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Abstract

Multilingual sentence encoders (MSEs) are
commonly obtained by training multilingual
language models to map sentences from dif-
ferent languages into a shared semantic space.
As such, they are subject to curse of multilin-
guality, a loss of monolingual representational
accuracy due to parameter sharing. Another
limitation of MSEs is the trade-off between
different task performance: cross-lingual align-
ment training distorts the optimal monolingual
structure of semantic spaces of individual lan-
guages, harming the utility of sentence embed-
dings in monolingual tasks; cross-lingual tasks,
such as cross-lingual semantic similarity and
zero-shot transfer for sentence classification,
may also require conflicting cross-lingual align-
ment strategies. In this work, we address both
issues by means of modular training of sen-
tence encoders. We first train language-specific
monolingual modules to mitigate negative inter-
ference between languages (i.e., the curse). We
then align all non-English sentence embeddings
to the English by training cross-lingual align-
ment adapters, preventing interference with
monolingual specialization from the first step.
We train the cross-lingual adapters with two
different types of data to resolve the conflicting
requirements of different cross-lingual tasks.
Monolingual and cross-lingual results on se-
mantic text similarity and relatedness, bitext
mining and sentence classification show that
our modular solution achieves better and more
balanced performance across all the tasks com-
pared to full-parameter training of monolithic
multilingual sentence encoders, especially ben-
efiting low-resource languages.1

1 Introduction

Multilingual Sentence Encoders (MSEs; Artetxe
and Schwenk, 2019b; Yang et al., 2020; Reimers
and Gurevych, 2020; Feng et al., 2022; Duquenne

1Our code is available at https://github.com/UKPLab/
acl2025-modular-sentence-encoders.

et al., 2023) embed sentences from different lan-
guages into a shared semantic vector space, mak-
ing them essential tools for multilingual and cross-
lingual semantic retrieval (e.g., bitext mining;
Schwenk et al., 2021), clustering (e.g., for extrac-
tive summarization; Bouscarrat et al., 2019), and
filtering (e.g., in content-based recommendation;
Hassan et al., 2019), as well as for cross-lingual
transfer in supervised text classification (Artetxe
and Schwenk, 2019b; Licht, 2023). In this work,
we aim to address two limitations in the MSEs
through modular training: the curse of multilin-
guality and the trade-off in performance between
different monolingual and cross-lingual tasks.

Like general-purpose multilingual encoder lan-
guage models (mELMs, e.g., mBERT; Devlin et al.,
2019; XLM-R; Conneau et al., 2020), multilin-
gual models specialized for sentence encoding2

are also subject to the curse of multilinguality
(CoM; Conneau et al., 2020), a loss of representa-
tional precision for each individual language due
to sharing of model parameters between many lan-
guages, resulting in negative interference (Wang
et al., 2020). Training language-specific modules
like embedding layers and language adapters (Pfeif-
fer et al., 2021, 2022) or full models (Blevins et al.,
2024) has been proven effective against this issue
for general-purpose models, but rarely applied for
MSEs, whose sentence embeddings from differ-
ent monolingual modules need to be semantically
aligned to each other. To the best of our knowl-
edge, the only work that targets CoM for MSEs
is LASER3 (Heffernan et al., 2022): they train a
set of monolingual sentence encoders from scratch
through the distillation from a fixed teacher MSE,
which is already affected by the CoM.

Existing MSE work mostly focuses on cross-
lingual training and evaluation, paying less atten-

2In fact, many MSEs are derived from mELMs (Reimers
and Gurevych, 2020; Feng et al., 2022, inter alia) by doing
sentence-level training on top of them.
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tion to the monolingual (i.e., within-language) per-
formance, which can be negatively affected by the
cross-lingual alignment (Roy et al., 2020). Earlier
work on inducing cross-lingual word embeddings
(Søgaard et al., 2018; Patra et al., 2019; Glavaš
and Vulić, 2020) hints at an explanation for this
trade-off: forcing cross-lingual alignment between
non-isomorphic monolingual spaces distorts those
spaces and thus degrades their monolingual seman-
tic quality. What is more, there also seems to be a
trade-off between different cross-lingual tasks: dif-
ferent cross-lingual training approaches yield op-
timal performance for different tasks. Concretely,
MSEs trained on parallel data to produce highly
similar embeddings for exact translation pairs are
effective in bitext mining (Artetxe and Schwenk,
2019b; Feng et al., 2022; Heffernan et al., 2022);
however, they perform worse on cross-lingual se-
mantic similarity, failing to produce high similarity
for sentences with similar but non-equivalent mean-
ing (Reimers and Gurevych, 2020). Conversely,
MSEs trained on paraphrase3 data (Yang et al.,
2020; Reimers and Gurevych, 2020), i.e. pairs of
semantically similar but non-equivalent sentences,
yield better semantic similarity performance but are
not effective in bitext mining. Paraphrase-trained
models also seem to offer weaker performance in
zero-shot cross-lingual transfer for sentence classi-
fication tasks (Roy et al., 2020), which also seems
to benefit more from parallel alignment.

Contributions. In this work, we propose to alle-
viate all of the above shortcomings by means of
modularity, that is, parameter separation. As illus-
trated in Figure 1, we first mitigate the curse of
multilinguality by specializing an MSE for each
target language, i.e., training language-specific em-
bedding layers and language adapters via masked
language modeling (MLM-ing). To obtain high-
quality monolingual sentence embeddings, we then
train a monolingual sentence encoding adapter
(SE adapter) for each language on top of the lan-
guage adapter, resorting to sentence-level con-
trastive learning on synthetic monolingual para-
phrase data, machine-translated from English. In
the next step, we carry out cross-lingual align-
ment training also in a modular fashion, without
jeopardizing the monolingual sentence representa-
tion quality. To meet the requirements of different
cross-lingual tasks, we train a cross-lingual align-

3We use the word “paraphrase” in a broad sense, to include
also, e.g., entailment pairs or question-answer pairs.

ment adapter (CLA adapter) for each non-English
language with both cross-lingual paraphrase and
parallel pairs, aligning them to a shared semantic
space using English as the pivot language. At infer-
ence time, we activate the language-specific mod-
ules (embeddings, language adapter, SE adapter,
CLA adapter) of the respective language of the
input sentence.

Our experiments—encompassing four tasks and
23 linguistically diverse languages and two state-
of-the-art MSE models—render our modular ap-
proach effective in overcoming the performance
trade-offs between both (1) monolingual and cross-
lingual tasks as well as (2) different sentence-level
tasks types (semantic textual similarity and related-
ness on the one side vs. bitext mining and sentence
classification on the other), with substantial per-
formance gains over full-parameter training of a
single monolithic MSE. Our approach particularly
benefits low-resource languages, most affected by
the curse of multilinguality. Since both contrastive
learning steps in our approach—for monolingual
specialization and for cross-lingual alignment—are
carried out on machine-translated data, our work
also validates the viability of MT for scaling up
MSE training data.

2 Related Work

2.1 Multilingual Sentence Embeddings

Multilingual sentence encoders should produce
similar sentence embeddings for sentences with
similar meaning, regardless whether they come
from the same or different languages. Cross-lingual
alignment is thus at the core of MSE training, typi-
cally achieved by training on parallel data (Artetxe
and Schwenk, 2019b; Feng et al., 2022; Duquenne
et al., 2023; Gao et al., 2023; Zhao et al., 2024). As
a standard practice to acquire high-quality English
sentence embedding (Reimers and Gurevych, 2019;
Gao et al., 2021), contrastive learning with para-
phrase pairs has also been applied to train MSEs.
This can be done through teacher-student distil-
lation with an English teacher model trained on
English paraphrases (Reimers and Gurevych, 2020;
Ham and Kim, 2021), or directly with cross-lingual
paraphrases (Wang et al., 2022). Another line of
work removes language-specific information to get
language-agnostic meaning representation (Yang
et al., 2021; Tiyajamorn et al., 2021; Kuroda et al.,
2022). To the best of our knowledge, our work
is the first attempt to address multiple conflicting
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Figure 1: Illustration of how we apply our modular training to a pre-trained multilingual sentence encoder. In each
step, only the module marked with the fire symbol is trained. In the monolingual specialization step, we train a
language-specific embedding layer, a language adapter and a monolingual sentence encoding (SE) adapter for each
language. In the cross-lingual alignment (CLA) step, the monolingual (e.g., German) representation is aligned to
the English representation via cross-lingual paraphrase and parallel data, in alternate batches. PA: parallel adapter.

factors in MSE training, aiming to yield optimal
performance trade-off across a variety of tasks.

2.2 Lifting the Curse of Multilinguality

The post hoc parameter-efficient adaptation for in-
dividual languages is mostly done for on feneral-
purpose mELMs like mBERT and XLM-R (Pfeif-
fer et al., 2020, 2021; Parović et al., 2022, inter
alia) through continued pre-training on the target
language corpora. Expanding or replacing multi-
lingual vocabulary with target language tokens and
smart initialization of their embeddings (Chau and
Smith, 2021; Pfeiffer et al., 2021; Minixhofer et al.,
2022; Dobler and de Melo, 2023) has been shown
to improve sample efficiency of post hoc language
adaptation of multilingual models.

However, previous adapter-based methods for
general-purpose models do not address the unique
challenges posed by MSEs, as MSE training addi-
tionally requires specialization for sentence encod-
ing after the standard pre-training. Besides, exist-
ing methods are only used in tasks where the input
is always in one language, so only one specific lan-
guage adapter needs to be activated (Pfeiffer et al.,
2020). In contrast, MSEs often deal with cross-
lingual sentence pairs as input (in cross-lingual STS
or bitext mining), which requires explicit align-
ment training of language-specific adapters. In the
field of MSEs, the language-specific adaptation
still relies on monolithic full-parameter training of
the whole model: either trained only for a certain
language (Mohr et al., 2024), or distilled from a
massively multilingual teacher model which is al-

ready affected by the curse of multilinguality and
never really trained to model fine-grained semantic
similarity (Heffernan et al., 2022). Some existing
MSE efforts (Mao et al., 2021; Kuroda et al., 2022;
Liu et al., 2023; Yano et al., 2024) do leverage
lightweight modules for cross-lingual training, but
these modules are still (massively) multilingual,
i.e., do not alleviate the curse of multilinguality.

3 Modular Sentence Encoder

Our main objective is to obtain multilingual sen-
tence embeddings that excel across the board, de-
spite the conflicts between different tasks and sce-
narios: (i) in both monolingual and cross-lingual
tasks, despite cross-lingual semantic alignment pos-
sibly being at odds with monolingual semantic
specialization; and (ii) in different types of cross-
lingual tasks, despite the fact that they require
different types of cross-lingual alignment training
(Roy et al., 2020). To mitigate these inherent trade-
offs, we propose a modular approach, i.e., to isolate
parameters for different requirements, as illustrated
in Figure 1: we train a set of language-specific
modules to (i) specialize the MSE for each individ-
ual language, and (ii) to align the monolingually
adapted MSEs for cross-lingual tasks.

