results demonstrate that SR outperforms
competitive baselines in math reasoning, including
recently-released advanced o1-like models Eurus-2-
7B-PRIME (Cui et al., 2025), rStar-Math-7B (Guan
et al., 2025) and Qwen2.5-7B-SimpleRL (Zeng

et al., 2025). We also found that S?R is generaliz-
able to out-of-domain general tasks like MMLU-
PRO, highlighting the validity of the learned self-
verifying and self-correcting abilities. Additionally,
we conducted a series of analytical experiments
to demonstrate the reasoning mechanisms of SR
models, and provide insights into performing on-
line and offline RL for enhancing LLM reasoning.

2 Methodology

In this section, we introduce the proposed SR
framework. We first formally define the problem.
Next, we present the two-stage training framework
of S2R, as described in Figure 2.

2.1 Problem Setup

We formulate the desired LLM reasoning paradigm
as a sequential decision-making process under a
reinforcement learning framework. Given a prob-
lem z, the language model policy 7 is expected
to generate a sequence of interleaved reasoning
actions y = (aj,aq9,- - ,ar) until reaching the
termination action <end>. We represent the series
of actions before an action a; € y as y.q,, i.€.,
Yua, = (a1,a2, -+ ,at—;), where a; is excluded.
The number of tokens in y is denoted as |y|, and
the total number of actions in y is denoted as |y/q.

We restrict the action space to three types:
“solve”, “verify”, and “<end>", where “solve’
actions represent direct attempts to solve the
problem, “verify” actions correspond to self-
assessments of the preceding solution, and “<end>”
actions signal the completion of the reasoning pro-
cess. We denote the type of action a; as Type(-),
where T'ype(a;) € {verify,solve,<end>}. We
define and expect the policy to learn the following
action type transition rules:

>

verify,
solve,

Type(a;) = solve
Type(a;) = verify

and Parser(a;) = INCORRECT
Type(a;) = verify

and Parser(a;) = CORRECT

Type(aiy1) =

<end>,

Here, Parser(a) € {CORRECT, INCORRECT}
(for any action a where T'ype(a) = verify)isa
function (e.g., a regex) that converts the model’s
free-form verification text into binary judgments.

For simplicity, we denote the j-th solve action as
s; and the j-th verify action as v;. Then we have
y = (81,01, 82,09, , Sk, Uk, <end>).

22633

“Problem-Solving” Verification

“Confirmative” Verification

Problem: Problem:
27 increased by twice a number is 39. Whatis the number?
Model's answer:

Model's answer: 6
© Verification:
Verification:
Let's denote the unknown number as x. The problem can the

|
27 increased by twice a number is39. Whatls the number? | |
|
|
|
|
|
|

Stage 2: Reinforcement Learning

(Backward)

-

= {s1v1, .., sjvj}

Verification
Construction Outcome-level reward

rYIX

SFT Model

TsFT Jﬁ

N
e — > {s1,v1,s2,v2,s3,v3}

|
|
to | .
be written as the equation: 27 + 2x = 39. Giv numi | Questions A A A A
statement using the given answer: 27 increased by twice 6
Step 1: ... Step 2: should equal 39. Twice 6 is 12. 27 increased by 12is 27 +12, v x vvv x
which equals 39. Therefo orrect
! Process-level reward
| (Backward)
@ : Correct Response —o ‘L— 0 —i— f
@ : Incorrect Response Difficulty (1 vl $2 12 <2 D2 <
! > Levels r={s1,v1,52,v2,53,v3,54,v4 Targetoutput r = {s1,v1,52,v2,53,v3}
SFT Mask m={ 0 ,1 ,0 ,1 ,1,1}
— Initial
i Difficulty o
—= | Policy — oz —> r={s1,v1,52,v2 t t t t (Backward)
Input T ‘
Questions Initial Policy
' Difficulty PSP 4 b Model =
=2 oy = r={s1,vl} 0

L J L

Sample K responses for each question

Stage 0: Data Construction

T

) ttt

Input question x

Construct trajectories based on difficulty distribution

Supervised Fine-tuning

Stage 1: Behavior Initialization

Figure 2: Overview of S?R.

2.2 Initializing Self-verification and
Self-correction Behaviors

2.2.1

Learning to perform valid self-verification is the
most crucial part in S?R. We explore two methods
for constructing self-verification behavior:
“Problem-Solving” Verification The most intuitive
method for verification construction is to query ex-
isting models to generate verifications on the policy
models’ responses. By querying existing models,
we found that existing models tend to perform ver-
ification in a “Problem-Solving” manner, i.e., by
re-solving the problem and checking whether the
answer matches the given one. We refer to this kind
of verification as “Problem-Solving” Verification.
“Confirmative” Verification "Problem-solving"
verification is intuitively not the ideal verification
behavior we seek. Ideally, we expect the verifica-
tion to think outside the box and re-examine the so-
Iution from a new perspective, rather than thinking
from the same problem-solving view. We refer to
this type of verification behavior as “Confirmative”
Verification. Specifically, we construct “Confirma-
tive” Verification by prompting LLMs to "verify
the answer without re-solving the problem", and
filtering out invalid verifications. Detailed imple-
mentation can be found in Appendix §C.1.

Based on preliminary experiments, we finally se-
lected Confirmative Verification for the main exper-
iments. Due to space limitations, we defer the com-
parison of these two methods to Appendix §A.1.

Learning Valid Self-verification

2.2.2 Learning Self-correction

Another critical part of S?R is enabling the model
to learn self-correction. Inspired by Kumar et al.

(2024) and Snell et al. (2024b), we initialize the
self-correction behavior by concatenating a series
of incorrect solutions (each followed by a verifi-
cation recognizing the mistakes) with a final cor-
rect solution. As demonstrated by Kumar et al.
(2024), LLMs typically fail to learn valid self-
correction behavior through SFT, but the validity
of self-correction can be enhanced through rein-
forcement learning. Thus, we only initialize the
self-correcting behavior at this stage, leaving fur-
ther enhancement of the capability to the RL stage.

2.2.3 Constructing Dynamic Trajectory

We construct the full trial-and-error trajectories for
behavior initialization based on three principles:
(i) To ensure diversity, we construct trajectories of
various lengths, i.e., we cover k € {1,2,3,4} for
y = (s1,v1, -, Sk, Uk) in the trajectories. (ii) To
ensure LL.Ms learn to verify and correct their own
errors, we sample the failed trials in each trajectory
from the LLMs’ own responses. (iii) To ensure our
test-time scaling method allocates reasonable effort
to varying levels of problems, i.e., more difficult
problems require more trial-and-error iterations,
we determine the length of each trajectory based
on the accuracy of the sampled responses for each
base model.

2.2.4 Behavior Initialization with SFT

Once the self-verifying and self-correcting training
data Dgpr is ready, we optimize the policy 7w by
minimizing the following objective:

L =-E@y~psrr Z dmask(at) logm(ar | @, Ya,)

at€y
M

22634

where the mask function is defined as:

, if Type(as) = verify

if Type(as) = solveandt =T — 1
, ifType(a:) =<end>andt =T

0, otherwise

2.3 Boosting Thinking Capabilities with RL

After Stage 1, we initialize the policy model 7
with self-verification and self-correction behavior,
obtaining wgr7. We then further enhance these
capabilities via reinforcement learning. We explore
two simple RL algorithms: the outcome-level RE-
INFORCE Leave-One-Out (RLOO) algorithm and
a process-level group-based RL algorithm.

2.3.1 Outcome-level RLOO

We first introduce the outcome-level RLOO algo-
rithm (Ahmadian et al., 2024; Kool et al., 2019)
to further enhance the self-verification and self-
correction capabilities of mgr7. Given a problem
x and the response y = (s1,v1, ..., S7,v7), We
define the reward function R,(z,y) based on the
correctness of the last solution sp:

1
1
Omask (at) = 1

1 Vyolden (ST) = correct
Rufag) = {b, Vel
Here Vjoiden(-) € {correct,incorrect} repre-
sents ground-truth validation by matching the gold
answer with the given solution. We calculate the
advantage of each response y using an estimated
baseline and KL reward shaping as follows:

mo(y|z)
Tref (yl2)
where [is the KL divergence regularization coeffi-
cient, and 7y is the reference policy (in our case,

msrr). b(z,y ™) = 4 2= 175 M -Ro(z,y9)

is the baseline estimation of RLOO, which repre-
sents the leave-one-out mean of M sampled out-
puts {y() M) for each input z, serving as a
baseline estimation for each y(m).
Then, we optimize 7y by minimizing the follow-
ing objective after each sampling episode:
LO) = -E ..p [min (r(O)A(:c,y),

y~Tg g (12)
old

clip(r(6),1 — e, 1+ €) A(z, y))]

A(z,y) = Ro(z,y) — b— Blog @)

(3

mo(ylz) - o ‘
T WIT) 1S the probability ratio.

where 7(6) =

By optimizing the entire trajectory with only
outcome-level supervision, we aim to incentivize
the policy model to explore more dynamic self-
verification and self-correcting trajectories on its
own, which has been demonstrated as an effective
practice in recent work (Guo et al., 2025).

2.3.2 Process-level Group-based RL

Process-level supervision has demonstrated effec-
tiveness in math reasoning (Lightman et al., 2023a;
Wang et al., 2024b). Since the trajectory of S?R
thinking is naturally divided into self-verification
and self-correction processes, it is intuitive to adopt
process-level supervision for RL training.
Inspired by RLOO and process-level GRPO
(Shao et al., 2024), we designed a group-based
process-level optimization method. Specifically,
we regard each action a in the output trajectory y
as a sub-process and define the action level reward
function R,(a | x,y.,) based on the action type:

17 Vyotden(85) = t
Ra(sj ‘ xay:sj-) = { golden (85) = correc

—1, otherwise

')1, Parser(vj) = Vyorden(s;)
Ra(vj | x’y:vj) - {—1, otherwise

To calculate the advantage of each action a;, we
estimate the baseline as the average reward of the

group of actions sharing the same reward context:

R(at | 2,y) = (Ralai | 2,y.0,)i

which is defined as the reward sequence of the pre-
vious actions ¥.,, of each action a;. The main idea
is that the actions sharing the same reward context
are provided with similar amounts of information
before the action is taken. For instance, all actions
sharing a “R(a;|z,y) = (—1,1)” reward context
are provided with the same information about the
problem, a failed attempt, and a reassessment on
the failure.

We denote the set of actions sharing the same
reward context R(a; | z,y) as G(R(a; | z,¥)).
Then the baseline can be estimated as follows:

blac | ,y) =
1 a a
TR g,

a€G(R(at|z,y))

And the advantage of each action a; is:

:Ra(at | mvyiat) - l;(at ‘ x,y)

— Blog m(a: |z, y) ®)
et (@ | 2, y)

Putting it all together, we minimize the following
surrogate loss function to update the policy param-
eters 6, using trajectories collected from 7,4:

Ala | 2,y)

L(0) = —E min r,l (a]z
(6) y~ﬂeold(|1){|y| % 22).
clip(ra(ﬁ), 1—¢€1+ E)A(a\x, y;a))}
(6)

7(a|z,y:a)

where ra(e) = T (@ TY:a)

is the importance ratio.

22635

Stage 1: Behavior Initialization

Base Model Source # Training Data
Llama-3.1-8B-Instruct MATH 4614
Qwen2-7B-Instruct MATH 4366
Qwen2.5-Math-7B MATH 3111

Stage 2: Reinforcement Learning
Base Model

Source # Training Data

Llama-3.1-8B-Instruct MATH+GSM8K 9601
Qwen2-7B-Instruct MATH+GSMS8K 9601
Qwen2.5-Math-7B MATH+OpenMath2.0 10000

Table 1: Training data statistics.

2.4 More Efficient Training with Offline RL

While online RL is known for its high resource
requirements, offline RL, which does not require
real-time sampling during training, offers a more
efficient alternative for RL training. Additionally,
offline sampling allows for more accurate baseline
calculations with better trajectories grouping for
each policy. As part of our exploration into more
efficient RL training in S?R framework, we also
experimented with offline RL to assess its potential
in further enhancing the models’ thinking abilities.

3 Experiment

To verify the effectiveness of the proposed method,
we conducted extensive experiments across 3 dif-
ferent base policy models on various benchmarks.

