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Abstract
This paper introduces a Dual Evaluation Frame-
work to comprehensively assess the multilin-
gual capabilities of LLMs. By decomposing
the evaluation along the dimensions of linguis-
tic medium and cultural context, this frame-
work enables a nuanced analysis of LLMs’
ability to process questions within both native
and cross-cultural contexts cross-lingually. Ex-
tensive evaluations are conducted on a wide
range of models, revealing a notable “Cultural-
Linguistic Synergy” phenomenon, where mod-
els exhibit better performance when questions
are culturally aligned with the language. This
phenomenon is further explored through inter-
pretability probing, which shows that a higher
proportion of specific neurons are activated in
a language’s cultural context. This activation
proportion could serve as a potential indicator
for evaluating multilingual performance dur-
ing model training. Our findings challenge the
prevailing notion that LLMs, primarily trained
on English data, perform uniformly across lan-
guages and highlight the necessity of cultur-
ally and linguistically model evaluations. Our
code can be found at https://yingjiahao14.
github.io/Dual-Evaluation/.

1 Introduction

With the rapid development of large language mod-
els (LLMs), increasing efforts have been made to
make these models beneficial for people worldwide.
To achieve this, non-English corpora are also in-
corporated into the training data, enabling LLMs
to understand and generate text in various lan-
guages (i.e., multilingual capabilities) (Xue et al.,
2021; Grattafiori et al., 2024; OpenAI et al., 2024;
Nguyen et al., 2024; Zhang et al., 2024).

To evaluate the LLMs’ multilingual capabilities,
researchers primarily rely on translating English-
centric benchmarks into target languages, such as
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Figure 1: Dual Evaluation Framework for evaluating
multilingual capabilities of LLMs. The figure is di-
vided into four quadrants, each showing the model’s
performance on questions framed in different languages
(horizontal-axis) and cultural contexts (vertical-axis).
The score refers to the aggregated performance of the
model Claude-3.5-Sonnet on these four question sets.

translating MMLU (Hendrycks et al., 2021) into
MMMLU (OpenAI, 2024). While this approach
allows for efficient cross-lingual comparisons, it
limits the evaluation to scenarios rooted in English-
speaking cultural contexts, as the original data was
predominantly collected from perspectives preva-
lent in English-speaking countries. In contrast, re-
cent work has developed culture-specific bench-
marks such as M3Exam (Zhang et al., 2023) and
BLEnD (Myung et al., 2024), where evaluation
data are sourced from authentic, real-world scenar-
ios in native-speaking regions. While these better
capture the majority of local usage, they also over-
look that multilingual users frequently ask ques-
tions across cultural boundaries. For example, a
Spanish speaker might inquire about Chinese tea
usage in Spanish, while a user from China could
seek details about Diwali celebrations in Chinese.
These existing evaluations on multilingual capabil-
ities, however, treat language and cultural context
as inseparable dimensions, restricting analyses to
single-language scenarios.
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To comprehensively evaluate multilingual capa-
bility, especially considering the real-world usage,
we propose a Dual Evaluation framework in this
paper, which decomposes the multilingual capabil-
ity evaluation along two critical dimensions: (1)
linguistic medium (the language used for ques-
tioning) and (2) cultural context (the regional and
cultural knowledge being tested). As illustrated in
Figure 1 through a preschool enrollment example,
this framework generates four distinct evaluation
scenarios from a single question template. This
structured decomposition enables multiple essen-
tial multilingual capability assessments, including
native cultural-linguistic alignment (same language
and culture), cross-lingual understanding (different
language, same culture), and cross-cultural ability
(same language, different culture).

With such a dual evaluation framework design,
we construct a dataset by adopting and extending
the BLEnD dataset (Myung et al., 2024), which
contains every-day questions across different cul-
tural contexts. We then evaluate a wide range
of open-source and close-source models with this
newly constructed benchmark. Our findings indi-
cate that: 1) Models generally perform better on
scenarios rooted in English-speaking culture, a pat-
tern that persists cross-lingually (Section 3.2), and
2) LLMs perform better when questions are posed
in the language that corresponds to the cultural
context of the question, rather than in English (Sec-
tion 3.3). The second finding, in particular, draws
our attention because most existing models are pri-
marily trained on English data and have demon-
strated strong performance in other multilingual
evaluations like MMMLU. However, when faced
with real-world culturally relevant questions in the
corresponding language, these models perform bet-
ter in that language than in English. We refer
to this phenomenon as “Cultural-Linguistic Syn-
ergy” (as shown in Figure 1, Claude-3.5-Sonnet
has better performance on the Chinese test than
the English test when asking about Chinese culture
questions, vice versa).

To understand the underlying causes of this phe-
nomenon, we conduct interpretability probing by
analyzing the activation status of neurons when
answering questions in different languages and cul-
tural contexts, we find that: 1) The proportion
of specific neurons tends to be higher when the
question is in the corresponding language and cul-
tural context, which could explain the observed
“Cultural-Linguistic Synergy” (Section 4.3); 2)

Additionally, this proportion of specific neurons
could serve as a potential indicator for compar-
ing multilingual capabilities during model train-
ing (Section 4.3.1); 3) The number of neurons ac-
tivated in the model is strongly correlated with
the model’s performance in the corresponding lan-
guage. Specifically, when the question is in the
English-speaking cultural context, the model tends
to activate more neurons, leading to better perfor-
mance (Section 4.3.2).

