
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 22307–22323
July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

RIOT: Efficient Prompt Refinement with Residual Optimization Tree

Chenyi Zhou1, Zhengyan Shi2,
Yuan Yao1, Lei Liang3, Huajun Chen1, Qiang Zhang1†

1Zhejiang University, 2University College London, 3Ant Group

Abstract

Recent advancements in large language mod-
els (LLMs) have highlighted their potential
across a variety of tasks, but their perfor-
mance still heavily relies on the design of ef-
fective prompts. Existing methods for auto-
matic prompt optimization face two challenges:
lack of diversity, limiting the exploration of
valuable and innovative directions and seman-
tic drift, where optimizations for one task can
degrade performance in others. To address
these issues, we propose Residual Optimiza-
tion Tree (RIOT), a novel framework for auto-
matic prompt optimization. RIOT iteratively
refines prompts through text gradients, gener-
ating multiple semantically diverse candidates
at each step, and selects the best prompt us-
ing perplexity. Additionally, RIOT incorpo-
rates the text residual connection to mitigate
semantic drift by selectively retaining benefi-
cial content across optimization iterations. A
tree structure efficiently manages the optimiza-
tion process, ensuring scalability and flexibil-
ity. Extensive experiments across five bench-
marks — covering commonsense, mathemat-
ical, logical, temporal, and semantic reason-
ing — demonstrate that RIOT outperforms
both previous prompt optimization methods
and manual prompting. Our code is released at
https://github.com/Qing1Zhong/RiOT.

1 Introduction

Recent advances in large language models (LLMs)
have showcased their exceptional performance
across a wide range of tasks (Bommasani et al.,
2021; Li et al., 2022; Achiam et al., 2023; Team
et al., 2024; Chen et al., 2024; Zhang et al., 2024;
Jiang et al., 2024b; Xu et al., 2025; Bai et al.,
2025). However, the effectiveness of these mod-
els often relies heavily on the careful design of

† Corresponding author: qiang.zhang.cs@zju.edu.cn

prompts (Brown et al., 2020; Reynolds and Mc-
Donell, 2021; Kojima et al., 2022; Wei et al., 2022;
Amatriain, 2024; Chen, 2024; Jiang et al., 2024a),
typically involving labor-intensive trial-and-error
processes that require substantial domain expertise
and computational resources. Consequently, there
is an increasing demand for methods that can au-
tomatically optimize prompts, simplifying the task
of designing high-performance prompts.

Recently, researchers have begun to explore au-
tomatic prompt optimization by directly leveraging
LLM outputs and token logits. Zhou et al. (2023)
first introduce Automatic Prompt Engineer (APE)
concept, showing that LLMs can self-generate ef-
fective prompts given a small set of input-output
pair demonstrations. Subsequent studies (Pryzant
et al., 2023; Yang et al., 2024; Yuksekgonul et al.,
2024) expanded on this by integrating concepts
such as optimizers and text gradients, using meta-
prompts to guide LLMs in refining prompts itera-
tively based on feedback from training samples.

Despite the promising performance of existing
methods (Zhou et al., 2023; Pryzant et al., 2023;
Yang et al., 2024; Yuksekgonul et al., 2024), they
face two challenges. First, these approaches of-
ten struggle with limited diversity during the opti-
mization process. For example, Yang et al. (2024);
Yuksekgonul et al. (2024); Pryzant et al. (2023)
generate only one candidate prompt per iteration,
restricting the breadth of the search space. While
Zhou et al. (2023) generates multiple candidates
in parallel, it lacks mechanisms for iterative refine-
ment, limiting its ability to optimize the generated
prompts effectively. Second, iterative prompt op-
timization can lead to semantic drift. This occurs
when optimizing a prompt for one task inadver-
tently degrades its performance in other, previously
successful scenarios. This issue is similar to the
stability-plasticity dilemma observed in continual
learning (McCloskey and Cohen, 1989; Kirkpatrick
et al., 2017a; Ren et al., 2024), but has yet to be

22307

https://github.com/Qing1Zhong/RiOT

Figure 1: Overview of RIOT. (i) At each step, RIOT generates multiple candidate prompts (child nodes). (ii) Then,
the optimal child node is selected based on perplexity. The perplexity-informed selection process is shown in the
region within the blue block . (iii) Finally, the parent node is connected to the optimal child node based on
semantic similarity. This residual connection process is highlighted within the yellow block .

thoroughly explored in the context of prompt opti-
mization in discrete combinatorial spaces.

To address these challenges, we propose Resid-
ual Optimization Tree (RIOT), a novel framework
for automatic prompt optimization (see §4). Build-
ing on previous works (Zhou et al., 2023; Yang
et al., 2024; Yuksekgonul et al., 2024), RIOT iter-
atively refines prompts using text gradients. How-
ever, unlike prior methods, RIOT generates multi-
ple candidate prompts with distinct semantic mean-
ings at each optimization step. Next, RIOT selects
the best candidate by calculating the perplexity of
each prompt. This approach substantially enhances
the diversity during the optimization process while
reducing additional computational overhead. To
mitigate the risk of semantic drift, RIOT intro-
duces a text residual connection algorithm, which
selectively preserves the content of candidates from
different optimization iterations based on semantic
similarity (see §4.2). Additionally, RIOT employs
a tree structure to efficiently manage the hierarchi-
cal nature of the optimization process. Each level
in the tree corresponds to an optimization iteration,
with each node representing a candidate prompt.
The selection process acts as a pruning mechanism,
while text residual connections link nodes across
different levels, ensuring that beneficial informa-
tion is retained. This tree structure not only enables

effective tracking of the optimization process but
also guarantees scalability and flexibility.

RIOT demonstrates robust performance in
prompt optimization, substantially enhancing the
capabilities of LLMs. Across five diverse bench-
marks—spanning commonsense reasoning, math-
ematical reasoning, logical reasoning, temporal
understanding, and semantic understanding (see
§5)—RIOT outperforms both previous prompt op-
timization methods and manual prompting (see §6).
For example, on the GSM8K benchmark (Cobbe
et al., 2021), RIOT improves accuracy by 4.6% (in
absolute) over the leading baseline. Our contribu-
tions can be summarized as follows:

• We introduce the first tree-based framework
with a residual connection for automatic
prompt optimization.

• We address the challenge of limited diversity
in prompt optimization by effectively explor-
ing prompt space.

• We mitigate the phenomenon of semantic drift
by introducing residual learning that retains
crucial elements in optimization.

22308

2 Related Work

Prompt Optimization. The majority of work
on prompt optimization can be categorized into
two main types. The first category focuses on
soft prompt tuning, where prompts are represented
as task-specific continuous vectors and trained
through gradient-based methods (Lester et al.,
2021; Li and Liang, 2021; Qin and Eisner, 2021;
Liu et al., 2024). The second category employs
discrete token search, using gradient-guided ap-
proaches (Shin et al., 2020; Gao et al., 2021; Shi
et al., 2023; Wen et al., 2024) or reinforcement
learning (Deng et al., 2022; Zhang et al., 2023).
These works require full access to the language
model’s parameters or auxiliary reward models,
which face substantial limitations when applied to
modern LLMs accessible only via API. This un-
derscores the need for black-box strategies that
rely solely on textual feedback to optimize the
prompt systematically. Some recent works have
developed gradient-free methods for prompt opti-
mization. This approach was proposed by Zhou
et al. (2023), which involved instructing LLMs to
infer the prompt. Pryzant et al. (2023) later formal-
ized the concept of text gradient to refer to textual
feedback-based optimization. Subsequent works
have further improved upon this by incorporating
optimization logic in the prompt space (Yang et al.,
2024; Yuksekgonul et al., 2024). However, these
methods are limited by a constrained optimization
space, which hampers diversity, and fail to address
the issue of semantic drift, resulting in suboptimal
performance in dynamic contexts.

