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Abstract

Current speech encoding pipelines often rely
on an additional text-based LM to get robust
representations of human communication, even
though SotA speech-to-text models often have
a LM within. This work proposes an approach
to improve the LM within an audio model such
that the subsequent text-LM is unnecessary. We
introduce WhiSPA (Whisper with Semantic
and Psychological Alignment), which lever-
ages a novel audio training objective: con-
trastive loss with a language model embedding
as a teacher. Using over 500k speech segments
from mental health audio interviews, we evalu-
ate the utility of aligning Whisper’s latent space
with semantic representations from a text au-
toencoder (SBERT) and lexically derived em-
beddings of basic psychological dimensions:
emotion and personality. Over self-supervised
affective tasks and downstream psychological
tasks, WhiSPA surpasses current speech en-
coders, achieving an average error reduction
of 73.4% and 83.8%, respectively. WhiSPA
demonstrates that it is not always necessary
to run a subsequent text LM on speech-to-text
output in order to get a rich psychological rep-
resentation of human communication.

1 Introduction

Human communication is inherently multimodal,
but AI integration of modalities is often frag-
mented (Lazaro et al., 2021; Gu et al., 2017).
Speech to text models, like Whisper (Radford et al.,
2022), are often pipelined into text-based language
models (LMs) (Chuang et al., 2020) in order to
get the most accurate speech-based representations
(see Figure 1). This often results in redundant
computational costs from having two LMs in the
pipeline (one within the audio model and one for
the text LM) and representations remain incom-
plete of the full spectrum of human expressions
(Zhang et al., 2023; Lian et al., 2023). This is
especially important for psychological and social

Figure 1: Speech processing pipelines that are further
processed by language models (option #1 above) often
yield higher accuracies than those produced solely by
SotA audio models (option #2). Our distillation intro-
duces a speech encoder which streamlines the pipeline
and exhibits similar performance to a text-based LM.

scientific applications where representations from
text-based LMs demonstrate superior performance
than direct speech representations (Lukac, 2024;
Chen et al., 2024).

Here, we seek to bridge the semantic and psy-
chological representation gap between speech-
based LMs present in audio models and text-
based LMs. We introduce a speech encoding
model, WhiSPA1 (Whisper with Semantic and
Psychological Alignment), which aligns a pre-
trained speech recognition model, Whisper (Rad-
ford et al., 2022), with the latent dimensions from
SBERT (Reimers and Gurevych, 2019), intended to
better capture semantics and deeper psychological
information (V Ganesan et al., 2022; Park et al.,
2014). Such alignment reduces computational and
memory inefficiencies, circumventing the need for
a second text encoder, as it enables a unified cross-
modal representation between speech and language
models. Still, since text is derivable from speech,
speech should intrinsically be mappable to the same
rich semantic features from the text.

Our focus on psychological or human-level tasks
reflects a growing demand for foundation models
to better understand the intrinsic qualities of hu-

1https://github.com/humanlab/WhiSPA
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man communication (Soni et al., 2024). As Clark
and Schober (1992) put it, “The common miscon-
ception is that language has to do with words and
what they mean. It does not. It has to do with
people and what they mean.” and specifically how
well the representations capture information about
the people communicating (Hovy and Yang, 2021;
Soni et al., 2022). More specifically, psychological
studies have suggested mental health attributes are
highly multimodal as they are influenced by sub-
tle nuances in voice and content (Sartori and Orrù,
2023; Chen et al., 2024).

Our main contributions include: (1) The de-
velopment of WhiSPA (Whisper with Semantic
and Psychological Alignment), with a novel align-
ment objective, (2) Evaluation of the hypothe-
sis that aligning text and audio latent spaces can
significantly enhance audio-based representations
for a deeper semantic and psychological under-
standing of human communication, (3) Demon-
stration of significant accuracy improvements in
self-supervised tasks and downstream psycholog-
ical tasks over systematically tested variants of
WhiSPA. We find that: (a) aligning with text-based
semantic and psychological representations dras-
tically improves audio representations, including
SotA person-level psychological assessments; (b)
a Noise Contrastive Estimation loss yielded a more
optimal convergence in aligning Whisper’s latent
space with semantic and psychological dimensions.
and (c) for downstream psychological tasks, there
was almost no benefit in utilizing SBERT represen-
tations on top of WhiSPA’s, suggesting the same
information from a text LM can be captured with
the LM of the audio model and thus it is not nec-
essary to pipeline another text LM after the audio
model.

2 Background

This work builds on top of Whisper (Radford et al.,
2022), OpenAI’s SotA automatic speech recogni-
tion (ASR) foundation model. We chose Whis-
per over other alternatives such as HuBERT and
Wav2Vec2-BERT, since previous works (Kyung
et al., 2024; Yang et al., 2023) have shown that
Whisper has a stronger language encoding module
at capturing speaker attributes due to its pretraining
objective of transcription/translation.

Recent advances in foundational speech tech-
nologies, like Whisper and HuBERT, have vastly
improved the performances on speech recognition

tasks (Radford et al., 2022; Hsu et al., 2021). How-
ever, they have limited ability to capture deeper se-
mantics and speaker attributes compared to a text-
based language model (Chen et al., 2024; Dong
et al., 2022). Prior works that have addressed this
have targeted a very narrow scope of psycholog-
ical attributes (Busso et al., 2008). These gaps
underscore the need for methodologies that bridge
speech encoders’ acoustic robustness with the psy-
chological depth of text-based language models—a
challenge we address by embedding fundamental
psychological dimensions present in one’s speech.

Multi-level fusion architectures leveraging both
acoustic and lexical features have shown to im-
prove performance in emotion recognition, speaker
identification, and other downstream tasks. For
instance, (Zhao et al., 2022) demonstrates that
coattention-based early fusion and late fusion using
Wav2Vec2.0 (Baevski et al., 2020; Schneider et al.,
2019) and BERT (Devlin et al., 2019) outperform
SotA emotion recognition benchmarks. Other re-
cent works inject acoustic nuances into language
models using textual descriptions of speech charac-
teristics (Wu et al., 2024) or common-sense reason-
ing through historical utterances from the speaker
(Fu, 2024). However, this approach does not fully
leverage the cross-modal dependencies between
text and audio, as it remains unimodal, relying
solely on textual inputs rather than raw acoustic
representations.

