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Abstract

Recent research has increasingly focused on
multimodal mathematical reasoning, partic-
ularly emphasizing the creation of relevant
datasets and benchmarks. Despite this, the role
of visual information in reasoning has been un-
derexplored. Our findings show that existing
multimodal mathematical models minimally
leverage visual information, and model perfor-
mance remains largely unaffected by changes
to or removal of images in the dataset. We
attribute this to the dominance of textual infor-
mation and answer options that inadvertently
guide the model to correct answers. To im-
prove evaluation methods, we introduce the
HC-M3D dataset, specifically designed to re-
quire image reliance for problem-solving and
to challenge models with similar, yet distinct,
images that change the correct answer. In test-
ing leading models, their failure to detect these
subtle visual differences suggests limitations
in current visual perception capabilities. Ad-
ditionally, we observe that the common ap-
proach of improving general VQA capabili-
ties by combining various types of image en-
coders does not contribute to math reasoning
performance. This finding also presents a chal-
lenge to enhancing visual reliance during math
reasoning. Our benchmark and code would
be available at https://github.com/Yufang-
Liu/visual_modality_role.

1 Introduction

Recent advancements in Large Vision-Language
Models (LVLMs) (Zhang et al., 2023) have demon-
strated remarkable potential in tasks that require
the seamless integration of visual and linguistic un-
derstanding, such as image captioning (Lin et al.,
2014), visual question answering (Antol et al.,
2015), visual grounding (Yu et al., 2016), and au-
tonomous agents (Xi et al., 2023; Durante et al.,

* Equal contribution.
†Work done during an internship at Meituan.

Find	m∠H,	
Choice:
	 A:97
	 B:102
	 C:107
	 D:122

Find	m∠H,	
Choice:
	 A:97
	 B:102
	 C:107
	 D:122

…x=	102,	Now,	
substitute x=102 into x−5 for						
m∠H:
														x−5=102−5=97
Therefore, m∠H=97
The	answer	is	A:	97.

…x=	102,	The	angle	at H	is	
given	as (x−5).	Substituting	
the	value	of x:
													m∠H=102−5=97
So	the	measure	of ∠H	is 97.

Figure 1: An illustrative example of GPT-4o on the
HC-M3D. When modifying the image (by swapping the
positions of points G and H) while keeping the original
question unchanged, the model’s output failed to corre-
spondingly adjust, resulting in an incorrect response.

2024). Among these, the domain of multimodal
mathematical reasoning (Wang et al., 2024a; Lu
et al., 2024; Zhang et al., 2024b) emerges as a
particularly challenging and pivotal application.
This task requires models to accurately interpret
and abstractly represent mathematical concepts,
such as geometry, through a tight collaboration
between textual descriptions and visual elements
in diagrams. The ability to align these modalities
and resolve complex problems lies at the heart of
LVLMs’ capabilities, positioning multimodal math-
ematical reasoning as a critical field for advancing
their effectiveness in abstract and logic-driven ap-
plications.

There are three common approaches to enhanc-
ing mathematical reasoning capabilities in LVLMs:
prompting, fine-tuning, and chain-of-thought (CoT)
reasoning. The prompting approach (Lu et al.,
2024; Wang et al., 2024b) seeks to unlock the
potential of LVLMs through carefully designed
prompts. Fine-tuning (Shi et al., 2024; Gao et al.,
2023), on the other hand, focuses on constructing
higher-quality and more diverse datasets to enhance
model performance. Chain-of-thought (Hu et al.,
2024)reasoning mimics human reasoning by gen-
erating detailed step-by-step thought processes to
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tackle complex mathematical tasks. These meth-
ods rely heavily on training data tailored for math-
ematical understanding. Existing research primar-
ily emphasizes improving the diversity of problem
types (Gao et al., 2023), refining the conciseness
and clarity of questions (Zhang et al., 2024c), and
providing more detailed answer explanations (Peng
et al., 2024), with model performance evaluated on
various benchmarks. However, current datasets
often fail to establish a strong connection between
mathematical images and text.

In this work, we explore whether images are gen-
uinely learned and utilized by models for mathe-
matical reasoning within current multimodal math-
ematical methods and examines the role they play
in the process. We observe that in existing multi-
modal math models, the benefit brought by image
patterns is minimal. Even if the images in the train-
ing set are shuffled or even removed, the impact
on model performance is not significant (On some
evaluation datasets, perturbing the visual modality
even resulted in higher scores). By analyzing exist-
ing evaluation methods, we suspect that there are
two main reasons why the role of visual patterns
in multimodal math reasoning has been overesti-
mated: first, the textual information is overly rich,
and the model can make correct predictions based
on text alone; second, the options leak the answers,
and the model can guess the correct answer based
on the options.

Hence, we propose the HC-M3D dataset, a
human-crafted mulimodal mathematical dataset,
comprising 1,851 samples meticulously selected
by humans, that ensures that the questions depend
on the images and provides an additional image
that looks similar but changes the correct answer
for over 400 problems. We observe whether mod-
els can identify these subtle differences in the im-
ages and make correct predictions. In evaluating
existing leading models, we find that they fail to
accurately identify these differences, and in more
than half of the cases, they stick to their original
predictions. Figure 1 presents a representative ex-
ample.

Furthermore, we attempt to delve into the causes
of this phenomenon. Considering that the model’s
predictions remain unchanged after image alter-
ations, we infer that the image encoder (mainly the
CLIP encoder) fails to effectively recognize such
subtle differences, a phenomenon also observed in
other works (Liu et al., 2024b; Tong et al., 2024a).
However, we observe that the common approach of

improving general VQA capabilities by combining
various types of image encoders does not contribute
to math reasoning performance. This finding also
presents a challenge to enhancing visual reliance
during math reasoning.

Our contributions can be summarized as follows:
• We show that image shuffling or removal has

minimal impact on performance, revealing an
overestimation of these models’ reliance on vi-
sual input.

• We introduce the HC-M3D dataset with 1,851
human-annotated samples, ensuring image-
dependent questions. For 429 questions, similar
but altered images are included, yet most mathe-
matical LVLMs fail to adjust predictions, often
remaining unchanged.

