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Abstract

Training Large Language Models (LLMs) from
scratch requires immense computational re-
sources, making it prohibitively expensive.
Model scaling-up offers a promising solution
by leveraging the parameters of smaller mod-
els to create larger ones. However, existing
depth scaling-up methods rely on empirical
heuristic rules for layer duplication, which re-
sult in poorer initialization and slower conver-
gence during continual pre-training. We pro-
pose LESA, a novel learnable method for depth
scaling-up. By concatenating parameters from
each layer and applying Singular Value Decom-
position, we uncover latent patterns between
layers, suggesting that inter-layer parameters
can be learned. LESA uses a neural network
to predict the parameters inserted between ad-
jacent layers, enabling better initialization and
faster training. Experiments show that LESA
outperforms existing baselines, achieving supe-
rior performance with less than half the com-
putational cost during continual pre-training.
Extensive analyses demonstrate its effective-
ness across different model sizes and tasks.!

1 Introduction

Recent advancements in Natural Language Process-
ing (NLP) have been largely driven by Transformer-
based architectures (Vaswani et al., 2017), with
Large Language Models (LLMs) demonstrating ex-
ceptional capabilities in addressing a wide range of
complex tasks (Brown et al., 2020; Achiam et al.,
2023; Bai et al., 2023; Touvron et al., 2023a; Yang
et al., 2024a; Al@Meta, 2024; Jiang et al., 2023;
Almazrouei et al., 2023; Bi et al., 2024). As the
parameter size continues to grow, in accordance
with scaling laws (Kaplan et al., 2020), the com-
putational resources required to train LLMs from
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scratch have become increasingly prohibitive, de-
manding millions of GPU hours and significant en-
ergy consumption. This immense resource demand
largely arises from the need to randomly reinitial-
ize model parameters, preventing the transfer of
ability from existing LLMs.

To address this limitation, a common approach
is model scaling-up, which leverages the parame-
ters of smaller models to construct larger ones, ei-
ther for immediate deployment or as a better initial
checkpoint for more effective further continual pre-
training. Existing model scaling-up methods can
be divided into width scaling-up and depth scaling-
up. Width scaling-up (Chen et al., 2015, 2021a;
Wang et al., 2023; Samragh et al., 2024) primar-
ily involves expanding matrix dimensions, rather
than increasing the number of layers. > In con-
trast, depth scaling-up involves repurposing trained
Transformer blocks from a smaller model to build
a larger one with additional layers (Wu et al., 2024;
Kim et al., 2023; Gong et al., 2019; Pan et al.,
2024; Agarwal et al., 2024; Parmar et al., 2024).
This strategy is widely applicable to modern LLMs
based on the Transformer architecture, preserving
the internal structure, such as matrix sizes. It is also
compatible with existing parallel training frame-
works, better preserving the model’s knowledge,
contributing to its increasing popularity in recent
model scaling-up approaches.

However, current depth scaling-up methods rely
on heuristic rules, typically duplicating one or
more blocks before integrating them into the model.
These approaches overlook parameter change pat-
terns between layers, limiting the model’s ability
to specialize each layer effectively. As a result,
newly upscaled layers replicate the previous ones,
neglecting layer-specific specialization (Voita et al.,
2019b,a). This not only leads to suboptimal model
initialization performance but also prevents the

%A “layer” refers to a Transformer block for simplicity.
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Figure 1: Existing depth scaling-up methods can be categorized into two types: “Interpolation” and “Stack”. LLaMA
Pro and SOLAR can be seen as specific examples of these two types. Layers with the same color represent identical
parameters, and the dashed boxes indicate those obtained through duplication.

model from fully utilizing its expanded capacity.
By treating all layers equally, these methods fail to
capture the nuanced relationships between layers,
causing slower convergence during training and
yielding less effective models.

In this paper, we propose a novel approach for
depth scaling-up called LESA (LEarnable LLM
Layer ScAling-Up). We are the first to observe
that by concatenating the parameters of each Trans-
former block and applying Singular Value Decom-
position (SVD), patterns such as continuity can
be identified between layers. Based on this ob-
servation, it is hypothesized that latent patterns
exist between Transformer layers in a well-trained
LLM, suggesting that model parameters can be
learned across layers. To predict these parameters,
we propose training a neural network. Once trained,
the network can generate intermediate layers be-
tween adjacent layers, insert them into the model
for depth scaling-up, and serve as a better initializa-
tion checkpoint, enabling faster convergence dur-
ing continual pre-training. Our key contributions
are summarized as:

* We first observe, through SVD, latent patterns
such as continuity between Transformer lay-
ers, suggesting that inter-layer parameters can
potentially be learned.

