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Abstract

Molecular structure elucidation involves deduc-
ing a molecule’s structure from various types
of spectral data, which is crucial in chemical
experimental analysis. While large language
models (LLMs) have shown remarkable pro-
ficiency in analyzing and reasoning through
complex tasks, they still encounter substantial
challenges in molecular structure elucidation.
We identify that these challenges largely stem
from LLMs’ limited grasp of specialized chem-
ical knowledge. In this work, we introduce
a Knowledge-enhanced reasoning framework
for Molecular Structure Elucidation (K-MSE),
leveraging Monte Carlo Tree Search for test-
time scaling as a plugin. Specifically, we con-
struct an external molecular substructure knowl-
edge base to extend the LLMs’ coverage of the
chemical structure space. Furthermore, we de-
sign a specialized molecule-spectrum scorer to
act as a reward model for the reasoning process,
addressing the issue of inaccurate solution eval-
uation in LLMs. Experimental results show
that our approach significantly boosts perfor-
mance, particularly gaining more than 20% im-
provement on both GPT-40-mini and GPT-4o'.

1 Introduction

Recent studies have demonstrated the broad ap-
plication potential of large language models
(LLMs) (OpenAl, 2023; Dubey et al., 2024) in
chemistry-related tasks, such as reaction predic-
tion (M. Bran et al., 2024) and molecule genera-
tion (Liu et al., 2024). However, despite progress in
these fields, fully leveraging the deep thinking and
reasoning capabilities of LLMs to address complex
problems in chemistry, such as molecular struc-
ture elucidation, remains a significant challenge.
Molecular structure elucidation is a fundamental
task in chemical experimental analysis, involving
*Corresponding author.

'Code repository: https://github.com/HICAI-ZJU/
K-MSE.

the deduction of molecular structures from vari-
ous types of spectral data, such as nuclear mag-
netic resonance (NMR), infrared (IR) spectroscopy,
etc. (Guo et al., 2024). Accurate elucidation of
molecular structures is essential for chemical re-
search, as it forms a critical step in interpreting
experimental results (Xue et al., 2023). Neverthe-
less, this task is inherently complex, often requiring
significant time and expertise. Even skilled profes-
sionals typically need 10 to 15 minutes to reason
through the structure of a single molecule (Field
et al., 2020). Therefore, automating the interpreta-
tion of spectra and accurately deducing molecular
structures using LLMs has the potential to greatly
enhance experimental efficiency and drive the au-
tomation of chemical research (Dai et al., 2024).

Recent studies have demonstrated that increas-
ing the number of reasoning steps, especially with
tree search (Hao et al., 2023; Zhang et al., 2024a,b),
can greatly improve LLMs’ ability to solve com-
plex problems. This highlights the importance of
test-time scaling laws (Snell et al., 2024; OpenAl,
2024c). However, existing methods are not easily
applicable to molecular structure elucidation. This
is largely due to LLMs’ limited grasp of chemical
molecular knowledge (Chen, 2024), which can be
attributed to two key factors.

First, LLMs lack comprehensive coverage of
chemical molecular structure space. As shown in
Figure 1(a), for instance, thiophene—an aromatic
heterocycle composed of one sulfur atom and four
carbon atoms—is a structure that LLMs often strug-
gle to analyze accurately. Although the model may
recognize that the structure contains at most four
aromatic carbon atoms and one sulfur atom, it fre-
quently misidentifies it as the benzene ring (the
most common aromatic substructure with six car-
bon atoms), overlooking the limitation on the num-
ber of aromatic carbon atoms. This suggests that
LLMs lack critical substructure knowledge, hinder-
ing their ability to fully comprehend and accurately
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Figure 1: (a) By incorporating a knowledge base, we
enhance the ability of LLMs to handle a broader range
of chemical molecular structures. (b) Through the de-
velopment of a specialized scorer, we enable accurate
evaluation of potential solutions.
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infer complex and unusual chemical structures.

Second, LLMs cannot accurately evaluate and
correct their reasoning process. This capability is
crucial for tree search-based reasoning, as it guides
reasoning to be more effective and efficient (Wan
et al., 2024). Timely evaluation and correction pro-
vide the necessary feedback, helping LLMs identify
potential issues and optimize accordingly. How-
ever, we have observed that in molecular struc-
ture elucidation tasks, LLMs are significantly defi-
cient in evaluating solutions as a reward model (see
Figure 1(b)). This is because reward models re-
quire an in-depth understanding of the task domain
to reflect the complex relationship between pre-
dicted molecules and spectral data. LLMs, lacking
domain-specific knowledge, are unable to provide
precise guidance in assessment and feedback.

To address these challenges, we propose a
Knowledge-enhanced framework based on Monte
Carlo Tree Search (MCTS) to improve LLMs’ rea-
soning for Molecular Structure Elucidation (K-
MSE). To tackle the first issue of limited coverage
of chemical molecular space in LLMs, we con-

struct an external molecular substructure knowl-
edge base (Figure 1(a)). Recognizing molecular
substructures serve as the foundational elements
of chemical space, this knowledge base integrates
both substructures and their structural descriptions
through an automated pipeline. Designed to en-
hance LLMs with domain-specific chemical knowl-
edge, it improves accuracy in inferring molecular
structures and reduces errors in atypical cases.

To overcome the second challenge of LL.Ms inac-
curately evaluating solutions, we design a special-
ized molecule-spectrum scorer as a reward model
(Figure 1(b)). This scorer comprises a molecule
encoder and a spectrum encoder, which evaluate
the alignment between molecular structures and
spectral data, providing accurate reward scores for
solutions during inference. Furthermore, we inte-
grate this scorer into a Monte Carlo Tree Search
(MCTS) reasoning framework combined with Self-
Refine (Madaan et al., 2023). This framework al-
lows LLMs to optimize previous solutions in a
timely manner while balancing the exploration of
new solutions and the exploitation of existing ones.
By incorporating this scorer into the MCTS frame-
work, LLM can dynamically adjust its reasoning
strategy based on feedback, gradually improving
the quality of the predicted molecular structure.
The scorer also serves as a bridge between the rea-
soning process and the external knowledge base,
using the input spectral data to query and retrieve
the most relevant molecular substructures. This
effectively mitigates inaccuracies in substructure
retrieval, further enhancing the stability and relia-
bility of the model’s reasoning process.

