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Abstract

In the realm of large language models (LLMs),
the ability of models to accurately follow in-
structions is paramount as more agents and
applications leverage LLMs for construction,
where the complexity of instructions are rapidly
increasing. However, on the one hand, there is
only a certain amount of complex instruction
evaluation data; on the other hand, there are no
dedicated algorithms to improve the ability to
follow complex instructions. To this end, this
paper introduces TRACE, a benchmark for im-
proving and evaluating the complex instruction-
following ability, which consists of 120K train-
ing data and 1K evaluation data. Furthermore,
we propose IOPO (Input-Output Preference
Optimization) alignment method which takes
both input and output preference pairs into
consideration, where LLMs not only rapidly
align with response preferences but also metic-
ulously explore the instruction preferences. Ex-
tensive experiments on both in-domain and out-
of-domain datasets confirm the effectiveness of
IOPO, showing 8.15%, 2.18% improvements
on in-domain data and 5.91%, 2.83% on out-
of-domain data compared to SFT and DPO re-
spectively. Our code and dataset are released
at https://github.com/AlibabaResearch/
DAMO-ConvAI/tree/main/IOPO.

1 Introduction

The rapid development of LLMs has facilitated
human-machine interaction, with instructions serv-
ing as the medium (Gao et al., 2024; Kim et al.,
2024; Zhang et al., 2024c; Wang et al., 2024b;
Zhang et al., 2024b). As human needs evolve,
there is an increasing expectation for models to
handle more intricate tasks through complex in-
structions (Ge et al., 2023; Yang et al., 2024b;
Wang et al., 2024a). Consequently, the instruction-
following ability, especially complex instructions,
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Figure 1: Alignment Paradigms (a) Existing DPO Series
vs. (b) Proposed IOPO. The green arrow indicates that
y matches x while the red one indicates a mismatch.

is garnering significant attention (Zhou et al., 2023;
Xu et al., 2024; Li et al., 2024; Zhang et al., 2024a).

To evaluate the instruction-following abilities of
LLMs, several benchmarks (Zhou et al., 2023; Qin
et al., 2024; Li et al., 2024) have been proposed,
which are designed to systematically assess how
well these models can understand and execute in-
structions. IFEval (Zhou et al., 2023) focuses on
verifiable instructions which are amenable to ob-
jective verification of compliance. Qin et al. (2024)
introduces INFOBENCH which contains 2,250 de-
composed questions to assess the instruction fol-
lowing. Recently, the ability to follow complex
instructions with multiple constraints is gaining in-
creasing attention (He et al., 2024b; Jiang et al.,
2024; Wen et al., 2024; He et al., 2024a) as LLMs
are deployed in sophisticated real-world applica-
tions. Zhang et al. (2024a) proposes a constraint-
following benchmark CFBench with 1,000 multi-
constraint samples. However, most of benchmarks
lay emphasis on evaluating LLMs’ ability to follow
complex instructions, lack of algorithms tailored
for enhancing the corresponding ability.

From RLHF (Reinforcement Learning from Hu-
man Feedback) (Ouyang et al., 2022; Bai et al.,
2022a) to the following-up researches such as DPO
(Direct Preference Optimization) (Rafailov et al.,
2023), alignment algorithms which align LLMs
with human preferences, have demonstrated their
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effectiveness in improving the LLMs’ capabilities
to follow instructions. Nevertheless, these methods
directly explore different responses y (ywin, yloose)
based on the same instruction x, as shown in Fig-
ure 1 (a). In the complex instruction scenario which
contains multiple constraints, it is challenging to
efficiently perceive the fine-grained constraints in
x solely by modeling different y.

To bridge this gap, this paper first introduces
TRACE benchmark to improve the ability of
LLMs to track complex fine-grained constraint
instructions and make them more obedient. TRACE

is automatically constructed based on the manu-
ally sorted taxonomy of complex instructions with
26 constraint dimensions within 5 constraint types.
We develop an automated data construction work-
flow that extends from open-source simple instruc-
tions to multi-constrained complex ones. In the
end, we accumulate 120K complex instructions
for model training and 1K human-verified data
for evaluation. To enhance the ability of LLMs
to follow complex instructions, this paper further
proposes Input-Output Preference Optimization
(IOPO) method. IOPO not only takes the instruc-
tion x as input to directly learn the response y
preference, but also gradually delves deeper into
instructions x based on the same response y, to
promote effective perception of fine-grained con-
straints, as shown in Figure 1 (b). The major con-
tributions of this paper are summarized as follows:

• We introduce a benchmark TRACE for com-
plex instruction following, which includes
both an evaluation set and a training set, and
an automated data construction workflow, fur-
ther enriching the research community.

• Different from previous alignment paradigm,
we propose IOPO alignment method which
deeply explores the complex instructions x
(Input), not just directly learning response
preference y (Output).

• Extensive experiments on both in-domain and
out-of-domain evaluations have confirmed the
consistent improvements, with an average in-
crease of 7.03% and 2.51%, compared to SFT
and DPO, respectively.