Semantic Drift. Catastrophic forgetting typically
occurs in the context of continual learning. In such
scenarios, neural networks may lose previously ac-
quired knowledge when adapting to new tasks, a
challenge that has inspired prior work to stabilize
parameter updates in continuous spaces through
methods such as parameter isolation and regular-
ization (Li and Hoiem, 2017; Kirkpatrick et al.,
2017b; Maltoni and Lomonaco, 2019; Dou et al.,
2024). The core of these approaches lies in pre-
serving the original weights as much as possible
during updates. A similar issue arises in discrete
prompt optimization, where iterative modification
of prompts can overwrite crucial semantic compo-
nents, this phenomenon we refer to as semantic
drift. In this paper, we address this issue by dynam-
ically preserving high-value semantic components
in the prompts through text residual connection.

3 Preliminaries

3.1 Problem Definition
We define the task dataset as D = {(xi, yi)}Ni=1,
where xi represents the natural language query, yi
denotes the corresponding ground truth, and N is
the total number of test samples. The objective
of the prompt optimization task is to search for
the optimal prompt p∗ that maximizes the LLM
performance F(·) on the given task. This task can
be formally defined as:

p∗ = argmax
p∈Pspace

N∑

i=1

S (F(xi; p), yi) , (1)

where Pspace represents the set of all possible
prompts (e.g., manually designed prompts or auto-
matically generated prompts) and S(·) denotes the
corresponding evaluation metrics.

3.2 Prompt Optimization Operator
Several frameworks for automatic prompt opti-
mization typically employ similar optimization
logic, achieving improved performance. We select
TextGrad (Yuksekgonul et al., 2024) as the back-
bone for executing optimization at each step, as it
both follows this successful path and offers great
extensibility. For clarity, we define the model re-
sponsible for evaluating prompt performance as the
target model Ftarget(·), and the model used for feed-
back generation or prompt optimization as the opti-
mization model Fopt(·). Let Dtrain denote the train-
ing set. At step t, the target model Ftarget(·) gener-
ates responses {ŷ(t)i } using the current prompt pt
and computes the loss L(pt) over Dtrain:

{ŷ(t)i } = Ftarget(Dtrain, pt) (2)

L(pt) = S(Dtrain, {ŷ(t)i }). (3)

Then, the optimizer model proposes the candidate
prompt pt+1:

pt+1 = Fopt(∇ptL(pt), pt). (4)

where∇ptL(pt) denotes the text gradient encoding
improvement directions in natural language. We
encapsulate this iterative process into a Prompt
Optimization OperatorM(·), defined as:

pt+1 =M(Dtrain, pt) (5)

This operator abstraction enables modular integra-
tion with downstream components.

22309

Algorithm 1 Content Fusion Algorithm

Require: Step t, parent node Pt−1, the optimal child node P∗
t , a pretrained embedding model E(·), a

sentence tokenizer T (·), and two hyperparameters b1 and b2.
Divide into sentences:
1: {s0, s1, . . . , sn} ← T (Pt−1), {r0, r1, . . . , rm} ← T (P∗

t) ▷ Tokenize Pt−1 and P∗
t using T

Obtain the semantic representation:
2: Et−1 ← {E(si) | i ∈ [1, n]}, E∗

t ← {E(rj) | j ∈ [1,m]} ▷ Embed the sentences using E . Et−1

is an n× d matrix of embeddings for Pt−1. E∗
t is an m× d matrix of embeddings for P∗

t . d is the
embedding dimension.

compute cosine similarities:
3: simab ← Et−1·E∗−T

t
∥Et−1∥2∥E∗

t ∥2
▷ Matrix of cosine similarities of size n×m

Select sentences based on similarity thresholds:
4: selected_t← {sidx | max(simab[idx, :]) ≥ 1− b1} ▷ Select sentences from Pt−1

5: selected_r ← {ridx | max(simab[:, idx]) < 1− b2} ▷ Select sentences from P∗
t

6: Pt ← selected_t ∪ selected_r
7: Return Pt

4 Residual Optimization Tree

In this section, we introduce our proposed method
Residual Optimization Tree (RIOT), as shown in
Figure 1. Specifically, RIOT starts with an ini-
tial prompt p0 as the root node. At step t, each
parent node pt produces K candidate child nodes
{p(i)t+1}Ki=1 through prompt optimization operator
M(·) (i.e., the width of tree is K). Since LLMs ex-
hibit inherent variability in their outputs, the same
input may yield different outputs. To account for
this, RIOT computes the loss L(pt) K times, gen-
erating K different candidate prompts. Then we
propose a dynamic pruning strategy to select the op-
timal child node p∗t+1 from candidates {p(i)t+1}Ki=1

(explained in §4.1). This approach fosters greater
diversity within the prompt space without sacrific-
ing quality.

To address the challenge of semantic drift, we
introduce the Text Residual Connection (detailed in
§4.2). This mechanism is inspired by the concept
of residual learning in deep networks and ensures
that semantic components from the parent node can
effectively be transferred to child nodes during iter-
ative optimization, reducing excessive divergence
between parent and child nodes.

4.1 Perplexity-Informed Node Selection
A common strategy of child node selection often
relies solely on the quality of the candidate nodes
generated by the LLM, overlooking the importance
of diversity in the optimization process. This can re-
sult in less innovative outcomes, limiting the explo-
ration of valuable prompt combinations and miss-

ing innovative directions. Instead, we introduce
a perplexity-informed approach to select the most
promising child node. The idea is to prioritize
nodes with higher semantic diversity.

For each child node candidate p(i)t+1, we compute

its perplexity PPL(p
(i)
t+1), which measures the un-

certainty of the model’s prediction for the candi-
date content. Given the candidate prompt p(i)t+1 =

(x0, x1, · · · , xJ), the perplexity PPL(p
(i)
t+1) is de-

fined as:

PPL(p
(i)
t+1) = exp{− 1

J

J∑

j=1

pθ(xj | x<j)}, (6)

where pθ(xj | x<j) is the likelihood of the j-th
token conditioned on the preceding tokens x<j

according to the LLM. The perplexity value is
then incorporated into the selection process. First,
from an information theoretic perspective (Shan-
non, 1948), higher perplexity indicates lower token
co-occurrence probability, suggesting more infor-
mation. Second, established practices in Bayesian
optimization (Snoek et al., 2012) preferentially ex-
plore regions of high uncertainty to maximize infor-
mation gain. Therefore, we select the optimal child
node p∗t+1 by maximizing the perplexity value:

p∗t+1 = argmax
i

PPL(p
(i)
t+1). (7)

This perplexity-informed node selection approach
enhances RIOT’s ability to traverse a diverse and
effective prompt space.

22310

4.2 Text Residual Connection
To mitigate semantic drift during the iterative
prompt optimization process, we propose the Text
Residual Connection, which is inspired by residual
learning techniques in deep neural networks. The
core idea is to ensure that the important information
from the parent prompt is preserved and effectively
transferred to the successor prompt, preventing the
forgetting phenomenon that can occur when iter-
atively modifying prompts. In traditional neural
networks (He et al., 2016), residual connections
facilitate the learning of differences between the
input and target representations, enabling deeper
networks without suffering from vanishing gradi-
ents. We adopt a similar concept to prompt opti-
mization. Initializing with prompt p0 as the tree
root, at step t RIOT generate an optimized child
node p∗t from the parent node pt−1. Contrary to
previous strategies that directly propagate p∗t as the
immediate successor pt, RIOT computes the se-
mantic residual components which represent the
difference between the child node p∗t and the par-
ent node pt−1, then fuses them through controlled
composition, as follows:

pt = G(pt−1, p
∗
t). (8)

Here, G(·) represents the Content Fusion Algo-
rithm outlined in Algorithm 1, which is achieved
by adjusting two hyperparameters, b1 and b2, that
control the degree of fusion between the parent
and child prompts. This ensures that the successor
prompt pt retains the meaningful elements from
the parent that contribute to the optimization tra-
jectory, while introducing new elements from the
optimized child node.

In essence, the Text Residual Connection can
be viewed as a way of progressively refining the
prompt, ensuring that each iteration of optimization
builds upon the information already captured by
the previous node, rather than starting from scratch,
thereby semantic consistency across all prompts in
the optimization tree.

5 Experimental Step

Datasets. We evaluate RIOT across five bench-
marks, including LogiQA 2.0 (Liu et al., 2023),
StrategyQA (Geva et al., 2021), Object Count-
ing (Srivastava et al., 2023; Suzgun et al., 2023),
GSM8K (Cobbe et al., 2021), and Date Under-
standing (Srivastava et al., 2023; Suzgun et al.,
2023), which are designed to cover diverse task

types such as temporal understanding, semantic
reasoning, mathematical computation, and com-
monsense inference. For detailed dataset distribu-
tion, please refer to the Appendix E.