3.1 Monolingual Specialization

We specialize MSEs like LaBSE (Feng et al., 2022)
and multilingual E5 (Wang et al., 2024) for each
language by training language-specific (i) embed-
ding layers and (ii) adapters with monolingual data.

2169



Language Adaptation (LA). For each language,
we train a new, language-specific tokenizer and
initialize its new embedding matrix following the
FOCUS approach (Dobler and de Melo, 2023). In a
nutshell, FOCUS copies the embeddings for tokens
that already exist in the vocabulary of the original
MSE; for new tokens, it interpolates between em-
beddings of similar tokens from the original vocab-
ulary. Compared to random initialization, FOCUS
keeps a substantial amount of information from the
pre-trained embeddings of the multilingual model
in the new embeddings, making them “compatible”
with the model body, avoiding the need to train
them from scratch for each language: this leads
to more sample efficient training for the embed-
ding layers.4 For each target language, we then do
standard (continued) MLM-ing on the monolingual
corpora of the language. To this end, we resort to
modular, parameter-efficient fine-tuning (PEFT):
besides the parameters of the new embedding ma-
trix, we train only the low-rank adaptation matrices
(LoRA; Hu et al., 2022) in encoder’s layers. PEFT
has been widely adopted for post-hoc language spe-
cialization of vanilla mELMs (Pfeiffer et al., 2020,
2021; Parović et al., 2022).

Sentence Encoding (SE) (Re-)Training. As a
token-level objective, (continued) MLM-ing is
detrimental to the original sentence embedding
abilities of a pre-trained MSE: we thus need to
re-specialize the model for (monolingual) sentence
encoding: for this, we use a standard contrastive
learning objective, Multiple Negative Ranking Loss
(MNRL; Henderson et al., 2017), and train on
the (noisy) monolingual paraphrase data, machine-
translated from English. This step is also done in a
modular way by stacking another set of monolin-
gual adapters (again LoRA), the SE adapter, on top
of the LA. In this training step, only the parameters
of the SE adapter are updated, in order to obtain
the monolingual sentence encoding ability; the en-
coder body, language-specific embeddings layer
and the previously trained LA are all kept frozen.

3.2 Cross-Lingual Alignment (CLA)

The mutually independent language adaptation
for individual languages warrants a cross-lingual
sentence-level alignment step, so that the sentence
embeddings can also be used in cross-lingual appli-
cations. To prevent negative interference between
cross-lingual alignment and previously imparted

4We refer the reader to the original paper for more details.

monolingual SE abilities, we train a cross-lingual
alignment (CLA) module as a parallel adapter
(He et al., 2022) for each non-English language.
Since our machine-translated monolingual para-
phrase datasets are parallel across all languages,
we can create both cross-lingual paraphrase pairs
(i.e. sentence in language A and its paraphrase in
language B) and parallel pairs (i.e. sentence in
language A and its direct translation in language
B), which can be combined in training to mitigate
the inherent interference between semantic simi-
larity, bitext mining and cross-lingual transfer for
classification (see §1).

All the cross-lingual training pairs consist of one
sentence in English and another sentence in the
target language. To align the non-English sentence
embeddings to the English ones, we alternate train-
ing on a batch of paraphrase data with the same
MNRL—just like in monolingual SE training—
and another batch of parallel data with the cosine
similarity loss (following Heffernan et al., 2022).
The cross-lingual alignment training updates only
language-specific CLA adapters; the monolingual
modules of the corresponding input language are
activated in the forward pass, but not updated.

We favor bilingual alignment with English over
multilingual alignments5, because English embed-
dings are the most reliable: not only is the ini-
tial multilingual encoder most “fluent” in English,
but we also trained English embeddings on gold
paraphrase data, whereas all other SE adapters are
trained with noisy translations. Because of this, we
omit to train the CLA adapter for English: with En-
glish embedding space being of the best semantic
quality, we want embeddings from other languages
to adapt (through their CLA adapters) to the En-
glish space, and not vice versa. Using English as a
pivot has already been proven effective in aligning
non-English languages to each other (Reimers and
Gurevych, 2020; Heffernan et al., 2022). We also
do an empirical comparison between bilingual and
all-pair alignment in §6.1.

3.3 Inference

After training, we have several modules for each
language: embedding layer, language adapter, SE
adapter and CLA adapter. When encoding the in-
put text, the corresponding modules for the input
language should be activated. Thus, the language

5Given the multi-parallel nature of the paraphrase data we
obtained with MT, direct alignment between all non-English
language pairs is possible.
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of the input text should be known. Otherwise, one
can easily apply any SotA language identification
models (Kargaran et al., 2023) to detect the input
language first.

4 Experimental Setup

4.1 Models
We start from two popular MSEs as base models
for our modular specialization: LaBSE and mul-
tilingual E5-base (mE5). LaBSE has been pre-
trained on billions of parallel sentence pairs (Feng
et al., 2022). Starting from XLM-R-base (Conneau
et al., 2020), mE5 has first been trained on around
1 billion of (noisy) weak-supervision pairs, then
on around 1.6 million high-quality sentence pairs
(Wang et al., 2024). The goal of our work is not
to outperform other MSEs or achieve SotA perfor-
mance; instead, we aim to show that our proposed
modular specialization offers clear benefits over
monolithic full-model training.

Monolithic Baselines. Our primary baseline is the
monolithic MSE model for which all parameters
are updated in each training step, akin to mSimCSE
(Wang et al., 2022). While mSimCSE originally
trains only on (English or cross-lingual) NLI data,
we extend this to make the comparison with our
modular variants as fair as possible: we use all the
MT-obtained multilingual paraphrase datasets (be-
yond just NLI) as in our modular training. We have
the following monolithic-model variants: (i) Fullen,
trained only on (clean) English paraphrase data; (ii)
Fullm, trained only on monolingual data of all lan-
guages (each batch is monolingual, language ran-
domly sampled for each batch); (iii) Fullc, trained
only on cross-lingual paraphrase pairs (the lan-
guage for each sentence in a paraphrase pair is
randomly selected); and (iv) Fullmc, trained se-
quentially, first on monolingual and then on cross-
lingual paraphrases.

Modular Variants. We evaluate the following vari-
ants: (i) Moden, as a baseline: a monolingual SE
adapter is trained only on English paraphrase data
and used for all other languages; i.e., we trans-
fer the sentence encoding ability from English;
(ii) Modm: with only monolingual specialization,
i.e. a monolingual SE adapter is trained with para-
phrase dataset for every language; (iii) Modmc-pp
adds a CLA adapter trained only on cross-lingual
paraphrase data to Modm; (iv) Modmc-pl adds a
CLA adapter trained only on cross-lingual parallel
data to Modm; (v) Modmc-jt is our complete set-

ting with a CLA adapter trained jointly on both
paraphrase and parallel data. We do the modular
training on LaBSE for 23 languages present in the
evaluation datasets. Due to the intensive LA step
and limited resources, for mE5 we train the mod-
ules for a subset of 10 languages.6

4.2 Training Data

Supervised paraphrase data is crucial for achieving
high performance in sentence embedding tasks, yet
a large amount of such data is only available in
English. Compared to the labor-intensive manual
mining and labelling or translation of paraphrase
data in all languages, machine translation is sig-
nificantly more cost-effective and scalable. The
SotA MT models today can already provide high-
quality translation for hundreds of languages, in-
cluding very low-resource ones (NLLB Team et al.,
2022; Kudugunta et al., 2023). This motivates us
to translate, with NLLB 3.3B as our MT model
(NLLB Team et al., 2022), five English paraphrase
datasets—MNLI (Williams et al., 2018), Sentence-
Compression (Filippova and Altun, 2013), Sim-
pleWiki (Coster and Kauchak, 2011), Altlex (Hidey
and McKeown, 2016) and QuoraDuplicateQues-
tions7, containing combined around 600K sentence
pairs—into all 22 languages found in our down-
stream evaluation datasets. This results in a multi-
parallel paraphrase dataset spanning 23 languages,
from which we create instances for monolingual
and cross-lingual training.

We train language-specific tokenizers and carry
out monolingual language adaptation on mono-
lingual corpora combined from language-specific
portions of CC100 (Conneau et al., 2020) and
MADLAD-400 (Kudugunta et al., 2023).

4.3 Evaluation Data

We evaluate the obtained sentence encoders on four
tasks: semantic textual similarity (STS), semantic
textual relatedness (STR), bitext mining, and sen-
tence classification. For the first three tasks, we
do evaluation in the “zero-shot” setup, i.e., with-
out any task-specific supervised training. We only
evaluate on high-quality datasets, compiled either
manually from scratch or by human post-editing of
machine translations.8

6We provide the full list of languages in Appendix A and
training details in Appendix B.

7See Appendix C.1 for details on the training datasets
8See Appendix C.2 for details on the evaluation datasets.
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Semantic Textual Similarity. The models need to
produce a score indicating semantic similarity for
a pair of sentences. We simply use the cosine sim-
ilarity between the embeddings of the sentences.
Performance is reported as Spearman correlation
(×100) against human scores. We collect existing
multilingual STS datasets and use parallel monolin-
gual STS data to create high-quality cross-lingual
evaluation pairs. For example, the STS datasets
for Czech, German and French (Hercig and Kral,
2021) and the datasets for Dutch, Italian and Span-
ish (Reimers and Gurevych, 2020) are parallel to
each other, as they are translated from the same
STS17 (Cer et al., 2017) English data. The same
applies for the STS datasets for Turkic languages
in Kardeş-NLU (Senel et al., 2024) and the Ko-
rean STS dataset from Ham et al. (2020), all trans-
lated from the English STS-Benchmark (STSB;
Cer et al., 2017). We can thus leverage this ef-
fectively multi-parallel STS data for cross-lingual
evaluation on many more language pairs, including
pairs never evaluated in prior work, e.g. Czech-
Italian or Korean-Uzbek.

Semantic Textual Relatedness. Semantic relat-
edness is a broader concept than similarity, that
also considers aspects like topic or view similarity
(Ousidhoum et al., 2024). We use the same met-
ric as in the STS task. Similar to STS, we aggre-
gate the multi-parallel monolingual data and create
cross-lingual pairs between Polish (Dadas et al.,
2020), Dutch (Wijnholds and Moortgat, 2021), and
Spanish (Araujo et al., 2022), all translated from
the English SICK dataset (Marelli et al., 2014).
STR24 (Ousidhoum et al., 2024) contains monolin-
gual STR data for low-resource African and Asian
languages; but it is not multi-parallel, and as such
only lends itself to monolingual evaluation.