2 Related Work

2.1 Instruction Following
Instruction following is the most fundamental and
crucial ability for large language models (LLMs),

which enables them to understand and execute user
instructions accurately, making them more effec-
tive in a wide range of applications. In fact, earlier
studies have explored the extent to which models
follow language instructions (Ye and Ren, 2021;
Mishra et al., 2022; Hase and Bansal, 2022). It
is effective to fine-tune LLMs on these annotated
instruction data for improving the ability to fol-
low natural language instructions. The instruction-
following ability enhances adaptability to unseen
tasks, which has become an efficient learning
paradigm for novel task demands (Lou et al., 2023).

As human demands grow higher, the instruc-
tions given to LLMs are also becoming increas-
ingly complex. Recent studies are beginning to
focus on the complex instruction-following ability
of LLMs, where more complex or constrained in-
structions have been proven effective in enhancing
LLMs’ abilities to follow instructions (Mukherjee
et al., 2023; Xu et al., 2024; Luo et al., 2024). Con-
strained instructions, as a type of complex instruc-
tion, are also gradually receiving attention from
the research community. Increasing the complex-
ity of constraints within the instruction (e.g., rais-
ing the number of constraints) can further improve
the ability to follow complex instructions (Sun
et al., 2024; Dong et al., 2024; He et al., 2024a).
Sun et al. (2024) introduces a instruction tuning
dataset Conifer and proposes a progressive learning
scheme to enhance the ability of LLMs to follow
multi-level instructions with complex constraints.
He et al. (2024a) first finds that multi-constraint
instructions can enhance LLMs’ understanding
of complex instructions, and then introduces a
discrimination-based method for data acquisition,
and finally proposes a contrastive method with re-
inforcement learning fine-tuning (RLFT) for data
utilization. In addition, some work focuses on eval-
uating the multi-constraint instruction-following
capabilities of LLMs (Zhou et al., 2023; Qin et al.,
2024; Jiang et al., 2024). Zhang et al. (2024a) intro-
duces CFBench, a benchmark which encompasses
instructions with multiple constraints, and proposes
a multi-dimensional evaluation framework to com-
prehensively assess model capabilities.

2.2 LLM Alignment
LLM alignment aims to enhance LLMs by aligning
them with human preference. Recent research has
conducted extensive explorations for LLM align-
ment. From RLHF/PPO (Ouyang et al., 2022; Bai
et al., 2022a) to DPO (Rafailov et al., 2023) and
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beyond (Bai et al., 2022b; Song et al., 2024; Meng
et al., 2024), the evolution of xPO-series align-
ment algorithms has seen significant advancements.
These methods have been pivotal in improving the
alignment between LLMs and human values, en-
suring that the outputs of these models are not only
effective but also follow human preference.

RLHF involves training models using human-
provided rewards or reward models to improve
decision-making, optimizing policies through it-
erative feedback loops for more aligned outcomes.
DPO directly optimizes the model’s output to
match preferred response as indicated by human
feedback, which simplifies the alignment process
by focusing on direct comparisons between pre-
ferred and dispreferred outputs, allowing the model
to learn human preference without needing an
explicitly defined reward model. SimPO (Meng
et al., 2024) proposes a method for preference opti-
mization that eliminates the need for the reference
model πref , which is memory efficient and sim-
ple. Instead of using pairwise data, PRO (Song
et al., 2024) utilizes the preference ranking of any
length listwise preference dataset. ORPO (Hong
et al., 2024) introduces the reference model-free
preference optimization algorithm.

To further enrich the community of multi-
constraint instruction following ability, we con-
struct TRACE benchmark which contains instruc-
tions with multiple constraints, more fine-grained
constraint types and a wider range of constraint
quantities. In addition, we propose the tailor-
designed alignment algorithm IOPO for fine-
grained multi-constraint alignment, which is differ-
ent from previous methods (e.g., DPO) only focus-
ing on the output preference.

3 Preliminary

Existing alignment methods have evolved from
RLHF (Ouyang et al., 2022; Bai et al., 2022a),
this section provides a brief introduction to RLHF
which mainly consists of three stages:

1) SFT: The generic pre-trained LM is fine-
tuned with maximum likelihood supervised loss
on downstream task data, and then we can get the
SFT model πSFT.

2) Reward Model: The model πSFT is utilized
with prompt x to generate two different responses
y1, y2. The pair of responses is labeled as “pre-
ferred” and “dispreferred” by human labelers, i.e.,
y1 ≻ y2 | x. The reward model rϕ is trained with

the following negative log-likelihood loss:

LR = −E(x,y1,y2)∼D[log σ(rϕ(x, y1)− rϕ(x, y2))]

(1)

3) RL: This stage uses the learned reward model
rϕ to provide feedback to the language model pol-
icy, the optimization objective is as follows:

max
πθ

Ex∼D,y∼πθ(y|x)[rϕ(x, y)]−

βDKL[πθ(y|x)||πref(y|x)]
(2)

where LM policy πθ, base reference policy πref are
both initialized with πSFT, β controls the deviation
of πθ from the base policy πref .

4 TRACE Benchmark

This section describes the construction pipeline of
TRACE, its statistics, and evaluation protocol.

