
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 22252–22264
July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

Detecting Sockpuppetry on Wikipedia Using Meta-Learning

Luc Raszewski
The University of Melbourne

lraszewski@student.unimelb.edu.au

Christine De Kock
The University of Melbourne

christine.dekock@unimelb.edu.au

Abstract

Malicious sockpuppet detection on Wikipedia
is critical to preserving access to reliable in-
formation on the internet and preventing the
spread of disinformation. Prior machine learn-
ing approaches rely on stylistic and meta-data
features, but do not prioritise adaptability to
author-specific behaviours. As a result, they
struggle to effectively model the behaviour of
specific sockpuppet-groups, especially when
text data is limited. To address this, we pro-
pose the application of meta-learning, a ma-
chine learning technique designed to improve
performance in data-scarce settings by training
models across multiple tasks. Meta-learning
optimises a model for rapid adaptation to the
writing style of a new sockpuppet-group. Our
results show that meta-learning significantly en-
hances the precision of predictions compared to
pre-trained models, marking an advancement in
combating sockpuppetry on open editing plat-
forms. We release a new dataset of sockpuppet
investigations to foster future research in both
sockpuppetry and meta-learning fields.

1 Introduction

Over recent years, social media sites have seen a
steady increase in the presence of fake accounts
(Khaled et al., 2018). These accounts are often
used to spread fake news and seed distrust for po-
litical gain (Shu et al., 2017). Wikipedia is not
immune to such attacks: Saez-Trumper (2019) in-
vestigated political and religious groups imposing
their narratives on articles. Attacks on Wikipedia
are particularly threatening as articles often serve
as the ground-truth for automated fact checking
systems; used to combat disinformation on other
platforms (Thorne et al., 2018).

Changes to articles on Wikipedia are a collabo-
rative process, where decisions are made via the
consensus of editors. Malicious users undermine
this process through Sockpuppetry: the use of mul-
tiple accounts to stack votes, fake majority support

of a view or make a counter-perspective look ab-
surd (Saez-Trumper, 2019). They have been used
to vandalise articles (Solorio et al., 2013a), support
political views (Kumar et al., 2017) or improve
personal standing (Stone and Richtel, 2007).

Many machine learning approaches have been
proposed, including linking sockpuppet accounts
through their writing style (Solorio et al., 2013a;
Sakib and Spezzano, 2022) using a related tech-
nique called authorship-attribution. However,
when the available text is scarce, it is difficult to
profile an author accurately (Eder, 2013). In the
case of sockpuppet detection, where available text
samples are short (Solorio et al., 2013b), this makes
achieving good performance difficult. Previous ap-
proaches (Solorio et al., 2013a; Sakib and Spez-
zano, 2022) manage this challenge by merging the
corpus of individual sockpuppet investigations into
a single dataset. A model trained on this dataset
then learns the writing style of sockpuppets as a
whole. Whilst the model can be later fine-tuned, it
will not be sensitive to author-specific features.

Meta-learning instead leverages prior experi-
ence to perform well on limited data. Rather than
merging the corpus of sockpuppet investigations
together and training one large model, it considers
each as a separate learning task – a new model is
trained for each individual investigation. These
base-models begin as a copy of a meta-model, a
single model that is updated by what is learned by
each base-model. The meta-model learns a gen-
eral understanding of sockpuppets that can quickly
adapt to the behaviour of an unseen puppetmas-
ter, the user behind a group of sockpuppets. We
elaborate on this process in Section 4.

In this study, we are the first to apply meta-
learning to the problem of sockpuppet detection.
Our work makes three main contributions:

1. We evaluate the application of meta-
learning to the task of sockpuppet detection on
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Wikipedia. We find that learning over a distri-
bution of tasks significantly improves prediction
precision over pre-trained approaches. This out-
come is valuable for sockpuppet detection, where
confidence in positive identifications is paramount.
Our approach1is applicable to other online commu-
nities as well, and we release it publicly.

2. We construct and publicly release a dataset of
sockpuppet investigations on Wikipedia. Our
dataset1 improves upon existing datasets which are
either outdated (Solorio et al., 2013a), unreleased
publicly (Kumar et al., 2017) or do not preserve
investigation structure (Sakib and Spezzano, 2022).

3. We formulate a more realistic task definition.
Previous approaches (Sakib and Spezzano, 2022)
train on data from any number of accounts within
a sockpuppet-group, preemptively revealing any
deceptive efforts made by a puppetmaster to the
model. Our model is fine-tuned on just one accused
user, as it would be when deployed.