Prior works in cross-modal alignment provide
foundational insights for this integration. Compo-
sitional Contrastive Learning (Chen et al., 2021)
distilled audio-visual knowledge into video repre-
sentations by aligning teacher-student embeddings
across modalities, embedding rich semantics from
teacher-audio and image models into the student-
video model. In another work, Dong et al. (2022)
improved the accuracy of intent classification of
spoken language by employing a contrastive loss
using both speech and language features. These
works highlight that the cross-modal alignment ob-
jective embeds information from different modali-
ties into shared spaces to capture their relationships,
while contrastive learning aids in grouping related
inputs across different modalities (e.g., audio and
text segments) while separating unrelated pairs (Ye
et al., 2022). Efforts to align text and audio include
SpeechBERT (Chuang et al., 2020), which adapted
BERT’s framework (Devlin et al., 2019) to paired
speech-text data, and SLAM (Speech-Language
Aligned Models) (Bapna et al., 2022), which op-
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timized joint embedding spaces to improve down-
stream tasks like speech recognition and audio-text
retrieval. To the best of our knowledge, this is
the first work to perform cross-modal learning to
endow the foundational speech model with richer
semantic and psychological representations.

3 Data & Tasks

Audio Datasets. We utilize two psychological,
mental health-focused datasets for training and
evaluation: WTC-Segments (WTC) (Kjell et al.,
2024) and HiTOP-Segments (HiTOP) (Kotov
et al., 2022). WTC recordings were completed by
patients in a clinic for World Trade Center (9/11)
responders who came for a health monitoring visit.
HiTOP interviews were completed by outpatients
with psychiatric diagnoses who were recruited by
the study team to complete a research interview.
Both datasets consist of paired audio-text data, en-
suring alignment between spoken content and its
corresponding textual transcription.

From its source, WTC was curated from ∼6
minute interview recordings, on average, of pa-
tients responding to both personal and general ques-
tions in a structured manner (Kjell et al., 2024).
Contrarily, HiTOP followed a semi-structured for-
mat, where patients described experiences on set
topics while also organically conversing with the

Dataset WTC HiTOP

Total Segment Duration (hr) ∼252 ∼474
Mean Segment Duration (s) 5.86 2.99
Total Audio Segments 154,586 571,420
Total Participants 1,396 524

Table 1: Audio dataset metadata (after preprocessing
and filtering for participant-only speech).

interviewer. Once filtered for audio segments
solely spoken by patients, interviews generally
ranged from 45 to 90 minutes, yielding a vo-
luminous and broadened set of audio segments
(Kotov et al., 2022). The recordings were di-
arized using NVIDIA NeMo and transcribed with
whisper-large-v2.

Psychological Assessments. For each dataset,
psychological measures were collected for each
user. For WTC, each subject completed the self-
reported PTSD CheckList (PCL), yielding scores
for four specific subscales: Re-experiencing (REX),
Avoidance (AVO), Negative Alterations in Mood
(NAM), Hyperarousal (HYP). For HiTOP, trained
interviewers provided ratings for the following six
psychopathology scales: Internalizing (INT), Dis-
inhibition (DIS), Antagonism (ANT), Somatoform
(SOM), Thought-Disorder (THD), and Detachment
(DET) (Kotov et al., 2022, 2024).

Figure 2: Diagram of WhiSA and WhiSPA training procedure involving a student-teacher model paradigm. Whisper
(left) is semantically aligned to the ground truth embeddings encoded by SBERT (right). When PsychEmb features
are included in the alignment function, the WhiSPA framework semantically and psychologically aligns the
corresponding embeddings with contrastive loss criteria.
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To evaluate the encoding ability of WhiSPA
for any given audio segment, we manually anno-
tate a small subset from both datasets for valence
and arousal dimensions expressed in their speech.
Three random audio segments containing more
than 5 uttered words from each user were sam-
pled from each dataset and were annotated by two
individuals with a background in psychology using
the affective circumplex scale (Figure 8). This re-
sulted in 300 audio segments, equally split between
the two datasets.

Self-Supervised PsychEmb. For each audio/text
pair in our datasets, we extract theoretically de-
rived psychological features using pre-trained lex-
ica (V Ganesan et al., 2022), which we refer to
as PsychEmb. PsychEmb broadly covers three do-
mains of psychological constructs measured at dif-
ferent temporal granularity: (a) states, which re-
flect the emotional condition of the person at a
point in time; (b) dispositions, which are slightly
more stable than states and reflect the tendencies
of humans to behave in certain ways and finally
(c) the traits, which are long term stable charac-
teristics (Park et al., 2014). The ten dimensions
of PsychEmb are Valence (VAL), Arousal (ARO),
Openness (OPE), Consciousness (CON), Extraver-
sion (EXT), Agreeableness (AGR), Neuroticism
(NEU), Anger (ANG), Anxiety (ANX), and De-
pression (DEP), each represented with scalar val-
ues. After extracting self-supervised PsychEmb
dimensions for each segment across both datasets,
we perform a 80:10:10 (train/val/test) split.

4 Methodology

Aligning audio representations directly with a text-
based language model allows us to infuse the audio
model’s latent space with the rich semantic and af-
fective details typically provided by text represen-
tations, thereby eliminating the need for a separate
text LM. While this approach does not explicitly
leverage the unique acoustic features of speech, it
prioritizes efficiency by avoiding redundant pro-
cessing and consistently delivers a semantically en-
riched representation—an advantage that is particu-
larly critical for psychological and social scientific
applications (Lukac, 2024; Chen et al., 2024).

Model Architecture. We begin with the Whis-
per2 encoder-decoder backbone (Radford et al.,
2022), which does not run autoregressively. During

2Whisper-384 version: whisper-tiny

training, audio segments are previously transcribed
with whisper-large-v2, making it entirely self-
supervised. Likewise, SBERT and PsychEmb rep-
resentations were encoded using these transcrip-
tions. As seen in the Whisper (Student) portion
of Figure 2, we apply a mean pooling layer to
the last hidden state of Whisper’s decoder yield-
ing a singular representation for the input audio.
This representation is then pooled using a learn-
able dense layer, and the output serves as our em-
bedding during alignment. This aggregated repre-
sentation is aligned to the pooled representations
from pre-trained SBERT for semantic alignment
and the PsychEmb’s dimensions for psychologi-
cal alignment. Throughout this paper, we denote
the pre-trained Whisper model as Whisper-384,
where the numeric suffix refers to the embedding
dimensionality.