• We demonstrate the challenge of enhancing vi-
sual reliance in mathematical reasoning, as com-
bining image encoders proves ineffective.
Based on these observations, we suggest sev-

eral potential directions for future research: con-
structing higher-quality datasets with a stronger re-
liance on visual data (e.g., in the image-caption pre-
training task, describing the differences between
two images rather than generating captions for a
single image.), improving image encoders to cap-
ture more fine-grained mathematical information,
and designing better loss functions to enhance the
model’s dependence on the visual modality.

2 Related Work

Mathematical reasoning has garnered increasing
attention from researchers and has become a criti-
cal benchmark for evaluating LLMs. Specialized
LLMs such as MetaMath (Yu et al., 2024a), Math-
Shepherd (Wang et al., 2024c), WizardMath (Luo
et al., 2023), and DeepSeekMath (Shao et al., 2024)
have been developed to tackle these tasks. One
of the challenges in multimodal mathematical rea-
soning lies in visual-textual reasoning, involving
geometric diagrams, scientific charts, and function
graphs. Due to the scarcity of training data, ex-
isting methods often employ the LLaVA architec-
ture for training, aiming to generate higher-quality
and more diverse training data. For instance, G-
LLaVA (Gao et al., 2023) obtains image caption
data for alignment by rewriting the original QA
data and paraphrases the remaining QA data to aug-
ment the SFT data. Math-LLaVA (Shi et al., 2024)
synthesizes a large number of QA pairs based on
seed questions, while MAVIS (Zhang et al., 2024c)
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automatically constructs QA pairs through tem-
plates.

With the rapid advancement of LVLMs, there is
a growing need for high-quality benchmark tests
to assess math problem-solving in visual settings.
While previous attempts like GeoQA (Chen et al.,
2021) and Geometry3K (Lu et al., 2021) primarily
focused on geometric problems, the recently pro-
posed MathVista (Lu et al., 2024) takes it a step
further by encompassing a diverse range of mul-
timodal tasks involving mathematical reasoning.
Mathverse (Zhang et al., 2024b), on the other hand,
emphasizes textual and visual richness to gauge
whether models truly understand image content.

3 Does Visual Modality Matter for
Mathematical LVLMs?

To validate the importance of visual modality, we
replicated the training processes of mainstream
mathematical LVLMs under a unified architecture,
with the primary differences lying in the training
sets. By perturbing the alignment between images
and text—either by shuffling correct pairs or mask-
ing image information—we observed that the data
utilized in mathematical LVLMs fails to enable
the model to establish a strong correlation between
images and text.

3.1 Setups

Mathematical LVLMs We study the recently
proposed mathematical LVLMs, including: G-
LLaVA (2023) which constructs an enhanced mul-
timodal geometric dataset, Geo170K, based on the
scalability of geometric problems and fine-tunes it
based on LLaVA. Similarly, MathLLaVA (2024)
also establishes a large-scale multi-type mathemat-
ics problem dataset, which includes filtered image
clarity and question complexity for Chart Ques-
tion Answering, Geometric Problem Solving, Math
Word Problems, Textbook Question Answering,
and Visual Question Answering. MAVIS (2024c)
utilizes an automatic data engine to generate mathe-
matical visual datasets covering areas such as plane
geometry, analytic geometry, and functions, effec-
tively bypassing the high cost of manual annotation.
MultiMath (2024) collects textbooks, exercises,
and exam questions from the K-12 curriculum and
employs GPT to generate detailed CoT processes,
featuring bilingual data.

Reproduction Details Since all LVLMs
are based on the LLaVA architecture, which

connects the language model core to the
visual encoder, we standardize and choose
deepseek-math-rl-7B as language model and
clip-vit-large-patch14-336 as image encoder
for reproduction (same as Peng et al. (2024)). The
training process is divided into three stages: the
pre-training stage, where the connection module of
LLaVA is fine-tuned on alignment data (including
math alignment data, if available); the SFT stage,
where the alignment module and the language
model are fine-tuned on LLaVA’s general data; and
the Math SFT stage, where the alignment module
and the language model are further fine-tuned on
multimodal math QA questions. Detailed statistcs
can be found in Table 11.

Mathematical Benchmarks Dmath We evaluate
the following datasets: MathVerse (2024b) offers
a collection of 3,940 high-quality mathematical
problems across various disciplines, enriched with
relevant charts, showcasing varied dependencies
on visual and textual cues. Conversely, Math-
Vista (2024) presents a comprehensive benchmark
with 1,000 instances from 28 multimodal datasets,
emphasizing their acute visual comprehension and
intricate reasoning skills. GeoQA (2021) consists
of 754 pieces of data, mainly multiple-choice ques-
tions about plane geometry. MATHVision (2024a)
comprises 304 high-quality mathematical problems
sourced from authentic mathematics competitions.
The questions span 16 distinct mathematical disci-
plines and are categorized into 5 difficulty levels.
WeMath (2024) consists of 1,740 visual math ques-
tions, covering 67 hierarchical knowledge concepts
and 5 levels of knowledge granularity. 1

3.2 Visual Modality Perturbation

Data w/ correct images   : The standard
training process, the model can learn the corre-
spondence between images and text as well as the
templates for question-answering during the Math
SFT stage.

Data w/ random images  ç : During the
math SFT stage, by shuffling the correspondence
between images and texts while keeping the picture
distribution unchanged, we ensure that after the cor-
respondence is disrupted, the Q&A for the original
picture will be assigned to another picture. In this

1For Mathverse, MathVita, and MathVision, as they con-
tain multiple test sets, we select the “testmini” subset for
evaluation.
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Dmath  Ins@Stage1/2/3 GeoQA MathVerse MathVista MathVision WeMath Avg.