Our main contributions can be summarized as:

• We propose a Dual Evaluation Framework, which
decomposes the multilingual capability evalu-
ation along two critical dimensions, linguistic
medium and cultural context.

• Through extensive experiments, we find the
Cultural-Linguistic Synergy phenomenon: the
selected models perform better on native cultural
scenario questions when asked in the correspond-
ing language, compared to English.

• We demonstrate that the proportion of specific
neurons activated for a given language can ex-
plain the observed Cultural-Linguistic Synergy,
and that this proportion can serve as a potential
indicator for comparing multilingual capabilities.

2 Dual Evaluation Framework

To comprehensively assess the multilingual ca-
pabilities of LLMs, we propose a Dual Evaluation
framework that evaluates along two critical dimen-
sions: (1) linguistic medium (the language used
to pose questions) and (2) cultural context (the
regional and cultural knowledge being tested). This
dual-axis approach reflects three fundamental re-
quirements for real-world applications: first, the
ability to handle native language queries within
their cultural context (e.g., answering “What is a
common children’s snack in Spain?” in Spanish),
second, the capability for cross-lingual understand-
ing, (e.g., answering questions about Spanish cul-
ture in Spanish and English); and third the capa-
bility to address cross-cultural inquiries through a
single linguistic medium (e.g., answering “What is
a traditional festival in Japan?” in English). By
evaluating LLMs in both dimensions, we can mea-
sure how well models adapt to language-specific
usage scenarios while maintaining cross-lingual
and cross-cultural competence.
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Formally, we represent the evaluation question
as Qi,j , where i denotes the cultural context and
j specifies the linguistic medium of the question.
To construct a question set, we conduct a system-
atic adaptation of a culture-specific benchmark,
BLEnD (Myung et al., 2024), testing everyday
knowledge across diverse cultures and languages.
Specifically, for native cultural-linguistic pairs (i.e.,
Qi,i), we used the localized questions in BLEnD,
which are constructed based on a template question
with three key modifications: replacing country
or region references, adapting phrasing to match
linguistic norms, and curating culture-specific an-
swer sets. The localized evaluation sets Qi,i for
language i are denoted by:

Qi,i = {(qi, ai)|(qi, ai) = Adapti(q), q ∈ Template}, (1)

where Adapti represents the localized modifica-
tions for language i, and q represents the template
question from the Template set in BLEnD. For ex-
ample, by adapting the original question “What
is the most popular sports team in your country?”
into “What is the most popular sports team in the
US?”, where i = en, we can test the model’s abil-
ity to handle English in the US context. Using these
adapted questions for different languages, we can
assess the model’s ability to handle native-language
queries within various cultural environments.

On the other hand, to assess the model’s ability
to handle questions across multiple cultural con-
texts when asked in a single language, we extend
the Qi,i sets into localized transformations Qi,j for
each language pair (i, j), where i ̸= j. The orig-
inal BLEnD includes, for each language-specific
evaluation set Qi,j (except for English), an English
translation evaluation dataset Qi,en. Specifically:

Qi,en = {Transen(qi, ai) | (qi, ai) ∈ Qi,i, i ̸= en} . (2)

For other language pairs (i, j), we use the GPT-4o
model, known for its strong multilingual capabili-
ties, to construct these cross-lingual datasets.

Qi,j = {Transj(qi, ai) | (qi, ai) ∈ Qi, j ̸= en} . (3)

This setup enables assessing how well the model
can adapt to answering questions posed in one lan-
guage about the cultural context of another.

Combining the two evaluation scenarios, the
complete evaluation set Q is thus represented as:

Q =
⋃

i ̸=j Qi,i ∪Qj,j ∪Qi,j ∪Qj,i. (4)

Linguistic Medium Cultural Context # Data Sample

English (en) United States (US), CN, ES, ID, 3,500
KR, IR, JB

Chinese (zh) China (CN), US 1,000
Spanish (es) Spain (ES), US 1,000
Indonesian (id) Indonesia (ID), US 1,000
Korean (ko) South Korea (KR), US 1,000
Persian (fa) Iran (IR), US 1,000
Sundanese (su) West Java (JB), US 1,000

Total 9,500

Table 1: Overview of the evaluation dataset, detailing
the language, cultural context of certain countries/re-
gions, and the number of data samples. Bolded coun-
tries/regions indicate where the corresponding language
is spoken natively, while the others are transformed for
cross-cultural evaluation. Each language has 500 data
samples per country/region. The parts we added to the
original BLEnD are marked in green.

This Dual Evaluation framework, where questions
are tailored to the linguistic medium and the cor-
responding cultural contexts of usage, not only as-
sesses LLMs’ multilingual abilities from both na-
tive usage scenarios (Qi,i) and cross-cultural con-
texts (Qj,i) but also employs a completely dual-
format question approach. Specifically, Qi,i and
Qj,j are constructed using the same template ques-
tion, and tailored to different linguistic and cul-
tural contexts. This approach allows us to quantita-
tively compare the multilingual capabilities cross-
culturally within the same language (by comparing
Qi,i and Qj,i), and cross-lingually (by comparing
Qi,i with Qj,j , or Qi,i with Qi,j). An example of
this dual evaluation sample is shown in Figure 1,
and the details of the completion for Qi,j and hu-
man evaluation for the quality are presented in Ap-
pendix A.4.