2 Related Work

2.1 Sockpuppetry
Sockpuppetry is typically described as the use of
multiple accounts by a single user for deceptive
or malicious purposes (Zheng et al., 2011; Solorio
et al., 2013a; Bu et al., 2013; Liu et al., 2016; Sakib
and Spezzano, 2022), however, not all sockpup-
pets are malicious. Kumar et al. (2017) provide a
more general definition: A sockpuppet is any ac-
count controlled by a user with at least one other
account. The set of these accounts is referred to
as a sockpuppet-group, and their controlling user
their puppetmaster. We use this definition with
one small amendment: that these accounts be, at
some point, operated concurrently. This adjust-
ment distinguishes the task of sockpuppet detection
from that of ban evasion, where secondary accounts
are created strictly after the primary accounts are
banned (Niverthi et al., 2022). Other similar tasks
include bot campaign detection, where accounts
are controlled by automated agents instead of hu-
mans. Advancements in human-like text generation
is blurring this distinction (Sallah et al., 2024).

2.1.1 Motivation
Malicious users use sockpuppets to vandalise
Wikipedia pages (Solorio et al., 2013a), propa-
gandise political views (Kumar et al., 2017; Afroz

1https://github.com/lraszewski/wiki-socks

et al., 2012), or improve their own public image
(Owens, 2013). Sockpuppets undermine collabora-
tion on Wikipedia through false majority opinions,
vote stacking (Solorio et al., 2013a) and Straw man
socks, which argue easily refuted opposing argu-
ments to discredit opposition (Kumar et al., 2017).

2.1.2 Detection

The current approach to detecting sockpuppetry on
Wikipedia is manual2: users argue their case before
a presiding administrator, who may supplement
evidence with technical logs. Once a verdict is
reached, guilty accounts are suspended and the
investigation is archived.

Many automated approaches have been proposed
to support this process. Authorship Attribution
(AA) has been used to determine whether the intent
and writing style of accounts are similar enough to
be the same user. Linear classifiers with manually
selected authorship features have achieved consis-
tent results (Solorio et al., 2013a; Bu et al., 2013;
Liu et al., 2016; Sakib and Spezzano, 2022). They
use lexical, structural and syntactic features (Bu
et al., 2013). AA classifiers struggle when given
only short pieces of text (Shrestha et al., 2017),
which is typically all that is available in the case of
sockpuppet detection (Solorio et al., 2013a). Fea-
tures may also require domain specific selection
(Kotsiantis et al., 2007), and typically act under the
assumption that the authors are not attempting to
evade detection (Solorio et al., 2013a). Faced with
adversarial authors, commonly used authorship fea-
tures are easily evaded (Brennan et al., 2012).

Meta-data approaches focus on the behaviour of
users. Tsikerdekis and Zeadally (2014) identified
that the number and time between edits deviates
from that of normal users over time. Meta-data
approaches typically do not require pairwise com-
parison between accounts, which reduces compu-
tational complexity. Kumar et al. (2017) highlight
six points of divergence from usual user activity.
These features can be combined with authorship
features for improved performance (Solorio et al.,
2013a; Sakib and Spezzano, 2022). In all prior
literature, approaches consider a single model that
classifies users or edits as belonging to a sockpup-
pet or not, rather than training a new model for
each investigation (Solorio et al., 2013a; Bu et al.,
2013; Liu et al., 2016; Sakib and Spezzano, 2022).

2https://en.wikipedia.org/wiki/Wikipedia:
Sockpuppet_investigations
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2.2 Meta-learning

Meta-learning research focuses on the problem of
“learning to learn”. In this setting, a machine learn-
ing model gains experience over a collection of
tasks, rather than just one, and in doing so im-
proves its performance on future tasks (Hospedales
et al., 2020). Hospedales et al. (2020) define base-
learning as the inner learning algorithm solving a
task, such as authorship attribution. Meta-learning
is an outer learning algorithm which updates the in-
ner algorithm according to its own meta-objective,
typically quick adaptation to new tasks (Finn et al.,
2017; Snell et al., 2017; So, 2021).

Meta-learning has been successful in many do-
mains, such as image classification (Antoniou et al.,
2019), sentiment analysis (Liang et al., 2023), and
text classification (Bansal et al., 2021). Tian et al.
(2023) investigated the approach to detect state-
sponsored trolls. Beyond reducing data depen-
dence, other limitations of deep neural networks,
such as unsupervised learning performance, may
also be improved (Hospedales et al., 2020).

Some limitations include a requirement for a
large number of tasks (Al-Shedivat et al., 2021),
significant compute costs of first-order techniques
(Finn et al., 2017), generalisation to out of distribu-
tion tasks and a lack of realistic benchmark datasets
(Vettoruzzo et al., 2023).

Gradient-based Meta-Learning approaches are
made up of several families. Gradient-based ap-
proaches use gradient descent to update a model’s
parameters to minimise the loss according to a
meta-objective. These approaches are model-
agnostic, making them advantageous over Metric
and Model-based approaches that make restrictions
on model architecture. The foremost approach is
MAML (Finn et al., 2017) and its successors (An-
toniou et al., 2019; Triantafillou et al., 2020; Finn
et al., 2018; Rajeswaran et al., 2019). A related ap-
proach is Reptile (Nichol et al., 2018) that requires
significantly less compute whilst achieving similar
performance (Vinyals et al., 2016). An advantage
of Reptile over MAML is that it does not require a
train-test split for each training task (Nichol et al.,
2018), allowing more data to be used in training.