Bitext Mining. The model should mine paral-
lel sentences (translation pairs) from two lists of
monolingual sentences based on the cosine simi-
larity of bilingual sentence pairs. Following Hef-
fernan et al. (2022), we use the xsim score (er-
ror rate of wrongly aligned sentences; Artetxe and
Schwenk, 2019a) to evaluate our models on two bi-
text mining datasets: FLORES (Goyal et al., 2022)
and Tatoeba (Artetxe and Schwenk, 2019b). We
only evaluate on the languages for which we have
trained language-specific modules. Since FLO-
RES is multi-parallel, we test on all possible lan-
guage pairs between our target languages. Tatoeba
only contains English-X data: we average the re-

sults from both mining directions (English→X and
X→English) for all languages X.

Topic Classification. We resort to SIB-200 (Ade-
lani et al., 2024) to obtain data for topical sen-
tence classification for our 23 target languages. In
monolingual evaluation, we train a simple Logis-
tic Regression (Cox, 1958) classifier on top of our
frozen sentence encoder for each target language.
In (zero-shot) cross-lingual transfer setup, we train
the classifier only on English data and use it for
other languages.

Alignment Metrics. In standard task formulations,
cross-lingual STS is bilingual, i.e., a sentence in
one language is compared only against sentences
in one (and same) other language. Such an evalua-
tion setup fails to capture the language bias of an
MSE (Roy et al., 2020): in a multilingual candidate
pool, the model might prefer certain language (pair)
over others, e.g., map sentences from the same lan-
guage closer in the embedding space even if they
are semantically dissimilar. Following Reimers and
Gurevych (2020), we quantify language bias as the
performance drop when switching from bilingual
to multilingual evaluation, for which we calculate
the Spearman correlation on the concatenation of
all bilingual datasets. To this end, we use the multi-
parallel STSB and SICK datasets; we report the
difference between the average performance on
all individual bilingual tasks and the performance
on the single multilingual task. Another indicator
of semantic quality of multilingual representation
spaces is the similarity of monolingual semantic
structures, i.e., the degree of their isomorphism. It
can be quantified by Relational Similarity (RSIM;
Vulić et al., 2020) on a bilingual parallel corpus:
we calculate the corresponding sets of cosine sim-
ilarity scores for all monolingual sentence pairs
in each of the two languages, and report RSIM as
Pearson correlation between the two sets of corre-
sponding monolingual cosines. We measure RSIM
on FLORES, averaging the results across all lan-
guage pairs.

5 Results

We report the results for our LaBSE-based models
in Table 1 and for mE5-based models in Table 2.

5.1 Full Model Results

Further training on monolingual paraphrase data
(Fullen and Fullm) can already largely improve the
original models’ (first row in each table) perfor-
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Monolingual tasks Cross-lingual tasks Alignment metrics

STS↑ STR↑ CLS↑ STS↑ STR↑ CLS↑ Bitext Mining↓ Language Bias↓ RSIM↑
Dataset sts17 stsb sick str24 sib sts17 stsb sick sib flores tatoeba stsb sick flores

LaBSE 76.7 71.9 68.0 69.2 82.7 74.5 64.4 63.8 83.6 0.14 3.87 1.02 2.32 0.64

Fullen 82.7 80.9 76.5 75.4 84.1 78.8 71.5 70.4 83.5 0.49 4.72 0.87 1.48 0.70
Fullm 82.9 80.4 76.4 75.9 84.8 79.4 71.5 70.9 83.9 0.29 4.43 0.88 1.27 0.74
Fullc 81.0 79.1 75.1 75.3 85.1 77.8 72.1 71.5 85.3 0.20 4.00 0.53 0.70 0.77
Fullmc 80.0 79.2 75.1 75.4 86.0 76.7 72.7 71.7 86.3 0.21 4.17 0.53 0.64 0.77
Moden 82.6 82.1 76.3 78.7 84.9 80.1 74.8 71.5 83.6 0.16 3.68 0.90 1.24 0.73
Modm 83.1 82.1 76.5 78.4 85.5 80.6 75.3 71.9 85.0 0.15 3.63 1.05 1.16 0.75
Modmc-pp 82.9 81.8 76.7 77.5 86.0 80.7 76.0 72.8 85.0 0.16 3.49 0.71 0.92 0.76
Modmc-pl 81.4 81.6 76.0 77.2 85.8 79.1 76.1 72.4 86.2 0.15 3.64 0.56 0.67 0.82
Modmc-jt 82.7 82.1 76.6 78.1 85.8 80.3 76.4 72.7 85.7 0.15 3.55 0.56 0.78 0.79

Ablations
Modm w/o LA 81.3 78.1 74.3 75.9 84.0 79.0 72.0 71.0 84.7 0.13 3.84 0.85 1.10 0.75
Modc-jt 82.7 81.9 76.4 77.6 85.3 80.3 76.0 72.6 85.3 0.16 3.69 0.58 0.88 0.79

Table 1: Results of the LaBSE-based models for 23 languages. Reported results are averages over all languages in
each evaluation dataset. The best result within the Full group and the Mod group on each dataset is denoted in bold.
The second-best result in the Mod group is underlined. CLS stands for classification. See detailed results on each
individual language (pair) in Appendix D.

.

mance on all tasks, except for bitext mining. The
off-the-shelf LaBSE model is a strong baseline
for bitext mining, as it has been pre-trained on
a massive amount of parallel data, which perfectly
aligns with the goal of bitext mining. This confirms
the previous finding that training on paraphrase
data can disturb bitext mining ability (Reimers and
Gurevych, 2020). Fullm trained on MT-ed mono-
lingual data in all target languages outperforms
Fullen (i.e., the mSimCSEen setting in Wang et al.,
2022) slightly on LaBSE and significantly on mE5,
demonstrating the limitation of cross-lingual trans-
fer of sentence-embedding specialization from En-
glish, especially if the base model has not been
subjected to massive cross-lingual pre-training on
parallel data like LaBSE. The improved results of
Fullm also indicate that machine translation is a
reliable alternative to the labor-intensive labelling
of training data for a broad range of languages.

Fullm outperforms Fullc on monolingual STS
and STR tasks, whereas the opposite is true in cross-
lingual tasks: this confirms the inherent trade-off
between monolingual and cross-lingual abilities of
MSEs. The inability of monolingual training, even
using multi-parallel data, to induce strongly aligned
cross-lingual semantic structures is confirmed by
the higher language bias and lower RSIM scores
of Fullm. The trade-off between monolingual and
cross-lingual performance is more pronounced in
mE5 results. The sequential combination of both
monolingual and cross-lingual training (Fullmc) is
unable to resolve the conflict and yields results sim-
ilar to Fullc: in a monolithic MSE model, the subse-
quent cross-lingual alignment seems to distort the

semantic quality of monolingual subspaces. One
notable exception is monolingual text classification,
where Fullmc outperforms Fullm on LaBSE. We
speculate that is because topic classification relies
on lexical cues rather than fine-grained sentence
meaning: cross-lingual training probably improves
lexical alignments and the fine-grained distortions
it brings to monolingual semantics play no role in
this semantically coarse task.

5.2 Modular Model Results

Monolingual Training. We first compare the base-
line Moden, with an SE adapter trained only on En-
glish data and shared across all languages, against
Modm, with a language-specific SE adapter for
each language. As is the case for monolithic mod-
els, Modm with language-specific sentence encod-
ing training with noisy machine-translated data out-
performs the transfer from English-only SE train-
ing (Moden) on mE5’s cross-lingual tasks, dramati-
cally reducing the language bias. Looking at per-
formance on monolingual tasks, our Modm with
monolingual specialization (LA and SE) success-
fully mitigates the curse of multilinguality, which
seems to be present in its monolithic counterpart
Fullm: the gains are particularly prominent on
monolingual STSB (+1.7 on LaBSE, +2.5 on mE5)
and STR24 (+2.5 on LaBSE), datasets that en-
compass most low-resource languages. The im-
portance of modularity becomes most apparent on
cross-lingual STS and STR, where our Modm, not
exposed to any explicit cross-lingual alignment,
outperforms the explicitly cross-lingually trained
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Monolingual tasks Cross-lingual tasks Alignement metrics

STS↑ STR↑ CLS↑ STS↑ STR↑ CLS↑ Bitext Mining↓ Language Bias↓ RSIM↑
Dataset stsb sick sib stsb sick sib flores tatoeba stsb sick flores

mE5 72.5 74.2 74.0 54.1 61.0 73.5 1.85 9.89 23.22 12.11 0.60

Fullen 75.8 75.4 83.4 55.4 62.2 82.9 1.46 9.98 7.21 5.79 0.59
Fullm 79.6 75.5 85.5 60.2 64.1 85.2 0.62 7.85 2.60 3.16 0.67
Fullc 77.7 73.9 85.6 66.7 67.7 85.5 0.26 6.37 1.11 1.24 0.74
Fullmc 77.4 73.1 85.4 66.7 66.9 86.5 0.26 6.33 1.05 1.14 0.74
Moden 79.9 75.8 87.0 66.2 66.7 87.0 0.26 5.81 6.66 5.27 0.72
Modm 82.1 75.4 87.8 69.8 68.5 87.7 0.22 5.27 2.82 3.07 0.74
Modmc-pp 81.7 76.4 87.9 73.2 70.5 87.6 0.20 5.19 1.58 2.08 0.75
Modmc-pl 80.8 75.2 88.5 72.8 69.6 89.0 0.22 5.61 2.15 2.05 0.82
Modmc-jt 81.9 76.4 88.3 73.8 70.7 88.3 0.19 5.00 1.33 1.73 0.80

Ablations
Modm w/o LA 80.8 76.0 87.2 61.5 64.4 86.3 0.56 7.63 3.87 3.53 0.68
Modc-jt 81.9 76.2 87.7 73.9 70.6 88.2 0.19 5.24 1.39 1.93 0.80

Table 2: Results of the mE5-based models for 10 languages. Reported results are averages over all languages in
each evaluation dataset. The best result within the Full group and the Mod group on each dataset is denoted in bold.
The second-best result in the Mod group is underlined. CLS stands for classification. See detailed results on each
individual language (pair) in Appendix D.

monolithic variants (Fullc and Fullmc). This shows
that monolingual training on multi-parallel data
leads to semantic alignment, emphasizing the po-
tential of MT for synthesizing MSE training data.
Our Mod variants also have a clear advantage over
monolithic (Full) models in bitext mining (both for
LaBSE and mE5), even in the absence of explicit
cross-lingual training (i.e., Modm). This suggests
that multilingual training on full models messes up
not only the monolingual spaces (i.e., the curse of
multilinguality) but also the cross-lingual relations,
which is alleviated by our modular approach.