Baselines. We compare RIOT to prior works in
two categories:

• Manual Prompting Methods. We exper-
iment with (1) zero-shot Chain-of-Thought
(CoT) prompting and (2) few-shot CoT
prompting (Kojima et al., 2022; Wei et al.,
2022). See Appendix F for the prompt tem-
plate construction details.

• Automatic Prompt Optimization Methods.
We compare with four established approaches.
(1) APE (Zhou et al., 2023) leverages LLMs
to generate candidate prompts based on task-
specific input-output pairs, followed by a
selection process to identify the optimal
prompts. (2) OPRO (Yang et al., 2024) po-
sitions language models as optimizers, uti-
lizing the meta-prompt to systematically re-
fine the initial prompt. (3) TextGrad (Yuk-
sekgonul et al., 2024) adopts a parameteriza-
tion perspective by treating prompts as op-
timizable parameters while introducing the
concept of textual gradients for optimization.
(4) DSPy (Khattab et al., 2024) formulates
prompt optimization as a declarative program
synthesis task.

Implementation Details. Following prior
work (Yuksekgonul et al., 2024), we configure
both GPT-3.5-turbo (OpenAI, 2022) (as the target
model) and GPT-4o (OpenAI, 2024) (as the
optimization model) with temperature parameters
fixed at 0. Moreover, we tokenize the prompt
using the NLTK sentence tokenizer (Bird, 2006).
The text-embedding-3-large model (OpenAI,
2023) is used for embedding, with b1 set to 0.25
and b2 set to 0.5. K is set to 3. A batch size of
4 is utilized with 3 training epochs, yielding 15
iterations through the optimization process. We
use the zero-shot CoT prompts as initial prompts
for prompt optimization methods.

We report accuracy with corresponding standard
deviation, based on five independent runs using
fixed prompts and test samples. This approach ac-
counts primarily for the variance introduced by the
decoding strategy. The optimal prompt, identified
on the validation set, is used for testing.

22311

TRUE / FALSE GENERATIVE MULTIPLE-CHOICE

Method LogiQA 2.0 StrategyQA Object Counting GSM8K Date Understanding
(N=160) (N=100) (N=210) (N=100) (N=329)

*Manual Prompting Methods
Zero-Shot CoT 59.0 ±1.5 65.8 ±1.9 71.0 ±1.9 60.2 ±1.5 76.1 ±1.0

Four-Shot CoT 59.7 ±3.5 ↑0.7 71.2 ±1.0 ↑5.4 71.2 ±2.2 ↑0.2 73.4 ±1.5 ↑13.2 73.2 ±1.7 ↓2.9

Twenty-Shot CoT 59.4 ±1.0 ↑0.4 71.6 ±0.8 ↑5.8 70.8 ±1.4 ↓0.2 72.8 ±1.2 ↑12.6 76.3 ±1.9 ↑0.2

*Automatic Prompt Optimization Methods
APE (Zhou et al., 2023) 57.4 ±3.5 ↓1.6 70.4 ±3.3 ↑4.6 79.2 ±1.9 ↑8.2 76.6 ±1.9 ↑16.4 72.8 ±2.8 ↓3.3

OPRO (Yang et al., 2024) 58.0 ±4.8 ↓1.0 67.0 ±3.0 ↑1.2 79.9 ±1.3 ↑8.9 72.8 ±2.0 ↑12.6 76.3 ±0.5 ↑0.2

TextGrad (Yuksekgonul et al., 2024) 60.0 ±1.2 ↑1.0 68.8 ±1.7 ↑3.0 88.3 ±1.2 ↑17.3 74.8 ±1.0 ↑14.6 71.9 ±0.7 ↓4.2

DSPy (Khattab et al., 2024) 59.8 ±1.6 ↑0.8 73.4 ±1.5 ↑7.6 84.5 ±2.2 ↑13.5 79.0 ±1.7 ↑18.8 74.3 ±1.1 ↓1.8

RIOT (Ours) 61.4 ±1.5 ↑2.4 74.6 ±1.5 ↑8.8 86.9 ±0.6 ↑15.9 81.2 ±1.2 ↑21.0 78.2 ±0.6 ↑2.1

Table 1: Comparison of Automatic Prompt Optimization Methods. We report mean accuracy (%) and standard
deviation. Bold and underlined values indicate best and second-best performance, respectively. Red arrows indicate
the absolute performance decrease, while green arrows indicate the absolute performance increase, both compared
to the Zero-Shot CoT prompting. N represents the number of samples used for testing.

2 3 4 5 6
Width

55

60

65

70

75

80

85

90

Ac
cu

ra
cy

 (%
)

(a) Effect of K on performance

Accuracy
Token

0.25 0.50 0.75 1.00
Ratio

55

60

65

70

75

80

85

90

Ac
cu

ra
cy

 (%
)

(b) Effect of b1 on performance

Accuracy
Token

0.00 0.25 0.50 0.75 1.00
Ratio

55

60

65

70

75

80

85

90

Ac
cu

ra
cy

 (%
)

(c) Effect of b2 on performance

Accuracy
Token

0

100

200

300

400

500

600

700

Nu
m

be
r o

f P
ro

m
pt

 To
ke

ns

0

100

200

300

400

500

600

700

Nu
m

be
r o

f P
ro

m
pt

 To
ke

ns

0

100

200

300

400

500

600

700

Nu
m

be
r o

f P
ro

m
pt

 To
ke

ns

Figure 2: Hyperparametric Senstivity Analysis of RIOT. Our results show that (a): Increasing the tree width K
leads to a unimodal curve, with peak accuracy at K = 3; (b): The parameter b1 is negatively correlated with
performance; and (c): The parameter b2 plays a critical role in balancing performance and computational overhead.

6 Results

6.1 Main Results

Finding #1: Scaling the number of demonstra-
tion examples in few-shot CoT prompting leads
to diminishing returns. As shown in Table 1,
while few-shot CoT outperforms zero-shot across
tasks, scaling the number of demonstrations yields
minimal gains. For instance, on StrategyQA, ex-
panding the prompt from 4 to 20 examples im-
proves accuracy by merely 0.4%, while on LogiQA
2.0, Twenty-shot CoT prompting unexpectedly un-
derperforms Four-shot CoT prompting by 0.3%.
We posit that this phenomenon stems from two
critical factors: (1) the escalating prompt length
challenges models’ contextual comprehension due
to attention dilution, and (2) redundant examples
often fail to provide task-specific inductive signals,
forcing models to implicitly extrapolate patterns
from noisy demonstrations.

Finding #2: RIOT outperforms manual prompt-
ing and automatic prompt optimization base-

lines. In Table 1, RIOT consistently improves
accuracy across all five reasoning tasks compared
to manual prompting methods. For instance, RIOT
achieves accuracy gains of 3.0% (71.6% → 74.6%)
on StrategyQA and 7.8% (73.4% → 81.2%) on
GSM8K compared to the best few-shot CoT base-
line. When compared to zero-shot CoT prompting,
RIOT achieves even larger improvements, with ac-
curacy rising by 8.8% (65.8% → 74.6%) and 21.0%
(60.2% → 81.2%) on these two tasks. Additionally,
RIOT surpasses other automatic prompt optimiza-
tion methods across four benchmarks. Specifically,
it achieves a 1.4% increase (60.0%→ 61.4%) on
LogiQA 2.0, 1.2% (73.4% → 74.6%) on Strate-
gyQA, 2.2% (79.0% → 81.2%) on GSM8K, and
1.9% (76.3% → 78.2%) on Date Understanding,
while attaining suboptimal performance on Ob-
ject Counting with an accuracy of 86.9%. Be-
yond per-task gains, RIOT also achieves the high-
est weighted average accuracy across all datasets,
as reported in Appendix A, exceeding the best-
performing baseline by 2.7%. These results high-
light RIOT’s capability to generate higher-quality

22312

TRUE / FALSE GENERATIVE MULTIPLE-CHOICE

Experiment LogiQA 2.0 StrategyQA Object Counting GSM8K Date Understanding
(N=160) (N=100) (N=210) (N=100) (N=329)