4.1 Construction Pipeline
The overall construction process as shown in Fig-
ure 2 includes several key stages: 1) Taxonomy of
Constraint, 2) Constraint Expansion, 3) Instruction
Structuring, 4) Quality Control, and 5) Response
Generation & Evaluation.

Taxonomy of Constraint. A comprehensive
constraint type system is developed through infer-
ence by LLM from a large volume of open-source
simple instructions, and further refined by human
experts, into 5 constraint types (Jiang et al., 2024)
and 26 constraint dimensions. The detailed descrip-
tion of constraints is shown in Appendix A.

Constraint Expansion. This step aims to ex-
pand simple instructions into more complex ones
that incorporate multiple constraints based on the
taxonomy of constraint by prompting LLM.

Instruction Structuring. To better distinguish
different segments of the instruction, this step struc-
tures the flat instruction text expanded from the last
step into Task Description, Constraints, and Input
part by prompting LLM.

Quality Control. To ensure the validity of the in-
structions, this step conducts quality control of the
expanded instructions by prompting LLM, address-
ing some forms of invalidity such as redundancy
between the description and constraints, incom-
pleteness between the description and input.

Response Generation & Evaluation. First, we
prompt LLM with the instruction x to generate
the corresponding response y. To confirm its qual-
ity, we then prompt LLM to rate how well the re-
sponse y comply with constraints in the instruction
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{“data”: “Beijing, located 

in the north of the North 

China Plain of * * China * 

*, is the capital of the 

People‘s Republic of 

China and ... With a 

population of more than * 

* 21.54 million * * ...”}

Can you introduce Beijing to me? 1. The generated answer
format needs to be JSON; 2. The generated answer must be
objective facts and cannot contain any subjective opinions
or guesses; 3. All characters need to be encoded in UTF-8
to ensure support for multilingual responses; … …

Can you introduce Beijing to 
me? Please provide an accurate 

summary of your answer.

Can you introduce Beijing to me?

1. The generated answer format needs to be JSON;

2. The generated answer must be objective facts and cannot

contain any subjective opinions or guesses;

3. All characters need to be encoded in UTF-8 to ensure support

for multilingual responses;

… …

… …

Task Description

Score

(0-10)

TRACE

Full 
Score

1. Taxonomy of Constraint

Simple Instruction

…

Constraint Type

…
Content

Theme
Exclusion
Numerical

Example

Positive
Negative

Complex Instruction

Constraints

Input Response

2. Constraint Expansion

3. Instruction Structuring 4. Quality Control 5. Response Generation&Evaluation

Figure 2: Construction Pipeline of TRACE, which consists of five key stages: 1) Taxonomy of Constraint, 2)
Constraint Expansion, 3) Instruction Structuring, 4) Quality Control, and 5) Response Generation & Evaluation.

#N Min. Max. Avg.

#Training 119,345 1 15 4.36
#Evaluation 1,042 1 15 4.89

Table 1: The statistics of TRACE benchmark. #N is the
number of instructions; Min., Max., and Avg. mean
the minimum, maximum, and average number of con-
straints per instruction.

x. Finally, data that fully follows all the constraints
outlined in the instruction would receive a perfect
score of 10, and is selected to form the supervised
fine-tuning (SFT) instruction dataset.

The corresponding prompts for constraint ex-
pansion, instruction structuring, quality control,
response generation and evaluation are shown in
Appendix B.

4.2 Dataset Statistics

As shown in Table 1, TRACE consists of 119,345
instructions for model training, and 1,042 instruc-
tions for evaluation, where the minimum and max-
imum number of constraints per instruction are 1
and 15, with average numbers of 4.36 and 4.89,
respectively. Table 2 gives the constraint number
distributions over training and evaluation set in
TRACE. For example, when C = 6, the corre-
sponding column indicates that there are 13,858
instructions with 6 constraints in the training set,
and 100 instructions with 6 constraints in the eval-
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Figure 3: Constraint type distribution over evaluation
set in TRACE.

uation set. In Figure 3, we depict the constraint
type distribution over the evaluation set. The inner
circle represents the distribution of five major types
(Content Constraint, Situation Constraint, Style
Constraint, Format Constraint, and Example Con-
straint), and the corresponding outer one represents
the distribution of concrete constraint dimensions.

4.3 Evaluation Protocol

Following previous work (Qin et al., 2024; Zhang
et al., 2024a), we use GPT-4o as the evaluator to as-
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C = 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

#Training 991 8,003 26,421 34,155 26,327 13,858 5,882 2,185 999 464 8 20 20 8 4
#Evaluation 200 100 100 100 100 100 100 100 100 10 10 10 4 4 4

Table 2: Constraint number (C) distributions over training and evaluation set in TRACE. C = i represents the number
of instructions with i constraints.

sess the generated response based on the complex
instruction. Concretely, we prompt the LLM eval-
uator to evaluate each constraint mentioned in the
complex instruction on a scale of 0–10, assessing
the degree to which the response follows each con-
straint. A higher score indicates stronger adherence
to the specified constraint. The overall instruction
following score IF on the evaluation set with n
complex instructions are calculated as follows:

IF =
1

n

n∑

i

I=10

mi∑

j=1

Si,j

mi
(3)

where Si,j ∈ [0, 10] is the score indicating the
degree to which the j-th constraint in the i-th in-
struction is adhered to. mi is the number of con-
straints in the i-th instruction. I=10 is 1 when∑mi

j=1
Si,j

mi
= 10, otherwise is 0. That is, a response

is considered correct only when all constraints in
the complex instruction are fully followed.