Metric-based Metric based approaches learn a
distance function (metric) that clusters samples
from the same class together. This metric should
then generalise well on new tasks (Hospedales
et al., 2020), and in most approaches does not re-

quire fine-tuning (Sung et al., 2018). They include
prototypical networks (Snell et al., 2017), siamese
networks (Koch et al., 2015), relation networks
(Sung et al., 2018) and matching networks (Vinyals
et al., 2016). Unlike gradient-based approaches,
they make some restrictions on model-architecture.

Model-based Model-based methods use a model
architecture specifically designed for rapid param-
eter updates. They include extended neural turing
machines (Santoro et al., 2016) and meta-networks
(Munkhdalai and Yu, 2017). Their main drawback
is their inherent restrictions on model design.

3 Dataset

We create and release3 a novel sockpuppetry
dataset for this study. Using the meta-learning
paradigm, each investigation is framed as a dis-
crete problem, where writing samples from a single
sockpuppet-group must be separated from writing
samples of non-sockpuppets.

Tasks consist of writing samples from both
sockpuppet and non-sockpuppet users. Edits to
Wikipedia are called contributions, and contain a
message component where the user can describe
their edit. As in previous approaches (Solorio
et al., 2013a; Sakib and Spezzano, 2022), we use
these contribution messages as the writing sam-
ples. Negative samples are contributions from non-
sockpuppet accounts drawn from the same time
and article distribution as the sockpuppet-group.

The final dataset consists of 23, 610 tasks. For
each contribution, we provide the timestamp, re-
vision ID, ID of the preceding contribution, user
name, article title, contribution message, and a bi-
nary label. A sample from one investigation is
given in Table 6 in Appendix A.

3.1 Data collection

To collect the positive samples, the confirmed
Wikipedia sockpuppets page4 was crawled using a
combination of Pywikibot5 and MediaWiki6 API
calls, which extracted each investigation page and
the contributions of each confirmed sockpuppet.

Negative samples for each task were collected
from the same articles and within the active time
period (first and last contribution) of the task’s

3https://github.com/lraszewski/wiki-socks
4https://en.wikipedia.org/wiki/Category:

Wikipedia_sockpuppets
5https://github.com/wikimedia/pywikibot
6https://www.mediawiki.org/wiki/MediaWiki
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sockpuppet-group. For each positive sample, two
random timestamps were drawn, and the next ten
contributions made after each was collected. From
each set of ten, the first valid (non-duplicate, non-
sockpuppet) sample was selected. Multiple sam-
ples from the set of ten were not collected, so as to
maintain a uniformly random temporal distribution.
If a set of ten contained no valid negative samples,
the attempt was abandoned. This occurred in cases
where the active time period was very short, or the
articles were inactive or new.

In reality, there is a class imbalance between
the number of sockpuppet and non-sockpuppet ac-
counts. Negative contributions were thus over sam-
pled. Arbitrarily, an ideal ratio of two negative
samples to each positive was set. It is unclear how
an informed estimate might be reached: the true ra-
tio of genuine users to sockpuppets would not only
be too extreme to replicate or learn with, but inves-
tigations only occur on accused users, not all users.
Ideally one might ascertain the ratio of accused
sockpuppets to confirmed sockpuppets, however as
the investigations of falsely accused accounts are
not archived together, this is impractical to obtain.

For investigations that did not reach the ideal
ratio of two negatives for each positive, a second
identical pass was performed. This strategy over-
sampled articles with more non-sockpuppet editors
to make up for the shortfall. This yielded some
tasks with up to four negatives for each positive.

664 investigations failed to collect any negative
samples. This may have occurred for a few reasons,
namely that the sockpuppet activity was contained
to pages without any non-sockpuppet editors7, that
the sockpuppet activity was confined to a short pe-
riod of time that did not contain any other editors8,
or that the sockpuppets made very few contribu-
tions9. These investigations were retained in the
dataset, but were excluded from any experiments.
984 investigations contained no positive samples.
These were removed, and a list of empty investiga-
tions provided alongside the rest of the dataset.

4 Method

We provide two task definitions. The first is a de-
scription of the base-learning problem, which con-

7https://en.wikipedia.org/wiki/Category:
Wikipedia_sockpuppets_of_Alliasalmon

8https://en.wikipedia.org/wiki/Category:
Wikipedia_sockpuppets_of_Appearedclip

9https://en.wikipedia.org/wiki/Category:
Wikipedia_sockpuppets_of_Lolawin

siders training and evaluating a classifier on a single
task. This is also referred to as the inner-loop in the
context of meta-learning. The second description
is of the meta-learning problem, and describes how
a meta-model is learnt across a distribution of base-
learning tasks. This is also called the outer-loop.