* We introduce LESA, which predicts interme-
diate layer parameters from adjacent layers
for depth scaling-up. Experiments show that
LESA outperforms existing baselines, with
better model initialization and faster conver-
gence during continual pre-training.

* Extensive experiments confirm that LESA
works across various model sizes and fami-
lies, including domain-specific tasks like code-
related tasks. We also perform ablation stud-
ies to explore different method configurations.

2 Related Works

2.1 Model Scaling-up

Model scaling-up can be broadly categorized into
width and depth scaling-up. Width scaling-up in-
creases the matrix size while ensuring that the out-
put of a layer or consecutive layers remains consis-
tent with the output of the original network before
expansion. Net2Net (Chen et al., 2015) is one of
the first to transfer parameters from a smaller model
to initialize a larger one using function-preserving
transformations. bert2BERT (Chen et al., 2021a)
extends this approach to Transformer-based models.
LiGO (Wang et al., 2023) learns a linear mapping to
initialize larger models. HyperCloning (Samragh
et al., 2024) expands LLM to fit a larger model with
more hidden dimensions. However, while these
methods increase matrix size, they are less compat-
ible with parallel training frameworks, which are
better suited for depth scaling-up. Moreover, depth
scaling-up better preserves the model’s knowledge.

Current depth scaling-up methods expand the
model by duplicating and adding layers based on
heuristic rules, which can be broadly categorized
into "Interpolation" and "Stack" (Pan et al., 2024),
as shown in Figure 1. Interpolation involves adding
a copy of each layer after the original, while Stack
treats consecutive layers as a group and dupli-
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cates them together. Recent popular methods like
LLaMA Pro (Wu et al., 2024) and SOLAR (Kim
et al., 2023) can be seen as special cases of these
two types. LLaMA Pro copies only a selected few
layers, while SOLAR duplicates the first 24 and the
last 24 layers of a previous 32-layer model and com-
bines them. However, these methods are based on
heuristic rules, which hinder layer specialization,
leading to suboptimal performance and limiting the
model’s potential.

2.2 Progressive Training

Progressive training involves gradually transition-
ing from simpler, smaller models to more complex,
larger ones (Chang et al., 2017; Wen et al., 2020;
Dong et al., 2020; Wei et al., 2016; Fayek et al.,
2020). It is often combined with model scaling-up,
where the model size is progressively increased dur-
ing training. Prior to the era of LLMs, many meth-
ods (Chen et al., 2021a; Gu et al., 2020; Wang et al.,
2023; Yang et al., 2020; Yao et al., 2023) are devel-
oped to train smaller models, such as BERT (De-
vlin et al., 2018). In recent years, LLaMA Pro (Wu
et al., 2024) and Apollo (Pan et al., 2024) have
applied progressive learning and model scaling-
up strategies to train LLMs. YODA (Lu et al.,
2024) introduces a novel teacher-student progres-
sive learning framework that enhances model fine-
tuning by emulating the teacher-student educa-
tional process. Du et al. offer a comprehensive
evaluation and empirical guidelines for progressive
learning and model scaling-up.

3 Method

This section discusses the patterns observed be-
tween model layers through SVD analysis of the
model’s parameters. Based on these patterns, we
hypothesize that there are underlying patterns in the
trained model that can be learned by a neural net-
work. We then use this trained network to predict
intermediate layers that can be inserted between
adjacent layers for depth scaling-up.

3.1 SVD-Based Layer Pattern

Inspired by recent work using SVD for LLM com-
pression or merging (Wang et al., 2024c; Stoica
et al., 2024; Wang et al., 2024a), it is realized that
SVD can map the model’s parameters into one
space for analysis. Specifically, assume we have
weight matrices Wi, Wa, ..., Wy, from L layers
of an LLM, where W; € R%*92 represents a ma-
trix from each Transformer block, such as the up-
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Figure 2: The inter-layer continuity pattern exhibited by
the gate_proj matrix of Llama3-8B in the SVD space.
The numbers represent the layer indices.

projection matrix in MLP, Query matrix in self-
attention. These L matrices can be concatenated
horizontally into a single matrix, denoted as de-
noted as W € R4 *Ld2 QYD can be used to de-
compose this matrix into three components: U, X
and VT,