 

G-LLaVA 618K/665K/117K 68.0 24.7 34.9 8.9 39.3 35.2
MathLLaVA 558K/665K/339K 57.4 25.6 45.3 9.5 42.6 36.1
MAVIS 1.1M/665K/555K 70.6 31.5 37.0 6.9 39.4 37.1
MultiMath 1.2M/665K/1.0M 74.4 29.6 44.5 7.2 44.7 40.1

 ç

G-LLaVA

same as above

71.0 +3.0 22.4 −2.3 36.2 +1.9 8.2 −0.7 35.2 −4.1 34.6 −0.6

MathLLaVA 56.6 −0.8 23.3 −2.3 34.4 −10.9 9.5 −0.0 38.5 −4.1 32.5 −3.6

MAVIS 70.4 −0.2 26.0 −5.5 32.8 −4.2 10.2 +3.3 34.3 −5.1 34.7 −2.4

MultiMath 76.5 +2.1 25.6 −4.0 35.0 −9.5 9.2 +2.0 39.5 −5.2 37.2 −2.9



G-LLaVA

same as above

68.2 +0.2 23.7 −1.0 34.5 −0.4 8.6 −0.3 41.8 −2.5 35.4 +0.2

MathLLaVA 56.9 −0.5 23.9 −1.7 36.2 −9.1 6.9 −2.6 39.7 −2.9 32.7 −3.4

MAVIS 66.1 −4.5 27.0 −4.5 31.3 −5.7 10.2 +3.3 36.3 −3.1 34.2 −2.9

MultiMath 70.3 −4.1 24.7 −4.9 37.1 −7.4 8.6 +1.2 41.1 −3.6 36.4 −3.7

Dgeneral  Ins@Stage1/2 VQAv2 MMBench MM-Vet MME_P† MME_C† Avg.

   LLaVA-1.5 558K/665K 79.2 66.8 32.4 1470.1 322.1 35.9
 ç  LLaVA-1.5 same as above 46.2 −33.0 26.6 −40.2 12.2 −20.2 708.9 −761.2 276.8 −45.3 17.1 −18.8

 LLaVA-1.5 same as above 60.8 −18.4 54.3 −12.5 20.9 −11.5 706.0 −764.1 271.8 −50.3 27.3 −8.6

Table 1: Mathematical reasoning performance of using correct images, shuffled images, and no images during the
training phase. “Ins@Stage1/2/3” indicates the stages 1, 2, and 3 instances. The † means we normalize MME_P
and MME_C for the average score.

process, the model can learn the statistical informa-
tion of the picture distribution and the template for
answering questions.

No images : For the Math SFT stage, we
remove the images from the training set and retain
the question and answer. This helps the model learn
the template for question-answering and enhances
the quality of the responses.

Observations The results are presented in the
Table 1, we can observe that:

• Firstly, after standardizing the model structure
and training methodologies, the discrepancies
among different approaches diminish (compared
to the contrasts presented in Zhang et al. (2024c);
Peng et al. (2024)). Contrary to the direct fintun-
ing from LLaVA for alignment as discussed in
the G-LLaVA paper (Gao et al., 2023), we no-
tice a significant improvement with a three-stage
training approach, aligning with the findings of
Peng et al. (2024). The MultiMath model ex-
hibits superior performance across datasets, with
the exception of MathVerse, attributable to its
diverse dataset and detailed reasoning processes.

• Secondly, we observe that substituting the cor-
rect images with shuffled ones only slightly im-
pacts model performance. This trend is consis-
tent across different models and datasets. Specif-
ically, average performance decreases by 0-4 per-
centage points. In contrast, the GeoQA and Math-

Visions datasets may even experience some de-
gree of improvement. From a model perspective,
high-performance models are more affected by
image shuffling than lower-performance models.
Compared to other models, the G-LLaVA model
exhibits less performance fluctuation.

• Lastly, similar experimental outcomes are ob-
served in the absence of images. These results
suggest that during the mathematical SFT phase,
image patterns do not significantly enhance rea-
soning performance, indicating that models pri-
marily rely on text to learn question-and-answer
capabilities in the mathematical domain.

Compared with general tasks Dgeneral To ob-
serve if a similar phenomenon exists in the gen-
eral VQA task, we follow the training process of
LLaVA-1.5 with vicuna-7B (Chiang et al., 2023)
and examine the impact of visual information on
VQA models by comparing the performance dif-
ferences between three scenarios: shuffled images,
removed images, and provided correct images. We
select the following commonly used VQA evalua-
tion datasets: VQAv2 (2017), MMBench (2024a),
MM-Vet (2024b), and MME (2023).

The results in Table 1 indicate a significant im-
pact on model performance in general VQA tasks
when images are either shuffled randomly or not
provided at all. Not providing images leads to
markedly better performance than offering random
images: without images, model performance drops
by approximately 23% on VQAv2 and 19% on
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Model Input #Param. GeoQA M.Verse M.Vista M.Vison WeM. Avg.

Deepseek-Math-RL (2024)  7B 39.8 20.7 26.1 11.5 33.3 26.3
QWen-2.5-Math-Instruct (2024)  7B 62.2 23.7 31.4 9.2 40.2 33.3
Math-Shepherd-Mistral-RL (2024c)  7B 30.6 12.4 28.6 4.9 24.0 20.1
OpenMath2-Llama3.1 (2024)  8B 43.9 22.2 30.0 8.2 35.6 28.0
Dart-Math-dsmath-prop2diff (2024b)  7B 43.6 19.2 26.6 11.5 38.1 27.8
Meta-Llama-3.1-Instruct (2024)  70B 37.0 20.6 32.7 9.9 33.7 26.8
OpenMath2-Llama3.1 (2024)  70B 48.3 24.6 31.6 12.2 41.2 31.6
Dart-Math-Llama3-prop2diff (2024b)  70B 41.9 17.6 27.8 9.9 33.8 26.2
QWen2.5-Math-Instruct (2024)  72B 68.0 32.3 34.6 12.5 32.9 36.1
QWen2-Instruct-Step-DPO (2024)  72B 61.9 21.8 35.0 9.9 30.9 31.9
GPT-4o (2024)  / 57.7 25.4 30.7 10.5 33.9 31.6
InternVL2 (2023) + 8B 56.8 31.5 56.9 8.6 45.4 39.8
QWen2-VL-Instruct (2024d) + 8B 50.3 32.2 60.9 8.6 33.9 37.2
InternVL2-Llama3 (2023) + 76B 59.2 38.4 62.8 10.5 55.8 45.3
QWen2-VL-Instruct (2024d) + 72B 68.8 46.7 70.4 13.8 61.5 52.2
GPT-4o (2024) + / 58.9 46.8 53.1 15.5 68.3 48.5

Table 2: Results of common text and visual language models on mathematical datasets. “#Param.” indicates the
number of parameters. “M.” is the short for “Math”.