3 Multilingual Capabilities Evaluation

3.1 Experiment setting

We select a wide range of LLMs of dif-
ferent sizes to evaluate their multilingual ca-
pabilities, including GPT-4o (OpenAI et al.,
2024), Claude-3.5-Sonnet (Anthropic, 2024), Com-
mandR (Cohere, 2024), Llama-3-8B-Instruction,
Llama-3-70B-Instruction(Grattafiori et al., 2024),
Gemma-2-9B (Team et al., 2024), Qwen2.5-
7B-Instruct (Qwen et al., 2025), and Bloomz-
7B (Muennighoff et al., 2022). The experiment
is conducted across seven languages, with cultural
content sourced from one of the typical countries
where each language is widely spoken. Consider-
ing the current performance of the model (primarily
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strong in English), and taking cost and time con-
straints into account, we only construct evaluation
data Qi,j for the language pairs (i, j) where ei-
ther language i or j is English. The language and
culture information for the evaluation dataset are
provided in Table 1. The questions used in evalu-
ation are short-answer questions (SAQs) aligned
with the BLEnD (Myung et al., 2024) benchmark.
We apply non-weighted scores for the evaluation
metrics. During inference, all models are tested
in a zero-shot setting. The question prompts are
derived from the original BLEnD instruction set.
More details are shown in Appendix B.

3.2 Finding 1: LLMs’ Performance Declines
as the Cultural Context Shifts from
English to Cross-Cultural Scenarios.

Using our Dual Evaluation Framework, we eval-
uate the performance of the selected LLMs. As
mentioned in Section 2, one of the key advantages
of this framework is its ability to compare mod-
els’ adaptability in cross-cultural contexts (com-
paring Qi,i & Qj,i), given that the questions are
presented in a dual format. Since most of the se-
lected models primarily use English as their train-
ing corpus, we first compare the performance on
Qen,en and Qi,en (where i ̸= en). The results
in Figure 2 (full result in Append A.2), for each
bar, represent the performance in specific culture-
contexts. By comparing the bars’ height across
different context, we observe that models perform
best for English-speaking culture contexts, when
asking questions in English, and performance de-
clines in other language-speaking cultural context,
with the drop becoming more pronounced as the
language’s resource availability decreases.
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Figure 2: The performance of the selected models on
American, Spanish, and Sundanese culture questions
when asked in English. We find that models perform
best on American culture.

Question Content Spanish Culture American Culture

Claude-3.5-Sonnet 81.0 82.0
GPT-4o 76.5 77.6
Command-r 69.9 73.4
Gemma-2-9b-Instruction 70.9 72.7
Llama-3-70b-Instruct 72.0 79.6
Qwen2.5-7b-Instruct 62.0 70.5
Llama-3-8b-Instruct 58.9 74.5
Bloomz-7b 53.6 52.8

Table 2: The performance of selected models on every-
day questions about Spain and the US when asked in
Spanish. Generally, models perform best when asking
questions about US culture in Spanish.

While this trend echoes previous findings with
translated datasets from English culture (Myung
et al., 2024; OpenAI, 2024), it raises a further ques-
tion: Does this phenomenon also hold in other
languages? To explore more, we expanded the com-
parison to include Qi,i and Qi,en, especially when
i ̸= en. The results for i = es (Spanish) are shown
in Table 2, considering the high availability of re-
sources of it. Additional results, demonstrating the
same phenomena, are available in Appendix A.2.
The results indicate that, in general, the selected
models perform better on English-speaking culture
questions compared to other languages when asked
in the respective language. Since the training data
for these models is not fully open-source, we hy-
pothesize that, for each language in the training
corpus, the models are trained on a larger volume
of English-language usage scenarios. As a result,
the models exhibit better performance on English-
speaking culture questions across all languages.
In the following interpretability Section 4.3.2, we
delve deeper into the model’s internal workings to
explore the reasons behind this observed behavior.

3.3 Finding 2: LLMs perform better when
asked in the corresponding language.

In addition to enabling comparisons of behavior in
cross-cultural contexts within the same language
(as discussed in Section 3.2), we can evaluate how
models perform cross-lingually using Dual Evalu-
ation Framework. Specifically, by comparing Qi,i

and Qi,j (i ̸= j), we get the result shown in Fig-
ure 3. We surprisingly find that asking culture-
related questions in the corresponding language
outperforms asking in English, as indicated by the
bars with patterns being higher than those without.
Specifically, across the eight selected models, the
average performance for questions related to Chi-
nese culture when asked in Chinese exceeded that
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Figure 3: The performance of the selected models on Chinese, Indonesian, and Iranian culture questions when asked
in the corresponding language versus English. We generally find that models perform better when the questions are
posed in the corresponding major spoken language compared to English.

of asking in English by 8.8 points. Similarly, ques-
tions related to Indonesian culture posed in Indone-
sian outperformed those asked in English by 15.7
points. While this advantage diminishes when deal-
ing with lower-resource languages. For instance,
in Persian, the performance gap is -0.95 points.
This can be attributed to models like Bloomz-7B,
which have limited or no training data for Persian,
resulting in better performance when asking ques-
tions in English instead. On the other hand, this
corresponding advantage also appears in American
culture questions, as shown in Figure 17.