4.1 Alignment Objective
While fusion architectures focus on merging
acoustic-textual features throughout layers, we
contrast this paradigm by directly aligning cross-
modal latent spaces for deeper semantic and psy-
chological representations from audio, bypassing
the need for task-specific fusion architectures. Our
alignment objective aims to improve the semantic
and psychological information encoded in Whisper
(student) with the help of the representations from
a strong text encoding teacher model like SBERT3

and PsychEmb. In this work, we explore two suit-
able candidate objective functions to align speech
representations with text, which are described be-
low in detail.

4.1.1 Cosine Similarity Loss (CS)
The success of the cosine similarity-based approach
in building geometrically robust representations in
SBERT motivated its use as an alignment objective
in this work. We apply cosine similarity loss to
the pooled audio embeddings and pooled SBERT
embeddings, given by the following equation:

LCS =
∑

i∈I
LCS
i (1)

LCS
i = 1− sim(Ai,Ti)

sim(Ai,Ti) =
Ai ·Ti

||Ai|| ||Ti||
where i ∈ I ≡ {1...N} refers to the index of

audio/text pair in a batch of N samples. Ai refers
3SBERT-384 version: all-MiniLM-L12-v2
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to the source audio embedding, Ti refers to its cor-
responding target text embedding, and sim() com-
putes the cosine similarity between audio and text
embeddings which produces a scalar value between
[−1, 1]. This loss can also be interpreted as the co-
sine diversity of the two embeddings. To align the
embedding spaces, we aim to maximize the cosine
similarity between corresponding embedding pairs
(Reimers and Gurevych, 2019; Sanh et al., 2020),
and hence decrease LCS .

4.1.2 Noise Contrastive Estimation Loss
(NCE)

The Noise Contrastive Loss (Equation 2) is opti-
mized to increase the cosine similarity between a
pair of audio embedding and its corresponding text
embedding while simultaneously increasing the dif-
ferentiation between the audio embedding and ran-
domly sampled text embeddings in that batch (Ye
et al., 2022).

LNCE =
∑

i∈I
LNCE
i (2)

LNCE
i = − log

exp(sim(Ai,Ti)/τ)∑
b∈B(i) exp(sim(Ai,Tb)/τ)

where LNCE
i refers to contrastive loss criteria

in which pairwise cosine similarities are calculated
for each audio embedding with all text embeddings
in that batch. Hence, there is only one positive
text embedding that pairs with an audio embed-
ding, while the remaining text embeddings from the
batch serve as contrastive samples. Let B(i) ∈ I,
where B(i) represents all other SBERT text em-
beddings in the batch such that Tb ̸= Ti (Ye et al.,
2022; Chen et al., 2020; Khosla et al., 2021). The
variable Tb denotes the index of an arbitrary, nega-
tive SBERT text embedding sample and τ , temper-
ature, represents a tunable scalar parameter which
is set to 0.1.

4.2 Whisper Semantically Aligned
(WhiSA-384)

WhiSA leverages a student-teacher model
paradigm (Hinton et al., 2015; Sanh et al., 2020)
to align Whisper’s audio-based embeddings with
SBERT’s text-based embeddings, which serve as
the teacher model. SBERT encodes corresponding
text sentences into semantically rich embedding
vectors, which serve as T in the above equations
during training. Whisper’s embeddings (A in
the above equations), derived from its decoder’s

last hidden state, are aligned to these SBERT
embeddings using the loss functions described
above. This process is aimed at WhiSA to learn
robust semantic representations directly from
audio inputs by minimizing the cosine distance
between Whisper and SBERT embeddings as
shown in Figure 2.

4.3 Adding Psychological Alignment
(WhiSPA)

WhiSPA extends the WhiSA framework by aug-
menting PsychEmb dimensions into Whisper’s.
While maintaining the semantic alignment objec-
tive, WhiSPA injects the PsychEmb dimensions
into the SBERT embeddings under two settings: (1)
with replacement: We adopted a naive strategy of
replacing the first ten dimensions of SBERT’s em-
bedding with the PsychEmb dimensions to main-
tain the same number of latent dimensions be-
tween both models. We use WhiSPA-384r to
refer to this. (2) with projection: We concate-
nate the PsychEmb dimensions to the text embed-
ding from SBERT. Consequently, this requires a
384× 10 learnable projection matrix, P , to trans-
form Whisper embeddings of dimensionality 384
to 394, which is then passed through a TanH acti-
vation. This model goes by the name WhiSPA-394.
To address the numerical instability issues from
modeling the PsychEmb dimensions in its abso-
lute range, we standardize and scale them to match
SBERT’s distribution of embedding values. Refer
to Appendix subsection A.2 for more information
on training.

5 Results & Discussion

We consider three popular, robust speech encoders
as baselines: Wav2Vec2-BERT4 (Communication
et al., 2023; Chung et al., 2021), HuBERT5 (Hsu
et al., 2021), and Whisper (Radford et al., 2022),
which are referred to as W2V2B, HuBERT, and
Whisper-384, respectively. We measured the effec-
tiveness of these embeddings by computing Pear-
son correlation coefficient (r) and mean squared
error (mse) over a 10-fold cross-validated ridge
regression model for each task. For each model
variant, we encode audio segments for each partici-
pant and aggregate them with a statistical mean to
represent person-level embeddings for the tasks in
Table 2 and Table 3.

4W2V2B version: wav2vec2-bert-CV16-en
5HuBERT version: hubert-large-ls960-ft
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Dataset Model
Traits States Dispositions

OPE CON EXT AGR NEU VAL ARO ANG ANX DEP

r(↑) mse(↓) r mse r mse r mse r mse r mse r mse r mse r mse r mse

SBERT-384 .73 .11 .83 .07 .68 .11 .75 .06 .77 .09 .69 .001 .81 .000 .59 .03 .60 .01 .61 .04

HiTOP

W2V2B .63 .14 .69 .12 .75 .09 .60 .09 .72 .10 .65 .001 .73 .000 .45 .04 .51 .02 .64 .03
HuBERT .67 .13 .71 .11 .77 .08 .57 .10 .70 .11 .66 .001 .73 .000 .48 .04 .48 .02 .58 .04
Whisper-384 .74 .11 .80 .08 .69 .10 .76 .06 .78 .08 .71 .001 .82 .000 .53 .03 .61 .01 .65 .03