Cross-Lingual Training. Adding cross-lingual
alignment in a modular fashion (Modmc variants)
brings further gains (compared to Modm) in cross-
lingual tasks. Cross-lingual adapters, either trained
on paraphrase data (Modmc-pp) or parallel data
(Modmc-pl) can effectively reduce language bias
and increase isomorphism of monolingual spaces
(cf. Modm). Results further show that paraphrase-
and parallel-CLA adapters benefit different types
of cross-lingual tasks. On both LaBSE and mE5,
Modmc-pl has the strongest performance in cross-
lingual classification transfer (CLS), which corre-
lates with the degree of isomorphism (RSIM). How-
ever, adding this CLA adapter trained with parallel
data has a negative impact on the monolingual per-
formance (cf. Modm). Conversely, Modmc-pp is bet-
ter at both monolingual and cross-lingual STS/STR
than Modmc-pl. This confirms the conflicting re-
quirements of different downstream tasks. Combin-
ing both training strategies in Modmc-jt mitigates
individual shortcomings of Modmc-pp and Modmc-pl,
resulting in well-balanced performance across all
tasks, including the monolingual ones. Our com-

plete Modmc-jt setup thus makes the best use of our
multi-parallel paraphrase dataset.

5.3 Ablation of Monolingual Specialization

Additional monolingual training for each language
as an intermediate step before cross-lingual align-
ment distinguishes our modular approach from
other popular MSE training strategies. We thus
ablate the contribution of the monolingual special-
ization step (last two rows in Table 1 and Table 2).

Language Adaptation. We first remove the LA
step, i.e. we omit the MLM training with language-
specific embedding layer and language adapter
and directly train the monolingual SE adapter on
the original MSE. For both LaBSE and mE5, this
leads to a significant performance drop compared
with Modm. Without language adaptation, adapter-
based SE training even underperforms Fullm in
monolingual tasks on LaBSE. But it can still im-
prove over Fullm in cross-lingual tasks: this again
suggests that modular multi-parallel monolingual
SE training benefits cross-lingual semantic align-
ment more than multilingual training on shared
full-model parameters.

Monolingual SE Training. To isolate the contri-
bution of the monolingual SE adapter, we remove
the SE adapter for non-English languages from
Modmc-jt to get a Modc-jt baseline: now the sen-
tence encoding in other languages is learned only
through the alignment to the English representa-
tions. We observe a slight drop in both monolin-
gual and cross-lingual tasks and an increase in lan-
guage bias, suggesting that the removal of monolin-
gual SE training is detrimental to the strong cross-
lingual alignment of language-specific representa-
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monoling. cross-ling. lang. bias
Modmc-pp 81.8 76.0 0.71
Modmc-pp all-pair 80.9 75.7 1.25
Modmc-pl 81.6 76.1 0.56
Modmc-pl all-pair 75.8 72.2 1.38

Table 3: STSB results of LaBSE-based Mod variants
with our standard English-centric alignment (Modmc-pp
and Modmc-pl) and the alternative all-pair alignment.

step module size time

language adaptation embedding layer 8.15% 20hlanguage adapter 0.09%

sentence encoding SE adapter 0.25% 15m

cross-lingual alignment CLA adapter 1.50% 30m

Table 4: Size (percentage of the original LaBSE size of
472M parameters) and training time for each module on
an A100 40G GPU. See Appendix B for training details.

tion subspaces. The ablation results prove that our
monolingual specialization steps are not only ef-
fective for improving monolingual performance of
individual languages, but also plays an indispens-
able role in cross-lingual alignment.

6 Discussion

6.1 All-Pair or English-Centric Alignment

We provide an additional experiment to empirically
show the advantage of alignment to English repre-
sentations over all-pair alignment on a subset of 7
languages (the STSB languages). In all-pair align-
ment, all languages are aligned with each other
instead of only to English. For both cross-lingual
training on paraphrase data and parallel data, the
results in Table 3 show a clear performance drop
in both monolingual and cross-lingual evaluation,
indicating that due to the increased complexity of
aligning every language pair directly, the all-pair
alignment without a fixed pivot can reduce the rep-
resentation quality of each language as well as the
alignment between languages.

6.2 Efficiency of our Method

The parameter size of each module and training
time for each step are reported in Table 4. One lim-
itation of our method is that the parameter size of
language-specific modules scales linearly with the
number of languages. However, there is no “free
lunch” in addressing the curse of multilinguality.
In contrast to training monolingual full models, we
try to achieve a balance between performance and
model size. Our modular design offers high flexi-

bility, supporting diverse use cases. It is unlikely
that all application scenarios involve hundreds of
languages simultaneously. For use cases with sev-
eral or even a single language, only the relevant
modules need to be loaded, which minimizes the
computational and memory overhead. Addition-
ally, our method allows new languages to be added
independently, without the need for retraining the
backbone or any of the previously trained modules.

Our modular approach to multilingual sentence
encoding presented in this work opens a range of
possibilities for further (modular) improvements.
Though we reduce the vocabulary size by switch-
ing from the original multilingual tokenizers (501K
for LaBSE and 250K for mE5) to 1/10 and 1/5
(50K for each of our monolingual tokenizer), our
embedding layers remain the largest contributor to
the model weights (Table 4). Further parameter
reduction can be promising directions for future
work. For instance, even smaller vocabulary sizes
can be tried out, as some of the LASER3 models
use as small as 8K vocabulary (Heffernan et al.,
2022). Additionally, LoRA could also be applied
to the embedding layer to compress the module.
Finally, modules can be trained for language fami-
lies instead of individual languages, reducing the
number of required parameters while leveraging
linguistic similarities.

7 Conclusion

Multilingual sentence encoders encode sentences
from many languages in a shared semantic space.
As a consequence, they suffer from the curse of
multilinguality and trade monolingual performance
for cross-lingual alignment. Moreover, the choice
of different types of training data (paraphrases vs.
parallel data) results in performance trade-offs be-
tween cross-lingual downstream tasks. In this work,
we addressed these shortcomings via modular-
ity. We first specialize a multilingual sentence en-
coder to individual languages by training language-
specific embedding layers, language adapters and
monolingual sentence encoding adapters. The high-
quality monolingual sentence embedding spaces
are then aligned to a shared space through another
set of cross-lingual alignment adapters, trained
jointly on both paraphrase and parallel data. We
show (i) that this modular approach yields gains
w.r.t. both monolingual and cross-lingual perfor-
mance, and (ii) that machine-translated data can
help train effective sentence encoders.
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Limitations

We only experiment with encoder-based MSEs like
LaBSE and mE5. Though this is the mainstream
architecture for most MSEs, there are also pre-
trained MSEs with the encoder-decoder architec-
ture (Duquenne et al., 2023). Since the pre-training
training objectives of such models are different
from the encoder-based models we use (i.e. MLM
and contrastive sentence embedding learning), our
current modular training approach cannot be di-
rectly applied to them without adaptations. We
thus leave the application of our modular approach
to improve encoder-decoder MSEs to future work.

Having language-specific modules for each lan-
guage requires that the language of the input text
is known. If the language is unknown, a prior lan-
guage identification step is needed to determine
it, as we do not have a built-in language detec-
tion module. Fortunately, language identification
is generally straightforward and reliable models
that recognize hundreds of languages are readily
available (Kargaran et al., 2023).

Ethics Statement

Our experiments use publicly available datasets and
benchmarks for training and evaluation: these are
all commonly used in the NLP research. No per-
sonal information or sensitive data are involved in
our work. Existing biases in the public datasets, our
machine-translated datasets and pre-trained models
can still be relevant concerns, as we do not specifi-
cally mitigate them in this work.
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Jonas Pfeiffer, Ivan Vulić, Iryna Gurevych, and Se-
bastian Ruder. 2020. MAD-X: An Adapter-Based
Framework for Multi-Task Cross-Lingual Transfer.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 7654–7673, Online. Association for Computa-
tional Linguistics.
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A Languages

Table 5 lists the languages with their codes and
scripts.

Code Language Script

am Amharic Ge’ez
ar Arabic Arabic
az Azerbaijani Latin
cs Czech Latin
de German Latin
en English Latin
es Spanish Latin
fr French Latin
ha Hausa Latin
it Italish Latin
kk Kazakh Cyrillic
ko Korean Hangul
ky Kyrgyz Cyrillic
mr Marathi Devanagari
nl Dutch Latin
pl Polish Latin
ru Russian Cyrillic
rw Kinyarwanda Latin
te Telugu Ge’ez
tr Turkish Latin
ug Uyghur Arabic
uz Uzbek Latin
zh Chinese Han (simplified)

Table 5: Languages with their code used in this paper
and the scripts.

B Training Details

The pre-trained models and libraries used in our
experiments are listed in Table 6. They are used
only for research purposes in this work. We do
not do specific hyperparameter tuning because of
the large-scale MLM training and the robustness
of contrastive learning against hyperparameters
(Wang et al., 2022). Thus, we mainly use hyper-
parameters recommended by the previous work or
default settings in the packages.

B.1 Full-Parameter Baselines
Both monolingual and cross-lingual contrastive
learning on all baselines are done with a sequence
length of 128, batch size of 128 and learning rate of
2e-5. To make a fair comparison with the modular
variants, we train Fullm and Fullc for 3 epochs on
the 600K monolingual or cross-lingual paraphrase
data, respectively, while the Fullmc is obtained by
3 epochs of monolingual training followed by an-
other 3 epochs of cross-lingual training. We found
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Model HuggingFace Name License

LaBSE sentence-transformers/LaBSE apache-2.0
NLLB facebook/nllb-200-3.3B cc-by-nc-4.0
mE5 base intfloat/multilingual-e5-base mit

Libarary GitHub Link License

transformers https://github.com/huggingface/transformers apache-2.0
sentence-transformers https://github.com/UKPLab/sentence-transformers apache-2.0
adapters https://github.com/adapter-hub/adapters apache-2.0
deepfocus https://github.com/konstantinjdobler/focus mit

Table 6: Models and libraries used in our experiments.

that further increasing the number of epochs will
not improve the performance.

B.2 Modular Training

FOCUS The training of language-specific tok-
enizers and the initialization of language-specific
embedding matrices is done using the deepfocus
package (Table 6). We set the vocabulary size to
50K for each language. The dimensionality of fast-
Text embeddings used to calculate token similarity
is set to 300 as recommended. Other parameters
remain as default. We use up to 10M sentences
for the training of the tokenizer and the auxiliary
fastText embeddings on each language.