3.1 Experiment Setup

Base Models To evaluate the general applicabil-
ity of our method across different LLMs, we con-
ducted experiments using three distinct base mod-
els: Llama-3.1-8B-Instruct (Dubey et al., 2024),
Qwen2-7B-Instruct (qwe, 2024), and Qwen2.5-
Math-7B (Qwen, 2024). Among which, Llama-3.1-
8B-Instruct and Qwen2-7B-Instruct are versatile
general-purpose models, while Qwen2.5-Math-7B
is a state-of-the-art model tailored for mathemati-
cal problem-solving and has been widely adopted
in recent research on math reasoning (Guan et al.,
2025; Cui et al., 2025; Zeng et al., 2025).

Training Data Setup For Stage 1: Behavior Ini-
tialization, we used the widely adopted MATH
(Hendrycks et al., 2021a) training set for dynamic
trial-and-error data collection !. For each base
model, we sampled 5 responses per problem in the
training data. After data filtering and sampling, we
constructed a dynamic trial-and-error training set
consisting of 3k-4k instances for each base model.

'We use the MATH split from Lightman et al. (2023a), i.e.,
12000 problems for training and 500 problems for testing.

Detailed statistics of the training set are shown
in Table 1. For Stage 2: Reinforcement Learn-
ing, we used the MATH+GSMS8K (Cobbe et al.,
2021a) training data for RL training on the policy
wspr initialized from Llama-3.1-8B-Instruct and
Qwen2-7B-Instruct. Since Qwen2.5-math-7b al-
ready achieves high accuracy on the GSMS8K train-
ing data after Stage 1, we additionally included
training data sampled from the OpenMath2 dataset
(Toshniwal et al., 2024). Following (Cui et al.,
2025), we filtered out excessively easy or difficult
problems based on each mgprr to enhance the effi-
ciency and stability of RL training, obtaining RL
training sets consisting of approximately 10000 in-
stances. Detailed statistics of the final training data
can be found in Table 1. More details on training
data construction can be found in Appendix §C.1.

Baselines We benchmark our proposed method
against four categories of strong baselines:
Frontier LLMs includes cutting-edge proprietary
models such as GPT-40, OpenAl’s ol-preview and
ol-mini. We source the results for these models
from public technical reports (Team, 2024).
Top-tier open-source reasoning models covers
state-of-the-art open-source models known for
their strong reasoning capabilities, including
NuminaMath-72B (LI et al., 2024), LLaMA3.1-
70B-Instruct (Dubey et al., 2024), and Qwen2.5-
Math-72B-Instruct (Yang et al., 2024).

Enhanced models from Qwen2.5-Math-7B: We
also evaluate SR against 3 competitive baselines
that have recently showed superior performance
based on Qwen2.5-Math-7B: Eurus-2-7B-PRIME
(Cui et al., 2025), rStar-Math-7B (Guan et al.,
2025), Qwen2.5-7B-SimpleRL (Zeng et al., 2025).
SFT with different CoT data: We also compare
with training on competitive types of CoT reason-
ing, including the original CoT solution in the
training datasets, and Long-CoT solutions distilled
from QwQ-32B-Preview (Team, 2024), a widely
adopted open-source ol-like model (Chen et al.,
2024c; Zheng et al., 2024). We provide more de-
tails on the data construction in Appendix §C.2.3.

Evaluation Datasets We evaluate the proposed
method on 7 diverse mathematical benchmarks:
the GSMS8K (Cobbe et al., 2021b) and MATH500
(Lightman et al., 2023a) test sets, challenging out-
of-distribution benchmarks including the AIME
2024 competition problems (AI-MO, 2024a), the
AMC 2023 exam (AI-MO, 2024b), the advanced
reasoning tasks from Olympiad Bench (He et al.,

22636

MATH AIME AMC College Olympiad GaokaoEn
Model 500 2024 2023 Math Bench OSMSK U003 Average
Frontier LLMs
GPT-40 76.6 93 475 485 43.3 929 67.5 55.1
GPT-ol-preview 855 446 90.0 - - - - -
GPT-01-mini 90.0 56.7 950 57.8 65.3 94.8 78.4 76.9
Top-tier Open-source Reasoning LLMs
NuminaMath-72B-CoT 64.0 33 700 397 32.6 90.8 58.4 513
LLaMA3.1-70B-Instruct 654 233 50.0 425 27.7 94.1 54.0 51.0
Qwen2.5-Math-72B-Instruct 85.6 30.0 70.0 495 49.0 95.9 71.9 64.6
General Model: Llama-3.1-8B-Instruct
Llama-3.1-8B-Instruct 48.0 6.7 30.0 308 15.6 84.4 41.0 36.6
Llama-3.1-8B-Instruct + Original Solution SFT 31.0 3.3 7.5 22.0 8.0 58.7 28.3 22.7
Llama-3.1-8B-Instruct + Long CoT SFT 51.4 6.7 275 363 19.0 87.0 48.3 39.5
Llama-3.1-8B-S?R-BI (ours) 496 100 200 333 17.6 853 41.0 36.7
Llama-3.1-8B-S?R-PRL (ours) 536 6.7 250 337 18.5 86.7 43.1 38.2
Llama-3.1-8B-S2R-ORL (ours) 55.0 6.7 325 347 20.7 87.3 45.2 40.3
General Model: Qwen2-7B-Instruct
Qwen2-7B-Instruct 51.2 33 300 182 19.1 86.4 39.0 353
Qwen2-7B-Instruct + Original Solution SFT 41.2 00 250 30.1 10.2 74.5 34.8 30.8
Qwen2-7B-Instruct + Long CoT SFT 60.4 6.7 325 363 234 81.2 53.5 42.0
Qwen2-7B-S?R-BI (ours) 61.2 33 275 411 271 874 49.1 424
Qwen2-7B-S?R-PRL (ours) 65.4 6.7 350 367 27.0 89.0 49.9 44.2
Qwen2-7B-S?R-ORL (ours) 64.8 33 425 347 26.2 86.4 50.9 44.1
Math-Specialized Model: Qwen2.5-Math-7B
Qwen2.5-Math-7B 51.0 167 450 215 16.7 58.3 39.7 35.6
Qwen2.5-Math-7B-Instruct 832 133 725 470 40.4 95.6 67.5 59.9
Eurus-2-7B-PRIME (Cui et al., 2025) 792 267 578 450 42.1 88.0 57.1 56.6
rStar-Math-7B *(Guan et al., 2025) 784 267 475 525 47.1 89.7 65.7 58.2
Qwen2.5-7B-SimpleRL(Zeng et al., 2025) 824 267 625 - 43.3 - - -
Qwen2.5-Math-7B + Original Solution SFT 58.0 6.7 425 358 20.0 79.5 51.9 42.1
Qwen2.5-Math-7B + Long CoT SFT 80.2 167 60.0 49.6 42.1 914 69.1 58.4
Qwen2.5-Math-7B-S2R-BI (ours) 81.6 233 60.0 439 44.4 91.9 70.1 59.3
Qwen2.5-Math-7B-S?R-PRL (ours) 834 267 700 438 46.4 932 70.4 62.0
Qwen2.5-Math-7B-S?R-ORL (ours) 844 233 775 438 44.9 929 70.1 62.4

Table 2: The performance of S?R and other strong baselines on the most challenging math benchmarks is presented.
BI refers to the behavior-initialized models through supervised fine-tuning, ORL denotes models trained with
outcome-level RL, and PRL refers to models trained with process-level RL. The highest results are highlighted in
bold and the second-best results are marked with underline.

2024), college-level problem sets from College
Math (Tang et al., 2024a) and real-world standard-
ized tests from the GaoKao (Chinese College En-
trance Exam) En 2023 (Liao et al., 2024). Detailed
description of these datasets is in Appendix §D.1.

Evaluation Metrics We report Pass@1 accuracy
for all baselines. For inference, we employ vLLM
and develop evaluation scripts based on Qwen
Math’s codebase. All evaluations are performed us-
ing greedy decoding. Details of the prompts used,
and all other implementation details are provided
in Appendix §C.3 and §D.2.

3.2 Main Results

Table 2 shows the main results of SR compared
with baseline methods. We can observe that: (1)

>To ensure a fair comparison, we report the Pass@1
(greedy) accuracy obtained without the process preference
model of rStar, rather than the result obtained with increased
test-time computation using 64 trajectories.

S2R consistently improves the reasoning abilities
of models across all base models. Notably, on
Qwen2.5-Math-7B, S2R improves the base model
by 32.2% on MATHS500 and by 34.3% on GSMS8K.
(2) Generally, SR outperforms the baseline meth-
ods derived from the same base models across
most benchmarks. Specifically, on Qwen2.5-Math-
7B, S2R surpasses several recently proposed com-
petitive baselines, such as Eurus-2-7B-PRIME,
rStar-Math-7B and Qwen2.5-7B-SimpleRL. While
Eurus-2-7B-PRIME and rStar-Math-7B rely on
larger training datasets (Fig.1) and require more
data construction and reward modeling efforts, SR
only needs linear sampling efforts for data construc-
tion, 10k RL training data and rule-based reward
modeling. These results highlight the efficiency of
S2R. (3) With the same scale of SFT data, SR also
outperforms the long-CoT models distilled from
QwQ-32B-Preview, showing that learning to self-
verify and self-correct is an effective alternative to

22637

Evaluation on Verification and Correction (Base Model: Qwen2-7B-Instruct)
Self-verification Metrics 2 Self-correction Metrics

ST 2217

SFT + Process-level RL 20.00

SFT + Outcome-level RL 86,67 87.34 20

1955
g80 s
S0 67.86 S10 8.42

63.93
539
601 5831 H 3.93

Verification Accuracy Error Recall Correct Precision Incorrect Correct
toIncorrect

to Correct
Evaluation on Verification and Correction (Base Model: Qwen2.5-Math-7B)
Self-verification Metrics Self-correction Metrics

9028 1364
% SFT oras | 1
SFT + Process-level RL 84.94 - 1222
SFT + Outcome-level AL
80
7461 =
7011
70 g
a0 6683 $

lue (%),

Ve

6158

s
6
4
2

Verification Accuracy Error Recall Correct Precision Incorrect t Correct
o +

Figure 3: Evaluation on verification and correction.

long-CoT for test-time scaling in smaller LLMs.
Comparing process-level and outcome-level RL,
we find that outcome-level RL generally outper-
forms process-level RL across the three models.
This is likely because outcome-level RL allows
models to explore trajectories without emphasizing
intermediate accuracy, which may benefit enhanc-
ing long-thought reasoning in stronger base models
like Qwen2.5-Math-7B. In contrast, process-level
RL, which provides guidance for each intermediate
verification and correction step, may be effective
for models with lower initial capabilities, such as
Qwen2-7B-Instruct. As shown in Figure 3, process-
level RL can notably enhance the verification and
correction abilities of Qwen2-7B-S?R-BI.

3.3 Boosting Thinking Abilities with RL

In this experiment, we investigate the effect of
RL training on the models’ self-verifying and self-
correcting capabilities. We assess self-verification
using the following metrics: (1) Verification Accu-
racy: The overall accuracy of verification predic-
tions. (2) Error Recall: The recall of verification
when the preceding answers are incorrect. (3) Cor-
rect Precision: The precision of verification when
it predicts the answers as correct. Both Error Re-
call and Correct Precision directly affect the final
answer accuracy: if verification fails to detect an
incorrect answer, or if it incorrectly predicts an
answer as correct, the final answer will be wrong.
For self-correction, we use the following metrics:
(1) Incorrect to Correct Rate: the rate at which
the model successfully corrects an incorrect ini-
tial answer to a correct final answer. (2) Correct
to Incorrect Rate: the rate at which the model
incorrectly changes a correct initial answer to an in-
correct final answer. We provide formal definitions
of the metrics in Appendix §E.

In Figure 3, we present the results of behavior-
initialized model (SFT) and different RL mod-

els obtained from Qwen2.5-Math-7B. We observe
that: (1) Both RL methods effectively enhance
self-verification accuracy. The process-level RL
shows larger improvement on accuracy, while the
outcome-level RL consistently improves Error Re-
call and Correct Precision. This might be be-
cause process-level supervision indiscriminately
promotes verification accuracy in intermediate
steps, while outcome-level supervision allows the
policy model to explore freely in intermediate steps
and only boosts the final answer accuracy, thus
mainly enhancing Error Recall and Correct Preci-
sion (which directly relate to final answer accuracy).
(2) Both RL methods can successfully enhance the
models’ self-correction capability. Notably, the
model’s ability to correct incorrect answers is sig-
nificantly improved after RL training. The rate of
model mistakenly altering correct answers is also
notably reduced. This comparison demonstrates
that S?R can substantially enhance the validity of
models’ self-correction ability.