4.1 Base-learning
The base-learning task is a binary classification
problem. As input, the model will receive two data
sources: the article page and message describing
the contribution. The model outputs a classifica-
tion, identifying the contribution as either a positive
(made by a sockpuppet), or negative sample.

In a deployed setting, there is no given list of con-
firmed sockpuppets, only a set of accused accounts.
Therefore, a model may only be trained on the con-
tributions of a single accused user, which may then
be tested on the contributions of the remaining ac-
cused accounts. We make similar restrictions on
our training data: for each investigation, we define
the puppetmaster as the sockpuppet with the most
contributions. A model is then trained on their con-
tributions. This model is assessed by its ability to
distinguish the contributions of the remaining sock-
puppets from the samples of non-sockpuppets. By
contrast, prior works (Sakib and Spezzano, 2022;
Solorio et al., 2013a) train on data from a mix of
accounts. If a puppetmaster attempts to change
their behaviour on sockpuppet accounts, this may
be unrealistically revealed to a model in training.

We call the set of puppetmaster samples the train
set, and the set of sockpuppet samples the test set.
Negative samples are split between the two sets
proportionally. Due to how these sets are created,
test sets much larger than the train set are common.

A validation set is split from the train set, con-
taining 20% of the available samples and maintain-
ing the same proportion of positive and negative
samples. This set is used during base-learning to
provide feedback as the model is being trained,
and to prevent over-fitting via early stopping. We
provide summary statistics of the train-test split in
Table 3 in Appendix A.

4.2 Meta-learning
The meta-learning problem considers a distribution
of tasks (Finn et al., 2017). This distribution is
split into two sets, meta-train and meta-test. The
meta-train set is used for the meta-learning process,
whilst the meta-test set is used to evaluate how well
the meta-learned model performs. The average
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Figure 1: Dataset topology.

performance of the models on these tasks is what
is reported in Section 7.

Figure 1 depicts the dataset topology, where each
row represents the samples of a task. The tasks are
split into the meta-train and meta-test sets, and each
task is split into train, validation and test sets.

We make several restrictions on the shape of this
distribution. To ensure that each task has an over
representation of negative samples, we limit the
distribution to only include tasks with a negative to
positive ratio of at least one. We also ensure that
each task has at least ten puppetmaster samples
and five sockpuppet samples. These restrictions are
derived from the model architecture, which uses a
triplet contrastive loss function that requires at least
two positive samples in each task. By ensuring each
task contains at least ten puppetmaster samples, we
guarantee a valid validation set. These restrictions
reduce the total number of tasks from 23, 610 to
13, 549. 90% of tasks (12, 194) are reserved for
the meta-train set, and the rest (1, 355) become the
meta-test set. To compare the model with non-meta-
learning approaches, the meta-train set will either
be used for the pre-trained approach, or, where no
pre-training is necessary, will not be used at all.

Whilst training on the meta-train set of tasks,
approaches are not required to maintain the distinc-
tion between task specific train, test and validation
sets. These sets are only preserved to the extent
that they are required for the meta-learning or pre-
trained approach. The training process on each
meta-test task is kept constant throughout each ap-
proach. Each model is given a maximum of ten
epochs to train on the new task before predictions
must be made. The metrics of each task in the
meta-test set are then averaged to create the overall
metrics for the approach. Each approach is run
three times, and their mean and standard deviation
reported in Section 7.

4.3 Meta-learning Strategy
We use Reptile as our meta-learning strategy.
This is because it is similarly performant to
MAML whilst being less computationally expen-
sive (Nichol et al., 2018; Rajeswaran et al., 2019).
Compared to metric and model-based approaches,
Reptile has the benefit of being model-agnostic,
allowing flexibility in model architecture.

We use the serial implementation that updates
the parameters directly through linear interpolation.
It works by repeatedly adapting a clone of the meta-
model to a task Ti, and then moving the parameters
of the original meta-model θ toward the adapted
parameters θ′ by a factor of ϵ. The parameters
of the meta-model therefore move in a direction
common to the optimal parameters of each task.
The Reptile algorithm is provided in Algorithm 1.

Algorithm 1 Reptile Algorithm (Serial)

Input: Interpolation rate ϵ, inner steps k, task
distribution p(T ), initial model parameters θ
for iteration = 1, 2, . . . do

Sample a task Ti ∈ p(T )
Compute θ′ = Uk

Ti(θ), denoting k steps of
SGD or Adam
Update θ ← θ + ϵ(θ′ − θ)

end for

5 Model Architecture

A diagram of our approach is given in Figure 2.
The sample represents a positive or negative contri-
bution. The two textual inputs of the contribution,
page and message, are concatenated using the ap-
propriate separator token. We use RoBERTa10 (Liu
et al., 2019), a pre-trained transformer with frozen
parameters, to generate a matrix of contextualised
word embeddings. This approach is typical of re-
cent authorship attribution classifiers (De Langhe
et al., 2024; Huertas-Tato et al., 2022; Ai et al.,
2022; Rivera-Soto et al., 2021).