Language Adaptation As the language adapter,
we use a LoRA adapter (Hu et al., 2022) on key,
query, value matrices of the attention layers, with
a rank of 8, alpha of 16 and 0.1 dropout. For each
language, we train the embedding layer and the
language adapter for 200K steps, with a batch size
of 128. The training is done in bf16 precision. For
high-resource languages, 200K steps of training
only cover a small portion of the available data
in MADLAD-400 (Kudugunta et al., 2023). For
low-resource languages, we use all data of the
corresponding language from CC100 (Conneau
et al., 2020) and MADLAD-400 (Kudugunta et al.,
2023).

Monolingual Sentence Encoding For the mono-
lingual SE training, we use a LoRA adapter (Hu
et al., 2022) on all linear layers, with a rank of
8, alpha of 16 and 0.1 dropout. We use the 600K
paraphrase data in the corresponding language for
contrastive sentence embedding training for each
language, with a sequence length of 128, batch size
of 128 and learning rate of 2e-5 for 1 epoch in
mixed precision.

Cross-Lingual Alignment For the training of
CLA adapters, we use 600K bilingual paraphrase
data as explained in §3.2. Each adapter is trained
with a sequence length of 128, batch size of 256 and
learning rate of 2e-5 for 1 epoch in mixed precision.
We use the parallel adapter (He et al., 2022) with
default settings in Adapters (Poth et al., 2023) for
CLA training.

C Datasets

We provide detailed information on the training
and evaluation datasets. The datasets are used only
for research purposes in this work.

C.1 Paraphrase Data

Table 7 provides an overview of the paraphrase
datasets used for training. The XNLI dataset is
licensed with cc-by-nc-4.0. For the sources of other
datasets, please refer to the information page.9

C.2 STS/STR Evaluation Data

We use the test split of the datasets for zero-shot
evaluation. In the following, we list the sources
of STS/STR data for all individual languages and
language pairs. Note that for symmetric pairs (e.g.
en-de and de-en), the score in our experiments is
the average of both directions.

STS17 The data for en, ar, es, en-ar, en-tr and
es-en in our STS17 comes from the original STS17
(Cer et al., 2017). The data for de, fr, cs, de-en,
en-fr, en-cs, cs-en, de-fr, fr-de, cs-de, de-cs, cs-fr
and fr-cs is created by Hercig and Kral (2021). And
the en-de, fr-en, nl-en and it-en data is translated by
Reimers and Gurevych (2020). Through combining
the data from Hercig and Kral (2021) and Reimers
and Gurevych (2019), we get evaluation sets for nl-
de, nl-fr, nl-cs, it-de, it-fr and it-cs. All data except

9https://huggingface.co/datasets/
sentence-transformers/embedding-training-data
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Dataset Description Size

MNLI/XNLI Multi-Genre NLI data. We build 128K (Anchor, Entailment, Contradiction) triplets
using the original data.

128K

Sentence Compression Pairs (long_text, compressed_text) from news articles. 108K

Simple Wiki Matched pairs (English_Wikipedia, Simple_English_Wikipedia). 102K

Altlex Matched pairs (English_Wikipedia, Simple_English_Wikipedia). 113K

Quora Duplicate Questions Duplicate question pairs from Quora. We use the “triple” subset. 102K

Table 7: Overview of paraphrase datasets. Except for XNLI, all of them are English datasets and are machine-
translated into our target languages for training.

for ko are from the SNLI domain, containing 250
sentence pairs per language pair. The ko data is
translated from the English STS benchmark (Cer
et al., 2017) by Ham et al. (2020), containing 2850
pairs in various domains.

STSB Senel et al. (2024) translate the en data
from the STS benchmark (Cer et al., 2017) into 5
Turkic languages: az, kk, ky, ug and uz. There are
800 test sentence pairs from various domains for
each language. Since the other training data for
Uyghur is written in the Arabic script, we transliter-
ate the Cyrillic Uyghur data in the benchmark into
the Arabic script using the Uyghur Multi-Script
Converter.10 The Turkic language data are com-
bined with the dataset for ko (Ham et al., 2020) to
get evaluation data for ko-en, ko-az, ko-ky, ko-ug
and ko-uz.

SICK We use the SICK dataset in English
(Marelli et al., 2014), Polish (Dadas et al., 2020),
Dutch (Wijnholds and Moortgat, 2021) and Span-
ish (Araujo et al., 2022) and combine them to create
cross-lingual evaluation data for en-pl, en-nl, en-es,
pl-nl, pl-es and nl-es. The test set size is 4.91K for
each language (pair).

STR24 We use the test data of the supervised
track of STR24, including monolingual data for
en (2600 pairs), am (342 pairs), ha (1206 pairs),
rw (444 pairs), mr (298 pairs), te (297 pairs). We
do not include Spanish because the public test set
is not available, nor the Moroccan Arabic and Al-
gerian Arabic because they are not supported by
LaBSE. The data is curated primarily from news
(Ousidhoum et al., 2024).

10https://github.com/neouyghur/
Uyghur-Multi-Script-Converter

D Detailed Results

D.1 Semantic Textual Similarity / Relatedness
STS17 See detailed results of LaBSE-based mod-
els in Table 8. Results for en-cs, de-fr, cs-de, and
cs-fr are calculated as the average of symmetric
language pairs (e.g. de-fr is the average of de-fr
and fr-de).

STSB See detailed results of LaBSE-based mod-
els in Table 9 and mE5-based models in Table 10.
All cross-lingual results are the average of sym-
metric language pairs (e.g. az-kk is the average of
az-kk and kk-az).

SICK See detailed results of LaBSE-based mod-
els in Table 11 and mE5-based models in Table 12.
All cross-lingual results are the average of symmet-
ric language pairs.

STR24 See detailed results of LaBSE-based
models in Table 13.

D.2 Classification
SIB See detailed results of LaBSE-based models
in Table 14 and mE5-based models in Table 15.

D.3 Bitext Mining
FLORES For LaBSE and mE5, we report the
result of the best Full variant (Fullc for LaBSE in
Table 16 and Fullmc for mE5 in Table 18) and our
Modmc-jt model (LaBSE-based in Table 17, mE5-
based in Table 19) on each language pair.

Tatoeba See detailed results of LaBSE-based
models in Table 20 and mE5-based models in Ta-
ble 21. The results are the average of both direc-
tions (e.g. az the average of en-az and az-en).
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en ar cs de es fr ko avg

LaBSE 79.4 69.1 79.1 79.3 80.8 77.9 71.3 76.7
Fullen 84.9 78.7 82.5 82.8 86.0 82.6 81.4 82.7
Fullm 85.0 77.5 83.8 83.9 86.7 82.5 80.9 82.9
Fullc 82.2 77.3 80.9 81.2 86.3 79.9 79.3 81.0
Fullmc 81.5 76.0 80.2 79.7 85.1 78.1 79.3 80.0

Moden 85.8 78.3 82.7 83.0 85.6 81.8 81.3 82.6
Modm 85.8 78.4 83.6 83.7 86.1 81.9 82.2 83.1
Modmc-pp 85.8 78.1 83.3 83.4 85.9 81.7 82.4 82.9
Modmc-pl 85.8 77.6 80.3 82.0 84.2 79.3 80.8 81.4
Modmc-jt 85.8 78.0 82.4 83.7 85.2 81.6 82.5 82.7

en-ar en-cs en-de en-es en-fr en-it en-nl en-tr cs-de cs-fr de-fr it-cs it-de it-fr nl-cs nl-de nl-fr avg

LaBSE 74.5 78.0 75.3 65.7 77.0 77.0 75.2 72.1 77.1 75.6 75.6 75.9 71.5 75.4 75.0 72.4 73.8 74.5
Fullen 79.6 80.9 81.2 75.1 81.6 81.4 80.6 75.6 78.8 77.8 78.0 78.1 76.9 79.7 78.7 77.6 77.7 78.8
Fullm 79.8 82.6 81.4 75.5 82.0 81.0 80.9 73.8 80.6 79.3 79.0 78.9 77.4 79.7 80.3 78.3 78.7 79.4
Fullc 78.4 80.6 79.2 74.3 79.8 79.8 79.3 74.9 78.8 77.2 76.8 77.3 75.9 78.2 77.9 76.5 77.2 77.8
Fullmc 79.6 79.4 77.8 75.0 78.0 77.3 77.6 76.5 77.4 76.4 75.4 76.3 73.9 76.6 76.5 75.0 75.1 76.7

Moden 79.5 81.9 82.4 76.0 81.8 82.7 82.3 77.1 80.5 78.2 79.7 80.0 79.6 80.5 79.6 79.9 79.8 80.1
Modm 80.6 82.4 82.4 77.0 81.8 83.3 82.6 77.5 81.2 79.0 80.0 80.5 80.4 80.6 80.0 80.4 79.8 80.6
Modmc-pp 81.5 82.3 82.2 76.8 82.0 83.6 82.6 77.5 81.2 79.0 80.0 81.4 80.4 81.3 80.5 80.2 79.9 80.7
Modmc-pl 80.1 81.1 81.2 76.7 81.2 82.3 81.6 76.5 78.6 77.4 77.9 78.8 78.6 79.1 77.1 78.1 77.9 79.1
Modmc-jt 81.4 81.8 82.3 77.5 81.9 83.3 82.1 77.3 80.6 78.8 80.0 80.2 80.3 80.8 78.8 79.5 79.0 80.3

Table 8: Results of LaBSE-based models on STS17.

en az kk ky ug uz avg
LaBSE 72.5 70.8 78.0 70.6 69.6 69.6 71.9
Fullen 84.3 81.3 84.8 77.4 78.3 79.2 80.9
Fullm 84.2 80.1 84.4 76.7 77.5 79.5 80.4
Fullc 82.5 78.2 83.4 75.9 76.2 78.2 79.1
Fullmc 83.0 78.8 83.1 76.2 76.0 78.2 79.2

Moden 85.5 81.2 84.5 80.9 79.7 80.6 82.1
Modm 85.5 81.6 84.6 80.8 79.0 80.8 82.0
Modmc-pp 85.5 80.9 84.3 79.7 79.7 80.4 81.8
Modmc-pl 85.5 80.6 84.0 80.0 79.1 80.2 81.6
Modmc-jt 85.5 81.5 84.5 80.1 80.2 81.0 82.1

en-az en-kk en-ko en-ky en-ug en-uz az-kk az-ko az-ky az-ug az-uz kk-ko kk-ky kk-ug kk-uz ky-ko ky-ug ky-uz ug-ko ug-uz uz-ko avg
LaBSE 68.6 70.3 64.8 67.1 66.0 65.4 68.4 62.2 64.6 63.6 64.1 62.6 69.4 65.1 67.4 60.6 63.2 63.6 58.4 59.3 57.6 64.4
Fullen 75.8 76.5 73.2 73.6 71.1 72.4 75.2 69.6 72.5 69.5 71.6 70.4 76.0 71.6 73.5 67.6 69.6 70.8 66.2 67.6 66.4 71.5
Fullm 76.0 77.4 74.4 73.8 71.8 72.6 74.8 70.2 71.8 68.8 70.9 70.6 75.6 71.6 74.2 68.2 68.6 70.4 66.0 67.3 66.9 71.5
Fullc 76.2 77.6 73.8 74.9 72.5 75.1 74.6 70.0 72.2 68.4 71.7 70.8 75.4 71.4 74.6 69.2 69.5 71.9 66.6 68.2 68.8 72.1
Fullmc 76.8 78.2 74.8 75.1 73.6 75.5 75.2 71.0 72.8 69.8 72.7 71.6 75.5 71.8 74.6 69.3 69.4 72.0 68.0 69.3 69.2 72.7