Average Trial Number

‘Average Trial Number

Level 3
Difficulty Level

Figure 4: The accuracy and average trial number of
different models across difficulty levels on MATHS00.

3.4 Improvement across Difficulty Levels

To further illustrate the effect of S2R training, Fig-
ure 4 shows the answer accuracy and average num-
ber of trials (i.e., the average value of "K" across
ally = (s1,v1, -+, Sk, vx) under each difficulty
level) for the SFT and SFT+RL models. We ob-
serve that: (1) By learning to self-verify and self-
correct during reasoning, the models learn to dy-
namically allocate test-time effort. For easier prob-
lems, the models can reach a confident answer with
fewer trials, while for more difficult problems, they
require more trials to achieve a confident answer.
(2) RL further improves test-time effort allocation,
particularly for less capable model (e.g., Llama3.1-
8B-Instruct). (3) After RL training, the answer
accuracy for more difficult problems is notably
improved, demonstrating the effectiveness of the

22638

CRUX- Strategy- MMLUPro-

Model FOLIO Eval 0A STEM
Qwen2.5-Math-72B-Instruct 69.5 68.6 94.3 66.0
Llama-3.1-70B-Instruct’ 65.0 59.6 88.8 61.7
QwQ-32B-Preview ! 84.2 65.2 88.2 71.9
Eurus-2-7B-PRIME 56.7 50.0 79.0 53.7
Qwen2.5-Math-7B-Instruct 61.6 28.0 81.2 44.7
Qwen2.5-Math-7B 379 40.8 61.1 46.0
Qwen2.5-Math-7B-S”R-BI (ours) 58.1 48.0 88.7 49.8
Qwen2.5-Math-7B-S?R-ORL (ours) 61.6 50.9 90.8 50.0

Table 3: Performance of the proposed method and the
baseline methods on 4 cross-domain tasks.

self-verifying and self-correcting paradigm in en-
hancing the models’ reasoning abilities.

3.5 Generalizing to Cross-domain Tasks

Despite training on math reasoning tasks, we found
that the learned self-verifying and self-correcting
capability can also generalize to out-of-distribution
general domains. In Table 3, we evaluate the
SFT model and the outcome-level RL model from
Qwen2.5-Math-7B on four cross-domain tasks:
FOLIO (Han et al., 2022) on logical reasoning,
CRUXEval (Gu et al., 2024) on code reasoning,
StrategyQA (Geva et al., 2021) on multi-hop rea-
soning and MMLUPro-STEM on multi-task com-
plex understanding (Wang et al., 2024d; Shen et al.,
2025)>. The results show that after learning to self-
verify and self-correct, the proposed method effec-
tively boosts the performance of the base model
across all tasks, and achieves comparative results to
the baseline models, demonstrating that the learned
self-verifying and self-correcting capabilities are
general thinking capabilities that also benefiting
general domains during thinking.

To further understand the cross-domain general-
ization of self-verification and self-correction ca-
pabilities, we analyze the behavior of our models
on two representative datasets: StrategyQA and
FOLIO. As shown in Table 4, we report statistics
including average trial number, verification accu-
racy, error recall, correct precision, and transition
rates between correct and incorrect answers.

Dataset Model Ave. Trial Verification Error Correct Correct—Incorrect /
atase ode Number Acc. (%) Recall (%) Precision (%) Incorrect—Correct (%)
SrategyQa S.RBI 252 5113 75.17 84.32 246/19.23
SUACEYRA @RORL 224 53.99 72.22 91.67 1.87/25.00
FOLIO S?R-BI 2.09 56.60 3244 60.14 5.52/631
S?R-ORL 2.16 60.05 29.00 64.35 4.05/727

Table 4: Analysis of self-verification and self-correction
behaviors in cross-domain tasks.

We observe that, after reinforcement learning,
the average number of trials decreases on Strate-

'The results are reported by Shen et al. (2025).
*Details of these datasets are provided in Appendix §D.1.

2yQA but increases on FOLIO. This observation is
consistent with our findings in Section 3.4, indicat-
ing that reinforcement learning improves test-time
effort allocation—by reducing the effort on rela-
tively easier tasks (e.g., S?’R-BI already achieves
88.7% on StrategyQA) and increasing it on more
challenging ones (e.g., only 58.1% on FOLIO).
Moreover, across both datasets, we find that Cor-
rect Precision improves more consistently than Er-
ror Recall. This suggests that reinforcement learn-
ing enhances the model’s ability to confirm cor-
rect answers through verification, even in out-of-
domain contexts. In contrast, its capacity to rec-
ognize errors, as measured by Error Recall, shows
more limited improvement, especially in domain-
specific scenarios like FOLIO. Finally, we observe
that the transition rates from incorrect to correct an-
swers increase after reinforcement learning, while
the reverse—correct to incorrect—decreases. This
indicates a strengthened self-correction capability,
where the model becomes more adept at fixing its
own errors without introducing new ones.

These results suggest that self-verification and
self-correction are generalizable reasoning capabil-
ities that benefit from training on math reasoning
tasks. Nevertheless, enhancing domain-specific
error detection may require explicit supervision
from the target domain. For better illustration, we
show cases on how the trained models perform self-
verifying and self-correcting on general tasks in
Appendix §G.

3.6 Exploring Offline RL

We explore offline RL as a more efficient alterna-
tive to online RL training, given the effectiveness of
offline RL has been demonstrated in recent studies
(Baheti et al., 2023; Cheng et al., 2025).

Table 5 presents the results of offline RL with
process-level and outcome-level supervision, com-
pared to online RL. We can observe that: (1) Differ-
ent from online RL, process-level supervision out-
performs outcome-level supervision in offline RL
training. This interesting phenomenon may be due
to: a) Outcome-level RL, which excels at allowing
models to freely explore dynamic trajectories, is
more suitable for on-the-fly sampling during online
parameter updating. b) In contrast, process-level
RL, which requires accurate baseline estimation
for intermediate steps, benefits from offline trajec-
tory sampling, which can provide more accurate
baseline estimates with larger scale data sampling.
(2) Offline RL consistently improves performance

22639

Datasets

Model MATH AIME AMC College Olympiad o\ GaokaoEn Average
500 2024 2023 Math Bench 2023
Qwen2-7B-Instruct 51.2 3.3 300 18.2 19.1 86.4 39.0 353
Qwen2-7B-S2R-BI (ours) 61.2 33 275 41.1 271 87.4 49.1 424
Qwen2-7B-S?R-PRL (ours) 65.4 6.7 350 36.7 27.0 89.0 49.9 44.2
Qwen2-7B-S2 R-ORL (ours) 64.8 33 425 347 26.2 86.4 50.9 44.1
Qwen2-7B-Instruct-S?R-PRL-offline (ours) 61.6 10.0 325 402 26.5 87.6 50.4 44.1
Qwen2-7B-Instruct-S?R-ORL-offline (ours) 61.0 6.7 375 405 27.3 87.4 49.6 44.3
Qwen2.5-Math-7B 51.0 16.7 450 215 16.7 58.3 39.7 35.6
Qwen2.5-Math-7B-S2R-BI (ours) 81.6 233 60.0 439 44.4 91.9 70.1 59.3
Qwen2.5-Math-7B-S”R-PRL (ours) 834 267 700 438 46.4 93.2 70.4 62.0
Qwen2.5-Math-7B-S2 R-ORL (ours) 844 233 775 438 449 92.9 70.1 62.4
Qwen2.5-Math-7B-S2 R-PRL-offline (ours) 834 233 625 50.0 46.7 92.9 72.2 61.6
QwenZ.S-Math-7B-S2 R-ORL-offline (ours) 82.0 20.0 67.5 49.8 45.8 92.6 70.4 61.2

Table 5: Comparison of S?R using online and offline RL training.

over the behavior-initialized models across most
benchmarks and achieves comparable results to on-
line RL. These results highlight the potential of
offline RL as a more efficient alternative for en-
hancing LLMs’ deep reasoning. We include more
experiment details in Appendix §F.2.

4 Related Work

Scaling Test-time Compute Scaling test-time com-
pute recently garners wide attention in LLLM rea-
soning (Snell et al., 2024b; Wu et al., 2024). Ex-
isting studies include Aggregation-based methods
(Wang et al., 2023, 2024b; Zhang et al., 2024b),
Search-based methods (Tian et al., 2024; Wang
et al., 2024a) and Irerative-refine-based methods
(Madaan et al., 2024a; Shinn et al., 2024). Recently,
there is a growing focus on training LLMs to per-
form test-time search by conducting longer and
deeper thinking (OpenAl, 2024; Guo et al., 2025).
In this work, we also present an efficient method for
training LLMs to perform effective test-time scal-
ing through self-verification and self-correction.
Self-verification and Self-correction Self-
verification and self-correction are promising
solutions for effective LLM reasoning (Madaan
et al., 2024b). As direct prompting for self-
verification or self-correction is shown to be
suboptimal in many scenarios (Huang et al., 2023;
Tyen et al., 2023), recent studies explore various
approaches to enhance these capabilities during
post-training (Saunders et al., 2022; Rosset et al.,
2024). However, recent work shows that behavior
imitation via SFT alone is insufficient for achieving
valid self-verification or self-correction (Kumar
et al., 2024; Qu et al., 2025). In this work, we
propose an effective method to equip LLMs with
more valid self-verification and self-correction
abilities through principled SFT and RL training.

RL for LLLM Reasoning Reinforcement learning
has proven effective in enhancing LLLM reasoning
(Lightman et al., 2024; Havrilla et al., 2024). Previ-
ous studies typically employ RL in an actor-critic
framework, and focus on developing accurate re-
ward models, particularly process-level reward for
RL training (Setlur et al., 2024, 2025). Recent
studies have demonstrated that simplified reward
modeling (Ahmadian et al., 2024; Shao et al., 2024)
in RL training also effectively enhance LLM rea-
soning. Recent advances in improving LLMs’ deep
thinking (Guo et al., 2025; Team et al., 2025) fur-
ther highlight the importance of utilizing unhack-
able rewards to consistently enhance LLM reason-
ing. In this work, we conducted extensive exper-
iments on RL for LLLM reasoning, showing that
simplified advantage estimation and RL framework
enable effectively enhancing LLLM reasoning.

Due to space limitation, we include complete
discussion on related work in Appendix §B.

5 Conclusion

In this work, we propose S’R, an efficient frame-
work for enhancing LLM reasoning by teaching
LLMs to iteratively self-verify and self-correct
during reasoning. We introduce a principled ap-
proach for behavior initialization and explore both
outcome-level and process-level RL to further
strengthen the models’ thinking abilities. Exper-
imental results across 3 base models on 7 math
reasoning benchmarks demonstrate that S’R sig-
nificantly enhances LLM reasoning with minimal
resource requirements. S2R also provides an in-
terpretable framework for understanding how SFT
and RL enhance LLMs’ deep reasoning, and offer
insights into how RL training can be effectively
employed to enhance LLMs’ long-CoT reasoning.

22640

Limitations

We outline the limitations of this work as follows:
(1) Limitations in Model Size: In this work, we
experimented and evaluated SR on smaller LLMs
(up to 8B prarameters). While learning to self-
verify and self-correct for enhancing LLMs’ deep
thinking is suitable for smaller and less powerful
models, it would be interesting to explore whether
these phenomena differ in larger models, as pre-
vious work suggests that the emergent abilities of
larger models may differ from smaller ones (Wei
et al., 2022; Schaeffer et al., 2024; Guo et al.,
2025). Additionally, since we have explored of-
fline RL for more efficient RL training, offline RL
could be a promising choice for efficiently enhanc-
ing the reasoning abilities of larger models. We
leave the investigation of larger models in future
work. (2) Limitations in Discussion of More Re-
cent Work: Recently, the Deepseek R1 series (Guo
et al., 2025), particularly R1-Zero, has drawn sig-
nificant global attention. Many projects are attempt-
ing to replicate the success of the R1 series. Due
to time constraints, we only included three recent
works in our discussion: Eurus-2-7B-PRIME (Cui
et al., 2025), rStar-Math-7B (Guan et al., 2025)
and Qwen2.5-7B-SimpleRL (Zeng et al., 2025),
along with the previously released ol-like model
QwQ-32B-Preview (Team, 2024) as the distillation
baseline. Nevertheless, despite these recent efforts,
we believe our work stands as an independent con-
tribution that offers novel insights into enhancing
LLMs’ long-thought reasoning.