4.4 Evaluation Set Quality
To generate the high-quality evaluation set, we fur-
ther introduce a rigorous post-inspection process af-
ter the construction pipeline (Sec. 4.1). First, based
on LLM-as-Judge (Wang et al., 2024c; Zhang et al.,
2023; Zeng et al., 2024; Xia et al., 2024), we use
the powerful LLM GPT-4o to check the follow-
ing items for each instruction in the evaluation
set: 1) Is the description empty? 2) Is there re-
dundancy between the constraints and description?
3) Does the input match the description? If any
of the aforementioned issues arise, we prompt the
GPT-4o to make corrections for accelerating the
subsequent manual verification. Second, the pro-
fessional data annotation team makes the manual
annotation process involving multiple steps such
as annotator training, small-scale trial annotation,
selection of official annotators, and formal annota-
tion. Finally, we randomly select 100 instructions
for quality evaluation, which are then inspected by
three labeling specialists based on the above check
items and the overall validity. The agreement rate
among three annotators on the sampled evaluation
set is 95%.

5 Input-Output Preference Optimization

Both RLHF (Ouyang et al., 2022; Bai et al., 2022a)
and its variants, such as DPO (Rafailov et al.,
2023), directly learn the response y preference
(Output) given the same instruction x (Input). How-
ever, complex instructions consist of multiple fine-
grained constraints, direct preference learning for
the output y struggles to perceive fine-grained con-
straints in the input x. To enhance the model’s per-
ception of fine-grained instruction, we further intro-
duce the input preference learning which reflects
on the constraints in the instruction x based on
the response y. By performing preference learning
of both input and output, input-output preference
optimization (IOPO) not only rapidly fits the bet-
ter output but also meticulously considers the fine-
grained information of the input.

Concretely, we construct a pair of instructions
<x1, x2> whose responses are respectively <y1,
y2>, where x2 has subtle differences from x1 in
some constraints, and these differences would re-
sult in substantially divergent responses. And then,
we can get four input-output pairs <x1, y1>, <x1,
y2>, <x2, y1>, and <x2, y2>, which can form a
preference group pair G1 ≻ G2 (G1 = {<x1, y1>,
<x2, y2>}, G2 = {<x1, y2>, <x2, y1>}). The de-
tailed data construction process is described in Ap-
pendix D. The first group is the matched input-
output pair while the second one is mismatched.
As derived in Rafailov et al. (2023), the reward
function r(x, y) can be represented by the policy
model πr as follows:

r(x, y) = β log
πr(y|x)
πref(y|x)

+ β logZ(x) (4)

where Z(x) =
∑

y πref(y|x) exp
(

1
β r(x, y)

)
.

The Bradley–Terry model (Bradley and Terry,
1952) is a probability model for the outcome of
pairwise comparisons between items, groups, or
objects. Given a pair of items i and j, it estimates
the probability that the pairwise comparison i ≻ j
turns out true (Hunter, 2004), as

p(i ≻ j) = pi/(pi + pj) (5)
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where pi is a positive real-valued score assigned to
individual i, and the comparison i ≻ j can mean “i
is preferred to j”. Similarly, given a pair of groups
G1 and G2, we can define p1 = er(x1,y1)+r(x2,y2)

for G1, and p2 = er(x1,y2)+r(x2,y1) for G2, as

p(G1 ≻ G2) =
erG1

erG1 + erG2

rG1 = r(x1, y1) + r(x2, y2)

rG2 = r(x1, y2) + r(x2, y1)

(6)

Next, combining Eq. 6 and Eq. 4, we can further
derive as follows (details in Appendix G):

p(G1 ≻ G2) = σ

(
1

2
(Π1 +Π2)

)
(7)

Π1 =2β log
πr(y1|x1)

πref(y1|x1)
− β log

πr(y2|x1)

πref(y2|x1)

− β log
πr(y1|x2)

πref(y1|x2)

Π2 =2β log
πr(y2|x2)

πref(y2|x2)
− β log

πr(y1|x2)

πref(y1|x2)

− β log
πr(y2|x1)

πref(y2|x1)

(8)

where σ is the sigmoid function. Therefore, the
optimization objective of IOPO is to maximize
p(G1 ≻ G2). Motivated by Rafailov et al. (2023),
we can formulate a maximum likelihood loss for a
parametrized policy model πθ as follows:

LIOPO(πθ) = −Ei∼D

{
log

[
σ

(
Π1(πθ) + Π2(πθ)

2

)]}

i =< x1, y1, x2, y2 >
(9)

Π1(πθ) =

(
β log

πθ(y1|x1)