WhiSA-384 .71∗ .11 .81∗ .08 .70 .10 .77∗ .06 .78∗ .08 .73∗ .001 .83∗ .000 .59† .03 .61 .01 .61 .04
WhiSPA-384r .74∗ .11 .83† .07 .70 .10 .79† .05 .79† .07 .78† .000 .85† .000 .59† .03 .61† .01 .66∗ .03
WhiSPA-394 .72∗ .11 .83† .07 .72 .09 .79† .05 .82† .07 .76† .000 .84∗ .000 .62† .03 .65† .01 .63∗ .03

SBERT-384 .65 .35 .78 .29 .73 .33 .73 .25 .73 .34 .62 .003 .86 .002 .62 .14 .56 .11 .59 .11

WTC

W2V2B .33 .54 .51 .55 .34 .64 .37 .46 .34 .64 .32 .004 .51 .005 .31 .21 .14 .16 .22 .15
HuBERT .35 .54 .57 .50 .39 .61 .44 .43 .42 .60 .38 .003 .53 .005 .36 .20 .15 .16 .22 .16
Whisper-384 .57 .43 .70 .37 .68 .38 .64 32 .67 .40 .56 .003 .82 .002 .54 .16 .46 .13 .45 .13

WhiSA-384 .70† .31 .82† .24 .75† .32 .76† .23 .77† .30 .67† .002 .85† .002 .66† .13 .61† .10 .61† .10
WhiSPA-384r .71† .29 .82† .24 .74† .30 .76† .20 .76† .27 .68† .002 .85† .002 .67† .01 .61† .09 .61† .09
WhiSPA-394 .72† .28 .83† .22 .76† .29 .79† .19 .79† .26 .70† .002 .86† .002 .69† .11 .64† .09 .66† .09

Table 2: Self-Supervised Prediction Accuracies for Psychological Traits, States, and Dispositions. Averaged
person-level embeddings were fit to a ridge regression with 10-fold cross validation. Bold indicates the best metric
for the psychological scale in the respective dataset. ↑ implies higher is better. ↓ implies lower is better. ∗ indicates
statistically significant (p < .05) predictions compared to W2V2B. † indicates statistically significant (p < .05)
predictions compared to Whisper-384.

Alignment improved the models’ ability to
capture psychological dimensions from lan-
guage. We evaluated the speech-based models’
ability to capture the psychological dimensions
of language by comparing our models’ predic-
tions to PsychEmb derived values at the segment
level. As summarized in Table 2, we found that
both semantic (WhiSA) and psychological align-
ments (WhiSPA) significantly outperformed tradi-
tional speech-based models (W2V2B and Whisper)
across all ten dimensions on both metrics. Com-
pared to Whisper, which was evidently a stronger
baseline than W2V2B (Avg∆ = 36 Pearson points
for WTC & 21 points for HiTOP), Our semantic
alignment method showed a marked improvement
in performance, with an average of 11 in Pearson
points for WTC and 2 in HiTOP. A paired t-test
was used to confirm that all improvements over
W2V2B and all improvements over Whisper, ex-
cept for 4 outcomes in HiTOP, were statistically
significant (p < .05). This result highlighted our
alignment methods improved the speech model’s
ability to capture psychological dimensions in lan-
guage (PsychEmb).

Interestingly, deriving psychological estimates
from semantic dimensions (WhiSPA-394) was con-
sistently better than the replacement (WhiSPA-
384r) of 10 semantic dimensions with PsychEmb
dimension. This shows the importance of curat-
ing the semantic dimensions before replacing them
with different embeddings.

We also observed that the alignment increased

(a) Before Alignment (b) After Alignment

Figure 3: Bivariate KDE contour plot of PCA dimen-
sionally reduced speech/text embeddings. Speech repre-
sentations in blue. Text representations in red.

the overlap between the latent space of the speech
and text embeddings, as shown in Figure 3. Before
alignment (Figure 3a), speech and text embeddings
show distinct contours with very little overlap in
their dense regions, highlighting a clear modality
gap and a lack of shared contextual meaning. After
alignment (Figure 3b), the contours exhibit greater
overlap, indicating a unified embedding space with
reduced variance. Figure 3 demonstrates that the
alignment process effectively bridges the semantic
gap between the two modalities.

Semantic-Psychological alignment is SotA for
speech-based psychological assessments. Ta-
ble 3 shows that the improvements brought by
our aligned models over traditional models were
preserved even when evaluated on a spectrum of
downstream psychological assessment tasks. In
particular, the alignment showed a stark increase
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Model
HiTOP WTC

INT DIS ANT SOM THD DET PCL REX AVO NAM HYP

r(↑) mse(↓) r mse r mse r mse r mse r mse r mse r mse r mse r mse r mse

W2V2B .50 .17 .46 .21 .35 .11 -.00 .24 .27 .11 .32 .20 .14 133.19 .14 12.08 .07 3.99 .13 10.98 .10 17.17
HuBERT .50 .17 .53 .19 .36 .11 .07 .23 .28 .11 .31 .20 .21 129.86 .22 11.72 .07 3.99 .19 10.80 .15 16.99
Whisper-384 .39 .19 .33 .24 .33 .11 .07 .23 .28 .11 .29 .20 .23 128.85 .21 11.77 .06 4.00 .19 10.87 .23 16.41

WhiSA-384 .55† .16 .53† .19 .43† .10 .22† .23 .37† .10 .33† .18 .29† 119.68 .27† 11.26 .19† 3.90 .26† 10.12 .28† 15.56
WhiSPA-384r .56† .15 .53† .19 .42† .10 .23∗ .22 .39† .10 .39† .19 .34† 119.24 .30† 11.23 .17 3.88 .31† 10.08 .32† 15.54
WhiSPA-394 .57† .15 .54† .19 .43† .10 .22† .22 .37† .10 .38† .19 .35† 118.91 .30† 11.18 .20 3.85 .32† 10.09 .32† 15.48

Table 3: Self-Reported/Annotated Prediction Accuracies for Psychological Scales. Averaged person-level
embeddings were fit to a ridge regression with 10-fold cross validation. Bold indicates the best metric for the
psychological scale in the respective dataset. ↑ implies higher is better. ↓ implies lower is better. ∗ indicates
statistically significant (p < .05) predictions compared to W2V2B. † indicates statistically significant (p < .05)
predictions compared to Whisper-384.

in capturing deeper psychological conditions such
as INT (internalizing) (≥ 16 Pearson points) and
DIS (disinhibition) (≥ 20 Pearson points) from
very long durations of speech data. Consistent
with behaviours exhibited with PsychEmb dimen-
sions, in Table 2, semantic-psychological align-
ment from semantically-derived psychological di-
mensions (WhiSPA-394) performed the best, fol-
lowed by semantic-psychological alignment from
replacement (WhiSPA-384r) and finally semantic-
only alignment (WhiSA-384). For these tasks,
we averaged the segment-level representations of
the interview audio file to produce a person-level
embedding. These embeddings were used to per-
form 10-fold cross-validation with a ridge regres-
sion model, and its performance was measured
using Pearson correlation coefficient (r) and mean
squared error (mse).