From these observations, we can generally sum-
marize that asking culture-specific questions in
their corresponding language tends to outperform
answering them in English. We refer to this coun-
terintuitive phenomenon as “Cultural-Linguistic
Synergy”. That is, aligning the cultural context
with the appropriate linguistic medium, we can
achieve superior performance — even for models
primarily trained on English data, which perform
better on English-specific tasks than on other lan-
guage benchmarks like MMMLU and translated
GSM8K (Shi et al., 2022). An intuitive explana-
tion for this Cultural-Linguistic Synergy could lie
in the training data. However, due to the lack of ac-
cess to the training data and the massive scale of the
training corpus, further exploration in this direction
can be challenging. Thus, in the following sections,
we proceed with interpretability analysis to under-
stand the mechanisms of this Cultural-Linguistic
Synergy, beginning with preliminary insights.

4 Interpreting Cultural-Linguistic
Synergy

4.1 Preliminary
Neurons in FFN Module: Recent interpretability
studies suggest that factual knowledge is stored in

the FFN memories and represented by neurons in
the network (Geva et al., 2021). Given the input to-
ken x, the FFN module of layer l in a decoder-only
Transformer can be represented as (outer activation
functions and bias terms are omitted for clarity):

FFNl(hl) =
(
W l

down ·Activation(W l
up · hl)

)
(5)

where hl is the input to the FFN, W l
up and W l

down

are the weight matrices, and Activation is the ac-
tivation function. Following previous works, the
i-th element of Activation(W l

up · hl) ∈ Rdm is
considered the i-th neuron in layer l (a simple il-
lustration of neuron in Figure 4). The value of this
neuron for the input token x can be represented by
its corresponding activation value vx(i,l).
Key Neuron Set: Following previous work, neu-
rons with higher activation values when answering
a question are considered more important (Tang
et al., 2024a; Zhao et al., 2024; Hong et al., 2024;
Cao et al., 2025b). Therefore, given a question q ,
we can identify the “Key Neurons” Nq by selecting
neurons that are highly activated in the model’s
response r = {r1, r2, . . . , rn}, where ri denotes
the i-th token in the response, based on a threshold
function (threshold) as:

Nq =
{
(i, l) | vri(i,l) > threshold, ri ∈ r

}
(6)

By aggregating these key neurons for each ques-
tion q in the dataset Q = {q}, we obtain the Key
Neuron set for the entire dataset Q as (ref Figure 4
for illustration for getting key neurons):

NQ = {(i, l)|(i, l) ∈ Nq, q ∈ Q} (7)

4.2 Experiment Setup
Considering that the Cultural-Linguistic Synergy
arises from variations in cultural context, we in-
vestigate how the model’s internal behavior differs
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Figure 4: Workflow for interpreting Cultural-Linguistic Synergy. For every dual-format question pair, we trace
neuron activations and measure the share of language specialized neurons (Chinese in the above figure) that fire
when each question is posed.

when asking questions in language i. Specifically,
we focus on two types of question content: one re-
lated to the American cultural context and the other
to the cultural context of language i. By comparing
these two contexts, we aim to uncover why, in the
latter case, asking questions in the corresponding
language leads to better performance than asking
them in English. To explore this, we focus on cal-
culating the “specialized neurons” activated in each
context. These specialized neurons refer to the Key
Neurons that activate when answering in language i
, as opposed to English. For American cultural con-
text, we obtain the Key Neuron sets Nqen,en and
Nqen,i for the dual-ed questions qen,en and qen,i
from Qen,en and Qen,i, respectively. By gathering
the neuron only activate when asking qen,i , we can
determine the proportion of specialized language i
neurons for the question pair (qen,en, qen,i) as:

p(qen,en, qen,i) =
|Nqen,i−Nqen,en |

|Nqen,i | (8)

For example, as shown in Figure 4, we calculate
the key neurons for the paired question “At what
age do kids start preschool in the US?” in both
English and Chinese, to identify the specialized
Chinese neurons (depicted in red). We then repeat
for every question pair (qen,en, qen,i), and com-
pute the average proportion of specialized neurons
p(qen,en, qen,i) across all dual-ed question pairs.
This gives us the proportion of specialized neurons
for language i in the American cultural context,
denoted as Pen,i. Similarly, we calculate the pro-
portion of specialized neurons for i in the cultural
context of language i, denoted as Pi,i. By compar-
ing the proportions of specialized neurons between

these two contexts, we aim to find the underlying
factors contributing to Cultural-Linguistic Synergy.

For time and cost efficiency considerations, we
deploy Qwen2.5-7B-Instruction and Llama-3-8B-
Instruction models as the target model. To obtain
the Key Neuron Set, we use the instruction 2 (App-
denx B) to get the response r and apply the top-k
(k = 5) threshold for each layer, as defined in
Equation 6 (more details about the threshold func-
tion is shown in Appendix A.5. The details of the
selection for this hyperparameter can be found in
Section 5.