πref(y1|x1)
− β log

πθ(y2|x1)

πref(y2|x1)︸ ︷︷ ︸
Output

)

+

(
β log

πθ(y1|x1)

πref(y1|x1)
− β log

πθ(y1|x2)

πref(y1|x2)︸ ︷︷ ︸
Input

)

Π2(πθ) =

(
β log

πθ(y2|x2)

πref(y2|x2)
− β log

πθ(y1|x2)

πref(y1|x2)︸ ︷︷ ︸
Output

)

+

(
β log

πθ(y2|x2)

πref(y2|x2)
− β log

πθ(y2|x1)

πref(y2|x1)︸ ︷︷ ︸
Input

)

(10)

where we mark the preference modeling for
Output and Input in Π1(πθ), Π2(πθ).

6 Experiments

6.1 Experimental Settings
Evaluation Datasets. We conduct experiments on
four instruction-following datasets: TRACE, IFE-
val (Zhou et al., 2023), CFBench (Zhang et al.,

2024a), and COMPLEXBENCH (Wen et al., 2024).
TRACE evaluation set is introduced in this paper,
which has 1,042 instructions, and an average of
4.89 constraints per instruction, with a maximum
of 15 constraints. IFEval consists of 541 prompts,
with each prompt containing one or multiple verifi-
able instructions. CFBench contains 1,000 samples
that cover more than 200 real-life scenarios and
over 50 NLP tasks, with each sample including
multiple constraints. COMPLEXBENCH creates
1,150 samples based on 4 constraint types, 19 con-
straint dimensions, and 4 composition types. It is
worth noting that TRACE is the in-domain evalua-
tion set, IFEval, CFBench and COMPLEXBENCH

are the out-of-domain ones.
Implementation Details. (1) TRACE Bench-

mark: we choose Qwen2-72B-Instruct (Yang et al.,
2024a)1 for benchmark construction. (2) IOPO
Alignment: we choose Qwen2-7B-Instruct2, and
LLaMA3.1-8B-Instruct3 as the LLM backbone.
All models, except for the base models (i.e. Qwen2-
7B-Instruct and Llama-3.1-8B-Instruct), are trained
on TRACE’s training set or its variants, tested on all
evaluation datasets (Train Once, Test Anywhere).
The learning rate is 1e-4 for supervised fine-tuning
(SFT), and 5e-6 for DPO and IOPO. The maximum
length and epoch are set to 6,000 and 3 respectively.
β is set to 0.1. We implement our code based on
LLaMA-Factory (Zheng et al., 2024), perform par-
allel training on 4 × 8-GPU machines, with a micro
batch size of 1 per GPU. The DPO training data
construction is shown in Appendix C.

Evaluation Metrics. For TRACE, we use GPT-
4o to evaluate if all constraints in the instruction
have been followed (IF-S for single-constraint in-
structions, and IF-M for multi-constraint instruc-
tions), as described in Sec. 4.3. For IFEval, we use
prompt-level strict and loose accuracy defined in
Zhou et al. (2023), abbr. S-Acc and L-Acc respec-
tively. CFBench (Zhang et al., 2024a) introduces
three evaluation metrics with GPT-4o as the eval-
uation model: constraint satisfaction rate (CSR),
instruction satisfaction rate (ISR), and priority sat-
isfaction rate (PSR). COMPLEXBENCH (Wen et al.,
2024) calculates the decomposed requirements fol-
lowing ratio (DRFR).

1https://modelscope.cn/models/Qwen/Qwen2-72B-
Instruct

2https://modelscope.cn/models/Qwen/Qwen2-7B-
Instruct

3https://huggingface.co/meta-llama/Llama-3.1-8B-
Instruct
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Model Method TRACE IFEval CFBench COMPLEXBENCH

IF-S IF-M S-Acc L-Acc CSR ISR PSR DRFR

Qwen2-7B

Instruct 72.5 54.5 51.6 56.4 75.8 39.1 50.2 68.1

SFT 76.0 56.1 52.3 54.2 77.8 40.4 52.9 68.2

PPO 77.0 57.7 51.4 53.8 76.2 38.8 50.6 68.6

ORPO 77.9 61.7 53.1 56.9 79.7 45.9 57.0 69.1

SimPO 78.3 63.6 52.2 57.6 78.4 45.0 57.6 67.8

DPO 79.0 67.2 52.7 58.2 80.0 45.1 57.9 70.9

IOPO (Ours)Improv. 82.0↑3.0 68.9↑1.7 59.9↑7.2 63.6↑5.4 80.7↑0.7 47.0↑1.9 58.7↑0.8 72.6↑1.7

Llama3.1-8B

Instruct 67.5 52.9 74.3 78.6 71.4 35.7 46.9 63.2

SFT 75.5 62.9 71.0 74.1 78.4 43.2 54.7 68.2

PPO 75.0 57.3 69.9 72.3 75.9 40.9 50.7 68.1

ORPO 77.0 63.1 72.3 77.3 79.4 46.6 57.2 69.6

SimPO 76.3 64.5 71.2 76.6 80.6 47.8 58.7 70.2

DPO 79.0 69.2 71.5 76.5 80.8 48.1 59.8 70.8

IOPO (Ours)Improv. 81.5↑2.5 70.7↑1.5 78.2↑6.7 81.0↑4.5 81.8↑1.0 49.9↑1.8 61.1↑1.3 71.8↑1.0

Table 3: Main results on in-domain TRACE, and out-of-domain IFEval, CFBench, and COMPLEXBENCH. Improv.
indicates the absolute improvement compared to DPO.