The success of WhiSPA-394 can be attributed to
its integration of psychological feature alignment,
which complements semantic alignment by explic-
itly encoding affective dimensions such as valence
and arousal. The improvements in outcomes like
INT and DIS further support this interpretation
since these constructs often rely on subtle vocal

cues, such as pause distribution, pitch variability,
and vocal tone as established by prior works (Ko-
tov et al., 2024). By injecting dimensions with
psychological relevance into the alignment process,
the model bridges the gap between the prosodic
information in speech and the textual semantics
used to train baseline models like WhiSA. This
dual alignment likely enhances the model’s ability
to capture both the what (semantic content) and the
how (affective delivery) of speech, enabling more
accurate predictions of psychological scales.

Contrastive loss criteria led to richer represen-
tations of audio. Investigation of the choice of
alignment objective towards performance (Table 4)
revealed that Noise Contrastive Estimation (NCE)
consistently produced a better-aligned model than
cosine similarity (CS). This is likely because NCE
optimizes for discriminative learning, encourag-
ing more separation between positive and negative
samples in the embedding space (Ye et al., 2022),
enhancing the model’s ability to encode nuanced
semantic and psychological cues. When compar-
ing WhiSPA-394 and WhiSPA-384, we notice the
recurring trend with NCE granting a greater op-
tima during alignment than CS as exemplified in

Model Loss Self-Supervision Tasks Downstream Tasks

Pearson r (↑) MSE (↓) Pearson r (↑) MSE (↓)

WhiSA-384 CS .72 .11 .34 15.26
NCE .72 .11 .36 14.63

WhiSPA-384r CS .72 .12 .34 15.08
(with replacement) NCE .73 .11 .36 14.68

WhiSPA-394 CS .72 .11 .34 15.21
(with projection) NCE .74 .10 .37 14.59

Table 4: Comparison of Loss Functions on Self-Supervised and Downstream Tasks. The reported Pearson r’s
and MSE’s are averaged across all outcomes. Bold indicates the best metric when comparing loss functions across
different models. ↑ implies higher is better. ↓ implies lower is better.

22535



Model
HiTOP WTC

INT DIS ANT SOM THD DET PCL REX AVO NAM HYP

r(↑) mse(↓) r mse r mse r mse r mse r mse r mse r mse r mse r mse r mse

Transcribe → Text Model (Upperbound)
SBERT-384 .54* .16 .55* .19 .43* .10 .16* .23 .40* .10 .40* .18 .36* 118.21 .32 11.08 .24* 3.80 .32* 10.08 .33* 15.43
SBERT-1024 .65* .13 .59* .17 .51* .09 .20 .23 .43* .09 .44* .18 .37* 118.67 .32* 10.99 .27* 3.68 .31* 10.26 .31* 15.66

Audio Model
Whisper-384 .39 .19 .33 .24 .33 .11 .07 .23 .28 .11 .29 .20 .23 128.85 .21 11.77 .06 4.00 .19 10.87 .23 16.41
WhiSPA-394 .57* .15 .54* .19 .43* .10 .22* .22 .37* .10 .38* .19 .35* 118.91 .30* 11.18 .20 3.85 .32* 10.09 .32* 15.48

Audio Model (Scaled Up)
Whisper-1024 .57 .15 .52 .19 .44 .10 .23 .22 .34 .10 .37 .19 .28 126.03 .23 11.81 .11 3.96 .27 10.54 .26 16.29
WhiSPA-1034 .67* .13 .62* .16 .53* .10 .21 .22 .40* .10 .44* .18 .41* 114.44 .34* 10.89 .27* 3.70 .37* 9.84 .34* 15.42

Table 5: Performance of WhiSPA Distilled Across Larger Dimensionalities. Averaged person-level embeddings
were fit to a ridge regression with 10-fold cross validation. Bold indicates the best metric for the psychological scale
in the respective dataset. ↑ implies higher is better. ↓ implies lower is better. ∗ indicates statistically significant
(p < .05) predictions compared to Whisper-(384/1024).

Table 4. However, WhiSPA-384 holds its ground
in HiTOP, achieving comparable correlations. This
suggests that WhiSPA-394’s architecture may gen-
eralize well to diverse datasets but thrives in highly
semantic and affective audio contexts like WTC.

WhiSPA effectively scales to larger dimension-
alities. To investigate the effects of utilizing a
larger teacher LM, we conducted experiments with
all-roberta-large-v1 (∼330M) paired with
whisper-medium (∼796M) as the audio backbone,
each with 1024 embedding dimensions. Table 5
shows that the distillation process remains effective
for aligning larger student-teacher model configura-
tions, further validating its scalability and general-
izability for the downstream task. When comparing
Whisper-384 to WhiSPA-394, we observe an aver-
age error reduction of 83.38%, while the 1024-
sized models show an even greater reduction of
86.61%. A larger audio backbone also improves
the consistency with which the student model out-
performs its language-based teacher, likely due to
enhanced context retention afforded by a larger
parameter space. For example, WhiSPA-394 sur-
passes its teacher in only 2 of 11 outcomes, whereas
WhiSPA-1034 does so in 7 of 11 psychological
assessments. These findings underscore the effec-
tiveness of our distillation strategy, particularly for
larger models offering greater embedding dimen-
sionality.