Acknowledgements

The authors wish to thank the anonymous reviewers
for their helpful comments. Jia Li was supported
in part by Guangdong S&T Program C019.

References

2024. Qwen? technical report.

Arash Ahmadian, Chris Cremer, Matthias Gallé,
Marzieh Fadaee, Julia Kreutzer, Olivier Pietquin,
Ahmet Ustiin, and Sara Hooker. 2024. Back to ba-
sics: Revisiting reinforce style optimization for learn-

ing from human feedback in llms. arXiv preprint
arXiv:2402.14740.

AI-MO. 2024a. Aime 2024.

AI-MO. 2024b. Amc 2023.

Ashutosh Baheti, Ximing Lu, Faeze Brahman, Ro-
nan Le Bras, Maarten Sap, and Mark Riedl. 2023.
Leftover lunch: Advantage-based offline reinforce-
ment learning for language models. arXiv preprint
arXiv:2305.14718.

Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda
Askell, Anna Chen, Nova DasSarma, Dawn Drain,
Stanislav Fort, Deep Ganguli, Tom Henighan, et al.
2022. Training a helpful and harmless assistant with
reinforcement learning from human feedback. arXiv
preprint arXiv:2204.05862.

Lukas Berglund, Meg Tong, Max Kaufmann, Mikita
Balesni, Asa Cooper Stickland, Tomasz Korbak, and
Owain Evans. 2023. The reversal curse: Llms trained
on" a is b" fail to learn" b is a". arXiv preprint
arXiv:2309.12288.

Bradley Brown, Jordan Juravsky, Ryan Ehrlich, Ronald
Clark, Quoc V Le, Christopher R¢é, and Azalia Mirho-
seini. 2024. Large language monkeys: Scaling infer-
ence compute with repeated sampling. arXiv preprint
arXiv:2407.21787.

Justin Chih-Yao Chen, Archiki Prasad, Swarnadeep
Saha, Elias Stengel-Eskin, and Mohit Bansal.
2024a. Magicore: Multi-agent, iterative, coarse-

to-fine refinement for reasoning. arXiv preprint
arXiv:2409.12147.

Justin Chih-Yao Chen, Zifeng Wang, Hamid Palangi,
Rujun Han, Sayna Ebrahimi, Long Le, Vincent Perot,
Swaroop Mishra, Mohit Bansal, Chen-Yu Lee, et al.
2024b. Reverse thinking makes 1lms stronger reason-
ers. arXiv preprint arXiv:2411.19865.

Xingyu Chen, Jiahao Xu, Tian Liang, Zhiwei He,
Jianhui Pang, Dian Yu, Linfeng Song, Qiuzhi Liu,
Mengfei Zhou, Zhuosheng Zhang, et al. 2024c. Do
not think that much for 2+ 3=? on the overthinking
of ol-like llms. arXiv preprint arXiv:2412.21187.

Pengyu Cheng, Tianhao Hu, Han Xu, Zhisong Zhang,
Yong Dai, Lei Han, Xiaolong Li, et al. 2025. Self-
playing adversarial language game enhances llm rea-
soning. Advances in Neural Information Processing
Systems, 37:126515-126543.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, Christopher Hesse, and John Schulman.
2021a. Training verifiers to solve math word prob-
lems. arXiv preprint arXiv:2110.14168.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, et al. 2021b. Training verifiers to solve math
word problems. arXiv preprint arXiv:2110.14168.

Ganqu Cui, Lifan Yuan, Zefan Wang, Hanbin Wang,
Wendi Li, Bingxiang He, Yuchen Fan, Tianyu Yu,
Qixin Xu, Weize Chen, et al. 2025. Process rein-
forcement through implicit rewards. arXiv preprint
arXiv:2502.01456.

22641

https://huggingface.co/datasets/AI-MO/aimo-validation-aime
https://huggingface.co/datasets/AI-MO/aimo-validation-amc

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, et al. 2024. The llama 3 herd of models. arXiv
preprint arXiv:2407.21783.

Tom Everitt, Marcus Hutter, Ramana Kumar, and Vic-
toria Krakovna. 2021. Reward tampering problems
and solutions in reinforcement learning: A causal
influence diagram perspective. Synthese, 198(Suppl
27):6435-6467.

Xidong Feng, Ziyu Wan, Muning Wen, Ying Wen,
Weinan Zhang, and Jun Wang. 2023. Alphazero-like
tree-search can guide large language model decoding
and training. arXiv preprint arXiv:2309.17179.

Leo Gao, John Schulman, and Jacob Hilton. 2023. Scal-
ing laws for reward model overoptimization. In In-
ternational Conference on Machine Learning, pages

10835-10866. PMLR.

Mor Geva, Daniel Khashabi, Elad Segal, Tushar Khot,
Dan Roth, and Jonathan Berant. 2021. Did Aristo-
tle Use a Laptop? A Question Answering Bench-
mark with Implicit Reasoning Strategies. Transac-

tions of the Association for Computational Linguis-
tics (TACL).

Alex Gu, Baptiste Roziere, Hugh Leather, Armando
Solar-Lezama, Gabriel Synnaeve, and Sida I. Wang.
2024. Cruxeval: A benchmark for code reason-

ing, understanding and execution. arXiv preprint
arXiv:2401.03065.

Xinyu Guan, Li Lyna Zhang, Yifei Liu, Ning Shang,
Youran Sun, Yi Zhu, Fan Yang, and Mao Yang.
2025. rstar-math: Small Ilms can master math reason-
ing with self-evolved deep thinking. arXiv preprint
arXiv:2501.04519.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song,
Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma,
Peiyi Wang, Xiao Bi, et al. 2025. Deepseek-rl: In-
centivizing reasoning capability in llms via reinforce-
ment learning. arXiv preprint arXiv:2501.12948.

Simeng Han, Hailey Schoelkopf, Yilun Zhao, Zhenting
Qi, Martin Riddell, Luke Benson, Lucy Sun, Eka-
terina Zubova, Yujie Qiao, Matthew Burtell, et al.
2022. Folio: Natural language reasoning with first-
order logic. arXiv preprint arXiv:2209.00840.

Alex Havrilla, Yuqing Du, Sharath Chandra Raparthy,
Christoforos Nalmpantis, Jane Dwivedi-Yu, Maksym
Zhuravinskyi, Eric Hambro, Sainbayar Sukhbaatar,
and Roberta Raileanu. 2024. Teaching large lan-
guage models to reason with reinforcement learning.
arXiv preprint arXiv:2403.04642.

Chaoqun He, Renjie Luo, Yuzhuo Bai, Shengding Hu,
Zhen Leng Thai, Junhao Shen, Jinyi Hu, Xu Han,
Yujie Huang, Yuxiang Zhang, et al. 2024. Olympiad-
bench: A challenging benchmark for promoting agi
with olympiad-level bilingual multimodal scientific
problems. arXiv preprint arXiv:2402.14008.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul
Arora, Steven Basart, Eric Tang, Dawn Song, and
Jacob Steinhardt. 2021a. Measuring mathematical
problem solving with the math dataset. In Thirty-
fifth Conference on Neural Information Processing
Systems Datasets and Benchmarks Track (Round 2).

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul
Arora, Steven Basart, Eric Tang, Dawn Song, and
Jacob Steinhardt. 2021b. Measuring mathemati-
cal problem solving with the math dataset. arXiv
preprint arXiv:2103.03874.

Jie Huang, Xinyun Chen, Swaroop Mishra,
Huaixiu Steven Zheng, Adams Wei Yu, Xiny-
ing Song, and Denny Zhou. 2023. Large language
models cannot self-correct reasoning yet. arXiv
preprint arXiv:2310.01798.

Wouter Kool, Herke van Hoof, and Max Welling. 2019.
Buy 4 reinforce samples, get a baseline for free!

Aviral Kumar, Vincent Zhuang, Rishabh Agarwal,
Yi Su, John D Co-Reyes, Avi Singh, Kate Baumli,
Shariq Igbal, Colton Bishop, Rebecca Roelofs,
et al. 2024. Training language models to self-
correct via reinforcement learning. arXiv preprint
arXiv:2409.12917.

Jia LI, Edward Beeching, Lewis Tunstall, Ben Lipkin,
Roman Soletskyi, Shengyi Costa Huang, Kashif
Rasul, Longhui Yu, Albert Jiang, Ziju Shen, Zihan
Qin, Bin Dong, Li Zhou, Yann Fleureau, Guillaume
Lample, and Stanislas Polu. 2024. Numina-
math. [https://github.com/project-numina/
aimo-progress-prize](https://github.com/
project-numina/aimo-progress-prize/blob/
main/report/numina_dataset.pdf).

Minpeng Liao, Wei Luo, Chengxi Li, Jing Wu, and
Kai Fan. 2024. Mario: Math reasoning with code
interpreter output—a reproducible pipeline. arXiv
preprint arXiv:2401.08190.

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri
Edwards, Bowen Baker, Teddy Lee, Jan Leike,
John Schulman, Ilya Sutskever, and Karl Cobbe.
2023a. Let’s verify step by step. arXiv preprint
arXiv:2305.20050.

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri
Edwards, Bowen Baker, Teddy Lee, Jan Leike,
John Schulman, Ilya Sutskever, and Karl Cobbe.
2023b. Let’s verify step by step. arXiv preprint
arXiv:2305.20050.

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harri-
son Edwards, Bowen Baker, Teddy Lee, Jan Leike,
John Schulman, Ilya Sutskever, and Karl Cobbe.
2024. Let’s verify step by step. In The Twelfth Inter-
national Conference on Learning Representations.

Liangchen Luo, Yinxiao Liu, Rosanne Liu, Samrat
Phatale, Harsh Lara, Yunxuan Li, Lei Shu, Yun Zhu,
Lei Meng, Jiao Sun, et al. 2024. Improve mathemati-
cal reasoning in language models by automated pro-
cess supervision. arXiv preprint arXiv:2406.06592.

22642

[https://github.com/project-numina/aimo-progress-prize](https://github.com/project-numina/aimo-progress-prize/blob/main/report/numina_dataset.pdf)
[https://github.com/project-numina/aimo-progress-prize](https://github.com/project-numina/aimo-progress-prize/blob/main/report/numina_dataset.pdf)
[https://github.com/project-numina/aimo-progress-prize](https://github.com/project-numina/aimo-progress-prize/blob/main/report/numina_dataset.pdf)
[https://github.com/project-numina/aimo-progress-prize](https://github.com/project-numina/aimo-progress-prize/blob/main/report/numina_dataset.pdf)
https://openreview.net/forum?id=v8L0pN6EOi

Ruotian Ma, Xiaolei Wang, Xin Zhou, Jian Li, Nan
Du, Tao Gui, Qi Zhang, and Xuanjing Huang. 2024.
Are large language models good prompt optimizers?
arXiv preprint arXiv:2402.02101.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler
Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon,
Nouha Dziri, Shrimai Prabhumoye, Yiming Yang,
et al. 2024a. Self-refine: Iterative refinement with
self-feedback. Advances in Neural Information Pro-
cessing Systems, 36.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler
Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon,
Nouha Dziri, Shrimai Prabhumoye, Yiming Yang,
et al. 2024b. Self-refine: Iterative refinement with
self-feedback. Advances in Neural Information Pro-
cessing Systems, 36.

OpenAl. 2024. Openai ol system card. preprint.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, et al.
2022. Training language models to follow instruc-
tions with human feedback. Advances in neural in-
formation processing systems, 35:27730-27744.

Debjit Paul, Mete Ismayilzada, Maxime Peyrard, Beat-
riz Borges, Antoine Bosselut, Robert West, and
Boi Faltings. 2023. Refiner: Reasoning feedback
on intermediate representations. arXiv preprint
arXiv:2304.01904.

Zhenting Qi, Mingyuan Ma, Jiahang Xu, Li Lyna Zhang,
Fan Yang, and Mao Yang. 2024. Mutual reasoning
makes smaller llms stronger problem-solvers. arXiv
preprint arXiv:2408.06195.

Yiwei Qin, Xuefeng Li, Haoyang Zou, Yixiu Liu, Shijie
Xia, Zhen Huang, Yixin Ye, Weizhe Yuan, Hector
Liu, Yuanzhi Li, et al. 2024. Ol replication journey:
A strategic progress report—part 1. arXiv preprint
arXiv:2410.18982.