According to SVD, X is a diagonal matrix of
size d; X Lda, containing the singular values of
W. U is a unitary matrix that spans a set of stan-
dard orthogonal bases. If we treat X as a scaling
transformation on each orthogonal basis in U, then
U forms a new set of orthogonal bases. For the
i-th layer’s W, it can be recovered as W; = UXV;,
where V; = V;{i_l)*dz:i*ﬂ € R%*42_ This means
that the parameter WV; of each layer is a linear com-
bination of the orthogonal bases from U, with V;
representing the coefficients of this combination.
By projecting the parameters of each layer into the
space spanned by UX, we can analyze the patterns
in the coefficients V; for the i-th layer.

Since larger singular values correspond to eigen-
vectors that capture more information about the
matrix, we select the eigenvector corresponding
to the largest singular value (top-1) from each
layer’s V; for visualization. We use t-SNE (Van der
Maaten and Hinton, 2008) to reduce V; to two di-
mensions. The visualization results of the gate-
projection in the MLP of Llama3-8B (Al@Meta,
2024) are presented in Figure 2, where we observe
a clear continuity in the distribution of these V;.
This continuity pattern, derived from the top-1 sin-
gular value of the gate-projection using t-SNE, is
also present in Llama2 (Touvron et al., 2023b),
Llama3 (Al@Meta, 2024), and Qwen?2 (qwe, 2024).
This suggests that the model’s parameters may ex-
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Figure 3: Overview of the proposed LESA . We first extract the weight matrices from the MLP and self-attention
layers. Next, we apply SVD and train a neural network to predict the intermediate layers. Finally, we reconstruct

the expanded LLM.

hibit unique inter-layer patterns. More visualiza-
tion results can be found in Appendix B.
Although this continuity is currently only ob-
served in the gate projection and not in other param-
eters such as the up-projection or down-projection
in the MLP through our t-SNE visualization, this
may be due to the limitations of our analysis
method. An intuitive approach, therefore, is to use
a neural network to learn these potential patterns.

3.2 Learnable LLM Layer Scaling-Up

Inspired by the aforementioned SVD-Based Layer
Patterns, we hypothesize that there may be inter-
layer patterns in the parameters. However, these
patterns might not be easily observed using simple
visualization techniques or fitted with specific dis-
tributions, such as Gaussian mixtures. Therefore, a
direct approach is to learn these patterns through a
neural network.

We present our method in Figure 3. After obtain-
ing V; as described in Section 3.1, we train an MLP
Gyy to learn the patterns. Our training objective is
to enable the MLP to predict an intermediate layer
given any two layers that are one layer apart.

Formally, for a weight matrix W €
{ q_proj, k_proj, v_proj, }

o_proj, up_proj, down_proj, gate_proj |’
we use SVD to obtain V; following Section 3.1.
We then train an MLP Gy specific to W with the
objective of predicting V; by using the concatena-
tion of V;_; and V1 as input. We optimize Gy
using MSELoss (Mean Squared Error Loss):

Ly = MSE(Gw([Vi-1,Vit1]), Vi) (1)

whose goal is to enable Gyy to predict accurately.

In subsequent experiments, we find that directly
training with £; will result in the norm of the pre-
dicted Gy ([Vi—1, Vit1]) approaching zero, mean-
ing that the predicted Vi/ parameters are close to
zero, which leads to parameter degradation. To
address this issue, we add a norm loss:

Ly = MSE(Norm(Gw([Vi-1, Vit1])), Norm(Vi))

(@)
where the Norm represents the L2 norm, and Lo
aims to ensure that the norm of the model’s pre-
dicted V; is close to that of V;. Thus, the final loss
for training Gyy is:

L=(1-NL+ AL 3)

where A is a hyper-parameter.

Once trained, Gyy can predict the parameters
of an intermediate layer based on its surrounding
ones. Thus, for adjacent V; and V11, we use Gy
to predict the intermediate layer Vi’ to insert be-
tween them. We then reconstruct V; using the UY.
decomposition from the previous step, forming the
predicted matrix W', and insert it between the lay-
ers to expand the LLM.