4.3 Analyzing

We compare Pen,i between Pi,i (i ̸= en) across the
six languages. As shown in Figure 5, generally,
Pi,i (bars with patterns) is higher than Pen,i (bars
without patterns) in the scenarios where model
demonstrates the Cultural-Linguistic Synergy (e.g.,
Llama-3-8B in Chinese, Indonesian, Persian, and
Korean, Qwen2.5-7B in Chinese, Korean). Con-
versely, when no Cultural-Linguistic Synergy is
observed, Pi,i is lower than Pen,i (e.g., Llama-3-
8B in Sundanese, Qwen2.5-7B in Persian, Sun-
danese). This suggests that models tend to ac-
tivate a higher proportion of neurons special-
ized for the target language when the cultural
context aligns with the corresponding linguistic
medium, compared to when this alignment is
absent. The activation of these specialized neurons
allows the model to better utilize knowledge spe-
cific to the culture and the target language. This
knowledge, which may not be fully accessed when
asking in English, contributes to the model’s bet-
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ter performance in the target language. However,
Spanish stands as an exception, which we attribute
to the high similarity between Spanish and English
in terms of language structure, and thus may have
greater overlap of the knowledge-storing neurons.

4.3.1 Hypothesis 1 and Validation
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Figure 5: Comparison of the proportion of specialized
neurons for language Chinese(zh), Spanish(es), Indone-
sian(id), Korean(ko), Persian(fa), and Sundanese(su) be-
tween different cultural context. It indicates that when
Cultural-Linguistic Synergy happens, models generally
activate a higher proportion of specific neurons.

Previous analysis (Section 4.3) suggests that
when Cultural-Linguistic Synergy occurs, the
model activates a higher proportion of neurons spe-
cialized for the language and culture. This ability
to better utilize knowledge aligned with the corre-
sponding cultural context helps guide the model to
perform better than when asking in English. Build-
ing on this, we further consider whether more pow-
erful multilingual models have a better ability to
utilize culture and language-specific knowledge.
This could, in turn, serve as a valuable metric for
evaluating model performance during training.

Hypothesis 1: Models have a better ability
to utilize cultural knowledge will activate a
higher proportion of specialized neurons
when the cultural context aligns with the
linguistic medium.

Figure 5 indicates that Qwen2.5 utilizes more spe-
cialized neurons (66 %) than Llama-3 (57%) across
the six languages, which may provides evidence

for this hypothesis. However, note that differences
in training data and model architectures between
different series may limit the direct comparability.

On the other hand, validating this hypothesis by
improving one model with additional training data
may present challenges. This is due to the limited
availability of language resources and the poten-
tial risk of benchmark leakage, which could affect
the analysis. Thus we use well-recognized multi-
lingual same series models with distinct language
capabilities, such as the open-source multilingual
extension of the Llama-3 model, Llama-3.1-8B-
Instruction, for comparative analysis with Llama-
3-8B-Instruction in the validation experiment.
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Figure 6: Comparison of proportion of specialized
neurons for Llama-3-8B-instruct and Llama-3.1-8B-
instruct. The result shows that Llama-3.1-8B-instruct,
the multilingual extension for Llama-3-8B-instruction,
has a higher proportion of specialized neurons.

The results shown in Figure 6 indicate that
Llama-3.1-8B-Instruction activates a higher pro-
portion of specialized neurons (67%) compared to
Llama-3-8B-Instruction (57%), supporting our hy-
pothesis that models with stronger capabilities in
the corresponding language are better at leverag-
ing language-specific neurons. Furthermore, this
proportion of the specific neurons could be utilized
as a potential indicator for evaluating a model’s
ability to effectively leverage multilingual knowl-
edge during the training phase.

4.3.2 Hypothesis 2 and Validation

Through previous analysis (Section 4.3), we find
that the proportion of specific neurons may be in-
dicative of the Cultural-Linguistic Synergy. It left
us thinking: If a higher proportion of neurons cor-
responds to greater knowledge neuron utilization
by the model, then assuming a consistent increase
in the proportion of language-specific neurons for
one specific model, we expect that an increase in
the number of neurons should lead to better perfor-
mance for the corresponding language.
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Hypothesis 2: The greater the number of
neurons activated for questions in a given
language, the better the performance.

Since there is no consensus on how to definitively
measure the importance of individual neurons, we
take a different perspective. Instead of focusing on
neuron quantity directly, we explore whether the
total number of neurons activated across the dataset
is correlated with the model’s performance.

From Section 4.3, we notice that knowledge rep-
resentation may vary across languages. Therefore,
in this validation study, we focus on comparisons
within the same language. Specifically, we in-
vestigate the relationship between the set of Key
Neurons set, |NQi,i | and |NQj,i |, and the model’s
performance on the corresponding evaluation data.
The results, shown in Figure 7, indicate that the
total number of activated neurons is highly corre-
lated with the model’s performance, with a Pearson
correlation coefficient of 0.95 for English questions
(more results are in Appendix A.2). This suggests
that when more neurons are activated, the model is
likely utilizing more relevant knowledge, leading
to better performance. This finding aligns with the
observation in Section 3.2, where, in American cul-
tural context, the model activates the most neurons.
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Figure 7: The performance and the number of Key
Neurons for the Llama-3-8B on cross-cultural contexts.

