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Abstract

Knowledge distillation typically involves trans-
ferring knowledge from a Large Language
Model (LLM) to a Smaller Language Model
(SLM). However, in tasks such as text match-
ing, fine-tuned smaller models often yield more
effective domain-specific representations, as
they focus on optimizing the similarity of in-
put pairs. To leverage both the specialized
strengths of small models and the rich seman-
tic understanding of LLMs, we introduce a
flipped knowledge distillation paradigm, where
LLM learns from SLM. Specifically, we ad-
dress the architectural gap between decoder-
only LLMs and smaller encoder-based models
by reinterpreting LLMs in an encoder-decoder
manner using LoRA. The encoder generates
compressed representations, while the decoder
maps them to the output space. During train-
ing, the encoder produces representations and
their similarities, which are then aligned with
the similarity scores produced by the teacher,
using our proposed Margin-aware Contrastive
Learning (MCL) approach. The MCL ensures
accurate similarity for both positive and nega-
tive pairs, and adaptively handles the internal
differences within positive and negative sam-
ples. Our paradigm requires only a reasonably
good-performing SLM, allowing the LLM to
achieve improved performance. Experiments
on financial and healthcare benchmarks, as well
as real-world applications, confirm its effective-
ness, and the model has been fully deployed in
an online environment.

1 Introduction

Large Language Model (LLMs) have demonstrated
remarkable capabilities in acquiring diverse knowl-
edge, making them highly effective across a wide
range of tasks (Zhao et al., 2023; Xi et al., 2023;
Song et al., 2025). Consequently, Smaller Lan-
guage Models (SLM) often learn from LLMs via
knowledge distillation and imitation learning (Gu

∗ Corresponding author.

et al., 2023; Li et al., 2023a; Gu et al., 2024; Xu
et al., 2024b). However, despite their extensive
knowledge, LLMs often underperform on domain-
specific tasks compared to smaller models fine-
tuned on specialized data (Ma et al., 2023; Chen
et al., 2023; Stewart et al., 2023; Hu et al., 2024).
For example, in text matching, SLMs are trained
to make paired inputs more similar in represen-
tation (Devlin, 2018), unlike LLMs that directly
predict match or non-match (Touvron et al., 2023).
This allows SLMs to better distinguish between
synonyms and enhances their representation learn-
ing (Hillebrand et al., 2023), especially in special-
ized tasks, because they can learn in-domain termi-
nology more effectively.

Therefore, in this work, we propose a novel flip-
ping knowledge distillation approach for LLMs to
learn from the expertise of SLMs in representation
learning for text matching, as illustrated in Figure 1.
Previous efforts to improve the performance of
large models in specific domains predominantly fo-
cused on directly utilizing domain-specific data by
supervised fine-tuning (Ding et al., 2023), retrieval-
augmented generation (Zakka et al., 2024), or mod-
ifying model architectures to inject domain-specific
knowledge (Diao et al., 2023; Zhang et al., 2023).
In contrast, our method takes advantage of LLM’s
rich semantic understanding ability, while also en-
abling LLM to learn directly from the specialized
knowledge of SLM. This enables LLM to acquire
not only simple matching labels, but also more
nuanced representation information from SLM,
thereby capturing more detailed knowledge.

Flipped knowledge learning presents two pri-
mary obstacles. First, state-of-the-art LLMs are
predominantly decoder-only architectures, lacking
dedicated modules for learning effective text rep-
resentations. Second, effectively learning relation-
ships and relative distances between and within pos-
itive and negative pairs from small model is diffi-
cult. To address these challenges, we reinterpret the
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Figure 1: (a) Comparison of traditional knowledge distillation from LLM to SLM, and our flipping knowledge
distillation of domain-specific expertise from SLM to LLM. (b) In the representation space, when texts are highly
similar but semantically unrelated, the LLM learns the correct semantic distance between them through distillation
from the SLM, which provides more accurate knowledge.

decoder-only LLM structure as an encoder-decoder
mechanism by leveraging Low-Rank Adaptation
(LoRA) (Hu et al.). In our approach, the encoder,
represented by the compressed matrices in LoRA,
learns compact input representations, while the de-
coder, defined by the expansion matrices, decodes
and recombines these representations. This de-
sign allows the encoder to generate text representa-
tions and compute their similarities, which are then
aligned with the similarity scores produced by the
teacher model, providing guidance for capturing
semantic similarity more effectively. To further
enhance learning from the teacher model, we pro-
pose a Margin-aware Contrastive Loss (MCL). Un-
like conventional methods that only ensure positive
samples have higher similarity scores than negative
ones, MCL introduces two margin zones. These
zones encourage the LLM to learn greater differ-
entiation not only between positive and negative
samples but also within each category. Addition-
ally, to address potential inaccuracies in the teacher
model, we introduce a dual threshold strategy to
filter noises, ensuring more reliable learning.