Yuxiao Qu, Tianjun Zhang, Naman Garg, and Aviral
Kumar. 2025. Recursive introspection: Teaching lan-
guage model agents how to self-improve. Advances
in Neural Information Processing Systems, 37:55249—
55285.

Qwen. 2024. Qwen2.5-math-7b.

Corby Rosset, Ching-An Cheng, Arindam Mi-
tra, Michael Santacroce, Ahmed Awadallah, and
Tengyang Xie. 2024. Direct nash optimization:
Teaching language models to self-improve with gen-
eral preferences. arXiv preprint arXiv:2404.03715.

William Saunders, Catherine Yeh, Jeff Wu, Steven Bills,
Long Ouyang, Jonathan Ward, and Jan Leike. 2022.
Self-critiquing models for assisting human evaluators.
arXiv preprint arXiv:2206.05802.

Rylan Schaeffer, Brando Miranda, and Sanmi Koyejo.
2024. Are emergent abilities of large language mod-
els a mirage? Advances in Neural Information Pro-
cessing Systems, 36.

Amrith Setlur, Saurabh Garg, Xinyang Geng, Naman
Garg, Virginia Smith, and Aviral Kumar. 2025. Rl on
incorrect synthetic data scales the efficiency of 1lm
math reasoning by eight-fold. Advances in Neural
Information Processing Systems, 37:43000-43031.

Amrith Setlur, Chirag Nagpal, Adam Fisch, Xinyang
Geng, Jacob Eisenstein, Rishabh Agarwal, Alekh
Agarwal, Jonathan Berant, and Aviral Kumar.
2024. Rewarding progress: Scaling automated pro-
cess verifiers for 1lm reasoning. arXiv preprint
arXiv:2410.08146.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu,
Junxiao Song, Xiao Bi, Haowei Zhang, Mingchuan
Zhang, YK Li, Y Wu, et al. 2024. Deepseekmath:
Pushing the limits of mathematical reasoning in open
language models. arXiv preprint arXiv:2402.03300.

Maohao Shen, Guangtao Zeng, Zhenting Qi, Zhang-Wei
Hong, Zhenfang Chen, Wei Lu, Gregory Wornell,
Subhro Das, David Cox, and Chuang Gan. 2025.
Satori: Reinforcement learning with chain-of-action-
thought enhances Ilm reasoning via autoregressive
search. arXiv preprint arXiv:2502.02508.

Noah Shinn, Federico Cassano, Ashwin Gopinath,
Karthik Narasimhan, and Shunyu Yao. 2024. Re-
flexion: Language agents with verbal reinforcement
learning. Advances in Neural Information Process-
ing Systems, 36.

Charlie Snell, Jachoon Lee, Kelvin Xu, and Aviral Ku-
mar. 2024a. Scaling llm test-time compute optimally
can be more effective than scaling model parameters.
arXiv preprint arXiv:2408.03314.

Charlie Snell, Jachoon Lee, Kelvin Xu, and Aviral Ku-
mar. 2024b. Scaling Ilm test-time compute optimally
can be more effective than scaling model parameters.
Preprint, arXiv:2408.03314.

Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel
Ziegler, Ryan Lowe, Chelsea Voss, Alec Radford,
Dario Amodei, and Paul F Christiano. 2020. Learn-
ing to summarize with human feedback. Advances
in Neural Information Processing Systems, 33:3008—
3021.

Fahim Tajwar, Anikait Singh, Archit Sharma, Rafael
Rafailov, Jeff Schneider, Tengyang Xie, Stefano Er-
mon, Chelsea Finn, and Aviral Kumar. 2024. Prefer-
ence fine-tuning of llms should leverage suboptimal,
on-policy data. arXiv preprint arXiv:2404.14367.

Zhengyang Tang, Xingxing Zhang, Benyou Wan, and
Furu Wei. 2024a. Mathscale: Scaling instruction
tuning for mathematical reasoning. arXiv preprint
arXiv:2403.02884.

22643

https://huggingface.co/Qwen/Qwen2.5-Math-7B
https://arxiv.org/abs/2408.03314
https://arxiv.org/abs/2408.03314

Zhengyang Tang, Xingxing Zhang, Benyou Wang, and
Furu Wei. 2024b. Mathscale: Scaling instruction
tuning for mathematical reasoning. arXiv preprint
arXiv:2403.02884.

Kimi Team, Angang Du, Bofei Gao, Bowei Xing,
Changjiu Jiang, Cheng Chen, Cheng Li, Chenjun
Xiao, Chenzhuang Du, Chonghua Liao, et al. 2025.
Kimi k1. 5: Scaling reinforcement learning with 1lms.
arXiv preprint arXiv:2501.12599.

Qwen Team. 2024. Qwq: Reflect deeply on the bound-
aries of the unknown.

Ye Tian, Baolin Peng, Linfeng Song, Lifeng Jin, Dian
Yu, Haitao Mi, and Dong Yu. 2024. Toward self-
improvement of llms via imagination, searching, and
criticizing. arXiv preprint arXiv:2404.12253.

Shubham Toshniwal, Wei Du, Ivan Moshkov, Branislav
Kisacanin, Alexan Ayrapetyan, and Igor Gitman.
2024. Openmathinstruct-2: Accelerating ai for math
with massive open-source instruction data. arXiv
preprint arXiv:2410.01560.

Gladys Tyen, Hassan Mansoor, Peter Chen, Tony Mak,
and Victor Carbune. 2023. Llms cannot find rea-
soning errors, but can correct them! arXiv preprint
arXiv:2311.08516.

Chaojie Wang, Yanchen Deng, Zhiyi Lv, Shuicheng Yan,
and An Bo. 2024a. Q*: Improving multi-step rea-
soning for 1lms with deliberative planning. Preprint,
arXiv:2406.14283.

Peiyi Wang, Lei Li, Zhihong Shao, R. X. Xu, Damai
Dai, Yifei Li, Deli Chen, Y. Wu, and Zhifang Sui.
2024b. Math-shepherd: Verify and reinforce 1lms
step-by-step without human annotations. Preprint,
arXiv:2312.08935.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le,
Ed H. Chi, Sharan Narang, Aakanksha Chowdhery,
and Denny Zhou. 2023. Self-consistency improves
chain of thought reasoning in language models. In
The Eleventh International Conference on Learning
Representations.

Yifei Wang, Yuyang Wu, Zeming Wei, Stefanie Jegelka,
and Yisen Wang. 2024c. A theoretical understand-
ing of self-correction through in-context alignment.
arXiv preprint arXiv:2405.18634.

Yubo Wang, Xueguang Ma, Ge Zhang, Yuansheng Ni,
Abhranil Chandra, Shiguang Guo, Weiming Ren,
Aaran Arulraj, Xuan He, Ziyan Jiang, et al. 2024d.
Mmlu-pro: A more robust and challenging multi-task
language understanding benchmark. arXiv preprint
arXiv:2406.01574.

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel,
Barret Zoph, Sebastian Borgeaud, Dani Yogatama,
Maarten Bosma, Denny Zhou, Donald Metzler, et al.
2022. Emergent abilities of large language models.
arXiv preprint arXiv:2206.07682.

Yangzhen Wu, Zhiqing Sun, Shanda Li, Sean Welleck,
and Yiming Yang. 2024. An empirical analysis of
compute-optimal inference for problem-solving with
language models. arXiv preprint arXiv:2408.00724.

An Yang, Beichen Zhang, Binyuan Hui, Bofei Gao,
Bowen Yu, Chengpeng Li, Dayiheng Liu, Jianhong
Tu, Jingren Zhou, Junyang Lin, et al. 2024. Qwen?2.
5-math technical report: Toward mathematical ex-
pert model via self-improvement. arXiv preprint
arXiv:2409.12122.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran,
Tom Griffiths, Yuan Cao, and Karthik Narasimhan.
2023. Tree of thoughts: Deliberate problem solving
with large language models. Advances in neural
information processing systems, 36:11809-11822.

Lifan Yuan, Wendi Li, Huayu Chen, Ganqu Cui, Ning
Ding, Kaiyan Zhang, Bowen Zhou, Zhiyuan Liu,
and Hao Peng. 2024. Free process rewards without
process labels. arXiv preprint arXiv:2412.01981.

Weihao Zeng, Yuzhen Huang, Wei Liu, Keqing
He, Qian Liu, Zejun Ma, and Junxian He. 2025.
7b model and 8k examples: Emerging reason-
ing with reinforcement learning is both effective
and efficient. https://hkust-nlp.notion.site/
simplerl-reason. Notion Blog.

Dan Zhang, Sining Zhoubian, Ziniu Hu, Yisong Yue,
Yuxiao Dong, and Jie Tang. 2024a. Rest-mcts*: Llm
self-training via process reward guided tree search.
arXiv preprint arXiv:2406.03816.

Lunjun Zhang, Arian Hosseini, Hritik Bansal, Mehran
Kazemi, Aviral Kumar, and Rishabh Agarwal. 2024b.
Generative verifiers: Reward modeling as next-token
prediction. In The 4th Workshop on Mathematical
Reasoning and Al at NeurIPS’24.

Qingjie Zhang, Han Qiu, Di Wang, Haoting Qian, Yim-
ing Li, Tianwei Zhang, and Minlie Huang. 2024c.
Understanding the dark side of 1lms’ intrinsic self-
correction. arXiv preprint arXiv:2412.14959.

Yu Zhao, Huifeng Yin, Bo Zeng, Hao Wang, Tianqi
Shi, Chenyang Lyu, Longyue Wang, Weihua Luo,
and Kaifu Zhang. 2024. Marco-ol: Towards open
reasoning models for open-ended solutions. arXiv
preprint arXiv:2411.14405.

Chujie Zheng, Zhenru Zhang, Beichen Zhang, Runji
Lin, Keming Lu, Bowen Yu, Dayiheng Liu, Jin-
gren Zhou, and Junyang Lin. 2024. Processbench:
Identifying process errors in mathematical reasoning.
arXiv preprint arXiv:2412.06559.

Daniel M Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B
Brown, Alec Radford, Dario Amodei, Paul Chris-
tiano, and Geoffrey Irving. 2019. Fine-tuning lan-
guage models from human preferences. arXiv
preprint arXiv:1909.08593.

22644

https://qwenlm.github.io/blog/qwq-32b-preview/
https://qwenlm.github.io/blog/qwq-32b-preview/
https://arxiv.org/abs/2406.14283
https://arxiv.org/abs/2406.14283
https://arxiv.org/abs/2312.08935
https://arxiv.org/abs/2312.08935
https://openreview.net/forum?id=1PL1NIMMrw
https://openreview.net/forum?id=1PL1NIMMrw
https://hkust-nlp.notion.site/simplerl-reason
https://hkust-nlp.notion.site/simplerl-reason
https://openreview.net/forum?id=CxHRoTLmPX
https://openreview.net/forum?id=CxHRoTLmPX

A Additional Experiments

A.1 Problem-solving v.s. Confirmative
Verification

We first compare the Problem-solving and Confir-
mative Verification methods described in §2.2.1.
In Table 6, we present the verification results of
different methods on the Math500 test set. We re-
port the overall verification accuracy, as well as the
initial verification accuracy when the initial answer
is correct (V:qolden(so) = correct) and incorrect
(Vgolden(50) = incorrect), respectively.

Overall Initial Verification Acc.
Base Model Methods Verification ~ e
Acc. Vgotden (s0) Vgotden (S0)
= correct | = incorrect
Problem-solving 80.10 87.28 66.96
Llama3.1-8B-Instruct
Confirmative 65.67 77.27 78.22
Problem-solving 73.28 90.24 67.37
Qwen2-7B-Instruct
Confirmative 5831 76.16 70.05
Problem-solving 77.25 91.21 56.67
Qwen2.5-Math-7B
Confirmative 61.58 82.80 68.04

Table 6: Comparison of problem-solving and confirma-
tive verification.