Model Method TRACE IFEval CFBench COMPLEXBENCH

IF-S IF-M S-Acc L-Acc CSR ISR PSR DRFR

Qwen2-7B

IOPO 82.0 68.9 59.9 63.6 80.7 47.0 58.7 72.6

w/o Output Preference 81.0 66.7 55.1 60.5 79.4 46.6 56.3 71.0

w/o Input Preference 80.9 67.1 56.7 61.9 79.7 46.8 57.0 71.3

Llama3.1-8B

IOPO 81.5 70.7 78.2 81.0 81.8 49.9 61.1 71.8

w/o Output Preference 81.5 69.6 77.3 80.6 80.6 48.6 58.4 69.2

w/o Input Preference 79.0 69.0 77.9 80.2 80.9 48.3 59.4 70.1

Table 4: Ablation studies on TRACE, IFEval, CFBench, and COMPLEXBENCH.

6.2 Experimental Results

Main Results. As shown in Table 3, we give
the main results under different benchmarks, in-
cluding in-domain TRACE, out-of-domain IFE-
val, CFBench and COMPLEXBENCH. The ex-
periments are conducted under two different base
models, Qwen2-7B, and Llama3.1-8B, where In-
struct means directly using Qwen2-7B-Instruct or
Llama3.1-8B-Instruct for inference, SFT represents
the model is trained on TRACE training set, and
PPO, DPO, IOPO are respectively trained on pref-
erence data derived from TRACE training set.

For in-domain evaluation on TRACE set, we can
see 3.0%, 1.7% improvements of IOPO on single-
and multi-constraint instructions with Qwen2-7B
as the base model compared to DPO, and 2.5%,
1.5% improvements with Llama3.1-8B as the base

model. For out-of-domain evaluation on IFEval,
CFBench and COMPLEXBENCH, IOPO achieves
an average increase of 2.95%, and 2.72% in
comparison with DPO based on Qwen2-7B and
Llama3.1-8B respectively. The significant advan-
tages of both in-domain and out-of-domain eval-
uations confirm the effectiveness of input-output
preference optimization, which intensively consid-
ers the constraint differences between instructions,
enhancing the model’s perception of constraints. It
is worth noting that IOPO has a larger performance
gap with SFT especially on IFEval, compared to
DPO and SFT, which confirms the generalization
of IOPO and the necessity of further modeling the
input preferences.

Ablation Studies. To further confirm the effec-
tiveness of input and output preference, we conduct
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Method SFT DPO IOPO

#Memory 1× 2× 4×
#Training Time 14.54 h 26.30 h 34.27 h

#Inference Speed 1× 1× 1×

Table 5: Analysis on the consumed GPU memory, train-
ing time, and inference speed under the same batch size.

ablation studies on TRACE, IFEval, CFBench, and
COMPLEXBENCH as shown in Table 4, where “w/o
Output Pref” 4 means we only consider the mod-
eling of input preference with the same training
data, “w/o Input Pref” 5 means we only consider
the modeling of output preference. We see that
output preference contributes to 2.1%, and 1.28%
increases with Qwen2-7B and Llama3.1-8B respec-
tively, input preference separately brings 1.5% and
1.4% performance gains, which confirms the ef-
fectiveness of both input and output preference
modeling. Besides the paradigm for modeling out-
put preference in existing alignment methods, it’s
established that modeling input preference is cru-
cial for deeply considering constraints within the
instruction.

Complexity Analysis. We conduct the analyses
of complexity in Table 5, where all methods are
conducted under the same experimental settings,
such as the batch size and GPU. (1) For #Memory,
DPO and IOPO are approximately twice and four
times that of SFT respectively, because DPO needs
a pair of responses to calculate the corresponding
loss (<x, y1>, <x, y2>), and IOPO needs to com-
pute four groups of input-output pairs (<x1, y1>,
<x2, y2>, <x1, y2>, <x2, y1>) in its loss. (2) For
#Training Time, DPO and IOPO require the com-
putation of more tokens compared to SFT under
the same batch size, leading to longer training time.
(3) For #Inference Speed, SFT, DPO, and IOPO are

4

LIOPO∗(πθ) = −Ei∼Dlog[σ(Π∗(πθ))]

i =< x1, y1, x2, y2 >

Π∗(πθ) = β log
πθ(y1|x1)

πref(y1|x1)
− β log

πθ(y1|x2)

πref(y1|x2)

where the preference pair data y2|x2, y2|x1 are also used for
training.