4 Main Experiments

4.1 Settings
4.1.1 LESA Settings

We conduct experiments on the Llama3-8B model,
which has 32 layers. To construct the training
data for Gyy, we use consecutive triplets of lay-
ers, namely (1, 2, 3), (2, 3, 4), (3,4, 5), ..., (30,
31, 32), resulting in 30 samples. We define Gy
as a three-layer MLP with a ReLU (Agarap, 2018)
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activation function, where the hidden dimension is
256. Gyy is trained for 5 epochs on these samples
using the AdamW (Loshchilov, 2017) optimizer
with a learning rate of le-3. We set A to 5e-5 based
on the criterion of keeping £; and £y on a simi-
lar scale, which can be achieved by running one
epoch and adjusting A accordingly. To compare
with baselines (Wu et al., 2024; Kim et al., 2023),
we use LESA to scale up Llama3-8B to 48 layers
by inserting an intermediate layer between each
pair of adjacent layers in the original 15th to 31st
layers. The expanded models all have 11.5 billion
parameters.

4.1.2 Continual Training

For the models expanded using LESA and baseline
methods, we continue pre-training with Wikipedia
data from November 2024, which is released af-
ter the training of Llama3-8B and has not been
used in its original training. We use the Llama-
Factory (Zheng et al., 2024) training framework,
with a cutoff length of 4096, a warmup ratio of 0.1,
and a cosine learning rate scheduler. The optimizer
is AdamW with a learning rate of 5e-5. The batch
size per GPU is 2, with 4 gradient accumulation
steps. For LESA and LLaMA Pro, we only train
the newly expanded layers, freezing the other lay-
ers. Following the original setting, we perform full
parameter fine-tuning for SOLAR.

For the Supervised Fine-Tuning (SFT) stage, we
use Alpaca-GPT4 (Peng et al., 2023) for training,
following SOLAR. The hyper-parameters are the
same as those in the continual pre-training, except
that we perform full parameter fine-tuning with-
out freezing any layers for all models. All exper-
iments are conducted on a server with 8 Nvidia
A100 80GB GPUs.

4.2 Benchmarks

For the continual pre-training models, since they
lack instruction-following capabilities, we use the
OpenCompass framework (Contributors, 2023)
with the PPL (perplexity) * mode for evaluation, fo-
cusing on five areas: Reasoning, Language, Knowl-
edge, Examination, and Understanding, with se-
lected benchmarks for each category. Reason-
ing: CMNLI (Xu et al., 2020), HellaSwag (HeSw)
(Zellers et al., 2019), PIQA (Bisk et al., 2019).
Language: CHID (Zheng et al., 2019), Wino-
Grande (Wino) (Sakaguchi et al., 2019). Knowl-

3https ://opencompass.readthedocs.io/en/latest/
get_started/faq.html
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Figure 4: The continual pre-training loss curves of mod-
els expanded by different methods. LESA starts with
a lower initial loss, indicating a better initialization. It
stabilizes after 2k steps, reaching the same convergence
level as LLaMA Pro after 5k steps, and converges much
faster than SOLAR, achieving the same loss with less
than half the training cost.

Model Pro
56.4h(124%)

SOLAR
75.6h(166%)

LESA
45.6h

Time

Table 1: Training time of continual pre-training. When
trained on the same dataset, the baselines require 124%
and 166% of the training time compared to our method.

edge: CommonSenseQA (CSQA) (Talmor et al.,
2018), BoolQ (Clark et al., 2019). Examination:
MMLU (Hendrycks et al., 2021), CMMLU (Li
et al., 2023). Understanding: Race-High/Middle
(H/M) (Lai et al., 2017). Evaluations use Open-
Compeass official scripts in zero-shot or few-shot
settings. Scores are computed by OpenCompass,
with higher values indicating better performance.
We also evaluate the trained models’ perplexity on
500 unseen Wikipedia plain sentences.

For the models after SFT, which have gained
instruction-following capabilities, we use the gen-
eration mode of OpenCompass for evaluation. We
conduct evaluations on ARC (Clark et al., 2018),
Truthful QA (Lin et al., 2021), GSMS8K (Cobbe
et al., 2021), HellaSwag (Zellers et al., 2019), and
MMLU (Hendrycks et al., 2021).