This matrix is then fed to a transformer encoder,
optimised using Adam (Kingma and Ba, 2014).
This encoder is where the majority of task learning
takes place, and is the model that will be trained
using meta-learning.

Once the authorship embeddings are produced,
a neural network processes the embedding to pro-
duce a logit, which is later transformed to produce

10https://huggingface.co/sentence-transformers/
all-distilroberta-v1
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discrete classifications. The classifier has two fully
connected layers of dimension 768 with dropout.
It also uses the Adam optimiser, and is trained us-
ing a cross-entropy loss function. The classifier
is trained on the embeddings produced after the
encoder has been trained.

5.1 Loss Functions

The encoder model is trained using triplet margin
loss (Schroff et al., 2015). A contrastive loss func-
tion is typical in natural language tasks comparing
document similarity (Pennington et al., 2014; De-
vlin et al., 2019), and also has prior success in
contrastive authorship models (Huertas-Tato et al.,
2022). The triplets are created by iterating through
all the positive samples as the anchor, and randomly
selecting another negative and positive. Typically,
the anchor may be drawn from both classes, how-
ever we limit triplets to the positive sockpuppet
class. This is because the authors in the negative
samples are all different, and therefore should oc-
cupy different regions in the embedding space –
only positive samples should be clustered together.

For the classifier models that interpret the embed-
dings, we use binary cross-entropy loss.

5.2 Training Parameters

When training both the classifier and encoder on the
meta-test set of tasks, each was given a maximum
of ten epochs, where each epoch is one complete
pass through the train set. This is a limitation of
the time and computing resources available.

We used a variable batch size strategy that scaled
with the length of the task. This catered for smaller
tasks whilst still allowing larger tasks to benefit
from the stability and speed of larger batch sizes.
We used early stopping based on the validation
loss with a patience of 3 epochs. During the meta-
learning stage, the model was trained over five
epochs of the meta-train set of tasks. On each
task, Reptile performed five gradient steps before
the parameters were updated using an interpolation
rate of 0.2. The β1 parameter of Adam was set to
0 as recommended (Nichol et al., 2018). At the
end of each epoch, the model was saved along with
the sum of the training loss of each task in that
epoch. The best performing model relative to the
validation loss was selected.

5.3 Hyper-parameters

We tuned model hyper-parameters using the Op-
tuna11 framework. The encoder and classifier mod-
els were tuned together. 100 tests were run, where
the model was trained over ten randomly selected
tasks from the meta-train distribution of tasks. The
performance of each on their respective tasks was
averaged and provided to the optimiser as feed-
back. We performed three optimisations, one for
the encoder and classifier models, a second for the
RoBERTa baseline classifier (Section 6.1), and a
third for the Reptile parameters. We provide the
tuned hyper-parameters in Table 5 in Appendix A.

6 Metrics

The main metrics for comparison between ap-
proaches should be the area-based metrics, AU-
ROC and AUPRC. This is because they do not re-
quire a specific threshold to be decided, which may
distort the appearance of classifier performance.
We also provide the F1-Score and F0.5-Score. The
first is justified by previous literature (Sakib and
Spezzano, 2022; Solorio et al., 2013a,b), whilst the

11https://optuna.org/
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second presents a balance between recall and preci-
sion more relevant to the deployment environment,
where false positives are strongly discouraged12.
We also provide the accuracy, precision, and recall
of each model as supplementary metrics.

Reported metrics undergo an aggregation pro-
cess. For each experiment, the results of the ap-
proach on the test set of each task in the meta-test
set (see Figure 1) are computed. The results of each
task are then averaged to find the overall result of
the approach for that experiment. Three experi-
ments of each approach are run. The metrics across
each experiment are averaged, and the standard
deviation provided as a confidence interval.

6.1 Baselines
We consider several baselines, including two trivial
baselines (random and majority classifiers), also
used by Solorio et al. (2013a). In the case of the
majority baseline, the class predicted is based on
the training dataset.

RoBERTa baseline To assess whether the en-
coder model itself provides a significant improve-
ment, we train a simple binary classifier on
the sentence-level RoBERTa embeddings. This
changes the model architecture by reducing the
output from the frozen RoBERTa model from a
two-dimensional matrix to a one-dimensional vec-
tor. The vector is then fed directly into a fully
connected neural network classifier. Huertas-Tato
et al. (2022) employed a similar baseline to assess
their authorship representation learner.

Non-meta-learning approach To isolate the ef-
fects of meta-learning, we also test our approach
without it. This model will follow the same training
approach as the Meta-learned model on test tasks.

Pre-trained approach The pre-trained approach
trains our model on a merged dataset of the meta-
train set of tasks. This is the approach used in
prior literature (Solorio et al., 2013a; Sakib and
Spezzano, 2022). At test time, this approach will
be fine-tuned on tasks in the meta-test set.