Our contributions can be summarized as follows:

* We propose a Knowledge-enhanced rea-
soning framework for Molecular Structure
Elucidation: K-MSE. It applies test-time scal-
ing with Monte Carlo Tree Search and can be
integrated with any LLM as a plugin.

* We construct an external molecular substruc-
ture knowledge base to supplement LLMs’
chemical knowledge coverage. Additionally,
we design a specialized molecule-spectrum
scorer as a reward model to accurately evalu-
ate the reasoning outcomes, while also acting
as a retriever between the LLM and the knowl-
edge base.

* Experiments on the MolPuzzle bench-
mark (Guo et al., 2024) demonstrate that our

22562



method significantly enhances performance,
specifically achieving an improvement of over
20% on GPT-40-mini and GPT-4o.

2 Related Works

LLMs for molecular reasoning. LLMs have
demonstrated significant potential in the field of
chemical molecular research (Zhang et al., 2025;
Zhuang et al., 2024). However, directly applying
LLMs to molecular-related tasks presents consid-
erable challenges, primarily due to the inherent
complexity of molecules and the substantial differ-
ences between molecular structures and natural lan-
guage (Feng et al., 2024; Jiang et al., 2024). Con-
sequently, many studies have sought to enhance
the reasoning of LLMs on molecular data by incor-
porating domain knowledge. For instance, Chem-
Crow (M. Bran et al., 2024) leverages existing tools
to assist LLMs in various downstream tasks; Chat-
Drug (Liu et al., 2024) integrates domain knowl-
edge into iterative reasoning and feedback loops,
enabling LLMs to perform molecular editing tasks;
STRUCTCHEM (Ouyang et al., 2024) uses prede-
fined reasoning templates to guide LL.Ms through
complex chemical tasks. However, to the best of
our knowledge, no study has yet explored how to
leverage LLLMs’ reasoning abilities to tackle the
challenge of molecular structure elucidation, a cru-
cial problem in chemical experiments that requires
deep domain expertise and a precise understanding
of molecular structures. The effective application
of LLMs to this challenge could significantly en-
hance the efficiency of scientific experiments and
accelerate advancements in chemical research.

LLMs for tree-search reasoning. Multi-path
reasoning through tree structures, such as Tree-of-
Thought (ToT) (Yao et al., 2023) and Monte Carlo
Tree Search (Hao et al., 2023; Chen et al., 2024;
Luo et al., 2024; Kang et al., 2024), has proven
effective in complex tasks. Some approaches (Qi
et al., 2024; Hao et al., 2023) combine problem
decomposition with tree search, where each tree
expansion step breaks the problem into manage-
able subproblems. However, these methods ne-
cessitate LLM’s intrinsic capability for problem
decomposition and a fine-grained reward model to
guide the search process. In contrast, other stud-
ies (Zhang et al., 2024a,b) minimize reliance on
problem decomposition by treating the complete
solution as a state within the tree, integrating Self-
Refine (Madaan et al., 2023) to gradually expand

the tree structure and optimize reasoning outcomes.
Despite their effectiveness, tree search-based rea-
soning methods highly rely on an accurate reward
model to effectively differentiate between desir-
able and undesirable answers (Uesato et al., 2022).
Some researchers (Qi et al., 2024; Zhang et al.,
2024a) attempt to leverage the inherent capabilities
of LLMs as the reward model, but existing studies
have shown that this approach is often limited in its
effectiveness (Stechly et al., 2024). We have iden-
tified that this issue is particularly pronounced in
molecular structure elucidation tasks. In this work,
we design a specialized scorer as a reward model
to provide more accurate guidance signals, thereby
enhancing the reasoning process.

3 Problem Formulation

Molecular structure elucidation refers to determin-
ing a molecule’s structure based on various types of
spectral data. Following the formulation presented
in (Guo et al., 2024), we define the problem as:

m = f(xira Lenmry Thomrs xformula)a (1)

where v represents the predicted molecule in
SMILES (Weininger, 1988), zj is infrared (IR)
spectroscopy data, Tepmr and Tppmy are C-NMR and
H-NMR spectra, respectively, and Zformula denotes
molecular formula. The function f(-) represents
the reasoning process of LLMs. We denote all in-
put as guestion, where x;j; is in image modality,
while Zenmr, Thnmr aNd Tgormula are in text modality.
We provide an illustrative example in Appendix D.

4 Method

In this section, we present the proposed
Knowledge-enhanced reasoning framework for
Molecular Structure Elucidation (K-MSE). First,
we describe the constructed knowledge base, which
contains molecular substructures to expand the
chemical structure coverage of LLMs. Next, we
introduce the molecule-spectrum scorer (Figure 2),
a specialized reward model that provides accurate
guidance during reasoning and serves as a bridge
to retrieve from the knowledge base. Finally, we
outline the overall reasoning framework (Figure 3).

4.1 Molecular Substructure Knowledge Base

The molecular structure space is vast and com-
plex, estimated to contain approximately 1050
molecules (Polishchuk et al., 2013). This immense
space poses a significant challenge for LLMs in
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molecular structure prediction, primarily due to
the high diversity of molecular structures and the
inherent differences between chemical structures
and natural language representations (Jiang et al.,
2024). LLMs are often adept at recognizing basic
molecular structures but struggle to make accurate
predictions when faced with more complex situ-
ations (exhibited in Figure 1(a)). In other words,
LLMs exhibit limitations in achieving a compre-
hensive coverage of molecular structures.

To address this issue, we construct a molecular
substructure knowledge base. Substructures refer
to common fragments in molecules that exhibit spe-
cific functional or characteristic features, serving
as fundamental units for molecular analysis (Fang
et al., 2023). This knowledge base contains a broad
array of molecular substructures along with their
corresponding textual descriptions, which can dy-
namically provide valuable supplementary informa-
tion to the LLM during the reasoning process. By
leveraging this knowledge base, we equip the LLM
with rich, domain-specific chemical knowledge,
thereby enhancing its ability to more accurately
identify and infer complex molecular structures.