MMBench; with random images, the decline is
more drastic at 42% and 61%, respectively. This
suggests that models can detect inconsistencies be-
tween randomized image content and text, thereby
disrupting learning. In contrast, the trend of perfor-
mance decline in the mathematical domain is much
weaker. We speculate this is because multimodal
mathematical reasoning tasks rely more on gener-
ative aspects and less on image comprehension, a
discrepancy that may not be as apparent in general
VQA tasks.

4 Issues in Existing Benchmarks

We further explore the reasons for the overestima-
tion of the image modality in multi-modal mathe-
matical reasoning tasks. Through a careful exami-
nation of existing evaluation sets, we identify two
main issues.

Firstly, a large proportion of the existing eval-
uation dataset can be answered correctly based
on the text alone, which does not accurately re-
flect whether the image modality is effectively uti-
lized. We conduct an evaluation on 7 common
textual models and and 3 vision language mod-
els. The experimental results are shown in Ta-
ble 2. As compared to the results in Table 1,
the existing multimodal math methods show lim-
ited improvement based on the language model
DeepSeek-Math-7B-RL. For example, MultiMath
exhibits enhanced performance on the MathVerse
and Wemath datasets, increasing from 20.7 to 29.6
and from 33.3 to 44.7, respectively. However, it
even experiences a degree of decline on the Math-

Vision dataset, dropping from 11.5 to 7.2.

We also observe that as the capability of the lan-
guage model improves, the performance of the text
model is further enhanced. In terms of average
performance across all datasets, when the language
model is switched from DeepSeek-Math-7B-RL to
QWen-2.5-Math-7B-Instruct, the score increase
from 26.3 to 33.3. Meanwhile, the average perfor-
mance of the G-LLaVA model is only 35.2, indi-
cating that the performance of language models is
very close to that of multimodal models.

Secondly, the options in the question may leak
the answer, and the model can guess the answer
based on the option information. We shuffle the or-
der of the options in the multiple-choice questions,
observe the changes in the model’s predictions be-
fore and after, and determine whether the model
truly understands the question or is just making
predictions based on option information. Table
3 shows the experimental results. We calculate
the original accuracy (CR: Correct), the propor-
tion of predictions are correct both before and after
shuffled (BC: Both Correct), and the proportion of
consistent predictions before and after (AR: Agree-
ment). As can be seen from the table, in the case
of multiple-choice questions, the BC indicator is
significantly lower than the CR indicator. For exam-
ple, the BC/CR indicators of the MultiMath model
on the three datasets are 9.5%, 76.1%, and 80.7%,
respectively. This indicates that the model’s single-
performance is not sufficient to reflect its overall
performance on the dataset. Additionally, a very
low BC/CR could indicate potential quality issues
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Model GeoQA MathVerse MathVista

CR↑ BC↑ AG↑ CR↑ BC↑ AG↑ CR↑ BC↑ AG↑

GLLaVA 68.0 16.0 20.8 44.4 30.3 50.6 51.7 40.9 70.4
MathLLaVA 57.4 7.6 13.3 40.0 26.2 53.4 58.7 49.3 75.4
MAVIS 70.6 8.2 10.1 41.9 29.0 49.1 54.6 44.8 72.0
MultiMath 74.4 7.1 8.6 48.1 36.6 56.6 55.0 44.4 72.4

Table 3: Results of shuffling the order of the multiple-
choice options in the dataset. The table indicates the
accuracy (CR: Correct), predictions are correct both
before and after shuffled (BC: Both Correct), and pre-
dictions remained consistent across both attempts (AG:
Agreement).

with the dataset.
Based on our observations, we believe that exist-

ing multimodal math datasets do not accurately
measure the importance of the image modality.
Since a large portion of the questions can be an-
swered by textual models alone and the model can
guess the answers, these issues lead to an overes-
timation of the capability of the visual modality,
especially in multiple-choice questions. To im-
prove the accuracy of the assessment, it is essential
to mitigate the above two issues. Establishing a
suitable benchmark will significantly advance the
research on multimodal mathematic models.

5 The HC-M3D Benchmark

Based on the analysis above, we propose HC-M3D,
a high-quality, vision-dependent multimodal bench-
mark. Our dataset construction adheres to the fol-
lowing three principles.

• First, correctness of the data, meaning that the
collected data must be solvable based on the ques-
tion and image asked and the answer is correct.

• Second, visual dependency, indicating that the
data must rely on images for accurate answers.

• Lastly, high correlation between images and an-
swers. Where possible, we aim to keep the ques-
tion unchanged but alter the image to ensure
that the answer changes. This methodology tests
whether the model can detect changes in the im-
ages and make correct predictions.

Data Curation Our dataset is sourced from the
GeoQA and MathVista GPS subsets, along with a
selection of questions from the Chinese Jingyou
Net 2, primarily focusing on plane geometry knowl-
edge. We manually annotate each sample for cor-

2https://www.jyeoo.com/

Statistic Number

Total questions 1,851
- Multiple-choice questions 1,851 (100.0%)
- Newly collected questions 1,219 (65.9%)
- Newly collected images 1,084 (58.6%)

Data Souce
- GeoQA 896 (48.4%)
- MathVista 273 (14.7%)
- Jingyou Net 684 (37.0%)

Language
- English 1,052 (56.8%)
- Chinese 799 (43.2%)

Number of unique images 1,851 (100.0%)
Number of unique questions 993 (53.6%)

Table 4: Statistical Results on the HC-M3D Dataset.

rectness and visual dependency, modifying the orig-
inal questions when these criteria are not met and
attempting to supply an additional image for the
question to change the correct answer. Instructions
for human annotators of these two steps are shown
in Figure 5 and Figure 6. Ultimately, we obtain
1,851 samples, including 429 questions for which
an additional image was provided. Statistical re-
sults for the dataset are presented in Table 4.

Figure 2 illustrates the process of constructing
the dataset. Upon manually identifying a lack of
visual dependency in the data, the text (or image) is
revised to ensure that the question requires reliance
on the image for an answer. For instance, the image
on the left can be drawn based on the question,
demonstrating low dependency on the image; thus,
a revision is necessary. Under conditions where
dependency is met, as with the image on the right,
changing the position of point A on the circle alters
the correct answer from D to A. In this scenario,
there is a high correlation between the image and
the correct answer, necessitating that the model
explicitly perceives the differences in the image to
make accurate predictions.