Upper limit As a significant portion of all con-
tributions do not have any text in their message
feature (24.45% of all contributions, 63.64% of
which are positive samples), these contributions
are indistinguishable from one another using the

12https://en.wikipedia.org/w/index.php?
title=Wikipedia:Sockpuppet_investigations/SPI/
Administrators_instructions&oldid=1173289303

provided features. Therefore, the upper limit of
performance is more accurately defined as the per-
fect classifier on all contributions where a message
value is present, and a random classifier otherwise.

7 Results

Our results are presented in Table 1. Metrics are
measured as the mean across all three test runs
with the standard deviation as error bounds. The
classification threshold used to compute predictions
from logits for applicable metrics were computed at
a task level, using the optimal threshold relative to
the F0.5-Score on the task validation set. A T-test
was used to evaluate the statistical significance of
the meta-encoder compared to the standard encoder,
indicated with asterisks. The averaged ROC and
PR curves are provided in Appendix A.

The meta-learning approach significantly out-
performs other approaches (P << 0.05) in AU-
ROC, AUPRC, F1-score, F0.5-score and accuracy,
with substantial improvements of approximately
10%. Recall did not improve significantly, tying
the overall improvement to an increase in precision.
This suggests that meta-learning helps the classifier
make fewer false positive predictions whilst pre-
serving its ability to identify true positives. This
result is desirable for the detection of any mali-
cious behaviour, as unjustly punishing innocent
users is typically considered worse than missing
a few malicious ones – the emphasis is on a very
high confidence in positive predictions.

The metrics of the pre-trained encoder are un-
expected. The additional pre-training should have
provided the model with a general understanding
of the task prior to fine-tuning, however the ap-
proach falls behind the non-pre-trained encoder
model on most metrics. In prior work (Sakib and
Spezzano, 2022; Solorio et al., 2013a), the pre-
trained approach performed well. This reduction
in performance may be due to the harder task set-
ting, however there may be other causes. Sakib and
Spezzano (2022) combined their authorship attri-
bution features with behavioural features, which
may be more consistent across tasks, and therefore
better for the pre-trained approach. This suggests
approaches that focus on authorship attribution may
require a model to have greater adaptability.

The lowest performing metric is the AUPRC
result. This is likely due to the class imbalance,
which overall consisted of 65.60% negative and
34.40% positive samples. The AUPRC is more
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Approach AUROC AUPRC F1-Score F0.5-Score Accuracy Precision Recall
Random 50.10± 0.14 50.85± 0.09 40.34± 0.11 36.52± 0.12 50.10± 0.16 34.46± 0.12 50.05± 0.15
Majority - - - - 65.60± 0.00 - -
RoBERTa 65.70± 0.00 50.45± 0.03 57.97± 0.01 57.52± 0.06 66.98± 0.06 59.54± 0.13 67.63± 0.17
Standard Enc. 68.33± 0.09 50.67± 0.33 60.05± 0.18 58.73± 0.16 68.90± 0.07 59.72± 0.32 69.88± 0.34
Pre-trained Enc. 62.74± 0.02 44.80± 0.19 57.49± 0.13 52.90± 0.12 62.79± 0.05 51.45± 0.25 74.76± 0.28
Reptile Enc. 78.98± 0.12* 62.21± 0.08* 67.46± 0.53* 67.89± 0.17* 77.51± 0.19* 69.43± 0.26* 70.81± 0.82

Upper Limit 96.73± 0.00 93.56± 0.00 86.48± 0.00 91.11± 0.00 92.01± 0.00 95.38± 0.00 81.66± 0.00

Table 1: Results for the sockpuppet prediction task. Asterisks indicate statistical significance compared to the
standard encoder (p < 0.05).
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Figure 3: PCA of high performing embeddings. Blue
circles represent positive samples.

sensitive to ‘hard’ negative samples, as precision
decreases substantially for each false positive.

This result suggests that despite an increase in
the precision of predictions being the principal ben-
efit of meta-learning, it still remains the model’s
main flaw. This conclusion is further corrobo-
rated in Section 7.1. Intriguingly, both non-meta-
learning approaches achieved marginally worse
scores than the random baseline. The similarly low
precision scores corroborate the earlier statement
that the principal improvement of meta-learning in
this domain is the reduction in false positives.

Surprisingly, the performance difference be-
tween the basic RoBERTa classifier and the en-
coder model is small. The encoder model was
expected to perform better as it is trained on the
word level embeddings produced by RoBERTa, and
therefore should have had a richer understanding
of user writing style than the semantic sentence
level embeddings used in the RoBERTa classifier.
In all metrics the encoder performs slightly better,
suggesting there is some truth to the hypothesis,
however, the small training set sizes may have pre-
vented a significant divergence.