WhiSPA captures semantics without the need
for appending SBERT representations. The
last row in Table 6 underscores the marginal in-
crease in correlations after appending SBERT em-
beddings to WhiSPA. WhiSPA, trained through
a student-teacher alignment paradigm, appears
to reach a semantic and psychological optimum
during convergence. This is evident in its sub-

Model PCL HiTOP VAL

INT DIS THD (segment)

SBERT-384 .36 .54 .55 .40 .47

Whisper-384 .23 .39 .33 .28 .38

WhiSA-384 .29 .55 .53 .37 .50*
WhiSPA-384r .34 .56* .53 .39 .53*
WhiSPA-394 .35 .57* .54 .37 .51*

WhiSPA-394 .36 .58* .56 .39 .52*& SBERT-384

Table 6: Comparison of Audio and Text Models for
Predicting Psychological Scales. Acoustic valence
(VAL) was regressed on 300 human-annotated audio
segments. SBERT-384 utilizes a cascaded pipeline
(Whisper transcript → SBERT encoding). Higher is
Better. * indicates statistically significant (p < .05)
predictions compared to SBERT-384.

stantial performance gains over Whisper, which
lacks the semantic and psychological depth pro-
vided by language models. However, the poten-
tial of cross-modal alignment may be constrained
by the representational efficacy of the teacher
model(s). On human-annotated audio segments,
all of the WhiSPA variants achieve substantial im-
provements in capturing acoustic valence. In com-
parison with Whisper-384, WhiSPA-384r exhibits
a gain of +15 Pearson points in VAL (acoustic
valence) which exemplifies the reduction in the
semantic/psychological gap between audio mod-
els and text-based models. Notably in Figure 4,
WhiSPA-1034 demonstrates clear improvements in
the majority of outcomes, with an average gain of
+2 Pearson points, when compared to its teacher,
SBERT-1024.

Ultimately, these findings highlight two impor-
tant observations: (1) WhiSPA effectively cap-
tures nearly all the information encoded by its text-
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Figure 4: WhiSPA Bridges the Semantic/Psychological Representation Gap. WhiSPA consistently outperforms
every baseline audio model and, in most cases, matches or exceeds the performance of the text-based language
model teacher.

based teacher model, SBERT. (2) The marginal
returns from appending text-based representations
indicate that WhiSPA successfully learns to encode
the critical semantic and psychological cues pro-
vided by its teachers, reflecting the success of the
distillation.

WhiSPA’s representations are interpretable
through language semantically associated with
psychological dimensions. Table 7a shows that
n-grams known to be indicative of PTSD severity
from prior studies (Kjell et al., 2024) —- including
first-person pronouns, experienced symptoms, psy-
chological distress, and negative affect – yield sig-
nificantly higher correlations with WhiSPA’s pre-
dictions compared to Whisper. In contrast, Table 7b
reveals that language discussing relationships and
positive affect is more negatively associated with
WhiSPA’s scores. These findings indicate that the
contrastive loss training effectively aligns the la-
tent space with rich semantic and psychological
representations, capturing psychologically relevant
linguistic markers more robustly. The highly se-
mantic latent spaces of text-based LMs are reflected
in WhiSPA’s representations, especially for psycho-
logical nuances in spoken language. More quan-
titative analysis of our model can be found in Ap-
pendix subsection A.4

6 Conclusion

We claim that WhiSPA is a significant step toward
more accurate representations of human commu-
nication by addressing the modal gap between
text and audio, as language models often out-
perform audio models in predicting psychologi-
cal attributes. By aligning WhiSPA’s representa-

tions with SBERT’s representations enriched with
PsychEmb, we found consistent improvement for
ten self-supervised tasks and significantly greater
accuracies over 11 downstream psychological tasks.
We observed only marginal improvements when ap-
pending SBERT representations to WhiSPA’s, im-
plying that the distillation process effectively cap-
tures the semantic features provided by the teacher
language model. Our findings exemplify WhiSPA’s
effectiveness in extracting semantic and psycholog-
ical features from speech, enhancing SotA audio
representations for psychological and mental health
assessments.

7 Limitations

While WhiSPA demonstrates significant advance-
ments in providing semantically enriched audio
embeddings, its current training paradigm predom-
inantly aligns with psychological features derived
from text, potentially limiting its capacity to cap-
ture critical acoustic information. This lexical bias,
while beneficial for aligning with language-based
models, raises an important question: to what ex-
tent can WhiSPA’s embeddings be further refined
to incorporate affective context for psychological
prediction? Given that vocal prosody and acoustic
features convey essential emotional and psycho-
logical cues beyond textual content (Low et al.,
2020), incorporating these dimensions is crucial
for a more comprehensive representation.

We acknowledge that this strong alignment with
text-based language models may introduce an im-
balance, diminishing the richness of acoustic cues
that are particularly valuable for affective and psy-
chological assessments. Despite WhiSPA’s demon-
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strated success-—matching its language model
teacher in psychological prediction and surpass-
ing state-of-the-art audio models—-there remains
an opportunity to enhance its representational ca-
pacity by preserving acoustic features. To address
this, future work will explore a multi-weighted
dual loss objective, ensuring that WhiSPA retains
a broader spectrum of information beyond textual
representations. We suspect this refinement would
not only improve its efficacy in psychological mod-
eling but also enhance its versatility for general-
purpose speech tasks like automatic speech recog-
nition (ASR) and emotion recognition in conver-
sation (ERC), where both linguistic and acoustic
cues are essential.

8 Ethical Implications

The multimodal WhiSPA model holds significant
potential for improving mental healthcare assess-
ments by providing rich insights into individuals’
states of mind through speech analysis. However,
multimodal approaches increase ethical consider-
ations due to the richer and more diverse forms
of personally identifiable information (PII) they
capture compared to unimodal models. In addi-
tion to text content, the WhiSPA model processes
acoustic and prosodic features — including tone
of voice, speech patterns, and emotional expres-
sions — which can inadvertently reveal sensitive
details like gender, ethnicity, emotional state, and
health conditions. This expanded data scope raises
the risk of re-identification, making it essential to
implement stringent data security and handling, in-
cluding compliance with privacy regulations such
as GDPR and HIPAA.

Security & Privacy. Moreover, the potential for
misuse or unauthorized exploitation of such de-
tailed multimodal data necessitates robust ethical
guidelines for its storage, processing, and applica-
tion. Transparency in how these models are trained
and used is critical to building trust among clini-
cians and patients. Finally, ongoing efforts to miti-
gate algorithmic biases and ensure fairness are im-
portant, as errors in multimodal assessments could
disproportionately impact vulnerable populations
or lead to incorrect diagnoses if not carefully man-
aged.

This work was part of a study approved by
SBU’s Institutional Review Board (IRB #1157153
World Trade Center Responder Language and
Health Study) and (IRB #2022-00391: iHiTOP).