Baseline 65.9 ±0.8 79.6 ±1.9 92.6 ±0.9 93.4 ±0.8 89.9 ±0.4

Prompt Transferability 67.0 ±0.5 ↑1.1 81.4 ±1.0 ↑1.8 90.2 ±0.9 ↓2.4 93.6 ±0.8 ↑0.2 86.7 ±0.3 ↓3.2

Model Transferability 69.4 ±0.4 ↑3.5 82.0 ±0.6 ↑2.4 93.0 ±0.6 ↑0.4 95.0 ±0.6 ↑1.6 90.5 ±0.6 ↑0.6

Table 2: Generalization performance of RIOT across five datasets. All experiments are evaluated on Gemini-1.5-
flash, and optimizer model is GPT-4o. Baseline: Applying the zero-shot CoT prompt. Prompt Transferability:
Prompts are optimized for GPT-3.5-turbo. Model Transferability: Prompts are optimized for Gemini-1.5-flash.
Bold and underlined values indicate best and second-best performance, respectively. Red arrows indicate the
absolute performance decrease, while gree arrows indicate the absolute performance increase, both compared to the
baseline. N represents the number of samples used for testing.

Method Accuracy (%)

RIOT 81.2 ±1.2

w/o TEXT RESIDUAL CONNECTION 68.8 ±3.9 ↓12.4

w/o PERPLEXITY-INFORMED NODE SELECTION 68.2 ±1.8 ↓13.0

Table 3: Ablation study results. Bold value indicates
the best performance. Red arrows indicate the absolute
performance decrease compared to the full model.

Metric Perplexity Entropy Length

Accuracy (%) 81.2 ±1.2 78.6 ±1.0 ↓2.6 73.6 ±4.3 ↓7.6

Table 4: Comparison of different node selection metrics
on GSM8K. Bold value indicates the best performance.
Red arrows indicate the absolute performance decrease
compared to perplexity.

prompts, enabling more effective learning with lim-
ited data and outperforming all baseline methods.

Finding #3: RIOT demonstrates robust cross-
task prompt optimization. In Table 1, RIOT
improves performance across all five tasks. In con-
trast, other automatic prompt optimization meth-
ods show inconsistent generalization performance.
For instance, APE achieves only 57.4% and 72.8%
accuracy on the LogiQA 2.0 and Date Under-
standing datasets, respectively, which are lower
than the 59.0% and 76.1% achieved by zero-shot
CoT prompting, indicating a degradation in perfor-
mance. Meanwhile, RIOT demonstrates superior
cross-task stability, successfully optimizing the ini-
tial prompt in all five tasks.

6.2 Further Analysis
Hyperparametric sensitivity analysis of RIOT.
On GSM8K, we systematically analyze the effect
of tree width K, hyperparameters b1, and b2 on
RIOT, as visualized in Figure 2. The results reveal
the following key findings: (a) Increasing the tree

Embedding Model Accuracy (%)

text-embedding-3-large 81.2 ±1.2

text-embedding-3-small 77.8 ±2.7 ↓3.4

text-embedding-ada-002 60.2 ±1.5 ↓21.0

Table 5: Impact of embedding model choice on per-
formance. Bold value indicates the best performance.
Red arrows indicate the absolute performance decrease
compared to the full model. Our results show that more
recent and larger models achieve better performance.

width W from 2 to 6 leads to a unimodal accuracy
curve, initially rising and then declining, with peak
accuracy of 81.2% at K = 3; (b) The parameter
b1 is negatively correlated with performance. As
b1 increases from 0.25 to 1, accuracy decreases
by 11.2%, underscoring the importance of dynami-
cally removing redundant parent node information;
(c) The parameter b2 plays a critical role in bal-
ancing performance and computational overhead.
As b2 increases from 0 to 0.5, accuracy fluctuates
non-monotonically, while the optimized prompt
length rapidly decreases. Further increasing b2 to
1 results in a decline in accuracy from 81.2% to
73.4%, with the optimized prompt length reduced
to 26 tokens. The optimal trade-off between per-
formance and efficiency is achieved at b2 = 0.5,
demonstrating that moderate length constraints can
effectively eliminate redundant lexical units while
preserving essential reasoning information.

Generalization analysis of RIOT. We conduct
systematic evaluations to validate the general-
ization of RIOT across two critical dimensions:
(1) Prompt Transferability: Assessing whether
prompts optimized for one model generalize to
another. (2) Model Transferability: Evaluating
RIOT’s ability to optimize prompts for distinct

22313

Figure 3: List of optimized prompts on GSM8K by different prompt optimization methods, categorized according
to five key dimensions: emphasizing the steps, avoiding redundancy, output format, emphasizing validation, and
relating to domain-specific knowledge. RIOT integrates all dimensions, enhancing reliability and aligning solutions
with real-world contexts.

target models. In both experiments, prompts op-
timized by GPT-4o are evaluated on Gemini-1.5-
flash (Team et al., 2024), with the first experiment
optimizing for GPT-3.5-turbo and the second for
Gemini-1.5-flash. Additionally, we evaluate the
zero-shot CoT prompt on Gemini-1.5-flash as the
baseline. The results are shown in Table 2. Opti-
mizing prompts for GPT-3.5-turbo boosts the per-
formance of Gemini-1.5-flash across three tasks.
Furthermore, when Gemini-1.5-flash is used as the
target model for prompt optimization with RIOT,
its performance surpasses the baseline across five
tasks. For instance, on the StrategyQA dataset,
accuracy improves by 1.8% in the Prompt Trans-
ferability experiment and by 2.4% in the Model
Transferability experiment, both compared to the
baseline. These results demonstrate the effective-
ness of RIOT in optimizing prompts for both model
and prompt transferability.

Ablation study on each component of RIOT on
model performance. In Table 3, we evaluate in-
dividual component of RIOT on GSM8K. In par-
ticular, we compare two variants: (1) w/o Text
Residual Connection: The optimal child node in
each iteration is used as the parent node for the
next, without incorporating any information from
the current prompt, (2) w/o Perplexity-Informed
Node Selection: Each optimization step generates
only a single candidate prompt (i.e., K = 1), dis-
abling the selection mechanism. When the number
of candidate prompts is limited to one, the effect of

Text Residual Connection is minimal, resulting in a
13% decrease in accuracy, highlighting the impor-
tance of diversity in automatic prompt optimization.
Additionally, when there is a lack of inheritance be-
tween parent and child nodes during iterations, ac-
curacy drops by 12.4%, reinforcing our hypothesis
that semantic drift occurs during the optimization
process. These results show that RIOT benefits
from both prompt diversity and sentence-level se-
mantic fusion, and that both components are crucial
for stable and effective optimization.

Impact of node selection metrics. To evaluate
the impact of different node selection strategies in
RIOT, we compare three metrics: perplexity, en-
tropy, and length, which capture different aspects
of prompt quality—semantic likelihood, prediction
uncertainty, and verbosity. As shown in Table 4,
experimental results on GSM8K demonstrate that
perplexity-informed selection consistently outper-
forms the other two, indicating its effectiveness in
capturing semantic diversity and informativeness
during prompt optimization. Formal definitions of
entropy and length are provided in Appendix B.

Better embedding models lead to improved per-
formance. Table 5 shows RIOT’s sensitivity to
embedding quality on GSM8K, comparing dis-
tinct embedding models: text-embedding-3-large
(top-tier) (OpenAI, 2023), text-embedding-3-small
(mid-tier) (OpenAI, 2023), and text-embedding-
ada-002 (base) (Ryan et al., 2022). Accuracy drops

22314

by 3.4% and 21% respectively when downgrad-
ing models, revealing RIOT’s strong dependency
on semantic discrimination capability. This depen-
dency stems from the fact that lower-performing
embedding models inadequately discriminate sub-
tle lexical variations, impairing the identification of
semantically similar units between parent and child
nodes during residual connection. Consequently,
suboptimal embedding models require careful cal-
ibration of the similarity threshold parameters b1
and b2 to mitigate performance loss.