Moden 78.1 78.8 75.4 76.8 74.7 77.8 77.4 72.0 75.6 71.6 76.5 72.4 79.1 73.6 78.3 71.2 71.6 76.7 68.4 72.6 71.6 74.8
Modm 78.6 79.4 76.1 77.1 74.7 78.0 78.3 73.3 76.3 72.6 76.9 73.4 79.4 74.0 79.4 71.9 71.6 76.9 69.3 72.4 72.4 75.3
Modmc-pp 79.0 79.5 77.0 77.2 75.6 78.6 78.0 74.2 75.8 73.6 77.4 74.6 79.0 75.4 79.1 72.8 73.0 76.6 71.3 74.3 73.9 76.0
Modmc-pl 79.1 80.0 76.6 77.7 75.8 78.8 78.0 73.8 76.0 73.8 77.4 74.8 79.0 75.8 79.0 72.7 73.2 76.6 71.2 74.2 73.6 76.1
Modmc-jt 79.2 80.2 77.0 77.6 76.1 79.0 78.6 74.4 76.2 74.3 77.5 75.1 79.2 75.9 79.4 72.8 73.5 76.8 71.7 74.8 74.1 76.4

Table 9: Results of LaBSE-based models on STSB.

en az kk ky ug uz avg
mE5 85.2 72.7 75.6 67.5 63.0 71.2 72.5
Fullen 86.8 77.1 79.4 71.6 66.4 73.3 75.8
Fullm 86.6 79.5 83.4 75.9 74.4 77.7 79.6
Fullc 84.9 76.9 81.3 74.3 73.7 75.0 77.7
Fullmc 84.2 76.5 80.8 74.2 73.8 75.1 77.4

Moden 86.3 78.0 82.8 76.9 75.6 79.6 79.9
Modm 86.3 80.8 84.6 79.9 79.2 81.7 82.1
Modmc-pp 86.3 79.8 84.4 79.1 79.2 81.5 81.7
Modmc-pl 86.3 78.7 83.2 77.7 77.9 81.3 80.8
Modmc-jt 86.3 79.9 84.6 78.8 79.5 82.2 81.9

en-az en-kk en-ko en-ky en-ug en-uz az-kk az-ko az-ky az-ug az-uz kk-ko kk-ky kk-ug kk-uz ky-ko ky-ug ky-uz ug-ko ug-uz uz-ko avg
mE5 62.4 62.8 59.4 54.4 44.0 56.4 64.4 50.8 60.6 47.3 62.7 53.2 63.0 52.4 64.2 47.6 47.4 59.6 32.2 45.6 45.2 54.1
Fullen 63.2 62.6 63.6 56.6 43.2 56.9 65.3 56.3 60.6 45.4 62.0 57.0 65.5 50.3 63.8 52.4 47.2 58.4 39.6 43.2 49.6 55.4
Fullm 65.8 66.2 64.5 61.0 53.1 60.8 67.6 59.0 64.0 54.4 63.7 59.4 69.8 57.2 66.8 56.4 54.9 62.4 49.6 53.8 53.8 60.2
Fullc 72.4 73.1 69.7 69.0 66.6 69.5 71.4 64.6 67.9 62.6 67.6 64.8 71.2 65.9 71.1 62.2 61.8 66.2 59.4 62.7 61.2 66.7
Fullmc 71.9 72.4 69.8 68.7 65.4 70.2 71.1 64.9 67.8 61.9 68.2 64.6 70.9 65.2 71.0 63.0 62.4 67.2 59.6 62.2 62.0 66.7

Moden 69.6 70.9 67.9 69.1 63.9 71.6 71.4 61.4 68.8 61.2 69.8 62.2 72.8 64.2 72.4 60.9 63.1 69.4 55.3 62.1 62.4 66.2
Modm 72.9 73.4 68.5 72.4 69.2 74.9 74.2 64.0 72.2 66.9 73.2 64.4 75.5 69.0 75.6 63.8 68.1 73.7 60.4 67.9 64.8 69.8
Modmc-pp 75.2 76.2 73.0 74.8 72.4 77.2 75.6 69.2 73.4 70.6 74.8 70.2 76.8 73.1 77.5 69.3 71.5 75.8 67.6 72.4 70.7 73.2
Modmc-pl 75.0 76.0 72.7 74.6 71.6 77.4 74.8 69.2 72.8 69.9 74.8 70.3 75.9 71.8 76.9 68.8 70.7 75.2 67.4 71.8 71.0 72.8
Modmc-jt 75.8 76.8 73.8 75.2 72.9 77.8 75.8 69.9 73.6 71.4 75.4 71.2 77.2 73.4 78.0 69.9 71.8 76.2 68.5 72.9 71.8 73.8

Table 10: Results of mE5-based models on STSB.

2183



en es nl pl avg

LaBSE 69.8 68.6 67.8 65.9 68.0
Fullen 78.5 76.5 75.9 75.0 76.5
Fullm 78.3 76.4 76.0 74.8 76.4
Fullc 77.4 76.0 74.6 72.5 75.1
Fullmc 77.1 75.4 74.7 73.2 75.1

Moden 78.6 77.0 76.2 73.2 76.2
Modm 78.6 76.7 76.4 74.4 76.5
Modmc-pp 78.6 77.0 76.7 74.4 76.7
Modmc-pl 78.6 76.3 75.7 73.5 76.0
Modmc-jt 78.6 77.1 76.6 74.2 76.6

en-es en-nl en-pl es-nl es-pl nl-pl avg

LaBSE 65.2 65.6 65.2 63.7 61.0 61.9 63.8
Fullen 73.0 73.4 71.8 69.0 67.0 68.0 70.4
Fullm 73.4 74.0 71.9 69.8 67.8 68.5 70.9
Fullc 74.1 74.0 72.0 70.9 68.8 69.2 71.5
Fullmc 73.8 73.9 72.2 71.2 69.6 69.6 71.7

Moden 74.4 74.2 70.8 72.0 68.7 69.0 71.5
Modm 74.0 74.3 71.6 71.9 69.2 70.2 71.9
Modmc-pp 74.7 74.7 72.3 73.0 70.7 71.2 72.8
Modmc-pl 74.3 74.4 71.8 72.7 70.5 70.9 72.4
Modmc-jt 74.6 74.8 72.4 72.9 70.6 71.2 72.7

Table 11: Results of LaBSE-based models on SICK.

en es nl pl avg

mE5 77.9 75.3 72.5 71.2 74.2
Fullen 79.0 76.4 74.0 72.0 75.4
Fullm 79.3 76.3 74.6 71.9 75.5
Fullc 77.7 74.9 73.2 69.9 73.9
Fullmc 77.1 74.3 72.1 68.9 73.1

Moden 78.5 76.3 75.4 73.1 75.8
Modm 78.5 76.6 76.2 73.9 76.3
Modmc-pp 78.5 76.6 76.5 73.9 76.4
Modmc-pl 78.5 74.9 74.8 72.4 75.2
Modmc-jt 78.5 76.7 76.4 73.8 76.4

en-es en-nl en-pl es-nl es-pl nl-pl avg

mE5 69.2 62.4 58.3 59.9 58.2 58.2 61.0
Fullen 69.4 65.5 60.2 62.5 58.8 57.0 62.2
Fullm 70.1 67.0 62.1 63.8 61.6 60.0 64.1
Fullc 72.6 69.9 66.4 67.9 65.2 64.3 67.7
Fullmc 71.9 69.4 65.6 67.2 64.2 63.3 66.9

Moden 69.2 70.2 65.4 66.9 63.4 64.9 66.7
Modm 69.9 71.4 67.9 68.6 65.7 67.6 68.5
Modmc-pp 71.4 72.5 69.6 70.9 68.6 69.8 70.5
Modmc-pl 70.8 71.5 68.4 70.1 67.9 69.0 69.6
Modmc-jt 71.7 72.5 69.8 71.1 68.9 70.2 70.7

Table 12: Results of mE5-based models on SICK.

en am ha mr rw te avg

LaBSE 81.8 78.5 47.7 81.8 45.3 80.2 69.2
Fullen 80.6 79.9 63.8 86.1 57.2 84.7 75.4
Fullm 80.3 81.1 63.3 87.8 58.9 84.2 75.9
Fullc 80.1 81.1 63.0 86.5 57.7 83.2 75.3
Fullmc 80.5 80.4 62.8 87.3 58.9 82.7 75.4

Moden 82.3 82.7 67.3 86.3 67.5 86.3 78.7
Modm 82.3 83.1 67.8 87.3 63.2 86.4 78.4
Modmc-pp 82.3 83.6 66.5 87.0 59.2 86.1 77.4
Modmc-pl 82.3 83.1 66.1 85.3 61.8 84.7 77.2
Modmc-jt 82.3 84.0 67.1 87.1 62.6 85.4 78.1

Table 13: Results of LaBSE-based models on STR24.
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en am ar az cs de fr ha it kk rw ky ko mr nl pl ru es te tr ug uz zh avg

monolingual fine-tuning

LaBSE 85.8 80.4 83.8 79.4 85.3 84.3 83.8 77.9 84.3 81.4 77.5 86.3 82.8 81.4 81.9 85.8 83.3 83.3 85.3 80.9 81.9 78.4 85.8 82.7
Fullen 86.8 77.0 84.3 83.3 86.3 87.3 88.7 75.5 87.8 83.3 80.4 86.3 82.4 83.8 87.3 87.3 85.8 85.8 87.3 85.8 79.9 77.9 84.8 84.1
Fullm 86.3 80.9 85.8 84.8 86.3 87.3 86.3 74.5 83.3 83.3 82.4 84.3 84.8 84.8 86.8 85.8 87.3 85.8 85.3 84.8 86.3 83.8 88.7 84.8
Fullc 86.3 81.4 87.8 84.8 84.8 85.8 88.2 77.5 84.3 82.8 79.9 85.8 87.3 85.3 86.3 87.8 87.8 85.8 87.8 85.8 85.3 82.4 86.3 85.1
Fullmc 89.2 81.4 86.3 88.2 86.3 85.8 87.8 79.4 87.8 82.8 83.3 85.8 84.3 85.3 89.2 88.2 89.2 86.8 87.3 87.3 89.7 80.9 85.8 86.0