4.3 Results

We first present the training loss curves of the three
models in Figure 4. From the figure, we observe
that our method starts with a lower initial loss com-
pared to the baselines, indicating a better initializa-
tion checkpoint. Throughout training, our model’s
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Model [PPL| Average |1 ieqw PIQa|CHIT Wino|CSOA BonQIMMLD CVMLU Racen Racen”
Pro-3k [6.06] 60.89(-3.41) | 32.99 69.14 79.21|67.33 55.79| 69.19 68.10| 45.53  49.66 [65.32 67.55

Pro-6k |5.44]62.67(-1.63) | 32.97 70.15 78.94/69.80 55.09| 69.04 66.79| 64.31 50.30 [62.66 69.36
SOLAR-3K|9.82[45.34(-18.96)| 32.97 61.11 73.23|51.49 53.68| 54.55 52.94| 3498 2897 |27.36 27.44
SOLAR-6k|8.09[47.86(-16.44)| 32.98 62.36 74.65]48.02 54.38]59.54 61.53| 43.74 28.68 [31.76 28.83

LESA-3k |5.27| 64.11(-0.19) | 32.99 71.18 79.65|72.77 57.89|69.78 70.46| 66.66 50.91 |6532 67.55

LESA-6k |5.13|  64.30 | 32.99 71.5179.92|73.30 57.54|69.21 69.94| 66.67 51.00 |65.72 69.50

Table 2: We evaluate the performance of models after expanding Llama3-8B from 32 layers to 48 layers (11.5B
parameters) using different baseline methods, followed by continual pre-training. Pro (LLaMA Pro (Wu et al.,
2024)) and SOLAR (Kim et al., 2023) are two strong baselines for model depth scaling-up. We evaluate the model
performance at two stages: after training with half the data (3k steps) and after training with the full data (6k steps).

Model Average ARC-e  ARC-¢c  TruthfulQA GSMSK  HellaSwag MMLU
Pro-SFT 24.38(77%) 28.92 23.73 21.91 21.95 25.44 24.33
SOLAR-SFT 26.47(84%) 37.10 24.25 19.34 33.45 25.16 19.52
LESA-SFT 31.57(100%) 42.86 32.54 22.28 37.14 32.09 22.49

Table 3: After continual pre-training and subsequent SFT, the model expanded with LESA still achieves better task
performance, with baselines scoring less than 85% of our model’s average score.

loss consistently remains the lowest. SOLAR even
fails to converge to a low loss level even after train-
ing on the dataset. Although LLaMA Pro’s loss
approaches ours after Sk steps, by the end, the
model expanded using our method still has the low-
est loss. Additionally, our method’s loss stabilizes
after 2k steps, while LLaMA Pro reaches a similar
convergence level only after 5k steps. This demon-
strates that models expanded using LESA achieve
the same loss convergence with less than half the
training cost.

We list the time taken to train on the full dataset
in Table 1 and find that the time taken by LESA
is significantly shorter. It is worth noting that the
training of Gyy in LESA is very fast, taking less
than 5 minutes, making its cost nearly negligible
compared to the overhead of continual pre-training.

For model performance after continual pre-
training, we present the results on various bench-
marks in Table 2. It can be inferred that the per-
formance of models expanded with LESA consis-
tently outperforms the baselines in all categories.
Specifically, LESA-6k (6k steps) achieves the high-
est performance across all tasks and PPL. Even
with only half of the data used for continual pre-
training (3k steps), the models expanded using
LESA outperform the baselines trained on the full
dataset (6k steps). We also present the results in

Model CSQA BoolQ TriviaQA NQ
Pro-3k 69.19 68.10 62.50 24.82
Pro-6k 69.04 66.79 63.68 26.73
SOLAR-3k  54.55 52.94 43.06 13.57
SOLAR-6k  59.54 61.53 47.72 16.40
LESA-3k 69.78 70.46 67.15 23.30
LESA-6k 69.21 69.94 67.05 26.76

Table 4: The scores of different models on knowledge-
related tasks after continual pre-training. LESA consis-
tently performs better overall.

Table 3 for models trained on the full dataset and
then fine-tuned with SFT, showing performance
across different tasks. The results still indicate that
the models expanded using LESA achieve the best
performance.

The above analysis proves that LESA effectively
inherits the original model’s parameters, enabling
better initialization, faster continual training, and
enhanced model performance.

4.4 Evaluation on Knowledge-Related Tasks

Previous studies, such as LLaMA Pro, highlight
that a key advantage of model expansion is the abil-
ity to inherit knowledge from the original model.
We focus on evaluating performance in knowledge-
related tasks. In addition to the main results, we
further evaluate performance on two additional
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knowledge tasks: TriviaQA (Joshi et al., 2017)
and NQ (Kwiatkowski et al., 2019). The results
in Table 4 show that LESA outperforms previous
approaches on all knowledge tasks.