The WTC and HiTOP recordings took place in a
clinical setting at the Stony Brook WTC Health
and Wellness Program where each participant gave
consent and was fully informed about the study,
that it was voluntary to take part, and that they had
the right to withdraw at any time without giving a
reason or that it would affect their treatment. After
the interview, participants were debriefed (for more
details about the WTC data collection, see (Kjell
et al., 2024); for more details about the HiTOP
data, see (Kotov et al., 2022, 2024). The studies
and data uses were approved by the Institutional
Review Board at an undisclosed university for pri-
vacy reasons.

Software. Adhering to the ideals of open and
reproducible science, we will make the WhiSPA
software code base, along with the trained models
and secure dimensional representations of the data,
openly available. These representations strictly
comply with established security protocols, ensur-
ing that no individual can be identified nor any
anonymity safeguard compromised. Nevertheless,
direct access to the underlying data remains re-
stricted in accordance with privacy and security
measures.

Additionally, AI-based tools were employed
throughout the project to assist in code develop-
ment and report formulation, including the use of
ChatGPT and other similar consumer generative
AI. Such integration aligns with established best
practices and guidelines, ensuring that the techni-
cal accuracy, integrity, and scientific rigour of the
work remain uncompromised while benefiting from
enhanced efficiency and streamlined workflows.
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A Appendix

A.1 Data Description

A.1.1 HiTOP.
The HiTOP dataset consists of video-recorded in-
terviews conducted between World Trade Center
responder participants and clinicians. Each record-
ing is annotated with the outcomes derived from
the HiTOP structured interview, which includes a
standardized set of questions designed to assess
a comprehensive set of mental health dimensions,
including aspects of internalizing (e.g., questions
about distress and fear), dis-inhibited externalizing
(e.g., questions about substance abuse and antiso-
cial behaviors) and more. This dataset comprises
of 525 unique participants.

Outcomes in HiTOP The HiTOP outcomes were
derived from the structured clinical interview (Ro-
man and Meyer, 2024), where we used the total
score of the six dimensions including: i) internal-
izing (INT; e.g., dysphoria, lassitude), ii) disinhib-
ited externalizing (DIS; e.g., alcohol use, drug use),
iii) antagonistic externalizing (ANT; e.g., atten-
tion seeking, callousness), iv) somatoform (SOM;
e.g., conversion, somatization), v) thought disorder
(THD; e.g., psychotic and disorganized thought pat-
terns), vi) detachment (DET; e.g., intimacy avoid-
ance, suspiciousness)

A.1.2 WTC.
In the WTC dataset, participants were recorded in
a private room during their clinical visit while re-
sponding to questions displayed on a screen as part
of an automated clinical interview. These questions
prompted participants to reflect on both positive
(e.g., What are three things you currently look for-
ward to the most?) and negative aspects of their
lives across different time frames (past, present,
and future). Topics included general life experi-
ences (e.g., the best and worst experiences, chal-
lenges, and support systems) and significant events
such as COVID-19 and 9/11 (e.g., How does 9/11
affect you now?). A full list of the questions is
provided in (Kjell et al., 2024).

To enhance generalizability, the questions were
designed to be broad and used everyday language,
avoiding clinical jargon or references to specific
symptoms. Instructions on the screen advised par-
ticipants not to read the questions aloud and to aim
for at least 60 seconds of response time per ques-
tion. Throughout the development phase, the ques-

Figure 5: Standardized distributions of PsychEmb di-
mensions for each segment across both datasets. The
distribution of WTC is shown in blue. The distribution
of WTC is shown in red.

tions were refined over three iterations to improve
engagement and elicit more detailed responses.
However, for the evaluation phase, the same set
of questions was used for all participants. On av-
erage, recordings for those who met a threshold of
at least 150 words lasted 7.5 minutes (SD = 4.1;
range = 1.1 to 43.0 minutes).

The data, from its source, totalled 1437 partic-
ipants (Female = 7%, Male = 93%; Mean age =
57.9, SD = 8.0 years; 14.5%).

Outcomes in WTC The PCL score and subscales
were derived from the PTSD CheckList (PCL)
(Blanchard et al., 1996), which consists of 17 items
designed to measure the severity of PTSD symp-
toms according to the Diagnostic and Statistical
Manual of Mental Disorders, Fourth Edition (DSM-
IV) criteria. Participants rate their experiences over
the past month using a scale from 1 (not at all) to 5
(extremely). We calculated both the overall score
(PCL) and scores for the four subscales. These
subscales are Re-experiencing (REX; e.g., intru-
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sive thoughts related to trauma), Avoidance (AVO;
e.g., evading trauma-related thoughts), Emotional
Numbing (NAM; e.g., difficulty recalling aspects
of the trauma), and Hyperarousal (HYP; e.g., dis-
turbances in sleep patterns). Reliability, as mea-
sured by Cronbach’s alpha, was acceptable across
all scales (≥ .70).

A.2 Training
The research done for devising WhiSPA’s frame-
work resulted from iterations of tweaking and test-
ing architectures, loss criteria, parameters, and hy-
perparameters.

For the methodology presented in this paper,
we provide the following configurations for repro-
ducibility:
Pooling: MEAN . Learning Rate: 1 × 10−5.
Weight Decay: 1 × 10−2. Temperature (τ ): 0.1.
Batch Size: 900. Number of Epochs: 50. Number
of workers (CPU cores): 16. These configurations
result in a total average training time of ∼ 20 hours.

We discovered that the efficacy of Equation 2
highly depends on the batch size. It should be
stated that larger batch sizes allow for greater de-
grees of repulsion and attraction in the cross-modal
embedding space. While training WhiSA and
WhiSPA, we utilized a batch size of 900 and dis-
tributed them across 3 NVIDIA RTX A6000 de-
vices with 48GB of VRAM each.

Additionally, we use open-source licensed pre-
trained models from HuggingFace. Our program-
matic implementation for deep learning is done
with PyTorch. When it comes to evaluation, we
utilize Differential Language Analysis Tool Kit
(DLATK) for correlating regression results across
specified groups (i.e., user_id or segment_id).

Cosine similarity is sensitive to the relative mag-
nitudes of the vectors being compared. If the added
ten dimensions of psychological features have a
very different scale or distribution from SBERT
embeddings as visualized in Figure 6, they could
dominate or skew the cosine similarity computa-
tion. Once either loss function is applied, (1) or (2),
WhiSPA embeddings remain semantically aligned
with SBERT while also encoding meaningful affec-
tive cues for downstream tasks.