Our HC-M3D stands out by modifying images
and using a controlled-variable method to verify
whether the model can truly and accurately under-
stand the image content. The challenge with Math-
Verse lies in precisely distributing information, a
process that is somewhat ambiguous. In contrast,
H3-M3D changes the answer solely through image
modifications, with the text remaining unchanged.
Our control over the text information is thorough
and successful (annotators simply need to deter-
mine whether the modified image corresponds to a
new answer).
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As shown in the figure, points A and B are three 
points on ⊙O and AB = AC. Connect BO and CO, 
if ∠ABC = 65.0, then the degree of ∠BOC is ()

Choices:
A: 50
B: 65
C: 100
D: 130

As shown in the figure, A, B, C are any 
three points on circle O, if angle BOC = 
100.0, then the degree of angle BAC is ()

Choices:
A:50°
B:80°
C:100°
D:130°

As shown in the figure, points A and B are three 
points on ⊙O and AB = AC. Connect BO and CO, 
if ∠ABC = 65.0, then the degree of ∠BOC is ()

Choices:
A: 50
B: 65
C: 100
D: 130

Lack of Visual Dependency

enhance

MathVista testmini: question-270

As shown in the figure, A, B, C are any 
three points on circle O, if angle BOC = 
100.0, then the degree of angle BAC is ()

Choices:
A:50°
B:80°
C:100°
D:130°

Correlation between Images and Answers

GeoQA test: question-48

complement

same question
different answer

remove 
redundant words

Figure 2: Examples from our constructed HC-M3D benchmark. The left image demonstrates a scenario where the
original data lacks visual dependency, allowing for the reconstruction of the question’s corresponding image solely
from text. This is addressed by rewriting or possibly changing the image to ensure the question requires image
dependency for a correct answer. The right image shows an example where supplementing the original question
with a similar image alters the correct answer. More examples can be found in Figure 3 and Figure 4.

Model #Param. ALL ↑ DI ↑ BC ↑ AG ↓
G-LLaVA 7B 45.4 41.5 15.2 52.2
MathLLaVA 7B 39.6 37.2 8.4 75.3
MAVIS 7B 42.8 37.7 9.8 58.0
MultiMath 7B 49.2 44.8 16.6 56.9
InternVL2 8B 41.9 38.3 16.6 34.0
QWen2-VL-Instruct 8B 40.9 40.7 13.8 58.7
InternVL2-Llama3 76B 47.4 45.5 19.4 40.8
QWen2-VL-Instruct 76B 51.8 48.3 20.3 51.5
GPT-4o / 49.0 45.8 19.1 42.0

Table 5: Evaluation results on the HC-M3D benchmark.
The ↑ and ↓ arrows respectively indicate that higher or
lower values are preferred.

Metrics Performance on the dataset is evaluated
based on the following metrics. Accuracy over all
data (ALL); accuracy on a subset (DI: Diverse Im-
age) consisting of 858 samples that share similar
questions but have different images and answers;
accuracy (BC: Both Correct) for cases within the
DI subset where both samples sharing the same
question are correctly predicted; and consistency
rate (AG: Agreement) within the DI subset for sam-
ples that share the same question and are predicted
consistently. Since these samples have differing
answers, a lower AG metric is preferred. 3

Evaluation Experimental results are shown in
Table 5. It is observed that among existing multi-

3The visual control experiment results on the proposed
HC-M3D benchmark can be found in Table 8.

modal mathematical models, MutiMath achieves
the highest accuracy of 49.2, comparable to the
performance of GPT-4o. The open-source model
QWen2-VL-Instruct-76B, reaches an highest ac-
curacy of 51.8. Furthermore, in the DI subset,
which accounts for image and answer relevance,
the proportion of question pairs correctly pre-
dicted/Performance on the DI subset (BC/DI) re-
mains below 50%. This indicates that the mod-
els do not deeply understand questions for which
half of the answers are correct; changing the image
leads to incorrect predictions. At the same time, the
AG metric for different models is generally above
50%, suggesting that models do not appropriately
change their answers when the image is replaced.
The GPT-4o and InternVL2 models perform best
in this metric.

6 Challenges in Enhancing Visual
Dependency

We observe that existing multimodal mathematical
models exhibit weak reliance on visual informa-
tion (Section 3), demonstrating insufficient sensitiv-
ity to changes in images (Section 5). Given recent
findings indicating that the CLIP models struggle to
capture object information (Liu et al., 2024b), spa-
tial relationships (Kamath et al., 2023), and com-
positional understanding (Zhang et al., 2024a) in
images during encoding, we hypothesize that these
phenomena stem from the limited capabilities of
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Image Encoder General VQA Performance after SFT stage Math Performance after Math SFT stage

VQAv2 MMBench MM-Vet MMEP MMEC GeoQA M.Verse M.Vista M.Vision WeM. HC-M3D

clip-B 72.6 60.7 25.7 1365.8 273.6 71.0 23.0 31.4 9.5 38.7 41.2
clip-L 77.0 64.8 30.4 1481.0 269.6 68.0 24.7 34.9 8.9 39.3 45.4

(a) combine features by concatenating the hidden feature
clip-B+ siglip-B 74.6 62.0 25.7 1397.5 257.5 72.3 22.2 31.1 8.2 38.1 40.0
clip-L+dinov2-L 78.4 66.9 30.9 1500.1 253.2 70.3 23.2 30.0 12.2 38.6 40.3

clip-L+siglip-B+dino-B 74.4 62.5 25.5 1404.0 280.0 70.8 22.5 31.0 8.9 36.0 40.5
(b) combine features by concatenating image tokens

clip-L+siglip-L 78.7 66.6 33.0 1445.2 266.4 69.9 22.6 30.8 8.9 37.2 39.2
clip-L+dinov2-L 78.6 66.7 32.3 1494.7 269.6 70.7 22.3 28.7 7.6 35.7 39.2

clip-L+siglip-L+dinov2-L 80.0 69.8 35.8 1524.6 301.8 69.9 22.6 28.5 8.9 38.1 39.4

Table 6: Performance on general VQA and mathematical tasks. clip-L, sigLip-L, and dino-L correspond to
clip-vit-large-patch14-336, siglip-so400m-patch14-384, and dinov2-large models,respectively. siglip-
B (siglip-base-patch16-224) and dino-B (dino-vitb16) are utilized alongside clip-B (clip-vit-base-patch16)
for matching image token numbers in combinations. Detailed results can be found in Table 12 and Table 13.