5Different from “w/o Output Pref”,

Π∗(πθ) = β log
πθ(y1|x1)

πref(y1|x1)
− β log

πθ(y2|x1)

πref(y2|x1)

where the preference pair data y2|x2, y1|x2 are also used for
training.
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Figure 4: Performance comparisons under the same
quantity of tokens with Qwen2-7B as the base model.
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Figure 5: Performance comparisons under the same
quantity of tokens with Llama3.1-8B as the base model.

all the same base model optimized for inference,
resulting the same inference speed. The training
efficiency and GPU memory usage of IOPO are
not the best among compared baselines, but their
efficiencies are still of the same order of magnitude,
which are reasonable and acceptable comprehen-
sively considering its performance advantage.

The Impact of Token Quantity. To address
concerns regarding the IOPO training tokens, we
conduct the analyses on the impact of token quan-
tity and report the results in Figure 4, and Figure 5.
For IOPO, there exist two instructions along with
their corresponding/right responses ({<x1, y1>,
<x2, y2>}). To ensure that DPO and IOPO con-
sume the same number of tokens, we construct
two pairs of output preferences based on IOPO’s
instructions x1 (ywin = y1, ylose = y2), and x2
(ywin = y2, ylose = y1) for training DPO model,
denoted by DPO∗. Similarly, we train SFT model
with instruction data {<x1, y1>, <x2, y2>}, denoted
by SFT∗. We can observe that increasing the to-
ken quantity does indeed yield better performance
on some datasets. For example, compared to DPO,
DPO∗ has achieved a performance improvement on
IFEval (S-Acc, L-Acc) with Qwen2-7B as the base
model. However, there are also cases of decline,
such as comparing DPO∗ with DPO on CFBench
(CSR, PSR), which indicates that it is not the case
that more tokens always lead to better performance.
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At the same time, although consuming the same
number of tokens, SFT and DPO still have cer-
tain gaps compared to the proposed IOPO, which
confirms that the performance improvement of our
IOPO does not primarily come from using more to-
kens, but rather from better constraint-aware mod-
eling of input-output preferences.

7 Conclusion

This paper focuses on the ability of LLMs to fol-
low complex instructions, and introduces TRACE,
a multi-constraint complex instruction benchmark
which consists of 120K training samples and 1K
test cases. Furthermore, we propose IOPO align-
ment method by taking both input and output pref-
erences into account, enabling LLMs to directly
learn response preferences and subtly perceive
constraints in instructions. The empirical results
from extensive testing across in-domain and out-of-
domain datasets demonstrate the efficacy of IOPO,
with notable improvements of 2.18% and 3.13%
compared to DPO, respectively. For future work,
we expect to introduce a more in-depth reasoning
process to improve constraint-aware abilities.

Limitations

In TRACE, the evaluation set has undergone strict
manual verification but the training set has not per-
formed this process considering the cost. Although
the models trained on the training set have achieved
the significant improvements, we believe that if we
can further improve the quality of the training set,
it will lead to better model performance on effec-
tiveness and generalization of following complex
instructions.
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A Taxonomy of Constraint

Constraint Type Constraint Dimension Description
Content Constraint Theme Constraint The generated content should focus on a specific topic or field.

Exclusion Constraint Clearly specify the information or content that should not be
included in the generated content.

Inclusion Constraint Clearly specify the particular information or content that must
be included in the generated content.

Value Constraint The generated content should not contain information that vi-
olates values, such as safety, false information, discrimination,
or bias.

Privacy Constraint The generated content should not include details that may
infringe on privacy, such as personal data or sensitive informa-
tion.

Numerical Constraint Limit the length and number of words, sentences, and para-
graphs in the generated content, or use numerical precision
constraints to ensure accuracy.

Situation Constraint Role-Playing Constraint The generated content should be based on a specific role or
situational background.

Target Audience Constraint The generated content should target a specific audience, which
affects the terminology used, the level of detail provided, and
the complexity of the content.

Prior Condition Constraint When a specific intention is met, a particular process should
be followed to perform an operation or output specific content.

Natural Language Process
Background Information Constraint Add natural language form process information, such as pro-

cedures or business processes, to assist in generating answers.
Markdown Process

Background Information Constraint Add markdown-formatted process information, such as proce-
dures or business processes, to assist in generating answers.

Table Background
Information Constraint Background information is presented in table form, providing

a series of markdown-formatted tables to assist in generating
answers.

Text Background
Information Constraint Background information is presented in text form, providing a

series of textual background information to assist in generating
answers.

Style Constraint Tone and Style Constraint The generated content should adopt a specific tone and style,
such as formal, polite, academic, concise, literary, romantic,
or sci-fi.

Emotion Constraint The generated content should express a specific emotion or
mood, such as ensuring the content is positive, inspiring, or
empathetic.

Linguistic Characteristics Constraint Use specific linguistic features, such as metaphors, personifi-
cation, and other rhetorical devices.

Multilingual Constraint The content should be generated in a specific language or
switch between languages according to complex patterns.

Format Constraint Output Format Constraint The generated content should be in a specific data format, such
as tables, JSON, HTML, LaTeX, or Markdown.