5 Ablation Study

In our experimental setup (Section 4.2), we select
k = 5 as the threshold. The threshold is set to
ensure that the selected key neurons accurately rep-
resent the model’s knowledge on the given question.
To determine the optimal threshold, we measure the
performance drop when masking the corresponding
neurons on the selected task. We choose the thresh-
old where the performance drops significantly for
the masked neurons, while the performance on out-
of-distribution (OOD) knowledge (here we use the
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Figure 8: Performance for Llama-3-8B-Instruction on
ARC and Qen,en when masking Key Neurons with dif-
ferent threshold.

ARC (Clark et al., 2018) dataset), is largely unaf-
fected. As shown in Figure 8, we draw in blue and
red, respectively. We also use a random mask with
the same number of neurons as a baseline (dash
line). The selected threshold is depicted in green.

6 Related Work

Multilingual Capabilities Evaluation To evaluate
the LLMs’ multilingual capabilities, researchers
use translating English-centric benchmarks such
as MMMLU (OpenAI, 2024), MGSM (Shi et al.,
2022) and Multilingual MT-Bench (Zheng et al.,
2023). Recent work also developed culture-specific
benchmarks (Cao et al., 2025a; Zhang et al., 2023;
Myung et al., 2024; Leong et al., 2023; Liu et al.,
2025). For example, M3Exam (Zhang et al., 2023)
sourced from real and official human exam ques-
tions, BLEnD (Myung et al., 2024) where evalu-
ation data are crafted from real-world scenarios
and CulturalBench (Chiu et al., 2024) with human-
written questions covering 45 global regions. These
existing evaluations, however, treat language and
cultural context as inseparable dimensions, restrict-
ing analyses to single-language scenarios.
Multilingual Capabilities Interpretation Re-
cently, some work (Wang et al., 2024a; Kojima
et al., 2024; Wang et al., 2024b) use the Mecha-
nistic interpretability to analyze the model’s mul-
tilingual capabilities. Tang et al. (2024b) shows
that proficiency in processing a particular language
is predominantly due to a small subset of neu-
rons. Wendler et al. (2024) projects the hidden
state into vocabulary to investigate the Latent Lan-
guage. Zhao et al. (2024) further proposed the
multilingual workflow to understand how LLMs
Handle Multilingualism. However, these studies
do not investigate the model’s behavior across dif-
ferent cultural contexts and languages.
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7 Conclusion

This study introduced a Dual Evaluation Frame-
work specifically designed to comprehensively as-
sess LLMs across linguistic medium and cultural
contexts. Our findings reveal “Cultural-Linguistic
Synergy,” phenomenon where models perform op-
timally when questions are culturally aligned with
the language, challenging the prevailing assump-
tion that LLMs, primarily trained on English data,
perform uniformly across different languages. Uti-
lizing interpretative methods, we delved deeper
into this phenomenon and found that it is related to
the Key Neurons. As the field of interpretability in
AI continues to evolve, we plan to further expand
this framework to enable more comprehensive and
nuanced evaluations of multilingual models.

8 Limitation

While the Dual Evaluation Framework is flexi-
ble enough to incorporate additional benchmarks,
the prerequisite for conducting meaningful cross-
cultural comparisons, especially to conduct neuron
probing, lies in having dual-format question con-
tent. This content needs to capture both linguistic
and cultural nuances. Without this dual-format
structure, performing robust and quantitative cross-
cultural comparisons remains limited.

In our current experimental design, we focus on
a single cultural context for each language, based
on typical countries or regions where the language
is spoken. However, given the widespread usage of
some languages, especially in regions with diverse
cultural contexts, we plan to expand the framework
in the future to incorporate more varied cultural
contexts to make our conclusions more robust.

Due to time and computational cost constraints,
we limited our probing validation to models
like Qwen2.5-7B-Instruction and Llama-3-8B-
Instruction. As LLMs interpretation techniques
continue to evolve and improve, we plan to expand
the range of models included in future studies, espe-
cially larger models with more parameters, to gain
deeper insights into multilingual and cross-cultural
model behavior.
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A More Experiment Detail

A.1 Response Generation Setting

Answer generation across the involved models is
conducted in a zero-shot setting, with all models
set to a temperature of 0.0 and a maximum token
length of 1024.

A.2 Result Display Setting

The results presented in Section 3.2 and Sec-
tion 3.3 are based on Instruction 1 (as shown in
Appendix B). All other results are displayed in an
averaged format in Figures 9, 10, 11, 12, 13, 14,
15, 16, and 17 for each model on every Qi,j .

For the results in Section 4.3, Section 4.3.1, and
Section 4.3.2, we conducted evaluations using In-
struction 2 (as shown in Appendix B) to manage
computational costs. This is particularly relevant
for certain questions where the model might gener-
ate lengthy responses, making the interpretation of
results impractical without these adjustments. For
results in other languages, except English, which
are not shown in Section 4.3.2, please refer to Fig-
ures 18 and 19.