During the training of WhiSPA, we experi-
mented with identifying which dimensions of the
teacher-model, SBERT, have the lowest correla-
tions with PsychEmb dimensions to replace those
dimensions which is depicted in Figure 7. We de-
cided that this approach may lead to statistical bi-

Figure 6: Distributions of psychological features stan-
dardized and scaled to the distribution of SBERT’s mean
embedding value before augmentation for WhiSPA
alignment training.

Figure 7: Pearson r correlation heatmap of SBERT-
384’s mean embedding. This visual displays the corre-
lations of SBERT’s 384 dimensions with each of the 10
PsychEmb dimensions.

ases when training, and so we naively replaced the
first 10 dimensions. One should note that the set of
10 dimensions to replace in SBERT can be chosen
arbitrarily since our study experimented with this.

A.3 Annotations

Please note that the annotators were expert psychol-
ogists and co-authors.

The documentation accompanying the iHiTOP
interview dataset was utilized to report the coverage
of its domains, demographic information, and other
relevant details. The dataset’s focus on structured
psychological interviews and its linguistic proper-
ties were described in the paper to contextualize its
relevance to this research. This information was
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presented to ensure transparency and reproducibil-
ity. The WTC dataset assessed PTSD symptom
severity and related constructs, including anxiety
and depression, using English-language data from
WTC emergency responders in the Stony Brook
Health Program. The WTC dataset assessed PTSD
symptom severity and related constructs, including
anxiety and depression, using English-language
data from WTC emergency responders. The devel-
opment dataset included 1,437 participants, and the
prospective dataset included 346, with a mean age
of 58 years, predominantly male (93% and 91%,
respectively) and white (54% and 49%). The analy-
sis emphasized language markers of stress, anxiety,
and trauma while reflecting on participants’ ex-
periences of 9/11. Ethical safeguards, including
IRB approval, informed consent, and automated
anonymization, ensured compliance. While com-
prehensive in its linguistic and demographic scope,
the study was limited to English speakers and WTC
responders, constraining generalizability.

Figure 8: Annotator’s affective circumplex visual grid
for the task of manually annotating speech segments.

A.4 Quantitative Analysis
PsychEmb’s lower correlations in Figure 4 should
not be mistaken for poor performance. With only
10 dimensions, PsychEmb representations achieve
a staggering 24 and 22 Pearson points on INT and
DIS respectively, emphasizing its validity as the
psychological teacher. WhiSPA’s consistent im-
provement over the audio models is attributed to
the semantic and psychological dimensions that
SBERT and PsychEmb offer. Notably, WhiSPA
exemplifies drastic improvements in prediction ac-
curacy for all outcomes compared to Whisper.

While WhiSPA demonstrates substantial ad-

vancements, surpassing even its text-based LM
teacher, SBERT-1024, it remains inherently con-
strained by the representational capacity of the
teacher model. If the teacher’s capabilities are lim-
ited, these deficiencies inevitably carry over to the
student, even after distillation. This is evident in
the ARO column, where arousal —- an affective di-
mension -— is more accurately conveyed through
acoustic cues. However, WhiSPA struggles to cap-
ture and preserve the acoustic information, instead
predominantly aligning with the semantic represen-
tations provided by SBERT, thus limiting its ability
to fully represent the nuanced affective content in-
herent in speech.

Beyond demonstrating superior alignment with
established PTSD markers, Table 7 highlights
WhiSPA’s enhanced sensitivity to psychologically
meaningful language patterns. Table 7a shows
that n-grams reflecting personal experiences, self-
referential content (e.g., first-person pronouns), and
negative affective states correlate more strongly
with WhiSPA’s predictions than with those of Whis-
per. WhiSPA appears better attuned to indica-
tors of psychological distress, anxiety, and trauma
symptoms—-an advantage likely stemming from
the contrastive alignment objective with text-based
representations. The model’s capacity to detect
nuanced emotional and cognitive expressions in
spoken language is further supported by its higher
effect sizes on known PTSD-relevant n-grams, un-
derscoring that semantically oriented embeddings
can bolster the recognition of clinically significant
markers in audio data.

Meanwhile, Table 7b points to a distinctive nega-
tive association between WhiSPA’s predicted sever-
ity scores and n-grams referencing positive affect
or social relationships. This result suggests that the
same semantically focused latent space that ampli-
fies negative or distress-related terms also filters
out language tied to more adaptive or supportive ex-
periences. In practical terms, such an effect could
be advantageous for screening or early detection:
positive affect or relational talk might serve as a
buffer or resilience indicator, thereby inversely cor-
relating with predicted symptom severity. Taken to-
gether, these findings highlight the unique strength
of WhiSPAs in capturing a wide spectrum of psy-
chologically relevant linguistic markers, surpassing
the granularity offered by audio models alone.
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n-gram r (WhiSPA) r (Whisper)
me 0.261 0.211
ptsd 0.226 0.126
mental 0.200 0.076
because 0.195 0.190
therapist 0.188 0.088
anxiety 0.187 0.075
my therapist 0.175 0.089
my mental health 0.167 0.072
stress 0.165 0.055
want 0.161 0.098
through this 0.160 0.082
pain 0.158 0.171
body 0.156 0.105
this 0.155 0.113
mental health , 0.152 0.051
i had no 0.151 0.135
depression 0.148 0.101
shit 0.147 0.148
but i can’t 0.145 0.041
flashbacks 0.144 0.113

(a)

n-gram r (WhiSPA) r (Whisper)
family -0.264 -0.200
will be -0.201 -0.108
college -0.199 -0.099
we’ve -0.190 -0.155
will -0.182 -0.065
wife -0.180 -0.068
pretty -0.176 -0.161
as -0.172 -0.127
good -0.170 -0.170
hopefully -0.167 -0.155
my wife -0.165 -0.070
graduated from -0.163 -0.028
would -0.159 -0.117
able -0.154 -0.051
i would say -0.153 -0.098
able to -0.153 -0.054
kids will -0.153 -0.102
would say -0.152 -0.100
vacations -0.151 -0.152
lucky -0.150 -0.101

(b)

Table 7: (a) Top positively correlated N-grams with WhiSPA prediction for PCL scores on the WTC dataset and
the corresponding correlations with Whisper predictions. (b) Top negatively correlated N-grams with WhiSPA
prediction for PCL scores on the WTC dataset and the corresponding correlations with Whisper predictions. All
correlations are statistically significant (p<.05; Benjamini Hochberg corrected).
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