6.3 Case Study

As shown in Figure 3, we compare prompts op-
timized by different automatic prompt optimiza-
tion methods on GSM8K. This comparison al-
lows us to further explore RIOT. Unlike baselines,
RIOT’s optimized version uniquely combines ver-
ification mechanisms and domain adaptation, en-
forcing arithmetic consistency while eliminating
redundant reasoning steps. Crucially, the explicit
incorporation of temporal rule decoupling and alge-
braic assumption specification highlights RIOT’s
ability to dynamically assimilate domain-specific
patterns from training samples during optimization.
This practical insight enables RIOT to produce
solutions with higher real-world alignment.

7 Conclusion

In this paper, we propose Residual Optimiza-
tion Tree (RIOT), a novel tree-based optimiza-
tion framework that automatically generates higher-
quality prompts. We employ a perplexity-informed
node selection strategy to increase diversity in the
prompt optimization process and incorporate a text
residual connection to preserve the crucial semantic
information. Experimental results show that RIOT
demonstrates substantial improvements in perfor-
mance across five reasoning tasks while maintain-
ing generalization.

Limitations

Despite the promising results, our study has two
main limitations, which reflect broader challenges
in gradient-free automatic prompt optimization.
First, our research focuses on textual tasks. How-
ever, the growing use of multimodal large lan-
guage models (MLLMs) in real-world applica-
tions—ranging from visual question answering
to robotic instruction synthesis—highlights the
critical need for multimodal prompt engineering.

Whether our method retains its effectiveness in the
multimodal domain is an important direction for
future exploration. Second, we observe notable per-
formance variation across different task categories,
suggesting challenges in cross-task generalization
for automatic prompt optimization. This issue is
likely due to inherent differences in how LLMs or-
ganize and activate task-specific knowledge, point-
ing to the need for further investigation into the
latent knowledge structures within LLMs.

Acknowledgements

This work is funded by National Natural Science
Foundation of China (U23A20496, 62302433),
Zhejiang Provincial Key Research and Develop-
ment Project of China (2024C01135), Zhejiang
Provincial Natural Science Foundation of China
(LQ24F020007) and the Ningbo Natural Science
Foundation (2024J020). This work was supported
by Ant Group.

References
Josh Achiam, Steven Adler, Sandhini Agarwal, Lama

Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774.

Xavier Amatriain. 2024. Prompt design and engineer-
ing: Introduction and advanced methods. arXiv
preprint arXiv:2401.14423.

Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wen-
bin Ge, Sibo Song, Kai Dang, Peng Wang, Shijie
Wang, Jun Tang, et al. 2025. Qwen2. 5-vl technical
report. arXiv preprint arXiv:2502.13923.

Steven Bird. 2006. Nltk: the natural language toolkit.
In Proceedings of the COLING/ACL 2006 Interactive
Presentation Sessions, pages 69–72.

Rishi Bommasani, Drew A Hudson, Ehsan Adeli,
Russ Altman, Simran Arora, Sydney von Arx,
Michael S Bernstein, Jeannette Bohg, Antoine Bosse-
lut, Emma Brunskill, et al. 2021. On the opportuni-
ties and risks of foundation models. arXiv preprint
arXiv:2108.07258.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877–1901.

Huajun Chen. 2024. Large knowledge model: Perspec-
tives and challenges. Data Intelligence, 6(3):587–
620.

22315

https://doi.org/10.3724/2096-7004.di.2024.0001
https://doi.org/10.3724/2096-7004.di.2024.0001

Justin Chih-Yao Chen, Swarnadeep Saha, and Mohit
Bansal. 2023. Reconcile: Round-table conference
improves reasoning via consensus among diverse
llms. arXiv preprint arXiv:2309.13007.

Songlin Chen, Weicheng Wang, Xiaoliang Chen, Peng
Lu, Zaiyan Yang, and Yajun Du. 2024. Llama-lora
neural prompt engineering: A deep tuning frame-
work for automatically generating chinese text log-
ical reasoning thinking chains. Data Intelligence,
6(2):375–408.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, et al. 2021. Training verifiers to solve math
word problems. arXiv preprint arXiv:2110.14168.

Mingkai Deng, Jianyu Wang, Cheng-Ping Hsieh, Yi-
han Wang, Han Guo, Tianmin Shu, Meng Song, Eric
Xing, and Zhiting Hu. 2022. RLPrompt: Optimizing
discrete text prompts with reinforcement learning.
In Proceedings of the 2022 Conference on Empiri-
cal Methods in Natural Language Processing, pages
3369–3391, Abu Dhabi, United Arab Emirates. As-
sociation for Computational Linguistics.

Shihan Dou, Enyu Zhou, Yan Liu, Songyang Gao, Wei
Shen, Limao Xiong, Yuhao Zhou, Xiao Wang, Zhi-
heng Xi, Xiaoran Fan, Shiliang Pu, Jiang Zhu, Rui
Zheng, Tao Gui, Qi Zhang, and Xuanjing Huang.
2024. LoRAMoE: Alleviating world knowledge for-
getting in large language models via MoE-style plu-
gin. In Proceedings of the 62nd Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 1932–1945, Bangkok,
Thailand. Association for Computational Linguistics.

Yilun Du, Shuang Li, Antonio Torralba, Joshua B Tenen-
baum, and Igor Mordatch. 2023. Improving factual-
ity and reasoning in language models through multia-
gent debate. arXiv preprint arXiv:2305.14325.

Tianyu Gao, Adam Fisch, and Danqi Chen. 2021.
Making pre-trained language models better few-shot
learners. In Proceedings of the 59th Annual Meet-
ing of the Association for Computational Linguistics
and the 11th International Joint Conference on Natu-
ral Language Processing (Volume 1: Long Papers),
pages 3816–3830, Online. Association for Computa-
tional Linguistics.

Mor Geva, Daniel Khashabi, Elad Segal, Tushar Khot,
Dan Roth, and Jonathan Berant. 2021. Did aristotle
use a laptop? A question answering benchmark with
implicit reasoning strategies. Trans. Assoc. Comput.
Linguistics, 9:346–361.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. 2016. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 770–
778.

Songtao Jiang, Yan Zhang, Chenyi Zhou, Yeying Jin,
Yang Feng, Jian Wu, and Zuozhu Liu. 2024a. Joint

visual and text prompting for improved object-centric
perception with multimodal large language models.
arXiv preprint arXiv:2404.04514.

Songtao Jiang, Tuo Zheng, Yan Zhang, Yeying Jin,
Li Yuan, and Zuozhu Liu. 2024b. Med-MoE: Mix-
ture of domain-specific experts for lightweight medi-
cal vision-language models. In Findings of the Asso-
ciation for Computational Linguistics: EMNLP 2024,
pages 3843–3860, Miami, Florida, USA. Association
for Computational Linguistics.

Omar Khattab, Arnav Singhvi, Paridhi Maheshwari,
Zhiyuan Zhang, Keshav Santhanam, Sri Vard-
hamanan A, Saiful Haq, Ashutosh Sharma, Thomas T.
Joshi, Hanna Moazam, Heather Miller, Matei Za-
haria, and Christopher Potts. 2024. DSPy: Com-
piling declarative language model calls into state-
of-the-art pipelines. In The Twelfth International
Conference on Learning Representations.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz,
Joel Veness, Guillaume Desjardins, Andrei A Rusu,
Kieran Milan, John Quan, Tiago Ramalho, Ag-
nieszka Grabska-Barwinska, et al. 2017a. Over-
coming catastrophic forgetting in neural networks.
Proceedings of the national academy of sciences,
114(13):3521–3526.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz,
Joel Veness, Guillaume Desjardins, Andrei A Rusu,
Kieran Milan, John Quan, Tiago Ramalho, Ag-
nieszka Grabska-Barwinska, et al. 2017b. Over-
coming catastrophic forgetting in neural networks.
Proceedings of the national academy of sciences,
114(13):3521–3526.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yu-
taka Matsuo, and Yusuke Iwasawa. 2022. Large lan-
guage models are zero-shot reasoners. Advances in
neural information processing systems, 35:22199–
22213.

Brian Lester, Rami Al-Rfou, and Noah Constant. 2021.
The power of scale for parameter-efficient prompt
tuning. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing,
pages 3045–3059, Online and Punta Cana, Domini-
can Republic. Association for Computational Lin-
guistics.

Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning:
Optimizing continuous prompts for generation. In
Proceedings of the 59th Annual Meeting of the Asso-
ciation for Computational Linguistics and the 11th
International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 4582–
4597, Online. Association for Computational Lin-
guistics.

Yujia Li, David Choi, Junyoung Chung, Nate Kushman,
Julian Schrittwieser, Rémi Leblond, Tom Eccles,
James Keeling, Felix Gimeno, Agustin Dal Lago,
et al. 2022. Competition-level code generation with
alphacode. Science, 378(6624):1092–1097.

22316

https://doi.org/10.1162/dint_a_00251
https://doi.org/10.1162/dint_a_00251
https://doi.org/10.1162/dint_a_00251
https://doi.org/10.1162/dint_a_00251
https://doi.org/10.18653/v1/2022.emnlp-main.222
https://doi.org/10.18653/v1/2022.emnlp-main.222
https://doi.org/10.18653/v1/2024.acl-long.106
https://doi.org/10.18653/v1/2024.acl-long.106
https://doi.org/10.18653/v1/2024.acl-long.106
https://doi.org/10.18653/v1/2021.acl-long.295
https://doi.org/10.18653/v1/2021.acl-long.295
https://doi.org/10.1162/TACL_A_00370
https://doi.org/10.1162/TACL_A_00370
https://doi.org/10.1162/TACL_A_00370
https://doi.org/10.18653/v1/2024.findings-emnlp.221
https://doi.org/10.18653/v1/2024.findings-emnlp.221
https://doi.org/10.18653/v1/2024.findings-emnlp.221
https://openreview.net/forum?id=sY5N0zY5Od
https://openreview.net/forum?id=sY5N0zY5Od
https://openreview.net/forum?id=sY5N0zY5Od
https://doi.org/10.18653/v1/2021.emnlp-main.243
https://doi.org/10.18653/v1/2021.emnlp-main.243
https://doi.org/10.18653/v1/2021.acl-long.353
https://doi.org/10.18653/v1/2021.acl-long.353

Zhizhong Li and Derek Hoiem. 2017. Learning without
forgetting. IEEE transactions on pattern analysis
and machine intelligence, 40(12):2935–2947.

Hanmeng Liu, Jian Liu, Leyang Cui, Zhiyang Teng, Nan
Duan, Ming Zhou, and Yue Zhang. 2023. Logiqa
2.0—an improved dataset for logical reasoning in
natural language understanding. IEEE/ACM Trans-
actions on Audio, Speech, and Language Processing.

Xiao Liu, Yanan Zheng, Zhengxiao Du, Ming Ding,
Yujie Qian, Zhilin Yang, and Jie Tang. 2024. Gpt
understands, too. AI Open, 5:208–215.

Davide Maltoni and Vincenzo Lomonaco. 2019. Con-
tinuous learning in single-incremental-task scenarios.
Neural Networks, 116:56–73.

Michael McCloskey and Neal J Cohen. 1989. Catas-
trophic interference in connectionist networks: The
sequential learning problem. In Psychology of learn-
ing and motivation, volume 24, pages 109–165. Else-
vier.

OpenAI. 2022. Introducing chatgpt. https://openai.
com/index/chatgpt/. Accessed: 2025-01-21.

OpenAI. 2023. New embedding models and
api updates. https://openai.com/index/
new-embedding-models-and-api-updates/.
Accessed: 2025-01-21.

OpenAI. 2024. Hello gpt-4o. https://openai.com/
index/hello-gpt-4o/. Accessed: 2025-01-21.

Reid Pryzant, Dan Iter, Jerry Li, Yin Lee, Chenguang
Zhu, and Michael Zeng. 2023. Automatic prompt op-
timization with “gradient descent” and beam search.
In Proceedings of the 2023 Conference on Empiri-
cal Methods in Natural Language Processing, pages
7957–7968, Singapore. Association for Computa-
tional Linguistics.

Guanghui Qin and Jason Eisner. 2021. Learning how
to ask: Querying LMs with mixtures of soft prompts.
In Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 5203–5212, Online. Association for Computa-
tional Linguistics.

Weijieying Ren, Xinlong Li, Lei Wang, Tianxiang Zhao,
and Wei Qin. 2024. Analyzing and reducing catas-
trophic forgetting in parameter efficient tuning. arXiv
preprint arXiv:2402.18865.

Laria Reynolds and Kyle McDonell. 2021. Prompt
programming for large language models: Beyond
the few-shot paradigm. In Extended abstracts of the
2021 CHI conference on human factors in computing
systems, pages 1–7.

Greene Ryan, Sanders Ted, Weng Lilian, and
Neelakantan Arvind. 2022. New and improved
embedding model. https://openai.com/index/
new-and-improved-embedding-model/. Ac-
cessed: 2025-01-21.

Claude Elwood Shannon. 1948. A mathematical theory
of communication. The Bell system technical journal,
27(3):379–423.

Weijia Shi, Xiaochuang Han, Hila Gonen, Ari Holtz-
man, Yulia Tsvetkov, and Luke Zettlemoyer. 2023.
Toward human readable prompt tuning: Kubrick‘s
the shining is a good movie, and a good prompt too?
In Findings of the Association for Computational
Linguistics: EMNLP 2023, pages 10994–11005, Sin-
gapore. Association for Computational Linguistics.

Taylor Shin, Yasaman Razeghi, Robert L. Logan IV, Eric
Wallace, and Sameer Singh. 2020. AutoPrompt: Elic-
iting Knowledge from Language Models with Auto-
matically Generated Prompts. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 4222–4235,
Online. Association for Computational Linguistics.

Jasper Snoek, Hugo Larochelle, and Ryan P Adams.
2012. Practical bayesian optimization of machine
learning algorithms. Advances in neural information
processing systems, 25.

Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao,
Abu Awal Md Shoeb, Abubakar Abid, Adam Fisch,
Adam R Brown, Adam Santoro, Aditya Gupta, Adrià
Garriga-Alonso, et al. 2023. Beyond the imitation
game: Quantifying and extrapolating the capabili-
ties of language models. Transactions on Machine
Learning Research.

Mirac Suzgun, Nathan Scales, Nathanael Schärli, Se-
bastian Gehrmann, Yi Tay, Hyung Won Chung,
Aakanksha Chowdhery, Quoc V. Le, Ed H. Chi,
Denny Zhou, and Jason Wei. 2023. Challenging
big-bench tasks and whether chain-of-thought can
solve them. In Findings of the Association for Com-
putational Linguistics: ACL 2023, Toronto, Canada,
July 9-14, 2023, pages 13003–13051. Association for
Computational Linguistics.

Gemini Team, Petko Georgiev, Ving Ian Lei, Ryan
Burnell, Libin Bai, Anmol Gulati, Garrett Tanzer,
Damien Vincent, Zhufeng Pan, Shibo Wang, et al.
2024. Gemini 1.5: Unlocking multimodal under-
standing across millions of tokens of context. arXiv
preprint arXiv:2403.05530.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. 2022. Chain-of-thought prompting elicits rea-
soning in large language models. Advances in neural
information processing systems, 35:24824–24837.

Yuxin Wen, Neel Jain, John Kirchenbauer, Micah Gold-
blum, Jonas Geiping, and Tom Goldstein. 2024. Hard
prompts made easy: Gradient-based discrete opti-
mization for prompt tuning and discovery. Advances
in Neural Information Processing Systems, 36.