Whilst prior Wikipedia sockpuppet detection ap-
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Figure 4: PCA of low performing embeddings. Blue
circles represent positive samples.

proaches report higher F1-scores of 73 (Solorio
et al., 2013a) and 82 (Sakib and Spezzano, 2022),
the difference in datasets and task construction (nei-
ther study distinguishes between sockpuppets and
puppetmasters) make a fair comparison difficult.

7.1 Error Analysis

Figure 3 provides insight into the effect of meta-
learning on the embeddings. The embeddings of
two test investigations13 have been projected to two
dimensions using Principal Component Analysis
(PCA), with positive samples being coloured in
blue. The left-hand column contains the embed-
dings of the test samples produced by the standard
encoder model after training on the task. The right-
hand column are the embeddings produced with
the meta-encoder.

The embeddings learnt by the meta-encoder ap-
pear tighter, with less overlap between the clusters.
This is supported by the results of these particular
investigations: investigation A received an AU-
ROC of 62% with the standard encoder, which
improved to 83% using the meta-encoder. Investi-

13Investigations of Film_Fan (A) and Al_aman_kollam (B).
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Positive Samples RoBERTa Standard Enc. Pre-trained Enc. Reptile Enc.
[10, 20) 64.66± 0.26 66.65± 0.55 64.23± 0.45 79.37± 0.99*
[20, 30) 64.48± 0.22 67.32± 0.45 64.74± 0.33 80.00± 0.02*
[30, 40) 63.83± 0.31 66.96± 0.38 64.56± 0.28 79.01± 0.37*
[40, 50) 67.81± 0.52 70.51± 0.41 60.79± 0.34 79.81± 0.22*
[50,∞) 66.05± 0.04 68.73± 0.15 62.20± 0.12 78.60± 0.07*

Table 2: AUROC scores of approaches on small tasks. Tasks are binned by the number of positive samples. Asterisks
indicate statistical significance compared to the standard encoder (p < 0.05).

gation B had a similar improvement, from 69% to
91%. Both standard and meta-encoders were able
to cluster positive samples together, however the
meta-encoder exhibits better separation from neg-
ative samples. This aligns with the overall results,
where the meta-encoder saw small improvements
in recall, but large improvements in precision.

To contrast the successful examples, Figure 4
presents two investigations14 that performed poorly.
Investigation C achieved AUROCs of 52% (stan-
dard encoder) and 54% (meta-encoder). Investiga-
tion D was similar, with a small improvement from
58% to 61%. Whilst less defined, the right-angle
structure is still evident, and positive samples are
still clustered within a single arm, suggesting the
encoder has no issues identifying positive samples.
The difference then is the proportion of negative
samples that appear in the ‘positive’ arm. This
again aligns with the overall results, where recall
is largely consistent between approaches, and most
of the improvement is in the precision of positive
classifications. In these two cases, the poor AU-
ROC performance can be attributed to the failure
of the meta-encoder to improve upon the precision.

In Investigation D, contribution messages are
characteristically short, typically the name of the
article section edited. The messages of many nega-
tive samples are similar. This convention is easily
detected, explaining why both classifiers were able
to cluster the positive samples, but found distin-
guishing them from negative samples using the con-
vention difficult. This may explain why the recall
is acceptable, but precision is low. The sockpuppet-
group in investigation C use a message of just a
couple of words at most, but typically use no mes-
sage at all. As most Wikipedians add a contribution
message (only 8.89% of negative samples collected
had empty message fields, compared to 15.56% of
positive samples), a consistently empty one would
identify the sockpuppet to the encoder, but would

14Investigations of Amirharbo (C) and Cameronfree (D).

be indistinguishable from legitimate message-less
contributions. This leads to the following conclu-
sion: where a sockpuppet’s behaviour is charac-
terised by empty or conventional messages, posi-
tive recall is strong, but precision suffers.

7.2 Small tasks

Table 2 contains additional binned results for each
approach on smaller tasks, containing between ten
and fifty positive samples each. These results in-
dicate that the performance increase of our model
over other approaches tested holds in tasks with
exceptionally low samples available.

8 Conclusion

We study the problem of detecting malicious sock-
puppetry on Wikipedia. We are the first to propose
meta-learning to address the data-scarcity chal-
lenge in detecting sockpuppet accounts through
writing style. Our results demonstrate significant
performance improvements when compared to pre-
trained approaches, especially in prediction preci-
sion. We attribute this to our approach’s ability
to quickly adapt to distinct authorship styles with
limited samples. In doing so, we defined a more re-
alistic task definition that provides a more accurate
measure of performance, and released an updated,
verifiable and adaptable dataset of sockpuppet in-
vestigations appropriate for future meta-learning
research. Our findings extend to any online social
platform where users engage in sockpuppetry.

Limitations

There are several limitations of our model that
could benefit from further research.