Specifically, the knowledge base KB can be for-
mulated as:

KB = {(si, di)}, 2

where s; represents the molecular substructure in
SMILES (Weininger, 1988), and d; is the corre-
sponding textual description. In KI5, both ring and
chain substructures are extracted from a widely
used molecule database (Polykovskiy et al., 2020),
achieving a balance between diversity and univer-
sality. By incorporating structural information ob-
tained through external tools as auxiliary input, we
use LLM to automate the generation of reliable de-
scriptions for these substructures. The construction
details are in Appendix A.1 and Figure 7.

4.2 Molecule-Spectrum Scorer

A reliable reward model is crucial for ensuring
that LLMs can effectively correct errors and im-
prove their reasoning capabilities (Uesato et al.,
2022). The reward model provides precise feed-
back signals, guiding LLMs to adjust suboptimal
reasoning paths, thus progressively refining the fi-
nal result. However, as revealed in Figure 1(b),
leveraging the inherent capabilities of LLMs as a
reward model for molecular structure elucidation
tasks has limitations. This is primarily due to the
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Figure 2: The molecule-spectrum scorer consists of a
molecule encoder g, and a spectrum encoder gs. After
encoding both data types, the reward value is obtained
by calculating the similarity between their embeddings
h™ and h®.

lack of deep chemical knowledge in LLMs, which
prevents them from accurately assessing the con-
sistency between predicted molecular structures
and queried spectral data, making it challenging to
differentiate between ideal and non-ideal solutions.

To provide accurate guidance for reasoning, we
design a specialized scorer as the reward model.
This model consists of a molecule encoder g,,, and
a spectrum encoder g;:

h"™ = gm(m), h® = gs(n), 3)

where m is molecule, n is NMR spectrum Z¢pm,
and Zpnmr in Equation (1). h™, h® € R? are em-
beddings for molecule and spectrum, respectively.

Typically, the molecule encoder g, takes both
molecule graph m, (Hu et al., 2020) and finger-
print m ¢, (Rogers and Hahn, 2010) as input, and
employs GIN (Xu et al., 2019) and MLP for encod-
ing:

h™ = MLP(GIN(m,), MLP(myp)).  (4)

For spectrum, we design a model that leverages
the chemical shift of each carbon atom in C-NMR
and the chemical shift, splitting pattern, and cou-
pling constants of each hydrogen atom in H-NMR.
For example, for a carbon atom with C-NMR spec-
trum “49.0 (1C, s)”, its chemical shift is 49.0. For
a hydrogen atom with H-NMR spectrum “5.44
(IH, d, J = 1.9 Hz)”, its chemical shift, splitting
pattern, and coupling constant are 5.44, d, and 1.9,
respectively. To represent these features, we dis-
cretize all possible values for chemical shifts and
coupling constants, assigning a unique token ID to
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Figure 3: The framework of K-MSE. We construct a molecular substructure knowledge base covering various
substructures and their descriptions. For each question including i, Tenmrs Thamr> Lformula, relevant information is
first retrieved from the knowledge base. Then, an MCTS-based iteration is performed, where each node in the tree
represents a complete answer. The expansion process critiques previous answers a with image Img(a) and formula
Fml(a) of the predicted molecule, followed by a rewrite. We derive the reward of answers using the specialized
scorer containing g5 and g,,, which is also applied during the retrieval process.

each value. Similarly, we assign a separate token
ID to each splitting pattern. The formal representa-
tion is as follows:

e’ = E(wgun),

(%)
el = E(zln) + E(x?plit) + E(xgoup)7

where e¢ and e” are embeddings for one carbon
and hydrogen atom, respectively. . is the car-
bon chemical shift, xé‘hiﬁ, xé‘plit and xé‘oup are hydro-
gen chemical shift, splitting pattern and coupling
constant. E(-) denotes the embedding function. We
then concatenate the embeddings of all carbon and
hydrogen atoms and input them into a Transformer

encoder (Vaswani et al., 2017):

) e}Jifh ),
(6)
where N, and Nj, are numbers of carbon and hy-
drogen atoms in this molecule.
For model training, the NT-Xent loss (Chen et al.,
2020) is employed:

h® = Transformer(ef, ..., €}, el ..

esim(hI" k) /7

B
[’:_Z B ’
1

i=1 Z esim(hy"hy) /T + esim(hi*h7)/T
k=1,k#i

(7
where h" and h] are molecule and spectrum em-
beddings for the i-th molecule. sim(-,-) denotes
cosine similarity, B is the batch size, and 7 is tem-
perature. Details of the model architecture and
training process are in Appendix A.2.

4.3 MCTS-based Reasoning Framework

Effective reasoning requires both knowledge mas-
tery and timely reflection and adjustment. We ex-
pand knowledge coverage via a knowledge base
and introduce a scorer to evaluate reasoning out-
comes accurately. However, LLMs lack self-
reflection and dynamic reasoning adjustment, hin-
dering proactive error detection and correction dur-
ing generation. To address this limitation, we inte-
grate the knowledge base and scorer into a MCTS
reasoning framework, which treats each inference
process and solution as a tree node (Zhang et al.,
2024b), and employs Self-Refine (Madaan et al.,
2023) for iterative reflection and improvement dur-
ing tree search. Prior to MCTS, we first retrieve
from the knowledge base. Then MCTS operates
iteratively, with each iteration consisting of four
key steps: selection, expansion, evaluation, and
backpropagation.

Retrieval from Knowledge Base. First, based
on the spectrum data in the question, we retrieve the
most relevant substructures and their correspond-
ing descriptions from the molecular substructure
knowledge base. Since the objective of the pro-
posed molecule-spectrum scorer is to measure the
correlation between spectral data and molecular
structures, it effectively acts as a bridge connect-
ing the query and the knowledge base. Specifi-
cally, we use the spectrum encoder g5 to encode
the query spectrum and use the molecule encoder
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gm to encode each substructure in the knowledge
base. Retrieval is employed as follows:

{(sj,dj)} = Top-k(sim(gm(si), gs(n))), (8)
si€EXB

where n is spectrum ZT¢pmr and Zpyme in Equa-
tion (1). The retrieved {(s;, d;)} are then appended
after the question for subsequent reasoning.