Qinwei Xu, Xingkun Xu, Chenyi Zhou, Zuozhu Liu,
Feiyue Huang, Shaoxin Li, Lifeng Zhu, Zhian Bai,
Yuchen Xu, and Weiguo Hu. 2025. Towards nor-
malized clinical information extraction in chinese

22317

https://openai.com/index/chatgpt/
https://openai.com/index/chatgpt/
https://openai.com/index/new-embedding-models-and-api-updates/
https://openai.com/index/new-embedding-models-and-api-updates/
https://openai.com/index/hello-gpt-4o/
https://openai.com/index/hello-gpt-4o/
https://doi.org/10.18653/v1/2023.emnlp-main.494
https://doi.org/10.18653/v1/2023.emnlp-main.494
https://doi.org/10.18653/v1/2021.naacl-main.410
https://doi.org/10.18653/v1/2021.naacl-main.410
https://openai.com/index/new-and-improved-embedding-model/
https://openai.com/index/new-and-improved-embedding-model/
https://doi.org/10.18653/v1/2023.findings-emnlp.733
https://doi.org/10.18653/v1/2023.findings-emnlp.733
https://doi.org/10.18653/v1/2020.emnlp-main.346
https://doi.org/10.18653/v1/2020.emnlp-main.346
https://doi.org/10.18653/v1/2020.emnlp-main.346
https://openreview.net/forum?id=uyTL5Bvosj
https://openreview.net/forum?id=uyTL5Bvosj
https://openreview.net/forum?id=uyTL5Bvosj
https://doi.org/10.18653/V1/2023.FINDINGS-ACL.824
https://doi.org/10.18653/V1/2023.FINDINGS-ACL.824
https://doi.org/10.18653/V1/2023.FINDINGS-ACL.824
https://doi.org/10.1016/j.eswa.2025.126585
https://doi.org/10.1016/j.eswa.2025.126585

radiology report with large language models. Expert
Systems with Applications, 271:126585.

Chengrun Yang, Xuezhi Wang, Yifeng Lu, Hanxiao
Liu, Quoc V. Le, Denny Zhou, and Xinyun Chen.
2024. Large language models as optimizers. In
The Twelfth International Conference on Learning
Representations, ICLR 2024, Vienna, Austria, May
7-11, 2024. OpenReview.net.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran,
Tom Griffiths, Yuan Cao, and Karthik Narasimhan.
2024. Tree of thoughts: Deliberate problem solving
with large language models. Advances in Neural
Information Processing Systems, 36.

Mert Yuksekgonul, Federico Bianchi, Joseph Boen,
Sheng Liu, Zhi Huang, Carlos Guestrin, and James
Zou. 2024. Textgrad: Automatic" differentiation" via
text. arXiv preprint arXiv:2406.07496.

Tianjun Zhang, Xuezhi Wang, Denny Zhou, Dale Schu-
urmans, and Joseph E. Gonzalez. 2023. TEMPERA:
Test-time prompt editing via reinforcement learning.
In The Eleventh International Conference on Learn-
ing Representations.

Xilin Zhang, Zhixin Mao, Ziwen Chen, and Shen Gao.
2024. Effective tool augmented multi-agent frame-
work for data analysis. Data Intelligence, 6(4):923–
945.

Yongchao Zhou, Andrei Ioan Muresanu, Ziwen Han,
Keiran Paster, Silviu Pitis, Harris Chan, and Jimmy
Ba. 2023. Large language models are human-level
prompt engineers. In The Eleventh International
Conference on Learning Representations, ICLR 2023,
Kigali, Rwanda, May 1-5, 2023. OpenReview.net.

22318

https://doi.org/10.1016/j.eswa.2025.126585
https://openreview.net/forum?id=Bb4VGOWELI
https://openreview.net/forum?id=gSHyqBijPFO
https://openreview.net/forum?id=gSHyqBijPFO
https://doi.org/10.3724/2096-7004.di.2024.0013
https://doi.org/10.3724/2096-7004.di.2024.0013
https://openreview.net/forum?id=92gvk82DE-
https://openreview.net/forum?id=92gvk82DE-

A Weighted Average Accuracy Across
Datasets

To provide a holistic evaluation of each method’s
performance across all benchmark datasets, we re-
port their Weighted Average Accuracy (WAA). The
WAA is defined as:

WAA =

∑n
i=1Ni ·Ai∑n

i=1Ni
(9)

where Ni denotes the number of test samples and
Ai denotes the average accuracy on the i-th dataset.
n is the number of datasets.

As shown in Figure 4, RIOT achieves the high-
est WAA of 77.2%, outperforming all baselines.
Specifically, it exceeds the Zero-shot CoT method
by 8.2% and shows consistent advantages over au-
tomatic prompt optimization baselines including
APE (5.5%), OPRO (4.7%), TextGrad (4.0%), and
DSPy (2.7%).

Figure 4: Weighted Average Accuracy (WAA) of differ-
ent methods across all datasets. RIOT achieves the high-
est WAA of 77.2%, outperforming all baseline methods.

B Alternative Node Selection Metrics

We consider two alternative metrics to perplexity
for scoring candidate prompts: Entropy and Length.
Given a prompt sequence (x0, x1, . . . , xJ), the met-
rics are defined as:

Entropy = −
J∑

j=1

pθ(xj | x<j) log pθ(xj | x<j)

Length = J

where pθ(xj | x<j) denotes the probability as-
signed to token xj given its preceding context.

Method TextGrad RiOT (Single) RiOT (Multi)

Time (s) 989.47 2741.41 1080.56

Table 6: Runtime comparison between TextGrad and
RiOT under different threading settings.

C Computational Cost Analysis

In this section, we conduct an explicit analysis of
the computational overhead introduced by RIOT.
Compared to TextGrad, the additional cost mainly
stems from the need to generate K candidate
prompts at each optimization step (with K = 3
in our experiments) and to perform semantic fu-
sion, which involves computing embeddings and
evaluating semantic similarity for residual merging.

Since RIOT adopts TextGrad as its optimiza-
tion backbone, we compare their runtime to assess
the computational complexity. Theoretically, RiOT
requires approximately K times the optimization
time of TextGrad. In practice, however, this over-
head is effectively mitigated by leveraging mul-
tithreading, which enables parallel execution of
candidate generation steps.

As shown in Table 6, the multithreaded version
of RIOT only incurs a modest increase in run-
time (approximately 9%) compared to TextGrad,
while achieving a notable improvement in accuracy.
This demonstrates that the trade-off between per-
formance gain and computational cost is both rea-
sonable and practical for real-world applications.

D Additional Evaluation on a Small-Scale,
High-Difficulty Benchmark

To further evaluate the generalization ability of
RIOT in complex reasoning scenarios, we conduct
an additional experiment on the AMC12 bench-
mark. AMC12 (American Mathematics Competi-
tion 12) is a small-scale but high-difficulty dataset
consisting of 83 math problems from the official
2022 and 2023 exams. It requires symbolic manip-
ulation and multi-step reasoning, posing substan-
tial challenges for prompt optimization methods.
The dataset is split into training, validation, and
test sets in a 20/20/43 ratio. As shown in Table 7,
RIOT achieves an accuracy of 46.0%, surpassing
all baselines and improving over the zero-shot CoT
baseline by +5.1%. These results serve as a further
validation of RIOT’s robustness and effectiveness
in low-resource, high-complexity settings.

22319

Method Zero-Shot CoT Four-Shot CoT Twenty-Shot CoT APE OPRO TextGrad DSPy RiOT (Ours)

Accuracy (%) 40.9 37.2 30.7 42.8 42.8 40.9 41.9 46.0
∆ +0.0 -3.7 -10.2 +1.9 +1.9 +0.0 +1.0 +5.1

Table 7: Comparion of Automatic Prompt Optimization Methods on the AMC12 benchmark.

E Details of Evaluation Datasets

In this section, we provide detailed information
about the five reasoning datasets used in our study.
Table 8 summarizes dataset statistics, while Ta-
ble 11 provides representative examples. To ensure
a fair comparison, all experiments follow consistent
data sampling protocols: fixed-size development
sets with 20 training and 20 validation samples
each task. Below we detail each dataset’s unique
characteristics.

LogiQA 2.0 (Liu et al., 2023) is a complex log-
ical reasoning dataset derived from the Chinese
Civil Service Examination. We use its nature lan-
guage inference subset, which includes 6,871 train-
ing samples, 3,807 validation samples, and 3,240
test samples. The problems are categorized into
five types: categorical reasoning, sufficient condi-
tional reasoning, necessary conditional reasoning,
disjunctive reasoning, and conjunctive reasoning.
We sample 160 test samples that cover these five
reasoning types from the original dataset.

StrategyQA (Geva et al., 2021) is a common-
sense reasoning task that evaluates the model’s abil-
ity to infer unstated intermediate facts and strate-
gically combine them to derive correct answers,
leveraging general world knowledge. The original
dataset consists of 2,061 training samples and 229
test samples. Following previous research (Chen
et al., 2023; Yuksekgonul et al., 2024; Du et al.,
2023; Yao et al., 2024), we sample 100 test sam-
ples for evaluation.