Moden 87.8 84.8 84.3 86.3 87.8 87.3 87.3 79.4 83.8 85.8 83.3 86.8 85.8 83.8 83.3 83.8 84.8 84.8 83.8 86.8 83.3 83.3 84.3 84.9
Modm 87.8 80.9 85.8 86.8 87.8 88.2 88.2 81.9 86.3 85.8 82.4 86.8 84.3 84.3 84.8 85.3 86.3 84.3 84.8 88.2 83.8 86.8 86.3 85.6
Modmc-pp 87.8 84.3 86.8 88.2 86.8 88.2 85.3 82.4 88.2 85.8 82.4 87.8 84.8 85.8 84.8 86.3 86.8 87.3 84.8 86.3 84.3 85.8 86.3 86.0
Modmc-pl 87.8 81.9 87.8 87.3 88.2 88.2 87.8 82.8 86.3 84.8 84.3 86.3 84.3 86.3 86.3 84.3 85.8 84.8 87.3 87.8 85.3 82.8 84.3 85.8
Modmc-jt 87.8 82.4 85.8 87.3 88.2 88.7 87.3 81.9 85.8 88.2 81.9 85.3 83.8 84.3 85.3 85.8 86.3 85.8 86.3 88.2 86.8 83.8 85.8 85.8

cross-lingual transfer

LaBSE 85.8 81.4 83.8 81.9 86.8 84.3 87.8 80.9 85.8 82.4 79.4 84.8 81.9 80.9 85.8 85.3 82.8 86.8 85.3 81.9 80.9 80.9 85.8 83.6
Fullen 86.8 77.9 85.3 84.8 84.3 85.3 86.8 77.9 83.8 83.8 77.0 83.8 85.3 81.9 87.8 83.3 83.8 82.4 84.8 85.3 80.9 82.8 85.8 83.5
Fullm 86.3 76.5 85.3 87.3 84.8 85.3 86.3 76.5 84.3 84.8 78.9 85.8 84.3 81.4 85.8 82.8 86.3 84.8 84.3 86.8 83.3 81.4 84.3 83.8
Fullc 86.3 82.8 87.8 85.3 84.8 85.8 88.7 79.4 84.8 85.8 81.4 87.8 87.3 83.3 85.8 86.3 86.8 84.3 87.3 87.3 85.3 83.3 84.3 85.3
Fullmc 89.2 81.9 88.2 87.3 85.3 89.2 89.7 78.4 87.3 86.3 82.8 87.3 84.8 85.8 87.8 87.3 87.8 88.2 87.3 88.2 86.3 82.8 84.8 86.3

Moden 87.8 81.9 85.3 82.4 84.3 87.3 86.8 78.9 85.8 85.8 82.8 83.8 85.3 79.4 84.8 82.8 85.3 84.3 82.8 83.8 79.4 80.9 81.9 83.6
Modm 87.8 79.9 83.8 85.3 86.3 86.3 89.7 79.4 86.8 85.3 84.8 88.2 85.3 84.3 85.8 84.8 85.3 85.3 85.3 84.3 84.8 84.3 81.9 85.0
Modmc-pp 87.8 83.3 84.8 85.3 87.3 86.8 87.8 78.9 86.3 85.8 83.8 86.8 83.8 83.8 86.3 84.8 86.3 85.3 83.8 83.8 84.3 84.3 84.3 85.0
Modmc-pl 87.8 83.3 84.8 85.8 87.3 87.3 89.7 84.3 87.8 86.8 84.3 87.3 84.8 86.3 86.8 85.8 87.8 87.8 86.8 85.3 85.8 84.3 85.3 86.2
Modmc-jt 87.8 83.8 85.3 86.8 86.8 87.8 88.7 82.4 87.3 86.3 84.8 87.3 83.3 86.3 84.8 84.3 85.8 85.8 86.3 87.3 83.8 84.8 84.8 85.7

Table 14: Results of LaBSE-based models on SIB.

en az kk ky ko nl pl es ug uz avg

monolingual fine-tuning

mE5 83.3 73.5 76.0 73.5 77.5 77.5 77.5 70.1 59.8 71.6 74.0
Fullen 91.2 83.3 82.8 79.9 81.9 90.2 86.8 87.3 73.0 77.5 83.4
Fullm 89.7 85.3 84.3 85.8 82.8 88.2 87.8 85.8 81.4 83.8 85.5
Fullc 86.8 85.3 84.8 85.3 85.3 87.3 89.2 87.8 84.3 79.9 85.6
Fullmc 88.2 85.8 84.8 85.3 84.3 87.3 87.3 86.8 84.8 79.9 85.4

Moden 87.3 88.7 88.2 88.7 82.4 87.8 87.8 89.2 84.8 85.3 87.0
Modm 87.3 88.7 87.3 89.7 84.8 88.2 87.8 90.2 86.3 88.2 87.8
Modmc-pp 87.3 88.7 88.7 87.3 87.8 88.2 89.2 88.7 87.8 85.8 87.9
Modmc-pl 87.3 89.2 88.2 86.8 88.7 87.8 89.7 90.7 88.7 88.2 88.5
Modmc-jt 87.3 88.7 86.8 87.3 88.7 87.3 90.2 92.2 87.3 87.3 88.3

cross-lingual transfer

mE5 83.3 72.1 71.1 70.6 75.5 77.5 78.9 78.9 58.8 68.6 73.5
Fullen 91.2 81.4 83.8 82.8 81.4 88.2 86.3 84.3 69.1 80.9 82.9
Fullm 89.7 86.3 85.8 82.8 83.8 87.3 88.2 85.8 77.5 85.3 85.2
Fullc 86.8 86.8 86.3 85.8 84.3 85.8 85.3 84.8 84.3 84.8 85.5
Fullmc 88.2 86.8 87.3 87.3 84.8 87.3 87.3 85.8 85.3 84.8 86.5

Moden 87.3 90.2 86.8 89.2 84.8 85.3 88.2 85.8 86.8 85.3 87.0
Modm 87.3 89.2 88.7 88.2 85.8 86.3 88.2 86.8 87.3 89.2 87.7
Modmc-pp 87.3 90.2 86.8 89.2 85.3 87.8 87.8 87.8 87.3 86.8 87.6
Modmc-pl 87.3 90.2 89.7 88.7 89.2 87.8 90.2 88.7 89.7 88.7 89.0
Modmc-jt 87.3 87.8 89.7 87.3 89.2 88.2 89.7 87.8 87.8 88.7 88.3

Table 15: Results of mE5-based models on SIB.
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am ar az cs de en fr ha it kk rw ky ko mr nl pl ru es te tr ug uz zh

am - 0 0.2 0.1 0 0 0 0.79 0 0.2 0.69 0.2 0.1 0.1 0 0 0 0.1 0 0.1 0.1 0.1 0.1
ar 0 - 0.2 0 0 0 0 0.79 0 0.2 0.49 0.1 0 0.1 0 0 0 0.1 0 0.1 0.2 0.1 0
az 0.2 0.3 - 0.1 0.1 0.2 0.1 0.99 0.1 0.4 1.38 0.3 0.2 0.49 0.1 0.2 0.3 0.2 0.2 0.2 0.3 0.3 0.49
cs 0.1 0 0.2 - 0 0 0 0.89 0 0.2 0.49 0.1 0 0.1 0 0 0 0.1 0 0.1 0.2 0.1 0
de 0 0 0.3 0 - 0 0.1 0.89 0.1 0.2 0.79 0.2 0.1 0.1 0 0 0 0.1 0.1 0.1 0.1 0.1 0.1
en 0 0 0.2 0 0 - 0 0.4 0 0.2 0.49 0 0 0 0 0 0 0.1 0 0.1 0.1 0.1 0
fr 0 0 0.2 0 0 0 - 0.49 0 0.2 0.49 0.1 0.1 0.1 0 0 0 0.2 0.1 0 0.1 0.1 0.1
ha 0.79 0.4 0.99 0.59 0.4 0.3 0.4 - 0.4 0.79 1.48 0.69 0.79 0.4 0.4 0.59 0.49 0.49 0.49 0.49 0.69 0.69 0.49
it 0.1 0 0.3 0 0 0 0 0.49 - 0.2 0.69 0 0.1 0.1 0.1 0 0 0.1 0 0.1 0.1 0.1 0
kk 0.2 0.2 0.4 0.2 0.2 0.2 0.2 0.99 0.2 - 1.38 0.3 0.3 0.3 0.3 0.2 0.2 0.3 0.2 0.2 0.4 0.3 0.3
rw 0.69 0.49 0.79 0.3 0.49 0.3 0.4 1.48 0.3 1.09 - 0.49 0.69 0.79 0.49 0.69 0.69 0.69 0.89 0.59 1.09 0.59 0.49
ky 0.1 0.1 0.2 0.1 0.1 0 0 0.69 0 0.2 0.79 - 0.4 0.1 0.1 0 0 0.1 0 0.1 0.2 0.1 0.1
ko 0.3 0 0.3 0 0 0 0 0.79 0 0.3 0.99 0.3 - 0.1 0 0 0.2 0.1 0.1 0.1 0.2 0.1 0
mr 0 0 0.2 0.1 0 0 0 0.59 0 0.3 0.49 0.1 0.1 - 0 0 0 0.1 0 0.1 0.1 0.1 0.1
nl 0.1 0 0.4 0.1 0 0 0 0.69 0 0.3 0.69 0.1 0.2 0.1 - 0 0 0.2 0 0.1 0.3 0.1 0.1
pl 0.2 0 0.4 0 0 0 0 0.59 0 0.3 0.59 0 0 0.2 0.1 - 0 0.1 0.1 0 0.2 0.1 0
ru 0 0 0.3 0 0 0 0 0.59 0.1 0.2 0.59 0 0.2 0.1 0 0 - 0.1 0 0 0.2 0.1 0
es 0.1 0.1 0.2 0.1 0.1 0.1 0.1 0.69 0.1 0.3 0.69 0.1 0.1 0.2 0.1 0.1 0.2 - 0.1 0.1 0.2 0.2 0.1
te 0.1 0 0.2 0 0 0 0.1 0.4 0 0.3 0.79 0 0.1 0 0 0.2 0 0.2 - 0.1 0.1 0.1 0
tr 0 0 0.1 0 0 0 0 0.99 0 0.2 0.59 0 0 0 0.1 0 0 0.1 0 - 0.2 0.1 0
ug 0.1 0.1 0.4 0.1 0.1 0.1 0.1 0.89 0.1 0.4 0.99 0.4 0.2 0.1 0.2 0.1 0.2 0.3 0.2 0.3 - 0.2 0.1
uz 0.1 0.1 0.3 0.1 0.1 0.1 0.1 0.79 0.1 0.4 0.89 0.1 0.1 0.2 0.1 0.1 0.1 0.2 0.2 0.3 0.2 - 0.2
zh 0.2 0 0.3 0 0 0 0 0.89 0 0.4 0.79 0.2 0.1 0.3 0 0 0 0.1 0 0.2 0.3 0.1 -