We observe from the table that: (1) Gener-
ally, problem-solving verification achieves superior
overall accuracy compared to confirmative verifi-
cation. This result is intuitive, as existing models
are trained for problem-solving, and recent studies
have highlighted the difficulty of existing LLMs in
performing reverse thinking (Berglund et al., 2023;
Chen et al., 2024b). During data collection, we also
found that existing models tend to verify through
problem-solving, even when prompted to verify
without re-solving (see Table 7 in Appendix §C.1).
(2) In practice, accuracy alone does not fully re-
flect the validity of a method. For example, when
answer accuracy is sufficiently high, predicting all
answers as correct will naturally lead to high verifi-
cation accuracy, but this is not a desired behavior.
By further examining the initial verification accu-
racy for both correct and incorrect answers, we
found that problem-solving verification exhibits a
notable bias toward predicting answers as correct,
while the predictions from confirmative verification
are more balanced. We deduce that this bias arises
might be because problem-solving verification is
more heavily influenced by the preceding solution,
aligning with previous studies showing that LLMs
struggle to identify their own errors (Huang et al.,
2023; Tyen et al., 2023). In contrast, confirma-
tive verification performs verification from differ-
ent perspectives, making it less influenced by the

LLMs’ preceding solution.
In all experiments, we used confirmative verifi-
cation for behavior initialization.

B Complete Discussion on Related Work

B.1 Scaling Test-time Compute

Scaling test-time compute recently garners wide
attention in LLM reasoning (Snell et al., 2024b;
Wu et al., 2024; Brown et al., 2024). Existing
studies have explored various methods for scaling
up test-time compute, including: (1) Aggregation-
based methods that samples multiple responses for
each question and obtains the final answer with
self-consistency (Wang et al., 2023) or by select-
ing best-of-N answer using a verifier or reward
model (Wang et al., 2024b; Zhang et al., 2024b;
Lightman et al., 2023b); (2) Search-based meth-
ods that apply search algorithms such as Monte
Carlo Tree Search (Tian et al., 2024; Wang et al.,
2024a; Zhang et al., 2024a; Qi et al., 2024), beam
search (Snell et al., 2024b), or other effective al-
gorithms (Feng et al., 2023; Yao et al., 2023) to
search for correct trajectories; (3) Iterative-refine-
based methods that iteratively improve test per-
formance through self-refinement (Madaan et al.,
2024a; Shinn et al., 2024; Chen et al., 2024a). Re-
cently, there has been a growing focus on training
LLMs to perform test-time search on their own,
typically by conducting longer and deeper thinking
(OpenAl, 2024; Guo et al., 2025). These test-time
scaling efforts not only directly benefit LLM rea-
soning, but can also be integrated back into training
time, enabling iterative improvement for LLM rea-
soning (Qin et al., 2024; Feng et al., 2023; Snell
et al., 2024b). In this work, we also present an
efficient framework for training LLMs to perform
effective test-time scaling through self-verification
and self-correction iterations. This approach is
achieved without extensive efforts, and the perfor-
mance of S%R can also be consistently promoted
via iterative training.

B.2 Self-verification and Self-correction

Enabling LLMs to perform effective self-
verification and self-correction is a promising
solution for achieving robust reasoning for LLMs
(Madaan et al., 2024b; Paul et al., 2023; Lightman
et al., 2023a), and these abilities are also critical
for performing deep reasoning. Previous studies
have shown that direct prompting of LLMs for
self-verification or self-correction is suboptimal

22645

in most scenarios (Huang et al., 2023; Tyen et al.,
2023; Ma et al., 2024; Zhang et al., 2024c). As
a result, recent studies have explored various
approaches to enhance these capabilities during
post-training (Saunders et al., 2022; Rosset
et al., 2024; Kumar et al., 2024). These methods
highlight the potential of using human-annotated
or LLM-generated data to equip LLMs with
self-verification or self-correction capabilities,
while also indicating that behavior imitation via
supervised fine-tuning alone is insufficient for
achieving valid self-verification or self-correction
(Kumar et al., 2024; Qu et al., 2025). In this work,
we propose effective methods to enhance LLMs’
self-verification and self-correction abilities
through principled imitation data construction and
RL training, and demonstrate the effectiveness
of our approach with in-depth analysis. Com-
plementing these empirical findings, Wang et al.
(2024c¢) present a theoretical framework that views
self-correction as in-context alignment, where
critic feedback, whether generated by the model
or external verifiers, is treated as a reward signal
whose accuracy governs alignment quality. In this
work, we propose effective methods to enhance
LLMs’ self-verification and self-correction abili-
ties through principled imitation data construction
and RL training. We demonstrate the effectiveness
of our approach with in-depth analysis, and show
that it aligns with the underlying theoretical
framework.

B.3 RL for LLM Reasoning

Reinforcement learning has proven effective in en-
hancing LLM performance across various tasks
(Ziegler et al., 2019; Stiennon et al., 2020; Bai et al.,
2022; Ouyang et al., 2022). In LLM reasoning, pre-
vious studies typically employ RL in an actor-critic
framework (Lightman et al., 2024; Havrilla et al.,
2024; Tajwar et al., 2024), and research on devel-
oping accurate reward models for RL training has
been a long-standing focus, particularly in reward
modeling for Process-level RL (Lightman et al.,
2024; Setlur et al., 2024, 2025; Luo et al., 2024).
Recently, several studies have demonstrate that sim-
plified reward modeling and advantage estimation
(Ahmadian et al., 2024; Shao et al., 2024; Team
et al., 2025; Guo et al., 2025) in RL training can
also effectively enhance LLM reasoning. Recent
advances in improving LLMs’ deep thinking (Guo
et al., 2025; Team et al., 2025) further highlight the
effectiveness of utilizing unhackable rewards (Gao

et al., 2023; Everitt et al., 2021) to consistently
enhance LLM reasoning. In this work, we also
show that simplified advantage estimation and RL
framework enable effective improvements on LLM
reasoning. Additionally, we conducted an analysis
on process-level RL, outcome-level RL and offline
RL, providing insights for future work in RL for
LLM reasoning.

C Implementation Details

C.1 Verification Processing and SFT Data
Construction

Given the responses sampled from the original
LLM policy, we prompt frontier LLMs for initial
verifications. In order to construct more valid veri-
fication, we force the LLMs to “verify without re-
solving the problem” and filter out invalid verifica-
tions during data processing. We found that despite
being instructed to "verify without re-solving the
problem", most existing LLMs still biased to solve
the problem again, as shown in Table 7. Finally,
we collected the verification data by querying gpt-
4-preview-1106> , which shows strong instruction-
following ability to "verify without re-solving the
problem" and can perform plausible verification
such as adopting reverse thinking, inductive reason-
ing and other methods.

For these collected prompts, we refine the re-
maining verifications using gpt-4o to improve flu-
ency and clarity. During this refinement, we in-
struct gpt-4o to append a conclusion at the end of
each verification based on its stance—for example:
“Therefore, the answer is correct/incorrect/cannot
verify.” Finally, we discard any verifications where
the judgment does not align with the actual correct-
ness of the answer. The prompts we used during
the whole process are provided in Appendix §C.3.

With the refined and filtered verifications, we
construct the SFT data as follows. For each prob-
lem, we determine the number of answer attempts
required to eventually obtain a correct answer
based on the accuracy from the initial sampling.
The lower the accuracy, the more rounds of re-
sponses are generated. In our implementation, we
categorize all problems into four difficulty levels
and construct answer sequences with 1, 2, 3, or 4
rounds, according to descending accuracy. Then,
after an incorrect answer, we append “Wait, let me
recheck my solution” along with the corresponding
verification. If that answer is not the final attempt,

Shttps://openai.com/api/

22646

https://openai.com/api/

we further append “Let me try again.” We ensure
that the last answer in the sequence is correct. Ad-
ditionally, we ensure that the answers in each round
for a given problem are distinct. Figure 5 is an ex-
ample of SFT data constructed with 4 rounds of
responses.

C.2 Baseline Details

C.2.1 Baseline Implementations

In Table 2, the reported results for Frontier LLMs
and Top-tier Open-source Reasoning LLMs are
sourced from Guan et al. (2025). We evalu-
ate Llama-3.1-8B-Instruct (Dubey et al., 2024),
Qwen2-7B-Instruct (qwe, 2024), Qwen2.5-Math-
7B, Qwen2.5-Math-7B-Instruct and Qwen2.5-
Math-72B-Instruct(Yang et al., 2024) using the
same process described in Section §3.1. For Eurus-
7B-PRIME (Cui et al., 2025), rStar-Math-7B (Guan
et al., 2025), and Qwen2.5-7B-SimpleRL (Zeng
et al., 2025), we report results directly from the
original papers.

In Table 3, the results for Llama-3.1-70B-
Instruct and QwQ-32B-Preview are taken from
Shen et al. (2025). For the remaining baselines,
we follow the official evaluation protocol of the
dataset project?.

C.2.2 Baseline License

In this work, we utilize the Llama-3.1-8B-
Instruct model, whose license can be reviewed
at https://huggingface.co/meta-1lama/
Llama-3.1-8B-Instruct/blob/main/LICENSE.
In addition, the models Qwen2-7B-Instruct,
Qwen2.5-Math-7B, Eurus-2-7B-PRIME, and
project vLLM are distributed under the Apache
License 2.0. We gratefully acknowledge the
contributions of the open-source community
and strictly adhere to the terms of the respective
licenses.

C.2.3 Baseline SFT Data Construction

Original Solution SFT Data In this setting, we
use the solution from the original dataset as sft data.
To ensure a fair comparison, we maintain the same
training data volume as our behavior initialization
approaches.

“https://github.com/Yale-LILY/FOLIO
https://github.com/facebookresearch/cruxeval
https://github.com/eladsegal/strategyqa
https://github.com/TIGER-AI-Lab/MMLU-Pro

Long CoT SFT Data We also introduce a base-
line by fine-tuning on Long CoT responses gener-
ated by QwQ-32B-Preview (Team, 2024). Specif-
ically, we instruct QwQ to generate responses to
given problems and filter out those with incorrect
answers. The remaining high-quality responses
are then used for supervised fine-tuning. Impor-
tantly, we ensure that the total training data volume
remains consistent with that used in our behavior
initialization approach. The prompt we use for
QwQ is provided in Appendix §C.3.

C.3 Prompts

The prompts we use in all experiments are as fol-
lows:

Sampling Responses During Training/Inference

Please reason step by step, and put your final answer within
\boxed{ }.
Problem: {problem}

Verification Refinement

You are a math teacher. I will give you a math problem and
an answer.

Verify the answer's correctness without step—by—step
solving. Use alternative verification methods.

Question: {problem}

Answer: {answer}

Verification:

Verification Collection

Refine this verification text to read as a natural self—check
within a solution. Maintain logical flow and professionalism.
Key Requirements:

1. Avoid phrases like "without solving step—by—step" or "as
a math teacher".

2. Treat the answer as your own prior solution.

3. Conclude with EXACTLY one of:

Therefore, the answer is correct.

Therefore, the answer is incorrect.

Therefore, the answer cannot be verified.

Original text: {verification}

D Detailed Experiment Settings

D.1 Datasets

Details of each test dataset we used as benchmark
are as follows:

D.1.1 In-domain Datasets

MATHS00 (Lightman et al., 2023b) offers a
streamlined slice of the broader MATH (Hendrycks
et al., 2021b) dataset, comprising 500 test problems
selected through uniform sampling. Despite its
smaller scope, it maintains a distribution of topics

22647

https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct/blob/main/LICENSE
https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct/blob/main/LICENSE
https://github.com/Yale-LILY/FOLIO
https://github.com/facebookresearch/cruxeval
https://github.com/eladsegal/strategyqa
https://github.com/TIGER-AI-Lab/MMLU-Pro

Without Asking for Confirmative Verification

Model Confirmative out of 100
GPT-40 26
GPT-4-Preview-1106 32
QwQ-32B-preview 37
Llama-3.1-70B-Instruct 28

Asking for Confirmative Verification

Model Confirmative out of 100
GPT-40 44
GPT-4-Preview-1106 61
QwQ-32B-preview 58
Llama-3.1-70B-Instruct 50

Table 7

and difficulty levels that mirrors the larger MATH
corpus.

GSMBSK (Cobbe et al., 2021a) features around
8,500 grade-school math word problems. The
dataset focuses on simple arithmetic through early
algebra and includes 1,319 distinct tasks in its test
set.

OlympiadBench (He et al., 2024) collects 8,476
advanced math and physics questions drawn from
Olympiad contexts, with some originating from the
Chinese college entrance exam. We use the subset
of 674 text-only competition questions, providing
open-ended math challenges.

AMC2023 (AI-MO, 2024b) and AIME (AI-MO,
2024a) each supply a set of challenging exam-style
problems: 40 questions from AMC 2023 and 30
from AIME 2024, all in text-only format.