5 Ablation Study

5.1 Evaluation across Different Model
Families

We also aim to explore whether LESA is effective
across different model sizes and families. Specifi-
cally, we select several current mainstream model
families Llama3, Qwen2.5, Mistral (Mistral @Al
2025) and use LESA to expand the final layers of
the models, increasing their layer count by 1.5x
of the original. We use SOLAR initialization as
the baseline. Since their method only applies to
32-layer models by concatenating the first 24 and
last 24 layers, we adapt it for models with different
layer counts. We concatenate the first and last n
layers to create a model with 1.5 times the origi-
nal layers and measure initialization performance
using PPL. The results are shown in Table 5.

Model Original +LESA +SOLAR
Llama3-8B 5.20 6.35 7.81
Llama3-70B 1.98 2.62 4.21
Qwen2.5-1.5B 9.30 10.52 11.75
Qwen2.5-7B 6.03 7.04 7.99
Qwen2.5-32B 3.78 5.67 INF
Mistral-Small-24B 4.43 5.17 6.51

Table 5: PPL of LESA and SOLAR during 1.5x layer
expansion initialization for different models, along with
the PPL of the original models.

The results show that LESA outperforms SO-
LAR in initialization performance. Unlike SOLAR,
which experiences a PPL explosion on Qwen2.5-
32B, LESA remains stable, highlighting the supe-
riority of LESA’s predicted parameters over SO-
LAR’s heuristic-based expansion.

5.2 Analysis of Gyy’s Ability

We investigate whether Gy can predict interme-
diate layers between adjacent layers accurately,
demonstrating this through loss changes.

Due to the limited number of samples available
for training Gyy on individual LLM layers, which
makes it difficult to separate a test set and increases
the risk of overfitting, we select several mod-
els: Llama3-8B, and fine-tuned versions of it, in-
cluding Llama3-8B-Lexi-Uncensored (Orenguteng,

Matrix Random Loss Training Loss  Test Loss
down_proj 5.7 0.0005 0.0004
up_proj 0.055 0.015 0.015
gate_proj 0.056 0.015 0.015
q_proj 0.153 0.016 0.016
V_proj 0.545 0.017 0.016
0_proj 0.147 0.016 0.015
k_proj 0.6 0.016 0.016

Table 6: Loss values for different matrices during train-
ing and testing. All values are multiplied by 10* for
convenience.

Benchmark Pro SOLAR LESA

10.98 2.44 25.00
21.69 13.93 28.60

HumanEval
MBPP

Table 7: The results of Llama3-8B after expansion with
different methods, pre-trained on the BigCode dataset,
on two code benchmarks. The results show that LESA
consistently performs better.

2024), Meta-Llama3-8B-Instruct, Llama-3-Smaug-
8B (Pal et al., 2024), and Llama3-8B-Chinese-
Chat (Wang et al., 2024b). Following the procedure
outlined in Section 4.1.1, we sequentially select
three consecutive layers as samples, resulting in
a total of 150 samples. We use 120 samples for
training and 30 for testing. The hyperparameters
for training are set consistent with those used in the
main experiment.

We present the loss values of Gyy on both the
training and test sets after training in Table 6. For
comparison, we also show the loss on the training
set after random initialization. The results demon-
strate that Gy significantly reduces the loss on the
training set after training, typically lowering it to
below 10% of the random initialization loss. More-
over, the loss on the test set remains at the same
level as the training set loss, indicating that Gy
effectively learns the underlying patterns of the
model parameters.

5.3 Single-Domain Pre-training

In addition to general-domain pre-training experi-
ments, we explore whether models expanded using
our method show greater potential for continual
pre-training in a single-domain setting. We con-
duct experiments in the code domain, using a sub-
set of BigCode (Kocetkov et al., 2022), one of the
largest code pre-training datasets, while keeping
other settings unchanged. Each model is trained
for 40-60 hours and then evaluated on the Hu-
manEval (Chen et al., 2021b) and MBPP (Austin
et al., 2021) benchmarks. Table 7 shows that af-
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Figure 5: The continual pre-training loss curves without
SVD, compared to the main experiment, show that with
SVD, the model’s initial loss and the final converged
loss are both slightly lower.