For experiments, we evaluate our paradigm on
various LLMs with different scale architectures, in-
cluding Qwen-0.5b and GLM-10b, learning from
three different SLMs across three benchmarks. The
results demonstrate that our model not only outper-
forms the original LLMs but also surpasses LLMs
trained using other strategies, such as supervised
finetuning, parameter-efficient fine-tuning, and dis-
tillation from larger or smaller teacher models.

Our main contributions are as follows: First, we
introduce a paradigm that combines the strengths
of LLMs and SLMs, incorporating domain-specific
expertise from SLMs into LLMs, thus enhancing

overall performance. Second, we develop a dual
margin learning function for knowledge distilla-
tion that effectively identifies and differentiates be-
tween positive and negative samples, improving
distillation precision. Finally, our approach yields
a fine-tuned text matching model that outperforms
existing methods, providing a robust solution for
knowledge distillation.

2 Related Work

Knowledge Distillation. Knowledge distillation
is a task that involves transferring knowledge from
an advanced model to a less performant model.
Distillation algorithms can achieve this in various
ways. For example, a teacher model can gener-
ate data for the smaller model to learn from (Chi-
ang et al., 2023; Xu et al., 2023). One instance is
Alpaca-7b (Taori et al., 2023), a model fine-tuned
from the Llama-7b model on 52,000 instruction-
following demonstration. Alternatively, the teacher
model can produce features for the smaller model
to learn (Timiryasov and Tastet, 2023). For in-
stance, Liang et al. (2023) propose task-aware
layer-wise distillation to selectively capture rel-
evant information from the teacher model using
task-aware filters. Other approaches include rein-
forcement learning (Chen et al., 2024b) and ranking
learning (Yuan et al., 2023). These works typically
use a large teacher model (e.g., GPT-4, Llama-70b)
and a small student model (e.g., GPT-2, Llama-7b).

Knowledge Injection. Before the era of LLMs,
many works focused on manipulating the trans-
former structure to better inject knowledge. For ex-
ample, Diao et al. (2023) propose domain-specific
adapters to inject domain-specific knowledge into
the feedforward layer. Zhang et al. (2023) in-
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Figure 2: Comparison of SLM, traditional LLM, and our reinterpreted LLM for text matching. We reinterpret the
decoder-only structure of the LLM into an encoder-decoder architecture to facilitate calculating the matching score
between text representations instead of directly generating output.

troduce a knowledge plugin that injects knowl-
edge bases into frozen downstream models. How-
ever, modifying the LLM architecture is challeng-
ing, and many researchers have instead turned to
parameter-efficient fine-tuning (PEFT) (Hu et al.;
Yang et al., 2023; Chen et al., 2024a), injecting
knowledge via in-context learning (Zhou et al.,
2024; Shankar et al., 2024), or using retrieval-
augmented generation (Xu et al., 2024a; Wang
et al., 2024). Since the knowledge that can be
injected into the input is limited, we propose a new
PEFT approach from a distillation perspective.

Text Matching. Text matching is critically im-
portant in numerous applications. For instance, in
search engines, the semantic meaning of queries
is matched with that of the returned websites (Li
et al., 2024). In e-commerce, accurately match-
ing queries to relevant products is essential for the
success of these platforms (Fan et al., 2022). An-
other application involves rewriting user queries
into pre-selected, high-performing queries to im-
prove search outcomes (Chen et al., 2019). Most
prior research has relied on smaller language mod-
els. For example, Zou et al. (2022) proposed a
divide-and-conquer approach for BERT by sepa-
rating keywords from intents. Chen et al. (2025)
adopt BERT-based text matching for the chemical
domain. In this study, we investigate methods to
evaluate and enhance the performance of LLMs in
text matching tasks, aiming to take advantage of its
internal ability.

3 Method

3.1 Problem Formulation

We begin by introducing the notations and key con-
cepts. Formally, the text-matching task is to predict

yi,j for {(xi, xj)}, where xi and xj represent the
i-th and j-th input text pair, and yi,j is the cor-
responding label, indicating whether the pair is a
match. Our objective is to enhance the performance
of the student model S in text matching by lever-
aging both the teacher model T and the matching
dataset D = {(xi, xj , yi,j)}Ni,j=1. To achieve this,
we minimize a combined loss function, consisting
of the supervised loss Lsup on the training set D,
a distillation loss Ldist and a Margin-aware Con-
trastive Loss LMCL, which capture the discrepancy
between the predictions of T and S.

In our setup, the student model is a LLM pre-
trained on general domain and diverse datasets,
while the teacher model is a smaller, specialized
text-matching model.