CollegeMath (Tang et al., 2024b) is a dataset
targeting advanced college-level mathematics,
drawn from nine textbooks spanning seven major
fields—algebra, pre-calculus, calculus, vector cal-
culus, probability, linear algebra, and differential
equations. The final collection comprises 1,281
training examples and 2,818 test examples.

Gaokao2023en (Liao et al., 2024) is a dataset
consisting of 385 mathematics problems sourced
from the 2023 Chinese higher education entrance
examination, which have been professionally trans-
lated into English.

D.1.2 Cross-domain Datasets

FOLIO (Han et al., 2022) is meticulously anno-
tated to assess intricate logical reasoning in natural
language. It pairs 1,430 conclusions with 487 sets
of premises—each verified using first-order logic

(FOL)—and contains 203 unique problems in its
test portion.

CRUXEVval (Gu et al., 2024) tests code compre-
hension and reasoning through 800 concise Python
functions (spanning 3-13 lines). Each function
is accompanied by one or more input-output ex-
amples. The goal is to predict the correct outputs
given the function body and a specific input. The
test partition encompasses all 800 problems.

StrategyQA (Geva et al., 2021) targets multi-
hop reasoning questions where the necessary inter-
mediate steps are not explicit. Each of its 2,780
items includes a strategic query, a breakdown of
the reasoning steps, and supporting evidence drawn
from Wikipedia.

MMLUProSTEM is extracted from MMLU-
Pro (Wang et al., 2024d). Following Satori (Shen
et al., 2025), we conduct evaluations on six STEM
subsets—physics, chemistry, computer science, en-
gineering, biology, and economics.

D.2 Hyperparameters Setting

During behavior initialization with SFT, we use a
batch size of 32 and adopt a learning rate of Se-
6. We set the maximum sequence length 8000 to
accommodate long responses and verifications. To
balance stability and convergence during training,
we add a KL punishment to the training loss, and
the KL coefficient is set to 0.1.

During reinforcement learning, for each train-
ing batch, we use a training batch size of 64, and
sample n responses for each question in a batch,
resulting a forward batch size of 64n. For each
forward batch, we update the model for n step
with the training batch size 64. Specifically, for
both process-level and outcome-level RL, we adopt
n = 4 (i.e., for RLOO, the sample number is also
4). More hyperparameters of the RL training are
presented in Table 9. We use the BF16 model pre-
cision in all experiments.

Main hyperparameters used in the experiments
are illustrated in Table 8 and 9.

D.3 Experiment Environment

Our training code is built upon Hugging Face TRL.
For inference, we use VLLM-0.5.45. We utilize
transformers version 4.39.3 for fine-tuning Qwen?2-
7B-Instruct and Qwen2.5-Math-7B, version 4.44.0
for fine-tuning Llama-3.1-8B, and version 4.46.3
for reinforcement learning. We use PyTorch 2.1.1

5ht’cps: //github.com/huggingface/trl
®https://github.com/vllm-project/vllm

22648

https://github.com/huggingface/trl
https://github.com/vllm-project/vllm

Model Learning Rate Batch Size KL Coefficient Max Length Training Epochs
Llama-3.1-8B-Instruct Se-6 32 0.1 8000 3
Qwen2-7B-Instruct 5e-6 32 0.1 6000 3
Qwen2.5-Math-7B 5e-6 32 0.01 8000 3

Table 8: Model Training Hyperparameter Settings (SFT)

Training Forward

Sampling

Model Learning Rate Batch Size Batch Size KL Coefficient Max Length Temperature Clip Range Training Steps
Llama-3.1 5e-7 64 256 0.05 8000 0.7 0.2 500
Qwen2-7B-Instruct 5e-7 64 256 0.05 6000 0.7 0.2 500
Qwen2.5-Math-7B Se-7 64 256 0.01 8000 0.7 0.2 500
Table 9: Model Training Hyperparameter Settings (RL)
Variable | Description E.2 Self-Verification Metrics
s The policy
z Problem instance E.2.1 Verification Accuracy (VA)
y Series of predefined actions: Verification Accuracy measures how often the ver-
y={01, 0y, n) ification prediction matches the ground-truth cor
a; The i-th action in the response y, and let p - grou e o
Type(a;) € {verify, solve,<end>} rectness (V is the total number of verifications in
55 j™ attempt to solve the problem the responses to the test set):

v; 4™ self-verification for the j™* attempt

Parser(-) | Parser(vj) € {correct, incorrect}
The text parser to get the self-verification result
indicating the correctness of action s;

Vgotden(-) | Vgolden(ai) € {correct, incorrect}

R(") The rule based reward function
R() e {-1,1}

N _ J 1, Violaen(s;) = correct
R(bj) T) -1, otherwise
1, Parser(vj) = Vyotden(8;)
—1, otherwise

R(vj) =

<end> End of action series

The indicator function, I(-) € {0,1}.
I(+) I(-) = 1 if the condition inside holds true,
and I(-) = 0 otherwise.

Table 10: Variable Lookup Table

across our training pipeline. Our evaluation code
is built upon Qwen Math’s evaluation codebase’.

E Metrics Definition

We include the formal definition of metrics we use
for analyzing self-verification and self-correction
behaviors of the post-trained models as follows.

E.1 Notations

We first present the main notations used in our
formulation in Table 10.

"https://github.com/QwenLM/Qwen2.5-Math

VA = % 27{\;1]I(Parser(vt) = Vgozden(st))-
(7
E.2.2 Error Recall (ER)

Error Recall measures the recall of detecting incor-
rect answers (i.e., the fraction of actually incorrect
answers that are successfully identified as incor-
rect):

>]I(R(st,l):—l)]I(Parser(vt):incorrect)

B = 1 (o= 1)

)]
E.2.3 Correct Precision (CP)

Correct Precision measures the precision when the
verification model predicts an answer to be correct
(i.e., among all “correct” predictions, how many
are truly correct):

CP — P! (Parser(vt)zcorrect) I (R(St_1):1)

>, I| Parser(v¢)=correct

®

E.3 Self-Correction Metrics
E.3.1 Incorrect to Correct Rate (ICR)

The rate at which the model successfully corrects
an initially incorrect answer (R(sg) = —1) into a

22649

https://github.com/QwenLM/Qwen2.5-Math

correct final answer (R(s7) = 1). Formally:

5o I(R(s0) = —1) I(R(s7) = 1)
S I(R(s0) = —1)
(10

where [V is the total number of responses to the test
set.

ICR =

E.3.2 Correct to Incorrect Rate (CIR)

The rate at which the model incorrectly alters an ini-
tially correct answer (R(sg) = 1) into an incorrect
final answer (R(s7) = —1). Formally:

S I(R(so) = 1) I(R(sp) = —1)
SN I(R(s0) = 1) '
(11)

where [V is the total number of responses to the test
set.

CIR =

F Offline RL Training Details

In this section, we provide additional details on
the offline reinforcement learning training process,
including formal definition, ablation studies, and
implementation details.

F.1 Accuracy-Grouped Baseline Definition

To fully leverage the advantages of offline RL,
which does not require real-time sampling, we ex-
plore more appropriate baseline selection by further
grouping trajectories based on problem difficulty.
Intuitively, for two trajectories y(!) and y? sam-
pled under questions of different difficulty levels,
and their corresponding actions agl) and a§2) at the
same position, even if they share identical reward
contexts, their expected returns (baselines) should
differ, i.e., the expected return is typically lower
for more challenging problems.

We measure a problem’s difficulty by estimating
how often it is solved correctly under the current
sampling policy. Concretely, we sample multiple
trajectories in parallel for each problem. The frac-
tion of these trajectories that yield a correct final
answer serves as the problem’s accuracy. We then
discretize this accuracy into separate bins, effec-
tively grouping the problems according to their
estimated difficulty. All trajectories belonging to
problems within the same accuracy bin form a com-
mon subset.

Compared to using direct reward contexts alone,
this accuracy-based grouping offers a more ro-
bust estimate of expected returns, problems in

the same bin share similar success rates. More-
over, unlike a pre-defined difficulty grouping, these
bins adjust dynamically as the model’s capabili-
ties evolve. Building on this approach, we propose
two accuracy-based baseline estimation methods
for offline RL as follows.

F.1.1 Accuracy-Grouped Baseline With
Position Group

Within each accuracy bin, we further split actions
based on their position in the trajectory. Concretely,
we consider all actions occurring at the same step
index across trajectories in the same bin to be com-
parable, and we compute their average return to
serve as the baseline. Thus, when we look up the
baseline for a particular action at a given step in a
trajectory, we use the average return of all actions
taken at that same step index in all trajectories be-
longing to the same accuracy bin.

F.1.2 Accuracy-Grouped Baseline With
Reward Context

We also propose combining accuracy-based group-
ing with reward-context grouping. The underly-
ing assumption is that even if two actions share
the same immediate reward context, their expected
returns can differ if they originate from different
difficulty bins. Generally, problems that are harder
to solve exhibit lower expected returns. Conse-
quently, we first bin the trajectories by accuracy,
then further group them by common reward con-
text. Within each sub-group, we average the returns
of all relevant actions to obtain the baseline.

F.2 Offline RL Implementation Details

In each iteration of offline RL training, we gen-
erate multiple trajectories (e.g., eight) per prompt
in parallel. We then apply prompt filtering, rejec-
tion sampling, accuracy-based baseline estimation,
advantage computation, and policy updates. Imple-
mentation details follow.

F.2.1 Prompt Filtering

As we sample multiple trajectories for each prompt,
we compute the accuracy of each prompt. We retain
prompts whose accuracy falls within a predefined
range.

Our ablation study on Qwen2.5-Math-7B shown
in Table 11 confirms that filtering improves perfor-
mance. The most stable results are obtained with
an accuracy range of [0.1,0.7], suggesting that in-
cluding moderately difficult samples enhances the
model’s reasoning capabilities.

22650

Accuracy Range Retained Questions MATHS00 AIME2024 AMC2023 College Math Olympiad Bench GSM8K GaokaoEn2023 Average

[0.1-0.7] 1805 83.4 233 62.5 50.0 46.7 929 72.2 61.6
0.2 -0.8] 2516 82.6 233 70.0 49.8 453 924 70.1 61.9
(0.3 —10.9] 4448 81.6 233 70.0 49.4 44.7 92.0 68.1 61.3
0—1] Full 80.6 26.7 67.5 50.0 43.0 91.4 67.0 60.9
Table 11: Comparison of question filtering accuracy selection.
Datasets

Baseline Method MATHS00 AIME2024 AMC2023 College Math Olympiad Bench GSMSK GaokaoEn2023 Verase
Based on reward context 82.4 26.7 65.0 50.1 46.1 92.9 71.2 62.1
Based on accuracy group with position 83.4 233 62.5 50.0 46.7 92.9 722 61.6
Based on accuracy group with reward context 82.4 233 67.5 49.3 45.8 93.3 712 61.8

Table 12: The performance of different baselines

F.2.2 Rejection Sampling

We discard any trajectory that does not follow
the alternation pattern of solution and verification:
y = (81,v1,..., Sk, V). Additionally, we remove
malformed trajectories such as y = (s1, s2,v1). To
mitigate reward hacking due to excessively long
outputs, we eliminate trajectories where R(s¢) = 1
and R(v;) = 1 at timestep ¢, but further actions are
taken at ¢t + 1. Moreover, we discard trajectories
containing more than 20 actions, as excessive ac-
tion sequences can introduce instability and deviate
from expected solution structures.

F.2.3 Loss Function

To determine the best offline baseline method,
we conducted ablation studies on Qwen2.5-Math-
7B shown in Table 12. We found that using the
accuracy-grouped baseline with an additional divi-
sion by position provides the most stable results.
When computing advantages, we subtract both the
baseline and a scaled relative policy term like Equa-
tion 5. Notably, we fix mr as the reference policy
instead of being updated at each iteration.

F.2.4 Training Hyperparameter Settings

We use a batch size of 64, a maximum learning rate
of 5 x 1077, and a KL penalty coefficient of 0.1.
The maximum training sequence length is set to
8192. We apply a warm-up phase of 5 steps and
a clipping range parameter of 0.2. We use BF16
model precision in all experiments.

G Demo Cases

To intuitively demonstrate the effectiveness of our
proposed method, we present the model’s inference
examples after RL on the MATHS00 and Strate-
gyQA datasets in the Figure 6 and Figure 7.