Selection. In the iteration of MCTS, the first step
is to select a node for expansion. We use the Up-
per Confidence Bound applied to Trees (UCT) as
selection criterion:

In N(P(a;)) +1
N(a;) +¢€

)7

(&)
where Q)(a;) € R is the Q-value of node a;, which
is initialized in the evaluation step and updated
in the backpropagation step; N(-) is the number
of visits; and P(-) is the parent node. ¢ and ¢
are hyper-parameters. A node is considered fully
selected when its child node number reaches a pre-
defined limit.

a = argmax(Q(a;) + c\/

Expansion. In expansion, a critique process is
employed to identify the deficiencies of the current
solution in the selected node a:

C(a) = Critique(a, Img(a), Fml(a)), (10)

where Img(a) and Fml(a) represent image and
chemical formula of the predicted molecule in a.
We observe that for LLMs, the effectiveness of cri-
tiquing previous response without providing addi-
tional context is significantly limited, as they often
struggle to accurately identify molecular structures
from text alone. This issue can be mitigated by
supplementing with molecular image and chemical
formula. Subsequently, a rewrite process is em-
ployed to produce a new solution a’ as the child of
a, based on C(a):

a’ = Rewrite(a, C(a)). (11)

Evaluation. The newly generated node necessi-
tates an evaluation as its reward value. We employ
the proposed molecule-spectrum scorer as the re-
ward model to compute the similarity between the
predicted molecular structure and the queried spec-
trum:

R(a") = sim(gm(ma), gs(n)), (12)

where my is the predicted molecule in a’, n repre-
sents spectrum Zepmr and Thome, and R(a’) € R is
the reward value. The Q-value of ¢’ is then initial-
ized with the reward: Q(a’) = R(d’).

Backpropagation. In the backpropagation step,
the Q-value of the new node is propagated to its
parent node:

Q(a) = 0.5 x Q(a’) + 0.5 x Q(a).

This backpropagation process is iteratively applied
until reaching the root. Backpropagation enables
the adjustment of node value estimates based on
newly acquired feedback, progressively refining
the reasoning process and guiding it toward more
promising regions of the solution space.

The number of iterations for selection, expan-
sion, evaluation, and backpropagation is controlled
by the hyper-parameter N;;.,. Upon reaching the
maximum number of iterations, the node with the
highest reward is selected as the final answer.

(13)

S Experiment

5.1 Experimental Setup

We conduct experiments on the MolPuzzle bench-
mark (Guo et al., 2024), following the “Addressing
Entire Molecule Puzzles” setting. IR, C-NMR, H-
NMR, and molecular formula serve as inputs, and
the goal is to predict the molecule in a zero-shot
manner. The dataset consists of 216 molecules.
We select the following base models: Llama-
3.2-11B-Vision-Instruct (Dubey et al., 2024),
GPT-40-mini (gpt-40-mini-2024-07-18) (Ope-
nAl, 2024a), GPT-40 (gpt-40-2024-08-06) (Ope-
nAl, 2024b), and GPT-01 (01-2024-12-17) (Ope-
nAl, 2024c).

The baseline methods include direct prompt-
ing with Chain-of-Thought (CoT) (Wei et al.,
2022), as well as employing Self-Refine (Self-
R) (Madaan et al., 2023), Self-Consistency (Self-
C) (Wang et al, 2023), Multi-Agent De-
bate (MAD) (Liang et al., 2024), and MCT Self-
Refine (MCTSr) (Zhang et al., 2024a). Evaluation
metrics include: (1) Fingerprint Tanimoto Similar-
ity (FTS) (Tanimoto, 1958) for chemical similarity
between generated and ground-truth molecules us-
ing Morgan, MACCS, and RDK fingerprints; (2)
Formula accuracy (Formula Acc), which measures
the correctness of chemical formulas of generated
molecules; and (3) ACC for the exact structural
match. Detailed implementation of the proposed
K-MSE and baselines are in Appendix A.3 and B.

5.2 Main Results

Experimental results are presented in Table 1. Our
method, K-MSE, significantly outperforms all base-
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Model Morgan FTS ~ MACCS FTS RDK FTS Formula ACC ACC

Llama-3.2-11B 0.163 0.349 0.188 0.060 0.014

+ Self-R 0.161 (=0.002) 0.345 (—0.004) 0.178 (—0.010) 0.023 (—0.037) 0.023 (+0.009)
+ Self-C 0.172 (+0.009)  0.350 (+0.001) 0.210 (+0.022) 0.032 (—0.028) 0.019 (+0.005)
+ MAD 0.185 (+0.022)  0.368 (+0.019) 0.203 (+0.015) 0.051 (—0.009)  0.009 (—0.005)
+ MCTSr 0.169 (+0.006) 0.343 (—0.006) 0.197 (+0.009) 0.023 (—0.037) 0.004 (—0.010)
+ K-MSE 0.298 (+0.135) 0.465 (+0.116) 0.311 (+0.123) 0.143 (+0.083) 0.111 (-+0.097)
GPT-40-mini 0.260 0.512 0.337 0.185 0.037

+ Self-R 0.287 (+0.027)  0.523 (+0.011)  0.369 (+0.032) 0.231 (+0.046) 0.069 (+0.032)
+ Self-C 0.299 (+0.039)  0.535 (+0.023) 0.373 (+0.036) 0.222 (+0.037)  0.083 (+0.046)
+MAD 0.292 (+0.032)  0.520 (+0.008) 0.359 (+0.022) 0.222 (+0.037) 0.079 (+0.042)
+ MCTSr 0.281 (+0.021)  0.530 (+0.018) 0.361 (+0.024) 0.176 (—0.009) 0.069 (+0.032)
+ K-MSE 0.470 (+0.210) 0.651 (+0.139) 0.520 (+0.183) 0.412 (+0.227) 0.273 (+0.236)
GPT-40 0.493 0.690 0.538 0.486 0.278