Image Encoder POPE MathPOPE

clip-B 81.4 72.9
clip-L 85.2 73.7

(a) concatenating the hidden feature
clip-B+siglip-B 82.2 72.6
clip-L+dinov2-L 84.4 70.1

clip-L+siglip-B+dino-B 80.1 76.2
(b) concatenating image tokens

clip-L+siglip-L 83.9 67.6
clip-L+dinov2-L 84.2 71.9

clip-L+siglip-L+dinov2-L 84.1 81.0

Table 7: F1 performance on both POPE and MathPOPE
datasets. POPE primarily focuses on questions about
objects in images, whereas MathPOPE concentrates on
points existing in geometric images.

the image encoders. Recent study (Al-Tahan et al.,
2024) find that although scaling up the dataset and
model parameters in the CLIP series proves ef-
fective for general tasks, such enhancements have
minimal impact (even negative impact) on perfor-
mance in complex tasks involving reasoning and
relationship understanding. Therefore, we attempt
to leverage the strengths of diverse types of en-
coders, which is also commonly used in general
vqa tasks (Tong et al., 2024a; Yang et al., 2024), to
enhance visual dependency and final performance.

SigLip (Zhai et al., 2023) and DINO (Caron
et al., 2021; Oquab et al., 2024) are selected as
the components of our combination, where SigLIP
replaces the loss function used in CLIP with a
simple pairwise sigmoid loss function, resulting
in improved zero-shot classification performance;
DINO, as a self-supervised visual model, is capa-
ble of capturing rich information from images. We
consider two methods for feature concatenation:

• Hidden Feature Concatenation Images are in-

put into multiple image encoders, and the dimen-
sions of the hidden representation are concate-
nated, then mapped back to the original hidden
layer output dimensions through the modality
connection module. In this case, it is necessary
for the image tokens across different representa-
tions to be consistent;

• Image Token Concatenation Images are input
into multiple image encoders and mapped to the
same hidden layer dimensions according to their
respective modality connection module, with the
image tokens then concatenated. This method
does not require the dimensions across different
representations to be the same, but it increases
the overall number of image tokens. 4

Results We experiment on G-LLaVA model 5,
and the results are shown in Table 6. We can find
that:

• First, we find that integrating multiple image
encoders, specifically SigLip and DINO, either
separately or combined, significantly improves
performance in general Visual Question Answer-
ing (VQA) tasks. The optimal performance is
achieved by concatenating image tokens from
all three encoders without dimensionality con-
straints, which elevates MME perception scores
from 1481 to 1524.

• Second, an in-depth analysis of various metrics
within the MME demonstrates notable advance-
ments in color perception and spatial relation-

4Experiment results of interleaving image tokens from
different encoders as done in (Tong et al., 2024a) when com-
bining multiple visual encoders can be found in Table 10.

5Experiment results on MathLLavA model can be found
in Table 9.
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ships (see Table 12). This suggests that utiliz-
ing diverse encoders allows the model to discern
more detailed image features.

• Lastly, while enhancements are observed in gen-
eral tasks, there is a consistent dip in performance
on mathematical evaluation tasks, with only a
slight increase seen in GeoQA. Moreover, the ad-
dition of multiple image encoders, such as com-
bining SigLip and DINO, does not proportionally
enhance performance beyond the use of either en-
coder on its own (i.e., the model’s performance
does not increase with the addition of more im-
age encoders). For instance, in MathVista, the
performance metrics for combining SigLip alone,
DINO alone, and both combined are 30.8, 28.7,
and 28.5, respectively.

Hallucination Evaluation We aim to further in-
vestigate the causes behind this decline in perfor-
mance. Given that the general improvement across
common tasks suggests an enhanced general capa-
bility of the model, we are curious to determine if
a more severe presence of hallucinations has led
to this performance decline. Considering the lack
of assessments for hallucinations in the mathemat-
ical domain, inspired by POPE (Li et al., 2023),
we construct MathPOPE (9,000 questions based
on 500 images) based on annotations of points in
images from the Geometry3K (Lu et al., 2021) test
set, in order to assess model hallucinations. The
format of the question in MathPOPE is: ‘Is there
a point X in the image?’, where X refers to the
point name in picture. The questions in the dataset
are designed such that the objects are present and
absent in equal measure, therefore the ideal ‘yes’
response rate should be around 50%.

Experimental results can be seen in Table 7. We
observe that combining multiple image encoders
indeed results in an increase in hallucinations to a
certain extent. However, distinct from the general
VQA tasks, in the domain of mathematical halluci-
nation assessment, we note a reduction in halluci-
nations when three image encoders are combined
(73.7 vs 81.0). Moreover, while there is a clear
positive correlation between VQA performance in
general tasks and hallucination performance, such
correlation is absent in the domain of mathematical
reasoning.

Analysis The results from the above experiments
reveal a significant difference in the performance
improvements within the mathematical domain

compared to the findings in general VQA tasks.
We believe there are two possible reasons for this.
Firstly, images in the mathematical domain usually
feature monochromatic colors and lower informa-
tion density (see Figure 2), which markedly distin-
guishes them from general images. Secondly, while
there is a close association between performance
and hallucination assessment in general tasks, the
linkage between reasoning performance and hal-
lucinations appears to be weaker. Therefore, rea-
soning tasks in the mathematical domain present
unique challenges, making it significantly difficult
to improve modality dependence. We leave further
exploration to future work.

7 Conclusion

We study the importance of the visual modality
within multimodal mathematical models. Our find-
ings indicate that the performance of existing multi-
modal mathematical models does not significantly
deteriorate when images are shuffled or even re-
moved. We propose HC-M3D benchmark to mea-
sure the model’s sensitivity to changes in images.
Experiments demonstrate that the model does not
alter its answers corresponding to changes in the
images when there is a high relevance between
images and answers. We further discover that en-
hancing the dependency on the visual modality in
the mathematical domain presents significant chal-
lenges, and we leave further exploration to subse-
quent work.