3.2 Reinterpretation of LLM

Figure 2 illustrates various architectures for text-
matching tasks and our proposed approach.

Figure 2(a) shows that decoder-only LLMs pro-
cess the task by taking a concatenated input of
a matching prompt, Text1, and Text2. However,
this approach lacks explicit representation of in-
put texts. In comparison, Figure 2(b) demonstrates
that encoder-only SLMs transform inputs into high-
dimensional embeddings and are trained to com-
pute their similarity to obtain a matching score.
This design inherently captures explicit feature cor-
relations between texts, enabling better modeling
of pairwise relationships.

To bridge this architectural gap and enable LLMs
to benefit from SLM-like approaches, we draw in-
spiration from LoRA and reinterpret the LLM as an
encoder-decoder structure. In LoRA, a pre-trained
weight matrix W0 ∈ Rd×k is updated using a low-
rank decomposition W0 + ∆W = W0 + BA,
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Figure 3: Overview of our framework. The SLM and LLM output the representations for each text, forming a matrix.
For distillation learning, we first use dual-sided denoising to filter out noisy outputs and design a margin-aware
contrastive loss, which not only differentiates between positive and negative pairs but also regulates intra-group
similarity within both positive and negative samples.

where B ∈ Rd×r and A ∈ Rr×k, with r ≪
min(d, k). During training, W0 is frozen and does
not receive gradient updates, while A and B con-
tain the trainable parameters. Given h = W0x,
the modified forward pass becomes:

h′ = W0x+∆Wx = W0x+BAx. (1)

Here, A serves as an encoder-like transformation,
mapping x ∈ Rk into a lower-dimensional repre-
sentation z ∈ Rr, while B acts as a decoder-like
transformation, projecting z back into output space
as Figure 2(c) shows.

Building on this insight, as shown in Figure 2(d)
and 2(e), we reinterpret LoRA as an encoder-
decoder framework to integrate SLMs into LLMs
effectively. Specifically, SLMs compute explicit
similarity scores between text1 and text2, which
serve as a teacher signal to enhance the relational
reasoning capabilities of LLMs. By combining
the strengths of both architectures, our proposed
method establishes a robust synergy that improves
performance on text-matching tasks.

3.3 Knowledge Distillation Architecture

Based on the above interpretation, we are able to
set the LLM as the student model, learning from
the SLM teacher model. Concretely, assume the
embeddings of the two input texts xi and xj are
xi ∈ Rm×k and xj ∈ Rn×k, where m and n rep-
resent the number of tokens. These embeddings
are separately fed into the SLM, which could be
a domain-specific language model like BERT. By
taking the average of the word-level vectors from
the output, we obtain rsi and rsj ∈ Rr.

For the student LLM, the inputs are concatenated
into a single input xl. This concatenated input xl

is then processed by the LoRA matrix A, which
compresses the representation from the original
k-dimensional space to a lower-dimensional sub-
space: rl = xlAT ∈ R(m+n)×r, where the first
m dimensions of rl are averaged to obtain rli , and
the last n dimensions are averaged to obtain rlj .
Note that the compressed vector dimension in the
LLM is set to match the original vector size r in the
SLM for proper alignment. Then rl is further de-
coded by rlBT . Finally, the LLM generates logits
a = [ayes, ano] for the prediction. These logits are
passed through a softmax function to compute prob-
abilities for each class as: pyes = eayes∑

c′∈{yes,no} eac′ .
The classification label is then optimized using
the binary cross-entropy loss defined as: Lsup =
− (y log(pyes) + (1− y) log(1− pyes)), where y
is the ground truth label.

For distillation learning, an intuitive approach
for the student model to learn from the teacher is to
make the student’s representation rl closer to the
teacher’s representation rs. However, our goal is
to learn the matching relationships between doc-
uments, rather than replicating the original vector
from the SLM. This motivates us to construct a
pairwise matrix that stores these relationships and
allows the model to learn the matching patterns, as
shown in Figure 3.

Threshold-aware Matching Matrix. The
matching relationship matrix includes not only
matched pairs but also unmatched inputs to en-
hance the robustness of learning. To handle neg-
ative examples, we combine the other inputs in
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the batch with the original input to form negative
pairs. We calculate the cosine similarity for both
the teacher (SLM) and student (LLM) models using
the following equation:

αm
i,j =

rmi · rmj
∥rmi ∥2∥rmj ∥2

, m ∈ {s, l}, (2)

where rmi and rmj are vectors from the student
model (l) or teacher model (s), and αm

i,j represents
the cosine similarity between these two vectors.