+ Self-R 0.474 (—0.019)  0.692 (+0.002) 0.522 (—0.016) 0.500 (+0.014)  0.250 (—0.028)
+ Self-C 0.551 (+0.058) 0.732 (+0.042) 0.581 (+0.043) 0.514 (+0.028) 0.347 (+0.069)
+ MAD 0.519 (+0.026) 0.710 (+0.020) 0.558 (+0.020) 0.482 (—0.004) 0.310 (+0.032)
+MCTSr 0.500 (+0.007)  0.705 (+0.015)  0.551 (+0.013)  0.495 (+0.009) 0.282 (-+0.004)
+ K-MSE 0.707 (+0.214)  0.834 (+0.144) 0.727 (+0.189) 0.711 (+0.225) 0.578 (+0.300)
GPT-o0l 0.833 0.923 0.856 0.903 0.741

+ K-MSE 0.868 (+0.035) 0.939 (+0.016) 0.888 (+0.032) 0.923 (+0.020) 0.787 (-0.046)

Table 1: Experimental performance on MolPuzzle benchmark. The first row of each group presents the baseline
results by directly employing CoT, with the values in () indicating the relative improvement over the baseline. The

best results are highlighted in bold.

line methods, achieving substantial performance
improvements across all base models. Specifically,
ACC increases by 0.236 and 0.300 on GPT-4o-
mini and GPT-4o, respectively. As the capability
of the base models improves, the relative perfor-
mance gain of K-MSE exhibits an initial increase
followed by a decline. We attribute this to that
weaker base models (e.g., Llama-3.2-11B) have
limited capabilities in chemical reasoning, prevent-
ing them from fully exploiting the potential of K-
MSE. Conversely, stronger models (e.g., GPT-o1)
are closer to the performance ceiling, resulting in
diminishing returns with further optimization.

Additionally, some baseline methods lead to per-
formance degradation. For example, MAD and
MCTSr cause ACC to decrease by 0.005 and 0.010,
respectively, on Llama-3.2-11B. This can be at-
tributed to the insufficient knowledge and reason-
ing abilities of LLMs in chemical tasks. Both MAD
and MCTSr rely on the model’s self-correction
mechanism, which requires accurate understanding
and adjustment of the reasoning process. Over-
reliance on this potentially unreliable mechanism
can amplify errors, resulting in greater discrepan-
cies between the generated and ground-truth molec-
ular structures. In contrast, our approach enhances

domain knowledge by incorporating a molecular
substructure knowledge base, utilizes specialized
scorer to evaluate reasoning outcomes, and intro-
duces additional inputs (such as molecular image
and formula) during the self-critique phase. These
ensure that K-MSE achieves consistent and sig-
nificant performance gains across all base models.
Further discussion on these can be found in subse-
quent Sections and Appendix C.

5.3 Detailed Analysis

Specialized Scorer Ensures Precise Answer Eval-
uation. To evaluate the specialized scorer, we
compare it with an LLM-based scorer. The ex-
perimental results, shown in Figure 4, highlight
the performance differences between the two ap-
proaches and analyze the distribution and correla-
tion between the reward score and oracle similar-
ity. The reward score is the score assigned by the
scorer to each prediction, while the oracle repre-
sents the molecular fingerprint similarity between
the predicted and the ground-truth molecules. An
ideal scorer should exhibit a positive correlation
between these two measures. The results clearly
show that the specialized scorer significantly en-
hances performance, yielding an ACC increase of
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Figure 4: Performance comparison (left) and reward vs.
oracle similarity (right) between specialized scorer and
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Figure 5: Performance comparison (left) and retrieval
hit comparison (right) between scorer as retriever and
LLM-based retriever on GPT-40-mini.

0.139. Notably, the specialized scorer shows a pos-
itive correlation of 0.53 between the reward score
and the oracle. However, the LLM-based scorer
shows a near-zero correlation (0.03) and produces
less discriminative, overly lenient scores (generally
>0.7), likely due to LLM self-affirmation bias. In
contrast, the specialized scorer, as a tailored small
model, effectively addresses this bias, providing
more accurate and reliable evaluations.

Specialized Scorer Enhances Knowledge Base
Retrieval. In K-MSE, the specialized scorer also
acts as the retriever between LLM and knowledge
base. To assess its effectiveness, we conduct exper-
iments with an LLM-based retriever variant. In this
variant, we first prompt the LLM to analyze the
molecular structure from the guestion and generate
a query description. Then, we use BM25 (Robert-
son et al., 2009) to compute the similarity between
the query description and the substructure descrip-
tions in the knowledge base. Experimental results
in Figure 5 demonstrate that the scorer-based re-
triever significantly outperforms the LLM-based
approach, with a 0.120 improvement in ACC and
an average 0.169 increase in retrieval hit rate (the
proportion of retrieved substructures containing the
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Figure 6: Analysis of MCTS iterations N4, (left) and
retrieval counts k from the knowledge base (right).

ground-truth substructures in the target molecule).
This highlights the scorer’s ability to retrieve more
accurate substructures with fewer retrievals.

MCTS Iterations and Knowledge Base Retrieval
Analysis. We analyze the impact of different it-
eration numbers N, and retrieval counts k£ on
performance using GPT-40-mini. Experimental re-
sults are shown in Figure 6. Setting N;;., being 0
disables the MCTS iterative process, while k be-
ing 0 removes the knowledge base. Results show
that performance improves with increasing Ney,
demonstrating the benefits of iterative reasoning,
though gains diminish after a certain point. For
retrieval count k, performance initially rises but
then declines as k grows, suggesting that while
the knowledge base integration is effective, larger
k values introduce noise from retrieved irrelevant
substructures. Notably, the best performance on
GPT-40-mini occurs at £ = 1, while on GPT-4o0,
optimal performance is achieved at £k = 2. This
difference may stem from GPT-40’s greater robust-
ness, which allows it to more effectively mitigate
the impact of retrieval noise.