Object Counting (Srivastava et al., 2023; Suz-
gun et al., 2023) measures the model’s ability to
count objects within a given context while ignor-
ing distractors. This task emphasizes fundamental
reasoning over arithmetic by focusing on semantic
understanding. The original dataset contains 250
test samples. For our study, we sample 210 test
samples for evaluation.

GSM8K (Cobbe et al., 2021) evaluates the
model’s ability to solve basic mathematical prob-
lems requiring multi-step reasoning. This task fo-
cuses on contextual understanding and numerical
computation. The original dataset consists of 7,473
training samples and 1,319 test samples. Following

previous research (Chen et al., 2023; Yuksekgonul
et al., 2024; Du et al., 2023; Yao et al., 2024), we
sample 100 test samples for evaluation.

Date Understanding (Srivastava et al., 2023;
Suzgun et al., 2023) assesses the model’s ability to
comprehend temporal information, requiring rea-
soning over explicit or implicit data contexts to
identify specific dates. The original dataset con-
tains 369 test samples. For our study, For our study,
we sample 329 test samples for evaluation.

Task Training Validation Test
LogiQA 2.0 20 20 160
StrategyQA 20 20 100

Object Counting 20 20 210
GSM8K 20 20 100

Date Understanding 20 20 329

Table 8: Dataset Statistics.

F Details of Manual Prompt Construction

In this section, we provide detailed information
about the design and implementation of the zero-
shot and few-shot CoT prompts used as baselines
in our experiments. Both prompt variants follow
a structured template to ensure consistency across
tasks while accommodating task-specific require-
ments. The general template Pk

CoT is defined as:

Pk
CoT = Ptask+Pthink+Pformat+{P(i)

demo}ki=1 (10)

where Ptask defines the precise task definition and
the objective, Pthink is the reasoning guidance,
Pformat denotes output structure constraints and
{P(i)

demo}ki=1 is the demonstration examples. The
zero-shot CoT prompts {P0

CoT} is exemplified in
Table 10. The few-shot CoT prompts {Pk

CoT} ex-
tend this template by appending demonstrations
from the training set, and each demonstration con-
sists of an input-output pair. An example is visual-
ized in Figure 5. These manual prompts represent
the most widely adopted approaches in practice
and serve as fundamental baselines for evaluating
prompt engineering techniques.

22320

TRUE / FALSE GENERATIVE MULTIPLE-CHOICE

Implementation LogiQA 2.0 StrategyQA Object Counting GSM8K Date Understanding
(N=160) (N=100) (N=210) (N=100) (N=329)

Sentence-based 61.4 ±1.5 74.6 ±1.4 86.9 ±0.6 81.2 ±1.2 78.2 ±0.6

LLM-based 60.1 ±1.4 ↓1.3 72.4 ±1.2 ↓2.2 81.7 ±1.3 ↓5.2 75.4 ±2.8 ↓5.8 80.2 ±0.3 ↑2.0

Table 9: Comparison of performance between two implementations for text residual connection across five tasks. We
report accuracy (%) along with standard deviation. Red arrows indicate the absolute performance decrease, while
green arrows indicate the absolute performance increase, both compared to the sentence-based implementation. N
represents the number of samples used for testing. The sentence-based implementation outperforms the LLM-based
implementation.

G An Alternative Implementation of the
Text Residual Connection

In our exploration of Text Residual Connection,
we experiment with two distinct implementation
approaches. The first approach, introduced in the
Section 4.2, is the sentence-based Implementation,
which utilizes sentence tokenization and vector sim-
ilarity to perform the text residual connection. The
second approach, the LLM-based Implementation,
leverages the strong meta-reasoning capabilities of
modern LLMs without explicit lexical analysis. To
be specific, we develop a rigorously engineered
prompt template to instruct LLMs in performing
text residual connection. As shown in Figure 6, the
prompt template incorporates four key principles:
(1) Task Specification: Explicit definition of input-
output relationships. (2) Constraint Enumeration:
Clear operational boundaries. (3) Exemplar Guid-
ance: Illustrative examples demonstrating ideal
behavior. (4) Error Prevention: Anticipating and
mitigating common failure modes.

We evaluate the performance of these two imple-
mentations across five datasets, using GPT-4o to
implement the LLM-based Implementation. The
results, presented in Table 9, show that the sentence-
based implementation generally outperforms the
LLM-based implementation, particularly in tasks
involving binary classification (True/False) and
generative tasks. Additionally, during the experi-
mental process, we observe that the LLM-based im-
plementation does not always strictly adhere to the
task requirements in the same way as the sentence-
based implementation. Specifically, the LLMs tend
to modify or omit parts of the original content in
the prompt during execution. For these reasons, we
choose to use the sentence-based implementation
for the main experiments in this study, as it provide
more consistent and reliable results.

Despite these challenges, the LLM-based imple-
mentation remains promising, especially given its
end-to-end nature and the lack of the need for hy-
perparameter tuning. This characteristic makes it
easier to integrate directly into existing optimiza-
tion frameworks, which is a substantial advantage
in practical applications. Further development and
exploration are required to refine this approach.

22321

Task Zero-Shot Prompt (Initial Prompt)

LogiQA 2.0
You will solve logical reasoning problems based on the given facts. Think
step by step. The last line of your response should be of the following format:
"Answer: YES" or "Answer: NO".

StrategyQA
You will answer a commonsense reasoning task. Think step by step. The last
line of your response should be of the following format: "Answer: YES" or
"Answer: NO".

Object Counting
You will answer a reasoning question. Think step by step. The last line of your
response should be of the following format: ‘Answer: $VALUE’ where VALUE
is a numerical value.

GSM8K
You will answer a mathematical reasoning question. Think step by step. The
last line of your response should be of the following format: ‘Answer: $VALUE’
where VALUE is a numerical value.

Date
Understanding

You will answer a multiple-choice question related to date understanding. Think
step by step. The last line of your response should be of the following format:
‘Answer: $VALUE’ where VALUE is a single letter.

Table 10: Zero-Shot Prompts (initial prompt for optimization) for various reasoning tasks. Each prompt consists
of three components: the task definition Ptask, the reasoning guidance Pthink, and the output structure constraints
Pformat.

Figure 5: An example of few-shot prompts from GSM8K. The purple section represent the demonstration examples
{P(i)

demo}ki=1. The examples are drawn from the training set.

22322

Task Example Problem

LogiQA 2.0

Input: Given the fact: Balance is particularly important when (...) If all the
media were to adopt such a perverse interpretation of balanced reporting, the
public would be given a picture of a world where each party in every conflict
had an equal measure of justice on its side, contrary to our experience of life
and, indeed, our common sense. Does it follow that: The main point of the
argument is that balanced reporting requires impartially revealing injustices
where they occur no less than fairly presenting the views of each party in a
conflict. Ground Truth: Yes.

StrategyQA Input: Question: Are months based on the solar cycle? Ground Truth: Yes.

Object Counting
Input: Question: I have a fridge, an oven, a car, a toaster, a microwave, a table,
and a bed. How many objects do I have? Ground Truth: 7.

GSM8K

Input: Question: Stefan goes to a restaurant to eat dinner with his family. They
order an appetizer that costs $10 and 4 entrees that are$20 each. If they tip 20%
of the total for the waiter, what is the total amount of money that they spend at
the restaurant? Ground Truth: 108.

Date
Understanding

Input: Question: In the US, Thanksgiving is on the fourth Thursday of Novem-
ber. Today is the US Thanksgiving of 2001. What is the date today in
MM/DD/YYYY? Choices: A. 01/16/2003 B. 11/21/2002 C. 09/04/2002 D.
08/24/2002 E. 11/22/2002 F. 11/23/2002 Ground Truth: E.

Table 11: Example problems and their corresponding ground truths for various reasoning tasks. The tasks cover
a range of domains, including logical reasoning (LogiQA 2.0), commonsense reasoning (StrategyQA), semantic
understanding (Object Counting), mathematical reasoning (GSM8K), and temporal reasoning (Date Understanding).

Figure 6: The prompt template for the LLM-based Implementation of Text Residual Connection.

22323