To filter out less confident predictions from the
teacher model, we define a threshold-based filter-
ing function to remove unreliable negative samples
from the teacher’s similarity matrix. Specifically,
we use the cosine similarity αs

i,j , compare it against
a threshold θ, and also take into account the ground
truth label yi,j , where yi,j = 1 indicates a related
pair, and yi,j = 0 indicates an unrelated pair:

φs
i,j =

{
0, if

(
αs
i,j < θ ∧ yi,j = 1

)

or
(
αs
i,j ≥ 1− θ ∧ yi,j = 0

)
,

1, otherwise.
(3)

The key idea here is that if a pair is labeled as
related (yi,j = 1) but has a cosine similarity αm

i,j

below the threshold θ, or if a pair is labeled as
unrelated (yi,j = 0) but has a similarity above
1− θ, we consider these pairs to be noisy and filter
them out. This ensures that only consistent and
confident pairs contribute to the distillation loss.

Finally, we define the distillation loss with
threshold filtering as below:

Ldist =
1

n

∑
i,j φ

s
i,j

(
αs
i,j − αl

i,j

)2
. (4)

3.4 Margin-aware Contrastive Learning
The matrix loss described earlier captures the pair-
wise similarity between the teacher and student
models but does not explicitly enforce contrast be-
tween related and unrelated pairs. Moreover, it
does not account for differences within the positive
and negative pairs. To address this, we propose
a margin-aware contrastive loss, which introduces
a margin to regulate intra-group similarity within
both positive and negative samples.

We begin by transforming the cosine similarity
of the student model into angular distance using the
arccosine function. This transformation enhances
the model’s discriminative power by amplifying
subtle differences in similarity, making it easier
to distinguish between similar and dissimilar sam-
ples (Zhang et al., 2022):

θsi,j = arccos(αs
i,j), θ

l
i,j = arccos(αl

i,j). (5)

We then introduce a contrastive loss LMCL between
the teacher and student models:

LMCL = − log
φs
i,je

cos(θli,j+mcθ
s
i,j)

φs
i,je

cos(θl
i,j

+mcθ
s
i,j

)
+
∑

i,j′ φ
s
i,j′e

cos(θl
i,j′−mcθ

s
i,j

)

where mc is a scalar controlling the margin influ-
ence from the teacher model. i, j are paired sam-
ples, while i, j′ are unpaired samples.

Overall, contrastive learning helps the model dis-
tinguish between positive and negative pairs. Addi-
tionally, the contrastive degree is influenced by the
teacher model’s angular distance, θsi,j . For positive
pairs, a margin is added to the angular distance,
encouraging the student model to produce smaller
angular distances for pairs with higher teacher sim-
ilarity scores. Conversely, pairs with lower teacher-
assigned similarity scores are assigned larger mar-
gins, leading to relatively lower (but still positive)
similarity scores. For negative pairs, the margin
is subtracted, increasing the angular distance and
reducing the similarity scores. In both cases, the
margin space allows the LLM to effectively learn
relationships between positive and negative pairs,
as well as the relative distances within pairs, from
the small model’s output representations.

Together, the LLM is trained using the Ldist and
LMCL losses from the teacher model while simul-
taneously learning from the dataset through the
supervised loss Lsup.

4 Experiment

4.1 Dataset
To comprehensively evaluate the model, we select
two domain-specific text matching datasets and one
real-world online dataset from ByteDance.

C-MTEB (Xiao et al., 2023) is a benchmark for
Chinese text embeddings, covering 6 tasks and
35 datasets. We use the ATEC dataset within C-
MTEB, which is designed to determine whether
two sentences in the financial domain are related.
NFCorpus (Boteva et al., 2016) is an English med-
ical information retrieval dataset. The task is to
determine the relevance between a title and a docu-
ment. The third dataset is our in-house dataset from
ByteDance, which covers multiple product lines,
such as payment services, subscription services, in-
surance, and personal loan services, sourced from
real online customer service interactions. The
task is Frequently Asked Question (FAQ) retrieval,
which determines whether a user’s query is rele-
vant to another well-written and frequently asked
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question in the pre-prepared dataset. The matching
labels are manually annotated. The training dataset
contains 113,316 examples, with 10,000 examples
in both the development and test sets. More details
can be found in Appendix A.

4.2 Comparison Methods
For teacher models, we select the following SLMs
tailored for specific domains: GTE (Li et al.,
2023b), an embedding model trained with multi-
stage contrastive learning for multi-domain; Fin-
BERT (Yang et al., 2020), a BERT model fine-
tuned specifically for the finance domain; and Med-
BERT (Vasantharajan et al., 2022), fine-tuned for
the medical domain. For the student LLM back-
bone, we use Qwen-0.5b (Bai et al., 2023) and
GLM-10b (GLM et al., 2024).