A.3 The primarily experiment result

Table 3 shows the performance of the models
Llama-3-8B-Instruct, Gemma-2-9B-Instruct, and
Qwen2.5-7B-Instruct on multilingual benchmarks:
GSM8K and MMMLU. The experiment is con-
ducted in a zero-shot setting, and the results suggest
that the models perform better when the questions
are asked in English compared to other languages.

A.4 The completion for Dataset

The original BLEnD includes, for each language-
specific evaluation set Qi,j (except for English), an
English translation evaluation dataset Qi,en. For
the rest language (i, j) pair (when i = en), we
deploy GPT-4o to conduct the translation. To en-
sure the translated question qen,i aligns qi,i with
the dual-format structure, we prompt GPT-4 with a
one-shot example using the question pair qi,en, qi,i
to obtain the translated version qen,en for language
i , which we then use as qen,i.

To further evaluate the quality of this comple-
ment, we conduct a human evaluation involving
four senior computational linguistics researchers
who have a research focus in multilingualism and
are trained in advanced. From the constructed
Qen,i, we randomly sampled 100 cases, along with
their dual cases from Qen,en, Qi,en, and Qen,en.

We presented these 100 paired cases (qi,en, qi,i,
qen,en, and GPT-o translated qen,i) to the evalua-
tors, asking them to score the translated content
and format consistency: 1 point: The translation
content is problematic or inaccurately expressed.
2 points: The translation content is accurate, but
the format deviates significantly from the corre-
sponding qi,i. 3 points: The translation content is
accurate, and the format aligns perfectly with the
corresponding qi,i. The results indicate that the
average full mark rate (3 points) for translated con-
tent and format consistency is 97.8%, with scores
above 2 points reaching 100%. The overall agree-
ment rate is 95%. This prove the quality of the
newly introduced dataset.

A.5 The threshold function for Interpretation

In our experiment, we deploy top-k (k = 5)
threshold for each layer. Specifically, we com-
pute the activation value for each correspond-
ing response token ri for each question q. We
then aggregate the activation scores of each neu-
ron for each response token across each layer
l ( l ∈ {1, 2, . . . , L} ), represented as: Vl =[
vri(j,l) | ri ∈ r, j ∈ {1, 2, . . . , dm}

]
. To determine

the key neurons for question q, we select the top-k
neurons for each layer, forming the key neuron set
Nq as:

Nq =
{
(j, l)

∣∣ vri(j,l) ≥ V
top-k
l , ri ∈ r,

j ∈ {1, 2, . . . , dm}, l ∈ {1, 2, . . . , L}
}
.
(9)

When we conduct experiments, we also explore
other threshold function. Including: 1) Layer-
specific top-k (final adoption in the paper) 2)
Global top-k, 3) Global top-k score, 4) Global top-
k score. We determine the threshold by conducting
the experiment shown in Section 5 and select the
optimal ones.

B Instruction

We mainly use the instructions from the original
benchmark BlEnD (Myung et al., 2024). How-
ever, some models’ responses are longer due to the
nature of the instruction, so to better match each
question with candidate answers and help us con-
duct the interpretation experiment, we manually
add additional instructions (instruction 2 for each
language).
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Model GSM8Ken GSM8Kcn GSM8Kes MMMLUen MMMLUid MMMLUcn

Llama-3-8B-Instruct 77.1 60.2 66.7 64.4 52.4 54.5
Gemma-2-9B-Instruct 81.2 77.9 75.1 73.4 64.4 64.0
Qwen2.5-7B-Instruct 84.3 80.3 71.1 71.3 56.8 60.8

Table 3: The performance for mode Llama-3-8B-Instruct, Gemma-2-9B-Instruct and Qwen2.5-7B-Instruct on
MMMLU (OpenAI, 2024), MGSM (Shi et al., 2022). The experiment is conducted in a zero-shot setting. The
languages we select are English(en), Chinese(cn), Spanish(es), and Indonesian(id). We find that models have better
performance when the question is asked in English.
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Figure 9: The average performance of Claude-3.5-sonnet on Instruction set B. The Contenti represents languei-
speaking culture context, Langi represents the linguistic medium for language i.

𝐶𝑜𝑛𝑡𝑒𝑛𝑡!" 𝐶𝑜𝑛𝑡𝑒𝑛𝑡#$

𝐿𝑎
𝑛𝑔

!
"

𝐿𝑎
𝑛𝑔

#$

𝐿𝑎
𝑛𝑔

!
"

𝐿𝑎
𝑛𝑔

%&

𝐶𝑜𝑛𝑡𝑒𝑛𝑡!" 𝐶𝑜𝑛𝑡𝑒𝑛𝑡%&

𝐿𝑎
𝑛𝑔

!
"

𝐶𝑜𝑛𝑡𝑒𝑛𝑡!" 𝐶𝑜𝑛𝑡𝑒𝑛𝑡'"

𝐿𝑎
𝑛𝑔

'"

𝐶𝑜𝑛𝑡𝑒𝑛𝑡!" 𝐶𝑜𝑛𝑡𝑒𝑛𝑡%(

𝐿𝑎
𝑛𝑔

!
"

𝐿𝑎
𝑛𝑔

%(

𝐿𝑎
𝑛𝑔

!
"

𝐿𝑎
𝑛𝑔

)
(

𝐶𝑜𝑛𝑡𝑒𝑛𝑡!" 𝐶𝑜𝑛𝑡𝑒𝑛𝑡)(

𝐿𝑎
𝑛𝑔

!
"