H Other Discussion

H.1 Discussion on Potential Risk

We have carefully considered potential risks as-
sociated with our work and found no significant
concerns. Our approach, focused on enhancing
LLM reasoning through self-verification and self-
correction, does not introduce malicious or harmful
effects, privacy issues, or security threats. Addi-
tionally, it does not contribute to biases, fairness
concerns, or environmental impact. We believe our
work is safe for responsible use in research.

H.2 Use of AI Assistant

In this work, we utilized an Al assistant solely for
the purpose of refining and polishing the language
of the manuscript. The Al assistant was employed
to improve clarity, flow, and overall readability,
ensuring the text adhered to academic writing stan-
dards. It was not involved in any data analysis,
experimentation, or formulation of ideas. All re-
search design, methodology, results, and conclu-
sions were developed independently by the authors.
The use of the Al assistant was limited to language
enhancement and did not influence the content or
scientific integrity of the work.

22651

Problem: Lizzy, Megan, Oscar, and Patrick each have x pieces of candy, where & is a positive integer. Unfortunately, Patrick is the only one of the four who likes candy. So Lizzy gives all her
candy to Megan. Then Megan gives all the candy she now has (which includes the candy Lizzy gave her) to Oscar. Then Oscar gives all the candy he now has to Patrick.
Let P be the number of pieces of candy Patrick has in the end. How many of the following statements are true? (Assume that we do not know exactly what = is.)

(a) 2 can be a divisor of P.
(b) 2 must be a divisor of P.

(c) 3 can be a divisor of P.

(d) 3 must be a divisor of P.

(e) 4 can be a divisor of P.

(f) 4 must be a divisor of P.

Response:

Let’s analyze each statement step-by-step, considering the transformation of the pieces of candy from Lizzy to Megan, then to Oscar, and finally to Patrick. .. Wait. let me recheck my solution
To verify the correctness of the answer, we need to consider. .. Therefore, the answer is incorrect. et me try again. Given that Lizzy, Megan, Oscar, and Patrick each start with x pieces of
candy. .. Wait, let me recheck my solution. To verify the solution, we will analyze the number of pieces of candy, ... Therefore, the answer is incorrect. Let me try again. First, let’s break down
the candy distribution process... Wait. let me recheck my solution. To verify the answer, I will assess the properties of the...Let me try again

To solve this problem, let’s denote the initial number of pieces of candy each person has as ... Wait. let me recheck my solution. To verify the answer, we need to evaluate the given statements

based on the problem conditions.
Lizzy, Megan, Oscar, and Patrick each start with x pieces of candy. The total amount of candy remains constant as it is transferred among them. Ultimately, Patrick ends up with all the

candy, totaling 4a pieces.
Let’s examine each statement:

(a) 2 can be a divisor of P: This is true because if z is even, then 4z is even and divisible by 2.

(b) 2 must be a divisor of P: This is true because 4z is always divisible by 2, regardless of .

(c) 3 can be a divisor of P: This is true if is a multiple of 3, then 4z will also be a multiple of 3.

(d) 3 must be a divisor of P: This is false because if # is not a multiple of 3, then 4z will not be a multiple of 3.
(e) 4 can be a divisor of P: This is true as 4z is divisible by 4.

(f) 4 must be a divisor of P: This is true because 4z is always divisible by 4, regardless of .

Five statements are true: (a), (b), (c), (¢), and (f). The only false statement is (d).
Therefore. the answer is correct.

Figure 5: SFT data example.

22652

Problem: There are an infinite number of vectors v such that

Find the vector v that has the smallest magnitude.
1 90 T 1
Reponse: To find the vector v that satisfies the equation | 2 | x v = [30 | and has the smallest magnitude, we start by letting v = [y |. The cross product | 2 | x [y
=5 30, z =5 z
given by:
1 3 2z + 5y
x+ z

‘We set this equal to | 30 |, giving us the system of equations:
30

2z 45y =90

=5z + 2 =30

2z —y =30
‘We solve the third equation for y:
y=2x—30
Substitute y = 2z — 30 into the first equation:
2z +5(2x 90 = 224102 —150 =90 = 22+ 102 =240 = z+ 52 =120 = 2z =120 -5z
Now substitute z = 120 — 5z into the second equation:
—5z+ (120 —52) =30 = —102+120=30 = —10z=-90 = =9
Using « = 9, we find y and 2:
y=2(9) —30=18—-30=—12
2=120-5(9) =120 - 45 =75

9

Thus, the vector v is | —12 |. To confirm that this
5

s the vector with the smallest magnitude, we note that the general solution to the system of equations is of the form

9 1
v=|-12|+t| 2 | for some scalar t.
75 -5
9
The magnitude of v is minimized when ¢ = 0, which corresponds to the vector [—12
75

9
The magnitude is | | —12
75
‘Wait, let me recheck my solution.
To verify the correctness of the given answer, we can use the properties of the cross product and the given vectors.

1 90
The cross product of two vectors a and b is orthogonal to both a and b. Given that a= | 2 | and v are such that their cross product is ¢ = | 30 |, we can check if the given
-5 30

9
answer v = [—12 | satisfies this property.
75
First, we check if a and v are orthogonal to ¢ by taking the dot product:
1. a-c=(1)(90) + (2)(30) + (—=5)(30) = 90 + 60 — 150 = 0 2. v - ¢ = (9)(90) + (—12)(30) + (75)(30) = 810 — 360 + 2250 = 2700
Since v - ¢ # 0, the given answer v is not orthogonal to ¢, which means it cannot be the correct vector v that satisfies the cross product equation.
Therefore, the answer is incorrect.
Let me try again.

1 90 3 3
To find the vector v such that | 2 | x v = |30 |, we start by letting v = | y |. The cross product [2 | x [y | is given by the determinant of the following matri:
-5 30, z -5 z

-

i j ok
1 2 =5 =i(22+5y) —j(z +5z) + k(y — 2z).
oy oz
This gives us the vector:
2z + 5y
—z— bz
y— 2z
90
‘We set this equal to | 30 |, so we have the system of equations:
30
2z + 5y = 90,
—z — 5z = 30,
y — 2x = 30.
From the second equation, we solve for z:
—z—5r =30 = z=—5z—30.
From the third equation, we solve for y:
y—2z=30 = y=2x+30.
Substitute y = 2z 4+ 30 and z = —5z — 30 into the first equation:
2(—5z — 30) 4 5(2x 4 30) = 90.
Simplify the left side:
—10z — 60 + 10z + 150 = 90 = 90 = 90.
This is an identity, so the system is consistent and has infinitely many solutions. The general solution is:

x
v=| 2x+30
—5z — 30
To find the vector v with the smallest magnitude, we minimize the expression for the magnitude of v:
2 + (2z + 30)2 + (—5z — 30)2.
Simplify the expression inside the square root:
2% + (22 4 30) + (—=5z — 30)* = 2® + (42” + 120z + 900) + (252% + 300z + 900) = 3022 + 420z + 1800.
To minimize 30z% + 420z + 1800, we complete the square:
3022 4 420z 4 1800 = 30(z* + 14z + 60) = 30((z + 7)? — 49 + 60) = 30((z + 7)% + 11) = 30(z + 7)* + 330.
The minimum value occurs when x = —7, and the minimum value of the expression is 330. Substituting =
-7 -7 =7
v=| 2(-7)+30 | =(-14+30| = |16
—5(=7) — 30 35—30 5

—7 into the expression for v, we get:

—7
Thus, the vector v that has the smallest magnitude is 16

Wait, let me recheck my solution.
To verify the correctness of the given answer, we can use the properties of the cross product and the given vectors.
90
The cross product of two vectors a and b is orthogonal to both a and b. Given that a= [2 | and v are such that their cross product is ¢ = | 30 |, we can check if the given
-5 30
=7
answer v = [16 | satisfies this property.
5
Firs check if a and v are orthogonal to ¢ by taking the dot product:
1)(90) + (2)(30) + (=5)(30) = 90 + 60 — 150 = 0 2. v - ¢ = (—=7)(90) + (16)(30) + (5)(30) = —630 + 480 + 150 = 0
Since both dot produc the given answer v is orthogonal to ¢, which means it could be a correct vector v that satisfies the cross product equation.
Therefore. the answer is

Figure 6: MATH500 Case.

22653

Problem You are given the following fact
1. Chlorine, when added to water, creates household bleach.
2. Household bleach is available at most dollar stores.

Based on the facts above, answer the following question. Your final answer should be either ”True” or "False”.
Problem: Can you buy chlorine at a dollar store?
Response To determine if you can buy chlorine at a dollar store, let’s analyze the given facts step by step:

1. Fact 1 states that when chlorine is added to water, it creates household bleach.
2. Fact 2 states that household bleach is available at most dollar stores.

From Fact 2, we know that household bleach is available at dollar stores. However, Fact 1 does not provide any direct information about the availability of chlorine itself at dollar stores. It only
tells us that chlorine, when added to water, produces household bleach.

Since Fact 1 does not provide information about the direct sale of chlorine, we cannot conclude that chlorine is available at dollar stores based solely on the given facts.

Therefore, the answer is:
Wait, let me recheck my solution.

The answer provided is ”"False.” To verify this, let’s examine the logical structure of the given statements and the inferred conclusion.

The first statement asserts that when chlorine is added to water, it creates household bleach. The second statement claims that household bleach is available at most dollar stores.

From these two statements, we can infer that if household bleach is available at dollar stores, it is possible that chlorine, when added to water, could be used to create household bleach that is
sold at dollar stores. However, the statements do not explicitly confirm the availability of chlorine at dollar stores.

The answer "False” implies that it is not possible to buy chlorine at a dollar store. Given that the statements do not provide information about the direct sale of chlorine, but rather the creation
of bleach from chlorine, the answer "False” is not necessarily incorrect. It is possible that chlorine is not sold at dollar stores, but it could be used to create bleach that is sold there.

Therefore, the answer is incorrect.

Let me try again.

To determine if you can buy chlorine at a dollar store, let’s analyze the given facts step by step.

1. Fact 1: Chlorine, when added to water, creates household bleach.
2. Fact 2: Household bleach is available at most dollar stores.

From Fact 2, we know that household bleach is a product that can be found at dollar stores. However, Fact 1 only states that chlorine, when added to water, creates household bleach. It does
not provide any information about whether chlorine itself is sold at dollar stores.

Since the availability of chlorine at dollar stores is not mentioned in the facts provided, we cannot definitively conclude that chlorine is available at dollar stores based solely on the given
information.
Therefore, the answer i
Wait, let me recheck ition.

The answer provided is "False.” To verify this, let’s examine the logical structure of the given statements and the inferred conclusion.

The first statement asserts that when chlorine is added to water, it creates household bleach. The second statement claims that household bleach is available at most dollar stores.

From these two statements, we can infer that if household bleach is available at dollar stores, it is possible that chlorine, when added to water, could be used to create household bleach that is
sold at dollar stores. However, the statements do not explicitly confirm the availability of chlorine at dollar stores.

The answer ”False” implies that it is not possible to buy chlorine at a dollar store. Given that the statements do not provide information about the direct sale of chlorine, but rather the creation
of bleach from chlorine, the answer "False” is not necessarily incorrect. It is possible that chlorine is not sold at dollar stores, but it could be used to create bleach that is sold there.

Therefore, the answer is incorrect.

Let me try again.

To determine whether you can buy chlorine at a dollar store, let’s analyze the given facts step by step.

1. Fact 1: Chlorine, when added to water, creates household bleach.
2. Fact 2: Household bleach is available at most dollar stores.

From Fact 2, we know that household bleach is available at most dollar stores. Since household bleach is made by adding chlorine to water, it implies that the process of making household bleach
involves chlorine. However, Fact 1 does not provide any information about the direct sale of chlorine itself at dollar stores.

Given that household bleach is available at dollar stores and it is made from chlorine, it is reasonable to infer that chlorine is also available at dollar stores, as it is a necessary component for
making household bleach.

Therefore, based on the given facts, it is reasonable to conclude that you can buy chlorine at a dollar store.

Wait, let me recheck my solution.

The answer provided is "True.” To verify this, let’s examine the logical structure of the given statements and the inferred conclusion.

The first statement asserts that when chlorine is added to water, it creates household bleach. The second statement claims that household bleach is available at most dollar stores.

From these two statements, we can infer that if household bleach is available at dollar stores, it is possible that chlorine, when added to water, could be used to create household bleach that is
sold at dollar stores. This inference supports the conclusion that chlorine can be bought at a dollar store, as it is a necessary component for producing household bleach.

Therefore, the answer is correct.

Figure 7: StrategyQA Case.

22654