Limitations

Firstly, this paper focuses on the importance of the
visual modality in mathematical LVLMs during
pre-training and instruction fine-tuning, without ad-
dressing reasoning stages such as chain-of-thought,
which will be part of our future work. Secondly,
due to the high cost and time-consuming nature of
manual annotation, especially generating new im-
ages for different options of the same question, the
scale of our proposed HC-M3D dataset is relatively
small, consisting of only 1,851 samples. Lastly,
although the method of integrating multiple visual
experts shows performance improvements in gen-
eral VQA tasks, it offers little benefit (and in some
cases, even negative impact) when applied to math-
ematical reasoning evaluation. This highlights the
differences between mathematical reasoning tasks
and general tasks, urging us to explore solutions
tailored to mathematical reasoning tasks.
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Dmath  ALL ↑ DI ↑ BC ↑ AG ↓


G-LLaVA 45.4 41.5 15.2 52.2
MathLLaVA 49.2 44.8 16.6 56.9

 ç
G-LLaVA 41.2 39.9 12.1 54.8
MultiMath 42.3 38.8 11.2 60.6


G-LLaVA 40.8 37.2 10.8 57.3
MultiMath 42.8 39.3 10.3 67.4

Table 8: Performance on HC-M3D datset of using cor-
rect images, shuffled images, and no images during the
training phase.

A Visual Control Experiment on
HC-M3D Benchmark

We evaluate whether HC-M3D can effectively dis-
tinguish the utilization of visual modalities on
GLLaVA and MultiMath datasets. The results
(shown in Table 8) demonstrate that perturbing or
removing the images leads to a significant decline
in overall accuracy (ALL). Moreover, under the
image removal setting, the prediction consistency
(BC) is higher than in both the normal and per-
turbed image settings, suggesting that HC-M3D
can partially identify the reliance on visual modali-
ties.

B More Experiments on Exploring
Different Visual Encoders
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clip-L 57.4 25.6 45.3 9.5 42.6
clip-L+siglip-L 57.3 24.3 44.0 10.9 40.6

clip-L+dinov2-L 58.6 24.0 39.6 12.2 38.8
clip-L+siglip-L+dinov2-L 58.0 24.5 37.6 8.2 37.9

Table 9: Results of combining different visual encoders
on mathematical tasks. Experiments are conducted on
MathLLaVA model.

we additionally report results on the training set
of MathLLaVA to provide a more comprehensive
evaluation. (as shown in Table 1, MathLLaVA
demonstrates a stronger dependency on image-
based information. ) Here we combine different en-
coders by concatenating image tokens. The experi-
mental results on MathLLaVA (shown in Table 9)
are generally consistent with those on G-LLaVA
(Table 6). Combining multiple encoders does not
enhance the performance of complex reasoning on
images. Although Math-LLaVA’s dataset exhibits

a marginally higher degree of visual-textual depen-
dency, the 3% disparity is not deemed to constitute
a robust reliance (e.g., when compared with the
LLaVA’s training dataset). Consequently, it is not
feasible to derive a definitive conclusion from such
a dataset. The development of an additional general
geometry dataset characterized by a pronounced
visual-textual dependency is reserved for future
research endeavors.
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clip-L 68.0 24.7 34.9 8.9 39.3 45.4 36.9
clip-L+dinov2-L 70.7 22.3 28.7 7.6 35.7 39.2 34.0

clip-L+dinov2-L (2024a) 66.7 24.3 31.9 6.6 38.7 41.8 35.0

Table 10: Results of interleaving the images tokens from
different encoders as done in (Tong et al., 2024a).

We also try interleaving the tokens from differ-
ent encoders as done in (Tong et al., 2024a) when
combining multiple visual encoders. Experimen-
tal results (shown in Table 10) indicate that the
interleaving input strategy achieved slightly better
performance (average score of 35.0) compared to
directly concatenating the representations of CLIP
and DINOv2 (average score of 34.0). However, the
performance of this method remains significantly
lower than that of using CLIP representations alone
(average score of 36.9).

C Training Details

Detailed information on model training are shown
in 11. Given that existing multimodal mathematical
models are based on the same LLaVA architecture
with the main differentiation being the training data,
we standardize the training approach as three stage:
Pretrain, SFT and Math SFT with language model
deepseek-math-rl-7b. All the models are trained
on 8 NVIDIA A100-80GB GPUs with the random
seed 42.
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More Examples of Lacking Visual Dependency
 As shown in the figure, in the two concentric circles, 

the chord AB of the great circle is tangent to the small 
circle at point C. If AB = 6.0, the area of the ring is ()

Choices:
A 9π
B 6π 
C 3π 
D π

As shown in the figure, in the two concentric circles, 
the chord AB of the great circle is tangent to the 
small circle at point C. If AB = 6.0, The area of the 
ring is ()

Choices:
A 9π
B 6π 
C 3π 
D π

MathVista testmini: question-270

As shown in the figure, PA and PB are tangent to 
circle O at points A and B respectively, the tangent EF 
of circle O intersects PA and PB at points E and F 
respectively, and the tangent point C is on the arc AB. 
If the length of PA is 2.0, then the perimeter of 
triangle PEF is ()

Choices:
A:8          
B:6         
C:4          
D:2

GeoQA test: question-283

As shown in the figure, PA and PB are tangent to 
circle O at points A and B respectively, the tangent EF 
of circle O intersects PA and PB at points E and F 
respectively, and the tangent point C is on the arc AB. 
If the length of PA is 2.0, then the perimeter of 
triangle PEF is ()

Choices:
A:8          
B:6         
C:4          
D:2

Figure 3: More examples from our constructed HC-M3D benchmark where original samples are lacking visual
dependency. (Supplement to Figure 2)

More Examples of Correlation between Images and Answers

分别观察下列几何体，其中从正面看、从左面看完全相同的有（ ）

A: 2个      B: 3个      C:4个      D:5个

分别观察下列几何体，其中从正面看、从左面看完全相同的有（ ）

A: 2个      B: 3个      C:4个      D:5个

Jingyou test

Find y.

Choices:
A: 16 2
B: 16 3
C: 32
D: 16 5

Find y.