𝐶𝑜𝑛𝑡𝑒𝑛𝑡!" 𝐶𝑜𝑛𝑡𝑒𝑛𝑡*+

𝐿𝑎
𝑛𝑔

*+

GPT-4o

Figure 10: The average performance of GPT-4o on Instruction set B. The Contenti represents the languei-speaking
culture context, Langi represents the linguistic medium for language i.
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Figure 11: The average performance of Command-r on Instruction set B. The Contenti represents the languei-
speaking culture context, Langi represents the linguistic medium language.
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Gemma-2-9b-Instruction

Figure 12: The average performance of Gemma-2-9b-Instruct on Instruction set B. The Contenti represents the
languei-speaking culture context, Langi represents the linguistic medium for language i.
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Figure 13: The average performance of Llama-3-70b-Instruct on Instruction set B. The Contenti represents the
languei-speaking culture context, Langi represents the linguistic medium for language i.
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Qwen2.5-7b-Instruct

Figure 14: The average performance of Qwen-2.5-7b-Instruct on Instruction set B. The Contenti represents the
languei-speaking culture context, Langi represents the linguistic medium for language i.
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Figure 15: The average performance of Llama-3-8b-Instruct on Instruction set B. The Contenti represents the
languei-speaking culture context, Langi represents the linguistic medium for language i.
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Figure 16: The average performance of Bloomz-7b on Instruction set B. The Contenti represents the culture
context, Langi represents the linguistic medium language.
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Figure 17: The performance of the selected models on the American culture question when asked in the other six
languages versus English. Models perform the best when asking questions in English.
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Figure 18: The performance and the number of Key Neurons for the Llama-3-8B-Instruction on cross-cultural
contexts.
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Figure 19: The performance and the number of Key Neurons for the Qwen-2.5-7B-Instruction on cross-cultural
contexts.
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English Instruction 1:
Read the following question and provide a single answer

without any explanations.

English Instruction 2:
Read the following question and return only ONE answer in a 

single word or an unbroken phrase, avoiding splitting any 

proper nouns or named entities. 

English Instruction 3:
Read the following question and provide the single answer 

you think is most appropriate without any explanations.

Chinese Instruction 1:
阅读以下问题并仅提供一个答案，无需任何解释。

Chinese Instruction 2:
阅读以下问题，并仅用一个单词或一个不间断的短语返回一个答案，避免拆分任何

专有名词或命名实体。

Chinese Instruction 3:
阅读以下问题并仅提供一个你觉得最合适的答案，无需任何解释。

Spanish Instruction 1:
Lee la siguiente pregunta y contesta con una sola respuesta

sin explicaciones.

Spanish Instruction 2:
Lee la siguiente pregunta y devuelve solo UNA respuesta en

una sola palabra o una frase sin dividir ningún nombre

propio o entidad nombrada.

。

Spanish Instruction 3:
Lee la siguiente pregunta y proporciona la respuesta única

que consideres más apropiada sin ninguna explicación.
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Indonesian Instruction 1:
Bacalah pertanyaan berikut dan berikan satu jawaban tanpa

penjelasan apa pun.

Indonesian Instruction 2:
Bacalah pertanyaan berikut dan berikan hanya SATU jawaban

dalam satu kata atau frasa utuh, hindari memisahkan nama

diri atau entitas bernama.

Indonesian Instruction 3:
Read the following question and provide the single answer you 

think is most appropriate (one word) without any explanations.

Korean Instruction 1:
다음 질문을 읽고 설명 없이 단 하나의 답변만을 제공하시오. 

Korean Instruction 2:
당신은 외국인에게 당신의 나라의 문화를 설명하려는 대한민국 사람입니다. 

다음 질문을 읽고 설명 없이 가장 적절하다고 생각되는 단 하나의 답변을

제공하시오.

Korean Instruction 3:
다음 질문을 읽고 설명 없이 가장 적절하다고 생각되는 단 하나의 답변을

제공하시오.

Persian Instruction 1:
.دیھد ھئارا یحیضوت چیھ نودب خساپ کی و دیناوخب ار ریز لاوس

Persian Instruction 2:
 ای صاخ یماسا نتسکش نودب ترابع کی ای ھملک کی بلاق رد ار خساپ کی طقف و دیناوخب ار ریز روتسد

.دیھد ھئارا هدش یراذگ مان یاھ تیدوجوم

Persian Instruction 3:
.دیھد ھئارا یحیضوت چیھ نودب تسا نیرت بسانم دینک یم رکف ھک یخساپ و دیناوخب ار ریز نتم
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Sundanese Instruction 1:
Bacalah pertanyaan berikut dan berikan satu jawaban tanpa

penjelasan apa pun.

Sundanese Instruction 2:
Bacakeun pananya di handap ieu jeung pasih hiji jawaban dina

hiji kecap atawa frasa anu teu dipisah, ulah misahkeun

ngaran sorangan atawa entitas anu dingaranan.

Sundanese Instruction 3:
Bacakeun pananya di handap ieu jeung pasih hiji jawaban anu 

anjeun anggap paling cocog tanpa penjelasan nanaon.
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