In terms of distillation methods, we include
LLMs that learn from larger LLMs, including Up-
aya (Jindal et al., 2024) and PMC-Llama (Wu et al.,
2024). Upaya is distilled from Llama-70b to Llama-
7b for the finance domain, while PMC-Llama is
distilled from ChatGPT for the medical domain.
We also include LLMs learned from SLMs with
baseline-version flipped distillation, where the rein-
terpretation of the LLM is omitted, and the LLM
learns solely from the similarity scores generated
by the SLM using a carefully designed loss func-
tion. This comparison includes ArcCSE (Zhang
et al., 2022), which learns sentence representations
in angular space, and KDMCSE (Nguyen et al.,
2024), which uses adaptive angular margin con-
trastive learning to enhance discriminative repre-
sentations while capturing negative semantics.

4.3 Implementation Details
We implemented our experiments in PyTorch on
NVIDIA H20 GPUs. For our model and all base-
lines, we followed the same settings. Qwen-0.5b
models were trained on one GPU, and GLM-10b
models on four GPUs. The truncation lengths for
the ATEC, NFCorpus, and ByteDance datasets are
256, 2048, and 128, respectively. The same prompt
was used for text matching across models. Dur-
ing LLM training, the LLM’s parameters were
fixed, and LoRA was integrated into the attention
mechanism of each layer, with its rank matching
the teacher model’s hidden dimension to capture
teacher representations. The hyperparameter mc

was set to 0.06 (Section 5.2), and threshold θ to 0.5
for balanced binary classification. Loss functions
Ldist and LMCL were applied to the LoRA of the

last layer, while Lsup was applied to the final out-
put logit. The final loss was calculated by summing
all L∗, weighted by their respective scales. We se-
lected the 5 best checkpoints based on validation set
performance and reported averaged test set results.
Our method significantly reduces computational
requirements, training only 22% of parameters for
Qwen-0.5b and 7.54% for GLM-10b. More details
can be found in the Appendix B.

4.4 Evaluation Metrics
For offline evaluation, we use Accuracy for cor-
rect predictions, AUC for class imbalance, and F1
for balancing precision and recall. For online eval-
uation, we assess the performance of FAQ tasks
using localization accuracy, which measures the
alignment between user queries and returned search
results. To ensure practical applicability, our match-
ing module is fully integrated with upstream and
downstream components, allowing us to evaluate
the system’s end-to-end performance. Users pro-
vide feedback on whether the final search results
align with their intended queries. We compare the
end-to-end user satisfaction of our matching mod-
ule against the baseline model, Baichuan-7b.

4.5 Offline Performance
Table 1 presents the performance of diverse base-
lines and our model under various settings.

Firstly, SLMs and LLMs pre-trained in the
same domain exhibit better performance. For
instance, FinBERT, fine-tuned in the financial
domain, achieves better performance than the
other two SLMs on ATEC, with an F1 score
of 0.8025 compared to GTE’s 0.8003 and Med-
BERT’s 0.7979. Similarly, MedBERT outperforms
GTE and FinBERT on NfCorpus. These results
emphasize the importance of domain-specific pre-
training in achieving better task-specific perfor-
mance. Secondly, distillation from both larger
LLMs and smaller SLMs significantly boosts perfor-
mance. For example, Upaya (Llama-7b), distilled
from a larger LLM, demonstrates a substantial im-
provement over Llama-7b on ATEC, with the AUC
rising from 0.8818 to 0.8895. These findings val-
idate the effectiveness of leveraging both larger
and smaller models during distillation to transfer
domain-specific expertise.

Finally, our proposed flip distillation strategy
performs best across datasets, architectures, and
scales. For instance, FLM-10b-flip (MedBERT)
with only 10 billion parameters achieves an F1
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ATEC Nfcorpus Bytedance
Model Acc F1 AUC Acc F1 AUC Acc F1 AUC

SLM:
GTE 0.8411 0.8003 0.8348 0.9402 0.8790 0.9277 0.7794 0.7005 0.9010
FinBERT 0.8453 0.8025 0.8369 0.9371 0.8714 0.9232 0.7782 0.7017 0.9021
MedBert 0.8388 0.7979 0.8306 0.9375 0.8847 0.9324 0.7740 0.7004 0.8971

LLM:
Qwen-0.5b 0.8623 0.8133 0.8567 0.9593 0.8947 0.9481 0.7968 0.7206 0.9140
Qwen-0.5b-LoRA 0.8617 0.8151 0.8560 0.9588 0.8963 0.9440 0.7912 0.7144 0.9175
Llama-7b 0.8863 0.8307 0.8818 0.9679 0.9066 0.9591 0.8093 0.7297 0.9123
GLM-10b 0.8869 0.8351 0.8826 0.9774 0.9107 0.9673 0.8111 0.7308 0.9315
GLM-10b-LoRA 0.8890 0.8322 0.8799 0.9717 0.9068 0.9604 0.8117 0.7271 0.9289