Table 16: Results of LaBSE-based Fullc baseline on FLORES.

am ar az cs de en fr ha it kk rw ky ko mr nl pl ru es te tr ug uz zh

am - 0 0.3 0 0 0 0 0.4 0 0.2 0.4 0.1 0 0 0 0 0 0.1 0 0.1 0.1 0.1 0
ar 0.1 - 0.4 0.1 0.1 0 0 0.49 0.1 0.2 0.49 0.1 0.1 0.2 0.1 0.1 0.1 0.1 0 0.2 0.2 0.2 0
az 0.4 0.3 - 0.2 0.2 0.2 0.2 0.79 0.2 0.4 0.69 0.2 0.2 0.3 0.2 0.3 0.2 0.3 0.2 0.2 0.3 0.3 0.2
cs 0 0 0.2 - 0 0 0 0.4 0 0.2 0.49 0 0 0.1 0 0 0 0.1 0 0 0.1 0.1 0
de 0 0 0.2 0 - 0 0 0.49 0 0.2 0.3 0 0.1 0.1 0 0 0 0.1 0.1 0 0.1 0.1 0
en 0 0 0.2 0 0 - 0 0.4 0 0.2 0.4 0 0 0 0 0 0 0.1 0 0 0.1 0.1 0
fr 0 0 0.2 0 0 0 - 0.4 0 0.2 0.4 0 0 0 0 0 0 0.1 0 0 0.1 0.1 0
ha 0.3 0.49 0.89 0.4 0.3 0.4 0.4 - 0.4 0.59 0.59 0.49 0.59 0.49 0.59 0.49 0.4 0.49 0.4 0.59 0.49 0.49 0.4
it 0 0 0.2 0 0 0 0 0.3 - 0.2 0.3 0 0 0.1 0.1 0 0 0.1 0 0 0.1 0.1 0
kk 0.4 0.2 0.4 0.2 0.2 0.2 0.2 0.69 0.2 - 0.59 0.2 0.2 0.2 0.2 0.2 0.2 0.3 0.2 0.3 0.3 0.3 0.2
rw 0.49 0.4 0.49 0.2 0.2 0.2 0.2 0.49 0.2 0.49 - 0.3 0.2 0.2 0.3 0.2 0.2 0.3 0.4 0.2 0.3 0.3 0.2
ky 0 0.1 0.2 0 0 0 0.1 0.69 0 0.3 0.4 - 0.1 0 0 0 0 0.1 0 0 0.1 0.2 0.1
ko 0.1 0 0.2 0.1 0 0 0 0.69 0 0.2 0.79 0.2 - 0.1 0 0 0 0.1 0 0.1 0.2 0.1 0
mr 0 0.1 0.3 0.1 0.1 0 0.1 0.59 0.1 0.2 0.3 0.1 0.1 - 0.1 0.1 0 0.1 0 0.1 0.1 0.1 0
nl 0 0.1 0.2 0 0 0 0 0.59 0 0.2 0.59 0 0 0.1 - 0.1 0 0.1 0 0 0.1 0.1 0
pl 0 0.1 0.4 0 0 0 0.1 0.59 0 0.2 0.4 0.1 0 0.1 0 - 0 0.2 0.1 0 0.1 0.1 0
ru 0 0.1 0.2 0 0 0 0 0.4 0 0.2 0.4 0 0.1 0.1 0 0 - 0.1 0.1 0 0.1 0.1 0
es 0.1 0.1 0.3 0.1 0.1 0.1 0.1 0.59 0.1 0.3 0.3 0.1 0.1 0.1 0.1 0.2 0.1 - 0.1 0.1 0.2 0.2 0.1
te 0 0 0.3 0 0 0 0.1 0.59 0 0.3 0.49 0.2 0 0.1 0 0.1 0 0.2 - 0.1 0.1 0.1 0
tr 0 0.1 0.2 0 0 0 0 0.69 0 0.2 0.3 0 0 0 0.1 0 0 0.1 0 - 0.1 0.1 0
ug 0.1 0.2 0.4 0.2 0.1 0.1 0.1 0.59 0.1 0.4 0.4 0.1 0.2 0.1 0.1 0.1 0.1 0.2 0.1 0.2 - 0.2 0.1
uz 0.1 0.2 0.3 0.1 0.1 0.1 0.1 0.79 0.1 0.3 0.3 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.1 0.2 0.2 - 0.1
zh 0.3 0 0.3 0 0 0 0 0.49 0 0.3 0.3 0.1 0 0.2 0 0 0 0.1 0 0.1 0.2 0.1 -

Table 17: Results of LaBSE-based Modmc-jt on FLORES.

az en kk ky ko nl pl es ug uz

az - 0.1 0.49 0.2 0.4 0.2 0.3 0.2 0.59 0.4
en 0.2 - 0.2 0 0.1 0 0 0.1 0.1 0.1
kk 0.4 0.2 - 0.3 0.4 0.2 0.3 0.4 0.49 0.3
ky 0.59 0 0.3 - 0.2 0.59 0.2 0.1 0.69 0.3
ko 0.59 0 0.49 0.49 - 0.1 0.3 0.1 0.79 0.4
nl 0.3 0 0.2 0.3 0.1 - 0 0.1 0.3 0.1
pl 0.4 0 0.4 0.1 0.2 0 - 0.1 0.4 0.1
es 0.3 0.1 0.49 0.1 0.2 0.1 0.1 - 0.2 0.2
ug 0.59 0.1 0.49 0.59 0.59 0.2 0.1 0.2 - 0.4
uz 0.4 0.1 0.4 0.3 0.2 0.1 0.1 0.3 0.49 -

Table 18: Results of mE5-based Fullmc baseline on FLO-
RES.

az en kk ky ko nl pl es ug uz

az - 0.1 0.59 0.4 0.3 0.3 0.4 0.3 0.4 0.4
en 0.3 - 0.2 0.1 0.1 0 0 0.1 0.1 0.1
kk 0.49 0.2 - 0.2 0.3 0.2 0.3 0.4 0.4 0.3
ky 0.3 0.1 0.2 - 0.1 0.2 0 0.1 0.1 0.1
ko 0.4 0 0.3 0.3 - 0 0 0.1 0.1 0.1
nl 0.3 0 0.2 0.1 0.1 - 0 0.1 0.1 0.1
pl 0.4 0 0.3 0.2 0.1 0 - 0.1 0.2 0.1
es 0.3 0.1 0.4 0.1 0.1 0.1 0.1 - 0.2 0.2
ug 0.59 0.1 0.4 0.2 0.1 0.2 0.2 0.2 - 0.2
uz 0.4 0.2 0.3 0.1 0.1 0.1 0.1 0.2 0.2 -

Table 19: Results of mE5-based Modmc-jt on FLORES.
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az kk ug uz am te mr cs fr de ar es it tr pl nl zh ru ko avg

LaBSE 3.10 7.74 5.35 10.86 4.76 0.85 4.45 2.05 3.55 0.40 7.60 1.30 4.60 1.00 1.30 1.90 3.10 4.15 5.40 3.87
Fullen 4.15 9.65 7.05 13.67 5.95 1.07 5.10 2.30 3.75 0.35 9.95 1.45 4.95 1.80 1.60 2.50 3.40 4.70 6.20 4.72
Fullm 4.10 8.26 5.85 10.40 6.55 1.71 4.45 2.45 4.00 0.30 9.95 1.65 4.65 1.95 1.60 2.60 2.95 4.60 6.15 4.43
Fullc 3.50 7.30 5.60 9.58 4.76 1.07 4.50 2.35 3.70 0.30 8.35 1.45 4.70 1.55 1.30 2.80 2.90 4.45 5.85 4.00
Fullmc 3.40 8.26 5.65 9.70 5.95 1.07 4.50 2.60 3.45 0.45 8.80 1.75 4.50 1.90 1.50 2.65 2.65 4.80 5.60 4.17

Moden 2.40 6.87 4.40 6.54 4.76 1.07 5.85 2.50 3.10 0.45 7.10 1.35 4.55 1.85 2.00 2.15 3.15 4.65 5.15 3.68
Modm 2.30 7.13 4.40 6.66 5.06 1.28 5.30 2.30 3.35 0.55 6.35 1.25 4.30 1.90 1.60 2.10 2.95 4.95 5.30 3.63
Modmc-pp 2.10 6.70 4.40 6.31 4.76 1.71 4.20 2.20 3.20 0.35 6.40 1.30 4.65 1.40 1.60 2.05 2.95 4.55 5.50 3.49
Modmc-pl 2.20 7.04 4.75 6.19 5.36 1.92 4.05 2.35 3.25 0.50 7.10 1.35 4.35 1.60 1.60 2.05 3.25 4.85 5.35 3.64
Modmc-jt 2.00 6.96 4.50 5.84 5.36 1.28 4.20 2.30 3.35 0.45 6.65 1.30 4.40 1.65 1.65 2.15 3.15 4.65 5.65 3.55

Table 20: Results of LaBSE-based models on Tatoeba.

az kk ug uz ko es pl nl avg

mE5 7.75 13.74 18.45 20.09 10.25 1.95 2.70 4.15 9.89
Fullen 7.40 13.48 17.15 22.66 10.30 2.00 3.35 3.60 9.99
Fullm 6.65 12.87 12.85 13.08 9.00 2.05 3.05 3.35 7.86
Fullc 4.95 11.04 8.35 12.03 7.60 1.60 2.55 2.85 6.37
Fullmc 4.90 10.87 8.90 10.75 8.15 1.85 2.35 2.90 6.33

Moden 4.10 10.00 7.50 9.58 8.20 1.95 2.50 2.65 5.81
Modm 3.50 10.35 6.05 7.94 7.50 2.00 2.35 2.35 5.26
Modmc-pp 3.30 10.09 6.30 7.59 7.40 2.20 2.25 2.30 5.18
Modmc-pl 3.65 11.04 7.10 7.94 7.65 2.35 2.65 2.50 5.61
Modmc-jt 3.25 9.57 5.95 7.71 7.10 2.00 2.35 2.20 5.02

Table 21: Results of mE5-based models on Tatoeba.
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