6 Conclusion

In this work, we introduce K-MSE, a knowledge-
enhanced reasoning framework for molecular struc-
ture elucidation based on LLMs. K-MSE utilizes
a Monte Carlo Tree Search-based test-time scal-
ing approach and can be integrated as a plugin
with any LLM. We build a molecular substructure
knowledge base and design a specialized molecule-
spectrum scorer to address the limited chemical
knowledge inherent in LLMs. Experimental results
demonstrate the superior performance of K-MSE,
and we believe it paves the way for LLLMs to func-
tion as copilots in the analysis of chemical experi-
ments, thereby accelerating scientific advances.
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Limitations

Although the proposed K-MSE framework demon-
strates significant performance improvements in
molecular structure elucidation, several limitations
should be acknowledged. First, the framework op-
erates as a plugin for existing large language mod-
els (LLMs) rather than training LLMs specifically
for the task. While this design choice enhances
flexibility and reduces dependency on task-specific
training, the performance of K-MSE is inherently
constrained by the capabilities of the underlying
LLM. This limitation is particularly pronounced
due to the scarcity of reliable and publicly available
molecular spectral data, which hinders the devel-
opment of more specialized models. Second, the
evaluation of K-MSE is currently limited to the
MolPuzzle benchmark, as it is the only publicly
accessible dataset through reliable experimental
studies in this domain. While MolPuzzle provides
a valuable starting point, its limited scale and di-
versity may not fully capture the complexity of
real-world molecular structure elucidation tasks.
To address these limitations, future work will focus
on (1) collecting a larger and more diverse dataset
to enable more robust training and evaluation, and
(2) incorporating cutting-edge LLM training strate-
gies, such as slow-thinking approaches, to further
enhance LLM’s reasoning capabilities.
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A Implementation of K-MSE

A.1 Construction of Molecular Substructure
Knowledge Base

The molecular substructures in the knowledge base
are divided into two parts: ring structures and chain
structures. A ring structure refers to a closed loop
of atoms, such as a benzene ring (C1=CC=CC=C1),
where the atoms form a cyclic arrangement. A
chain structure, on the other hand, refers to a linear
arrangement of atoms within the molecule, such as
a propyl group (CCC), where the atoms are con-
nected in a straight or branched chain. The extrac-
tion of ring structures is defined as follows: first,
individual ring structures within the molecule are
identified. Then, rings that share two or more atoms
are merged. Finally, atoms that are connected to
the ring atoms via chemical bonds are included.
The extraction of chain structures is defined as fol-
lows: first, carbon atoms that are not part of any
ring are identified. Then, for each carbon atom,
the substructures within its two-hop neighbors are
extracted. Finally, substructures containing atoms
that are part of a ring are filtered out. We collect
substructures from over 4 million molecules in the
Moses database (Polykovskiy et al., 2020) using the
extraction methods described above. Substructures
that appear fewer than 1,000 times are filtered out
to maintain a balance between diversity and univer-
sality. Ultimately, the knowledge base contains 593
substructures, and substructures are represented in
SMILES format.

Another crucial component of the knowledge
base is the natural language description of molec-
ular substructures. We use LLMs to automate the
process of describing these substructures. Since
LLMs may not always accurately recognize molec-
ular structures from SMILES notation, we comple-
ment the input by incorporating structural informa-
tion obtained through external tools. These supple-
mentary structural details include triplet-form struc-
ture descriptions, molecular formula, and molec-
ular image. For the triplet-form structure descrip-
tions, we leverage RDKit to extract molecular struc-
ture information using the SMILES notation as in-
put. This information includes the number of rings,
the size and type of each ring, the types of atoms in
the rings, and the functional groups present, such
as ether, ester, ketone, imine, and nitrile, etc. Addi-
tionally, the corresponding molecular formula and
image are also obtained using RDKit. In our imple-
mentation, we use GPT-40-mini to generate natu-

ral language descriptions of molecular structures.
Our manual spot checks have shown that LLM can
provide accurate structural descriptions by incor-
porating external tools in this manner. The entire
knowledge base construction process is presented
in Figure 7, and the prompt used in description
generation is in Figure 10.

A.2 Details of Specialized Molecule-Spectrum
Scorer

Model architecture. The scorer consists of a
molecule encoder g,, and a spectrum encoder g,
which are responsible for encoding the molecu-
lar and spectral data, respectively. The molecule
encoder ¢,, includes a GIN (Graph Isomorphism
Network) (Xu et al., 2019) for encoding the molec-
ular graph and an MLP (Multilayer Perceptron) for
encoding the molecular fingerprint. The molec-
ular graph can be obtained using RDKit, where
the nodes represent atoms and the edges represent
chemical bonds. The GIN has a dimension of 300
and 5 layers. The input molecular fingerprint is
formed by concatenating Morgan, MACCS, and
RDK fingerprints, resulting in a concatenated di-
mension of 2215, with Morgan and RDK finger-
prints having dimensions of 1024 and MACCS
having a dimension of 167. The concatenated fea-
tures are processed by two layers of MLP, with the
output dimension being 300. Then, the encoded
molecular graph and fingerprint are concatenated,
passed through two additional layers of MLP, and
ultimately produce a molecular representation h,,
with a dimension of 256. In the spectrum encoder
gs, the number of chemical shift tokens for C-NMR
is 2,500, while for H-NMR, it is 1,500. Addition-
ally, the number of splitting pattern tokens is 75,
and the number of coupling constant tokens is 200.
The Transformer encoder (Vaswani et al., 2017)
used has a dimension of 256 and consists of 2 lay-
ers.

Training. We collect 9,000 molecules from
ZINC (Sterling and Irwin, 2015) and use simu-
lation method (Banfi and Patiny, 2008) to obtain
the corresponding C-NMR and H-NMR data. Ad-
ditionally, we gather extra 200 molecules to serve
as the validation set. The training is conducted over
100 epochs, with hyperparameter 7 set to 0.07. The
model checkpoint corresponding to the epoch with
the lowest validation loss is saved.
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It consists of a single aromatic ring containing five atoms, specifically four carbon atoms and
one sulfur atom. This substructure, known as thiophene, is characterized by its aromaticity,
meaning that the ring has a stable, delocalized electron system. In this structure, all four
carbon atoms are aromatic carbons, contributing to the aromatic nature of the ring. There are
no carbonyl carbons or other specific types of carbon atoms present. The structure does not
have any additional attached groups or substituents beyond the atoms forming the ring.

Substructures

Molecule Database

Figure 7: Construction process of the molecular substructure knowledge base. The process consists of three steps:
First, collect molecular substructures from a molecule database. Then, RDKit is used to obtain supplementary
structure information for each substructure, including molecular formula, structure image, and structure triplets.
Finally, LLM is prompted to generate the corresponding textual descriptions.