LLM w/ classic distillation:
Upaya (Llama-7b)/PMC (Llama-13b) 0.8934 0.8378 0.8895 0.9843 0.9227 0.9756 - - -

LLM w/ baseline-version flip distillation:
Qwen-0.5b (ArcCSE) 0.8689 0.8162 0.8631 0.9621 0.8949 0.9504 0.8008 0.7235 0.9147
Qwen-0.5b (KDMCSE) 0.8727 0.8199 0.8668 0.9638 0.9025 0.9582 0.8017 0.7254 0.9160

LLM w/ our flip distillation:
Qwen-0.5b-flip (FinBERT/MedBERT) 0.8784 0.8247 0.8705 0.9707 0.9132 0.9710 - - -
Qwen-0.5b-flip (GTE) 0.8746 0.8203 0.8719 0.9703 0.9092 0.9638 0.8076 0.7307 0.9251
GLM-10b-flip (FinBERT/MedBERT) 0.8937 0.8449 0.8914 0.9866 0.9249 0.9774 - - -
GLM-10b-flip (GTE) 0.8963 0.8422 0.8869 0.9791 0.9204 0.9759 0.8248 0.7415 0.9406

Ablation Study of our Qwen-0.5b-flip (GTE):
Qwen-0.5b-flip (GTE) w/o LMCL 0.8631 0.8154 0.8593 0.9668 0.9025 0.9637 0.7982 0.7226 0.9169
Qwen-0.5b-flip (GTE) w/o Ldist 0.8654 0.8147 0.8593 0.9656 0.9022 0.9670 0.7991 0.7249 0.9180
Qwen-0.5b-flip (GTE) w/o noise filtering 0.8662 0.8177 0.8659 0.9683 0.9065 0.9601 0.8014 0.7252 0.9203

Table 1: Offline performance on three datasets. Rows like "Upaya (Llama-7b)/PMC (Llama-13b)" show Upaya’s
performance on ATEC and PMC’s performance on NfCorpus. Numbers in bold mean that the improvement to the
backbone model is statistically significant (a two-tailed paired t-test with p-value <0.01).

Scene
Method Insurance Loan Payment Subscription

Qwen-0.5b-flip +10.64% +10.08% +1.05% +5.30%

Table 2: The performance improvements on ByteDance
product with online A/B test.

score of 0.9249 on Nfcorpus, surpassing PMC-
Llama (Llama-13b), which achieves an F1 score
of 0.9227 on NfCorpus, despite PMC-Llama being
significantly larger. Furthermore, this improvement
is consistent across models of varying scales, ar-
chitectures, and domains. It is worth noting that
even when the teacher model underperforms the
student model, our method effectively facilitates
knowledge transfer to enhance the student’s capa-
bilities. As shown in Table 1, using the GTE model
as the teacher for the Qwen-0.5b student model, our
framework improved the student to achieve 0.8076
in accuracy. These results highlight the generaliz-
ability and robustness of our flip distillation.

4.6 Online Experiments
Besides the offline experiments, we also conducted
online A/B tests by deploying the flip distillation
method in the FAQ task of the ByteDance search
system over seven days. The control group uti-

lized the matching strategy deployed in the cur-
rent online system, specifically the Baichuan-7b
model, which serves as our baseline as it is the
model currently in use. The average A/B test re-
sults across different scenarios are presented in Ta-
ble 2, with all results reported as relative improve-
ments. Our proposed method achieves significant
performance gains across all scenarios, including
insurance, loan, payment, and subscription, high-
lighting the effectiveness of flip distillation in im-
proving search results and user satisfaction within
ByteDance’s ecosystem.

5 Analysis and Discussion

5.1 Ablation Study
We conduct an ablation study to evaluate the impact
of different components in our proposed model, as
shown in Table 1. Removing LMCL resulted in a
noticeable drop in performance across all metrics.
On the ByteDance dataset, the F1 score decreased
from 0.7307 to 0.7226, and the AUC dropped from
0.9251 to 0.9169, demonstrating the importance of
the margin knowledge from teacher model. When
Ldist was removed, the performance also declined.
For instance, the F1 score on ByteDance decreased
from 0.7307 to 0.7249, and the AUC fell from
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Figure 4: Impact of changing angular margin mc in
LMCL. We take the F1 results of Qwen-0.5-flip (GTE)
on Bytedance as example.
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Figure 5: Distribution of positive and negative sam-
ples from Qwen-0.5b and Qweb-0.5b-flip respectively,
where our MCL loss brings a clear separation.