Choices:
A: 16 2
B: 16 3
C: 32
D: 16 5

MathVista testmini: question-716

Figure 4: More examples from our constructed HC-M3D benchmark where images highly related to answers.
(Supplement to Figure 2)
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Statistcs G-LLaVA MathLLaVA MAVIS MultiMath

Pretrain stage

Dataset
Geo170K-align

+LLaVA-Pretrain
LLaVA-Pretrain

MAVIS-align
+LLava-Pretrain

MultiMath-300K-align
+Geo170K-align
+LLaVA-Pretrain

#Samples 618K 558K 1.1M 1.2M
Training Module mm adapter mm adapter mm adapter mm adapter

Epoch 1 1 1 1
Batch_size * #gpu 32*8 32*8 32*8 32*8

Learning Rate 1e-3 1e-3 1e-3 1e-3
SFT stage

Dataset LLaVA-Instruction LLaVA-Instruction LLaVA-Instruction LLaVA-Instruction
#Samples 665K 665K 665K 665K

Training Module mm adapter+llm mm adapter+llm mm adapter+llm mm adapter+llm
Epoch 1 1 1 1

Batch_size * #gpu 8*8 8*8 8*8 8*8
Learning Rate 2e-5 2e-5 2e-5 2e-5

Math SFT stage

Dataset Geo170K-qa MathV360K MAVIS-qa
MultiMath-300K-qa

+Geo170K-qa
+MathV360K

#Samples 117K 339K 555K 1.0M
Training Module mm adapter+llm mm adapter+llm mm adapter+llm mm adapter+llm

Epoch 2 2 2 2
Batch_size * #gpu 8*8 8*8 8*8 8*8

Learning Rate 2e-5 2e-5 2e-5 2e-5

Table 11: Training detail information across different models.

Image Encoder existence count position color posters celebrity scene landmark artwork OCR CR NC TT CR

clip-B 185.0 141.7 141.7 150.0 120.7 105.0 163.3 138.5 102.5 117.5 108.6 62.5 50.0 52.5
clip-L 195.0 156.7 131.7 175.0 136.7 127.6 160.5 147.0 118.3 132.5 112.1 47.5 50.0 60.0

(a) combine features by concatenating the hidden feature
clip-B+ siglip-B 200.0 151.7 140.0 160.0 114.6 113.2 158.5 140.3 111.8 107.5 110.0 47.5 50.0 50.0
clip-L+dinov2-L 195.0 148.3 143.3 195.0 131.3 122.6 158.0 147.3 119.3 140.0 105.7 47.5 50.0 50.0

clip-B+siglip-B, dino-B 195.0 151.7 136.7 175.0 107.8 108.8 158.3 140.5 105.3 125.0 110.0 65.0 50.0 55.0
(b) combine features by increasing image token number

clip-L+siglip-L 190.0 145.0 120.0 185.0 117.3 120.6 159.3 158.0 117.5 132.5 101.4 42.5 55.0 67.5
clip-L+dinov2-L 200.0 158.3 141.7 180.0 136.1 117.6 160.5 155.3 122.8 122.5 107.1 57.5 50.0 55.0

clip-L+siglip-L, dinov2-L 185.0 160.0 130.0 178.3 137.4 137.1 161.3 165.3 122.8 147.5 109.3 80.0 50.0 62.5

Table 12: Detailed results on the MME dataset (Supplementary to Table 6). In the table, CR, NC, TT, and CR
correspond to commonsense reasoning, numerical calculation, text translation, and code reasoning, respectively.

Image Encoder MathVista MathVerse HC-M3D

TextQA VQA geometry Math
Word FigureQA Plane

Geometry Functions Solid
Geometry DI BC AG

clip-B 33.5 27.4 62.0 17.2 19.0 29.7 17.1 23.0 39.6 8.6 62.0
clip-L 38.6 35.2 62.0 21.0 21.2 31.4 19.1 24.7 40.8 14.5 53.4

(a) combine features by concatenating the hidden feature
clip-B+ siglip-B 37.3 24.0 64.4 12.9 19.0 27.8 18.1 22.2 37.5 11.0 56.6
clip-L+dinov2-L 36.1 25.7 59.1 11.3 19.7 29.8 18.1 23.2 38.8 12.1 60.8

clip-B+siglip-B, dino-B 38.6 26.8 60.6 12.4 19.3 28.8 17.5 22.5 38.3 9.8 58.3
(b) combine features by increasing image token number

clip-L+siglip-L 31.7 31.8 54.8 14.0 22.7 29.4 16.9 22.6 37.7 11.0 59.4
clip-L+dinov2-L 32.3 24.0 53.9 15.1 19.7 29.4 15.7 22.3 37.3 9.8 55.0

clip-L+siglip-L, dinov2-L 29.1 24.6 58.7 11.8 19.0 29.4 16.9 22.6 36.8 9.6 57.1

Table 13: Detailed results on MathVista, MathVerse, and HC-M3D (Supplement to Table 6). Except for the AG
(agreement) metric (lower is better), all other metrics indicate higher is better.
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Instruction for Step 1:Determining image dependency

Instruction: Assess whether solving the following problem necessarily requires images.

Examples:
如图是一株美丽的勾股树，其中所有四边形都
是正方形，所有的三角形都是直角三角形，若
正方形A、B的面积分别为5、3，则最大正方形
C的面积是（）

Needs Image

△ABC的两内⻆平分线OB、OC相交于点O，若
∠A＝110°，则∠BOC＝（）

No image is needed, a picture can be 
drawn from the question. Let’s rewrite !

Rewrite Requirements:   By reducing textual information and necessitating the extraction 
of problem-solving information from images, or by concurrently revising both images and text.

△ABC的两内⻆平分线OB、OC相交于点O，若
∠A＝110°，则∠BOC＝（）

Text is redundant, information can be obtained from images.

Figure 5: Instruction for step 1: determining image dependency.

Instruction for Step 2: Construct highly relevant image-text data

Instruction: Try to alter image to ensure data with different answers for different image. If 
changing only the image falls short, try modifying both the image and options simultaneously.

Examples:

Find $m\angle H$

Choices:
A: 97
B: 102
C: 107
D: 122

Find $m\angle H$

Choices:
A: 97
B: 102
C: 107
D: 122

Before After

By revising the image, the correct answer is altered

Figure 6: Instruction for step 2: construct highly relevant image-text data.

22611