A.3 Inference Setting

During the inference phase, the parameters ¢ and
€ in Equation (9) of MCTS are set to 1 and 0.1,
respectively, with a maximum of 2 child nodes
per node. When the base models are Llama-3.2-
11B, GPT-40-mini, and GPT-40, Njs, 1S set to
8; when the base model is GPT-01, Nj;er 1 set
to 2. For Llama-3.2-11B and GPT-40-mini, the
number of retrieval count k£ from the knowledge
base is set to 1; while for GPT-40 and GPT-o1, k&
is set to 2. To maximize reproducibility, we set the
temperature to 0.0 (most conservative) and top_p to
1.0. The prompts used during inference are shown
in Figures 11, 12 and 13.

B Baselines

CoT. Chain-of-Thought (CoT) (Wei et al., 2022)
enhances the reasoning capabilities of LLMs by
prompting them with “think step by step” and gen-
erating intermediate reasoning steps to tackle com-
plex tasks.

Self-Refine. Self-Refine (Self-R) (Madaan et al.,
2023) iteratively improves the outputs of LLMs
by generating feedback and refining its previous
outputs without requiring additional training or su-
pervised data. In the experiments, the number of
refinement iterations is also set to Njr.

Self-Consistency. Self-Consistency (Self-
C) (Wang et al.,, 2023) improves reasoning in
LLMs by sampling multiple reasoning paths
and selecting the most consistent answer. In the

experiments, the number of reasoning paths is also
set to Niter-

MAD. The Multi-Agent Debate (MAD) (Liang
et al., 2024) encourages divergent thinking in
LLMs by involving multiple agents in a debate
process, where they express their arguments and
a judge manages the debate to reach a final solu-
tion. In the experiments, the maximum number of
debate rounds is 4.

MCTSr. MCT Self-Refine (MCTSr) (Zhang
et al., 2024a) integrates LLMs with Monte Carlo
Tree Search (MCTS) to enhance performance in
complex reasoning tasks by iteratively refining so-
lutions through systematic exploration and heuris-
tic self-evaluation mechanisms. In the experiments,
the number of iterations is also set to N;ze;-.

C Additional Experimental Results

C.1 Universal Performance Gains through
Knowledge Base Integration

LLMs often face the challenge of insufficient
knowledge when handling tasks in the chemical
domain. To address this, the proposed molecu-
lar substructure knowledge base can be used as a
plugin, integrated into any LLM’s reasoning frame-
work. We conduct experiments by integrating this
knowledge base with all baseline reasoning meth-
ods, and the results are shown in Table 2. The find-
ings indicate that incorporating the knowledge base
consistently improves model performance, validat-
ing its effectiveness in enhancing reasoning capa-
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Morgan FTS ~ MACCS FTS RDK FTS Formula ACC ACC
CoT 0.260 0.512 0.337 0.185 0.037
CoT+KB 0.337 (+0.077)  0.572 (+0.060) 0.413 (+0.076) 0.255 (+0.070) 0.111 (+0.074)
Self-R 0.287 0.523 0.369 0.231 0.069
Self-R+KB  0.372 (+0.085) 0.598 (+0.075) 0.444 (+0.075) 0.356 (+0.125) 0.157 (+0.088)
Self-C 0.299 0.535 0.373 0.222 0.083
Self-C+KCB 0.398 (+0.099) 0.602 (+0.067) 0.458 (+0.085) 0.347 (+0.125) 0.171 (+0.088)
MAD 0.292 0.520 0.359 0.222 0.079
MAD+KB 0.343 (+0.051)  0.563 (+0.043)  0.403 (+0.044) 0.273 (+0.051) 0.130 (+0.051)
MCTSr 0.281 0.530 0.361 0.176 0.069
MCTSr+KB  0.333 (+0.052)  0.551 (+0.021)  0.414 (+0.053)  0.267 (+0.091) 0.106 (+0.037)

Table 2: Performance of knowledge base integration on GPT-40-mini across all methods. +X denotes the
incorporation of the knowledge base. The values in () indicate the relative performance improvement compared to

when the knowledge base is not used.

Morgan FTS MACCS FTS RDKFTS Formula ACC ACC

K-MSE 0.470 0.651 0.520 0412 0.273
w/o Fml 0.432 0.627 0.474 0.347 0.218
w/o Img 0.451 0.628 0.502 0.380 0.236
w/o Fml, w/o Img 0.427 0.620 0.469 0.324 0.208

Table 3: Experimental results of critique input ablation study.

bilities. This also demonstrates that the knowledge
base is highly adaptable and flexible, capable of
functioning across various reasoning frameworks.

C.2 Ablations on Critique Input

The key to iterative self-reflection and improve-
ment lies in the model’s ability to identify and cor-
rect defects in the previous reasoning step. How-
ever, we find that due to the limited capability of
LLMs in the field of chemical molecules, they of-
ten struggle to accurately analyze the molecular
structure of the molecule predicted in the previ-
ous step. Specifically, when analyzing the pre-
dicted molecule represented in SMILES format,
the model frequently has difficulty correctly in-
terpreting the corresponding molecular structure
during the self-critique process, making the cri-
tique unreliable and weakening the effectiveness of
self-reflection and improvement.

To address this issue, as shown in Equation (10),
we introduce molecular formula and image of the
predicted molecule during the critique process,
both of which can be generated using RDKit. This
additional information helps LLMs more accu-
rately identify the molecular structure, thereby im-
proving the reliability of the critique and enhancing
the effectiveness of self-reflection.

We further conduct ablation experiments, and the
results are shown in Table 3, where w/o Img and
w/o Fml refer to settings in which the molecular
image and molecular formula are removed during
the critique process, respectively. The results indi-
cate that removing either image or formula leads
to a decline in model performance, suggesting that
these supplementary inputs play a crucial role in
the critique process. They can improve the model’s
ability to recognize molecular structures, thereby
ensuring the effectiveness of the critique and self-
improvement mechanism.