0.9251 to 0.9180. Eliminating the noise filtering,
which filters the noisy learning cases, resulted in
the smallest performance drop compared to the
other components. Overall, the results demon-
strate the necessity of each component in achieving
optimal performance, with LMCL and Ldist play-
ing crucial roles in maintaining the robustness and
adaptability of the model across diverse datasets.

5.2 Impact of Margin in LMCL

Figure 4 illustrates the effect of varying the margin
mc in the MCL loss function. It is evident that the
angular margin significantly influences the model’s
performance. The F1 score steadily increases as
mc grows from 0.0 to approximately 0.06, peaking
at 0.7307. As mc continues to increase beyond
0.06, the F1 score starts to decline, dropping to
0.7219 when mc reaches 0.1. The results align
with our hypothesis that an overly small angular
margin fails to fully utilize the margin-aware adapt-
ability of MCL, resulting in suboptimal similarity
alignment. Conversely, an excessively large mar-
gin distorts the representation space, leading to
degraded performance.

5.3 Visualization and Case Study
Figure 5 compares the distribution of samples pre-
dicted by Qwen-0.5b and Qwen-0.5b-flip. The
left part shows overlap between positive and nega-
tive samples near the decision boundary, indicating
poor separability. In contrast, the right part shows
clearer separation, with positive samples near 1.0

and negative samples near 0.0. This flip distillation
improves decision boundary clarity and class sepa-
rability, aligning with higher F1 scores and better
model performance.

I had a buffet through a group purchase 
on Douyin, and after eating, I came back 
and got diarrhea. I want compensation.

If you encounter issues with shipping, 
logistics, or product quality, please 
contact the merchant through the order 
page...

I want to apply for a 
return and refund.

What to do for meal 
quality issues?

If the meal you purchased has quality 
issues such as spoilage, foreign objects, 
or illness requiring medical treatment, 
and your order has an Assure…

Baichuan-7b

Related
Query
Retrieval

Our flip model

Figure 6: Case study: Baichuan-7b retrieves irrelevant
shipping info, while our method retrieves the correct
question and gives an accurate response.

We also present a case study from the ByteDance
dataset to demonstrate our method’s effectiveness
in Figure 6. A user reports food poisoning after a
buffet purchase on Douyin and requests compen-
sation. The Baichuan-7b model retrieves an irrele-
vant response about shipping and logistics, failing
to address the user’s issue. In contrast, our method
retrieves the correct question, “What to do for meal
quality issues?” and provides detailed instructions
on filing a compensation claim through the “Assure
Eat” program or contacting the lifestyle services
hotline. This example highlights our method’s abil-
ity to align user intent with relevant responses, im-
proving accuracy and user satisfaction.

6 Conclusion

In this paper, we propose a flipped distillation
technique, where LLMs learn from smaller lan-
guage models due to their superior representa-
tion learning ability in text matching tasks, revers-
ing the traditional distillation direction. Addition-
ally, we introduce an adapted margin-aware dis-
tillation loss to enhance the learning process for
LLMs. Experimental results across three domain-
specific datasets and various model architectures
consistently demonstrate the effectiveness of our
approach. In the future, we aim to further explore
the potential of SLMs in a wider range of tasks to
improve efficiency.
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Limitation

In this paper, we propose a flipped knowledge dis-
tillation paradigm where an LLM learns from an
SLM to improve its performance on tasks such
as text matching. However, one limitation is that
our paradigm relies heavily on the high perfor-
mance of the SLM. If an SLM does not perform
well or fails to produce effective domain-specific
representations, the knowledge transferred to the
LLM may be suboptimal, leading to limited perfor-
mance gains. Another limitation is that our work
focuses exclusively on the text matching task and
does not explore its applicability to text genera-
tion tasks, which are widely relevant in many NLP
applications. The current design and evaluation
are tailored to tasks involving representation align-
ment and similarity computation. Extending this
paradigm to generation tasks, such as summariza-
tion or dialogue systems, would require additional
considerations, including how knowledge align-
ment can influence text fluency and creativity. Fu-
ture work could investigate the broader applicabil-
ity of our approach across diverse NLP tasks to
better understand its generalization capabilities.

Ethical Consideration

However, several ethical considerations must be ad-
dressed. First, bias in the smaller models could be
transferred or amplified during distillation, requir-
ing careful evaluation and mitigation. Second, the
use of domain-specific data raises privacy concerns,
necessitating strict data handling and anonymiza-
tion practices. Third, while more efficient than tra-
ditional fine-tuning, LLM deployment still incurs
notable environmental impact due to high compu-
tational costs. Finally, for real-world applications
in sensitive domains like healthcare and finance,
rigorous testing is essential to ensure reliability and
prevent harmful outcomes. Addressing these issues
will promote responsible and fair deployment of
AI systems.
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A Dataset

C-MTEB (Xiao et al., 2023) is a comprehensive
benchmark for Chinese text embeddings, covering
6 tasks and 35 datasets. We use the ATEC dataset
within C-MTEB, which is designed to determine
whether two sentences in the financial domain are
related. The training dataset has 100,000 examples,
and both the development and test datasets have
2,477 examples each. The average sentence length
is 26.79 words, with a maximum of 166 words and
a minimum of 10 words.