As discussed in Section 7.1, our model is limited
in cases where sockpuppet contributions contain
little or no message data. In these cases, the en-
coder requires additional information. One way to
address this would be to include the edit data of
contributions, that is the changes made to the arti-
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cle itself. This would allow a model to understand
the intent and implications of a contribution even
when a description is absent. A contribution must
make changes to the article, and edits themselves
are likely to be far more diverse in nature than the
messages, providing a model with a strong distin-
guishing signal. The additional signal would also
further improve high performing investigations.

Another limitation is in safety. There are several
legitimate reasons why a user might have several
accounts. One of these reasons may be for the
safety of editors editing politically contentious ar-
ticles15. Whilst our approach was trained solely
on malicious examples of sockpuppetry, no efforts
were made to ensure this approach could not reveal
benign sockpuppet-groups by mistake. Additional
work may focus on providing a safeguard measure
that ensures the sockpuppet behaviour being ob-
served is malicious.

Our approach should also be evaluated against
Generative language models, which are becoming
increasingly effective at creating text that looks
human (Liu et al., 2023). It is likely that future
sockpuppet-groups might utilise generative models
to edit Wikipedia, rewriting edits to conceal writ-
ing style or to fully automate contributions. Many
approaches are already focusing on the detection
of text generated by prolific models (Dhaini et al.,
2023). Future work may evaluate how robust the
meta-learning approach is to authorship obfusca-
tion using generative models.

Considering the performance of the approach, it
is unable to replace human-led sockpuppet investi-
gations. When found to be guilty of sockpuppetry,
accounts are blocked. Some users assign great
value to their accounts, and incorrect sockpuppet
classifications would be damaging to the commu-
nity. The approach could serve as an additional
source of evidence in open investigations, or as a
detection method that triggers human-led investi-
gation on suspicious accounts. To occupy a larger
role in investigations, the precision of the approach
must improve further.

Ethical Considerations

There is a valid concern for privacy when releasing
this dataset. Usernames are important to Wikipedia
editors (Asikin-Garmager et al., 2025), and may
be used to represent a person’s real identity, con-

15https://en.wikipedia.org/wiki/List_of_people_
imprisoned_for_editing_Wikipedia

tain some personally identifiable information, or
obscure their identity completely.

Arguments against anonymisation are numerous.
Whilst this study does not use username data, previ-
ous approaches have (Sakib and Spezzano, 2022),
and future approaches may too. As all the data
collected is publicly available, any anonymisation
attempts would be circumventable. We commit to
removing any user who requests removal from our
dataset, but maintain the username is a valuable
data point for future work. For these reasons, the
data was not anonymised.
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A Appendix

Statistic Value
Meta-Train Size 12194
Meta-Test Size 1355
Ave. Train Size 534.35
Ave. Validation Size 133.58
Ave. Test Size 923.75
Ave. Train Positives 174.71
Ave. Train Negatives 359.63
Ave. Validation Positives 43.67
Ave. Validation Negatives 89.91
Ave. Test Positives 298.74
Ave. Test Negatives 625.01

Table 3: Train-Test Split statistics.

Statistic Value
Num. Investigations 23160
Ave. Length (Contributions) 970.39
Ave. Positive Samples 321.47
Ave. Negative Samples 648.91
Ave. Puppetmaster Samples 144.27
Ave. Sockpuppet Samples 177.20
Ave. Message Length (Char) 44.92

Table 4: Summary Statistics of our dataset.
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Model Hyper-parameter Value

Encoder Model

Number of Attention Heads 2
Number of Layers 6
Learning Rate 0.0001
Loss Margin 0.2
Optimiser Adam

Classification Model

Dropout Chance 0.35
Learning Rate 0.001
Layer 0 Nodes 768
Layer 1 Nodes 768
Optimiser Adam

RoBERTa Classifier

Dropout Chance 0.7615
Learning Rate 0.0008
Layer 0 Nodes 768
Layer 1 Nodes 512
Layer 2 Nodes 512
Layer 3 Nodes 256
Layer 4 Nodes 256
Layer 5 Nodes 128
Optimiser Adam

Reptile
Interpolation Rate 0.2
Number of Steps 5

Table 5: Tuned model hyper-parameters.

timestamp revid parentid sock user page message
2022-03-15T23:45:35+00:00 1077368891 1077368777 1 user1 IShowSpeed fixed errors
2022-03-15T23:44:47+00:00 1077368777 1077368713 1 user2 IShowSpeed Added Michigan
2022-04-28T20:45:59+00:00 1085166027 1085165878 1 user3 Cyclone Batsirai Where’s the source??
2020-10-01T00:44:54+00:00 981220197 981144214 0 user4 User talk:Ohnoitsjamie /* William Stickman IV partisan editing */
2019-04-22T01:46:29+00:00 893534911 892677927 0 user5 User talk:TheresNoTime /* Come back! */ new section

Table 6: Data sample from one investigation.
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Figure 5: Average ROC curves of models on test tasks.
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Figure 6: Average PR curves of models on test tasks.
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