C.3 Ablations on the Component of
Specialized Scorer

We analyze the specialized molecule-spectrum
scorer through ablation experiments. The vari-
ants in the experiments include: w/o mg, (removing
molecular graph input in the molecule encoder g,,);
w/o m, (removing molecular fingerprint input in
the molecule encoder g,,); w/o xi”plit (removing hy-
drogen atom splitting pattern input in the spectrum
encoder g,); and w/o x?oup (removing hydrogen
atom coupling pattern input in the spectrum en-
coder g;). Figure 8 shows the visualization of the
validation loss during the training process for these

variants, where “all” represents the complete scorer.
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IR Spectrum

Infrared spectroscopy data () H
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o 500

C-NMR data (Zenme)
H-NMR data (Zhnme)

1000 1500 2000 2500 3000 3500 4000
Wavenumber (cm~)

9.1 (2C, s), 27.8 (2C, s), 170.5 (2C, s)
1.06 (6H, t, J=7.3 Hz), 2.50 (4H, q, J = 7.3 Hz)

Molecular formula (Zformula) C6H1003
Target
molecule in SMILES CCC(=0)0Cc(=0)CC
Table 4: Example input and target data (ID: 5-43).
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Figure 8: Visualization of validation loss during the
scorer training process.

From the results, it is observed that removing any
component causes an increase in the validation loss
after training convergence. This indicates that each
component plays a role in capturing the relation-
ship between the molecule and the spectrum data,
and the removal of these components affects the
model’s performance.

C.4 Token Consumption Analysis

In Figure 9, we analyze the token consumption on
GPT-40-mini of different methods when solving
each problem (left) and the relationship between to-
ken consumption and performance (right). K-MSE
maintains a relatively reasonable token consump-
tion level, which is lower than that of the Self-
R and MCTSr methods. Notably, K-MSE, as an
efficient test-time scaling method, effectively uti-
lizes token consumption during test-time to signif-
icantly enhance model performance. We attribute
this to two key factors: first, the effective expan-

Figure 9: Left: token consumption per question for
each method. Right: ACC performance versus token
consumption across different methods.

sion of the LLM’s knowledge capabilities through
the introduction of a molecular substructure knowl-
edge base; second, the development of a special-
ized scorer for evaluating reasoning outcomes and
enhancing self-critique, combined with additional
inputs such as molecular images and formulas, en-
ables LLMs to reflect and improve. In contrast,
while some methods increase token consumption
to acquire more reasoning steps, their trade-off be-
tween resource consumption and performance im-
provement is not optimal.

D Illustrative Data Example

We provide an illustrative data example (ID 5-43
in the dataset) in Table 4 to illustrate the task’s
input-output specifications.

22575



Prompt for chain structure

Given the molecular substructure '<##SMILES>'
(<##FORMULA>) and some detailed information in
the form of triples: <##TRIPLE>, describe its
features. The description should start with
\"It consists of\" or \"It is\" and include
details about the core structure, attached
groups or substituents, and any functional
groups (e.g., ether, ester, ketone, etc.). Be
concise and informative, highlighting key
functional groups and their positions where
relevant.

Prompt for ring structure

Given the molecular substructure '<##SMILES>'
(<##FORMULA>) and some detailed information in
the form of triples: <##TRIPLE>, describe its
features. The description should start with
\"It consists of\" or \"It is\" and include
details about whether the substructure contains
rings, the type of rings (if any), the types
and numbers of atoms in the rings, and any
attached groups or substituents. Additionally,
provide a detailed count of the carbon atoms,
including the number of aromatic carbons,
carbonyl carbons, and any other specific types
of carbon atoms. Ensure the description is
concise and informative.

Figure 10: Prompt for generating descriptions in con-

struction of molecular substructure knowledge base.

The provided NMR data is accurate and reliable.
You are a strict critic.

Your task is to critically evaluate the predicted
molecular formula and structure in current answer
and compare them to the target molecular formula

and NMR data:

1. Assess whether NMR data analysis has been
interpreted correctly, identifying any
discrepancies or errors in the analysis.

2. Evaluate whether the predicted molecular
formula is consistent with the target molecular
formula, noting any deviations or mismatches.

3. Examine the predicted molecular structure in
detail to determine whether it fully aligns with
the information provided by the NMR data.
Highlight any specific substructures that do not
match the NMR data analysis criteria. Analyze
whether the number of various carbons (aromatic
carbons, carbonyl carbons, etc.) or various
hydrogens (hydrogens on aromatic carbons,
hydrogens on methyl carbons, etc.) in the
predicted molecule aligns with the requirements
of the NMR data.

You are NOT required to provide corrected
prediction. Focus solely on highlighting the
areas where the analysis or prediction falls
short, and offer a thorough critique of the
issues you find.

The first input image is IR spectrum.
The second input image is the molecule predicted
in current answer.

<problem>
<###PROBLEM>
</problem>

<current_answer>

<###ANSWER>

Predicted Molecule: <###SMILES>

Predicted Molecule Formula: <###pred—-FORMULA>
</current_answer>

You are a chemistry expert and your task is to
analyze the data based on IR, C-NMR and H-NMR.
Please analyze and think step by step about the
structure of the molecule based on the molecular
formula and spectrum data. Pay attention to the
position of the peaks and the corresponding
number of atoms. The final output of the SMILES
of the molecule is required to end with 'The
SMILES of the molecule is’.

The first input image is IR spectrum.
The molecular formula of the molecule is:
" <###FORMULA>"

C-NMR spectra: *<###CNMR-DATA>"

H-NMR spectra: *<###HNMR-DATA>"

You are given a list of molecular substructures
and their corresponding natural language
descriptions. The molecule could contain one of
these substructures, but it may also NOT contain
ANY of them. You need to assess each description
carefully and decide which substructures are
likely to be part of the molecule, considering
the overall molecular formula and chemical
reasoning.

Input List: <###LIST>

Figure 12: Prompt for critique.

Figure 11: Prompt for initialization.

Please refine the current answer based on
critique. Ensure that the new answer is different
from the current one. Think step by step. The
final output of the SMILES of the molecule is
required to end with 'The SMILES of the molecule
is'.

<problem>

<###PROBLEM>

</problem>

<current_answer>

<###ANSWER>

Predicted Molecule: <###SMILES>

Predicted Molecule Formula: <###pred—FORMULA>
</current_answer>

<critique>
<###CRITIQUE>
</critique>

Figure 13: Prompt for rewrite.
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