NFCorpus (Boteva et al., 2016) is an English
full-text retrieval dataset for Medical Informa-
tion Retrieval. It contains 3,244 natural language
queries, written in non-technical English, which
were harvested from the NutritionFacts.org web-
site. These queries are paired with 169,756 auto-
matically extracted relevance judgments for 9,964
medical documents, mostly from PubMed. The
task is to determine the relevance between a title
and a document. The training dataset has 110,575
examples, with 11,385 in the development set and
12,334 in the test set. Titles average 17.61 words,
and documents average 1,199.69 words.

The third dataset is our in-house dataset from
ByteDance, which covers multiple product lines,
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such as payment services, subscription services, in-
surance, and personal loan services, sourced from
real online customer service interactions. The
task is Frequently Asked Question (FAQ) retrieval,
which determines whether a user’s query is rele-
vant to another well-written and frequently asked
question in the pre-prepared dataset. The matching
labels are manually annotated. The training dataset
contains 113,316 examples, with 10,000 examples
in both the development and test sets. The average
query length is 14.36 words, and the average length
of FAQ questions is 9.73 words.

B Implementation Details

We implemented our experiments in Pytorch on
NVIDIA H20 GPU. For our model and all base-
lines, we followed the same setting as described
below. We trained the models based on Qwen-0.5b
using one GPU at a time, while for models based
on GLM-10b, we conducted experiments using 4
GPUs. The truncation length for the ATEC, NF-
Corpus, and ByteDance datasets are 256, 2048, and
128, respectively. The prompt for text matching in
the LLM is set the same for both our model and the
baselines as below:

ATEC prompt:

You are an expert in the financial domain. Based
on your knowledge, determine if the semantic
meaning of the following two sentences is the
same. Sentence 1: “sentence1” and Sentence 2:
“sentence2.” Please respond directly with “Yes”
or “No.”

NFC prompt:

You are an expert skilled in understanding med-
ical content. Based on your professional knowl-
edge, please determine if the following two
items, titled "sentence1" and the article "sen-
tence2", can be considered to describe the same
content. Please answer directly with "Yes" or
"No".

Bytedance prompt:

You are an intelligent customer service assistant
for financial products. Determine if the fol-
lowing two questions, Question 1: “sentence1”
and Question 2: “sentence2,” correspond to the
same answer. Please respond directly with “Yes”
or “No.”

For LLM training, we kept the parameters of
the LLM unchanged, and integrated LoRA into the
attention mechanism of each layer. The parameters
of LoRA were all initialized randomly using a zero-
mean Gaussian distribution with a std of 0.01. The
rank and alpha of LoRA is determined based on the
hidden dimension of the teacher model, in order to
enable the model to learn the representations of the
teacher model, i.e., the rank of LoRA is equal to
the dimension of the teacher model. To enhance the
robustness and generalization of the LoRA model,
we set the dropout ratio as 0.05. The hyperparame-
ter mc is set to 0.06 according to our experiment in
Section 5.2 and threshold θ is 0.5, as it represents
the balanced midpoint in binary classification tasks.
The Ldist and LMCL are applied on the last layer
of LLM. We calculate the final loss function as
Loss = Lsup+0.1∗Ldist+0.1∗LMCL. We choose
these weights because we want to scale the compo-
nents to the same magnitude. We set learning rate
as 3e-5, and the warmup ratio as 0.05, which indi-
cates the proportion of total training steps occupied
by warmup. Gradients were clipped to the range [-
1, 1] during training to prevent exploding gradients.
We also added a weight decay of 0.1 to prevent
overfitting, which is a regularization technique used
during the training process. Our proposed LoRA-
based framework significantly reduces the number
of trainable parameters and computational require-
ments. For instance, with Qwen-0.5b as the student
model, only 22% of parameters are trained, while
for GLM-10b, this reduces to 7.54%. This leads to
notable time savings: in the Qwen-0.5b ByteDance
experiment (batch size = 32), full-parameter SFT
takes 5–6 hours, whereas LoRA completes training
in just 2–3 hours. Regarding gradient calculation
for our loss functions Ldist and LMCL, additional
experiments showed that removing these loss terms
did not significantly affect the overall training time.
We selected the 5 best checkpoints based on perfor-
mance on the validation set and reported averaged
results on the test set.
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