Model PIQA BoolQ HeSw Wino

LESA-6k  79.92 69.94 71.51 57.54
- SVD 79.54(-0.38) 68.81(-0.13) 70.44(-1.07) 57.29(-0.25)

Pro-6k 78.94 66.79 70.15 55.09

Table 8: Without SVD, performance on several tasks is
lower than with SVD, but still surpasses LLaMA Pro.

ter continual pre-training on the same code dataset,
models expanded using our method outperform pre-
vious approaches, demonstrating its effectiveness
in single-domain pre-training.

5.4 Impact of SVD

We observe inter-layer patterns of matrices in the
SVD space, as shown in Figure 2, which inspires
us to train Gyy in the SVD space for prediction. We
also explore whether Gyy can still predict effective
matrices for layer expansion without SVD.

We conduct an ablation study where we remove
the SVD decomposition step while keeping other
aspects of the method unchanged. Instead, we di-
rectly input the matrices to train Gy, which pre-
dicts the parameters to be inserted between adjacent
layers. We conduct experiments on Llama3-8B, ex-
panding it to 48 layers and performing pre-training
with the same data and hyper-parameters as in the
main experiment. The loss curves with/without
SVD are shown in Figure 5. Without SVD, the
model performs worse, with higher loss in the early
stages and an average loss of 0.03 higher than with
SVD after 3k steps. Thus, the addition of SVD
is beneficial. We evaluate the models on several
tasks, as shown in Table 8. The results show that
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Figure 6: The training curves for LESA and LESA
without freezing layers. When not freezing, the loss
fluctuates and converges more slowly.

while the model expanded without SVD performs
slightly worse, it still outperforms the LLaMA Pro
baseline. This demonstrates the effectiveness of
LESA, with SVD further enhancing performance.

5.5 Impact of Freezing Layers during
Continual Pre-training

Following LLaMA Pro, we train only the newly
expanded layers during continual pre-training. We
also explore full parameter fine-tuning without
freezing any layers. Compared to the main exper-
iment, we directly fine-tune all parameters while
keeping the training data and hyperparameters con-
sistent. The loss curves are shown in Figure 6. The
figure shows that without freezing layers, loss con-
verges much slower, with fluctuations in the curve.
This suggests that, similar to LLaMA Pro, freezing
the original parameters is essential for faster and
better loss convergence.

More experiments on hyper-parameter settings,
loss design, and the effectiveness on MoE model
can be found in Appendix A.

6 Conclusion

In this paper, we introduce LESA , a novel ap-
proach for depth scaling-up of LLMs that over-
comes the limitations of current heuristic-based
methods. Using SVD and a neural network, LESA
predicts intermediate layer parameters, resulting
in improved model initialization and faster con-
vergence during continual pre-training. Extensive
experiments show that LESA outperforms existing
baselines, delivering superior performance with
lower computational costs. Furthermore, LESA is
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effective across various model sizes, families, and
domain-specific tasks, offering a promising solu-
tion for scaling LLMs efficiently. Our discovery of
inter-layer patterns also provides new insights for
future model design and training.

Limitations

This work does not yet consider scaling the model
to sizes larger than three times the parameters.
Based on current model design practices, when
increasing the number of layers significantly, it is
typically necessary to expand the matrix size of
each layer as well, which requires width scaling-up.
We plan to explore this in future work.

Although we have conducted a preliminary ex-
ploration of LESA on MoE model, the research
is still limited by the challenges of constructing
routers for the predicted layers and the current large
size of MoE models. Further investigation into
MoE models is needed, and we consider this as
future work.
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A More Experiments

In this section, we provide additional experiments
and analyses on hyperparameter settings, loss de-
sign, and the effectiveness on the MoE model.

A.1 Impact of Layer Insertion Location

Previous studies (Yang et al., 2024b; Men et al.,
2024; Cao et al., 2024) suggest that LLMs are gen-
erally less sensitive to layers near the output end,
which can be modified. Therefore, our main ex-
periment focuses on expanding layers closer to the
output end. We also aim to explore the perfor-
mance of our method when expanding layers near
the input end. Building on the main experiment,
we change the range of the expanded layers from
the original 15th to 31st layers to the 1st to 17th
layers. We then compare the PPL on Wikipedia
for the models after initialization, without further
training.

1-17
57.32

Layer Interval | 15-31
PPL | 635

Table 9: The model’s initialization performance is better
when layers are inserted at the output than at the input
end.

The results in Table 9 show that expanding layers
near the input end results in poorer initialization
performance than expanding near the output. This
suggests that our method is more effective when
layers are inserted closer to the output, aligning
with previous findings.

A.2 Ablation on Norm Loss

We investigate whether it is possible to train Gy
without adding the norm loss Lo. Compared to the
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main experiment, we remove this loss and calcu-
late the average norm of the matrices in the newly
inserted layers predicted by Gy .

Matrix Llama3-8B +LESA +LESA+w/o L»
down_proj 80.88 80.70 13.18
up_proj 81.88 81.57 10.26
gate_proj 104.96 105.39 13.34
q_proj 69.16 69.28 8.85
k_proj 52.44 51.01 7.32
V_proj 19.88 18.98 291
0_proj 40.25 40.49 5.29

Table 10: Without the norm loss L5, the norms of the
matrices predicted by Gy, are very small, leading to
parameter degradation.

As shown in Table 10, without Lo, the predicted
matrices have very small norms, causing their val-
ues to approach zero and leading to degeneration.
However, with Lo, the norms of the predicted ma-
trices align with those of the original Llama3-8B
matrices.

A.3 Hyper-parameter Impact on Model
Initialization

In this section, we explore the impact of key hyper-
parameters during the training of Gyy. We find that
the number of epochs and learning rate affect the
initialization performance of the model obtained
through layer expansion. We also conduct exper-
iments on Llama3-8B, varying the learning rate
and epochs while keeping other hyper-parameters
consistent with the main experiment.

Learning Rate  Epoch PPL
le-3 5 6.35
le-4 5 102.42
Se-4 5 6.82
le-4 10 39182.51
Se-4 10 6.94

Table 11: Ablation study on the hyperparameters during
the training of Wg.

The results in Table 11 show that adjusting the
learning rate and epochs can sometimes cause the
expanded model’s PPL to explode during initial-
ization. This may be due to the limited number
of training samples generated from a single model,
leading to training instability. However, after tun-
ing the hyper-parameters a few times, we are able
to achieve a good initialization performance, with
PPL values typically ranging between 6 and 7.

Additionally, we find that the hidden-state size
and the number of layers in Gy have no significant

impact on the performance of the expanded model.
The loss’s A only affects the matrix norm, but has
minimal effect on the model’s performance. Ad-
justing A to match the predicted matrix norm with
that of the original model is sufficient.

A.4 Effectiveness on MoE Model

Recently, LLMs based on the Mixture-of-Experts
(MoE) architecture have become increasingly pop-
ular. In this section, we explore the effectiveness of
LESA on such models. Due to the large size of cur-
rent MoE models, such as DeepSeek-R1 with 671B
parameters (DeepSeek-Al et al., 2025), which can-
not be loaded onto our server, we conduct exper-
iments on the smaller LLaMA-MoE-3.0B (Zhu
et al., 2024), which has 32 layers.

We use LESA to expand the model to 48 layers.
However, a unique aspect of MoE models is that
each layer has an MLP router, and we have not yet
devised a method to generate routers for the newly
added layers, since the router is highly dependent
on the performance of each expert. Our current
approach is to replicate the previous layer’s router
for the newly expanded layer. We use SOLAR
as the baseline and then evaluate the PPL of the
expanded model after initialization. The results are
shown in Table 12.

Model
PPL

+LLaMA-MoE-3.0B
7.70

+LESA
1923.14

+SOLAR
76.50

Table 12: The MoE model’s initialization performance
on PPL with different scaling-up methods.

The results show that LESA experiences a sig-
nificant increase in PPL, which we attribute to the
mismatch between the router and the expanded pa-
rameters. We will continue investigating this issue
in future work. Meanwhile, SOLAR also performs
poorly, increasing PPL by 10 times. This suggests
that scaling-up methods for MoE models require
further research.

B SVD-Based Patterns

We present the t-SNE visualizations of the top 1
singular values corresponding to the vectors of V,
obtained after applying SVD decomposition to the
matrices in the MLP and self-attention of different
models, in Figure 7 and Figure 8, respectively.
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Figure 7: The gate_proj parameter matrices in the MLP of different models exhibit clear patterns of continuity
or clustering. This suggests that after applying SVD, the model’s parameters may be learnable. The parameter
distributions of other matrices appear more uniform in our visualizations.
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Figure 8: The parameter distributions of the matrices in the self-attention layers across different models appear
relatively uniform in our visualizations.
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