Text Pattern Constraint Use specified fonts and font sizes, or special emoji, to ensure
readability across different devices and platforms.

Grammar Structure Constraint The generated content should strictly follow specific grammat-
ical structures, such as subject-predicate-object, subject-verb,
etc.

Citation Constraint The generated content should include citations to sources, pro-
viding reliable sources and literature support; follow specific
citation formats or reference styles.

Numbering and List Constraint The generated content should use numbered lists or bullet
points to organize information.

Hierarchical Structure Constraint The generated content should be organized according to a
specific hierarchical structure, such as using headings and
subheadings.

Template Constraint The generated content should follow a specific layout or for-
mat, such as text alignment, paragraph indentation, and struc-
tural templates like introduction-body-conclusion.

Example Constraint Positive Example Constraint Provide examples that meet the requirements, and require the
model to generate content based on these examples.

Negative Example Constraint Provide examples that do not meet the requirements, and re-
quire the model to avoid generating content similar to these
examples.

Table 6: Five constraint types and 26 constraint dimensions with their corresponding descriptions.
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B Prompt

B.1 Constraint Expansion Prompt

[Task Prompt]
You are an instruction enhancer. Given an instruction,

you need to modify it by adding constraints to make
it more complex. You can choose several appropriate
types of constraints from those given below, but you
must maintain the thematic consistency of the original
instruction.

{Constraints}
[Input]

—INPUT—
<Instruction>:
{Instruction}
—OUTPUT—

B.2 Instruction Structuring Prompt

[Task Prompt]
You are provided with an instruction. As a prompt

engineer, your task is to extract the task description, con-
straints, and the input contained in the given instruction.
[Requirements]

If there is no constraints information that can be ex-
tracted from the instruction, only output NULL in the
constraints field.

If there is no input information that can be extracted
from the instruction, only output NULL in the input field.

Information in the input field and constraints field
cannot be duplicated.

Information in the input field and task description
field cannot be duplicated.

Information in the task description field and con-
straints field cannot be duplicated.

The content extracted for the task description, con-
straints, and input elements should be consistent with the
semantics of the instruction to be extracted.

Evaluate the quality of the instruction; if the instruc-
tion is poor, incomplete, or contradictory, do not perform
constraints extraction.
[Input]

—INPUT—
<Instruction>:
{Instruction}
—OUTPUT—

B.3 Judge Completeness Prompt

[Task Prompt]
You are an instruction integrity discriminator, capable

of determining whether a given instruction is complete.
[Requirements]

The given instruction consists of three parts: <Task
Description, Constraints, Input>, where Input can be
NULL. You can refer to the examples given in Example,
but you should not directly copy the examples.
[Example]

{Examples}
[Input]

—INPUT—
{Instruction}
—OUTPUT—

B.4 Judge Redundancy Prompt

[Task Prompt]
You are the redundancy detector for instructions, ca-

pable of determining whether given instructions are re-
dundant.
[Requirements]

The given instruction consists of <Task Description,
Constraints, Input>, where Input can be NULL; You
can refer to the Examples provided, but you should not
directly copy the examples.
[Example]

{Examples}
[Input]

—INPUT—
{Instruction}
—OUTPUT—

B.5 Response Evaluation Prompt

[System]
You are a fair judge, and please evaluate the quality

of an AI assistant’s responses to user query. You need to
assess the response based on the following constraints.
We will provide you with the user’s query, some con-
straints, and the AI assistant’s response that needs your
evaluation. When you commence your evaluation, you
should follow the following process:

1. Evaluate the AI assistant’s response on different
constraints, and after each constraint evaluation, assign a
score from 0 to 10.

2. Aggregate the assessments from each constraint
to give an overall score for the AI assistant’s response,
ranging from 0 to 10.

3. Your scoring should be as strict as possible, overall,
the higher the quality of the model’s response, the higher
the score.

4. When the model’s response is irrelevant to the ques-
tion, or contains significant factual errors, or generates
harmful content, the Constraints Overall Score must be
0 points.

5. It is necessary to strictly follow the format in the
[Example] for generation, the Fine Grained Score format
is Json, and Constraints Overall Score format is List.

Please remember to provide evaluations and explana-
tions before your scoring. After your explanation of each
constraint, include a score for that constraint.
[Example]

{Examples}
[Input]

—INPUT—
#Task Description:

{task_description}
#Constraints:

{constraint}
#Input:

{input}
#Response:

{answer}
—OUTPUT—

C DPO-Series Data Construction

We construct DPO training data based on TRACE

training set by prompting Qwen2-72B-Instruct to
generate a worse response yloose compared to orig-
inal response ywin. The construction process is
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Can you introduce Beijing to me?

1. The generated answer format needs to be JSON;
2. The generated answer must be objective facts and cannot

contain any subjective opinions or guesses;
3. All characters need to be encoded in UTF-8 to ensure

support for multilingual responses;
… …

… …

Task Description

Constraints

Input

{"data": "Beijing, located in the north of the North China 
Plain of * * China * *, is the capital of the People's Republic 
of China and the political and cultural center of the country. 
With a population of more than * * 21.54 million * * (2020 
data), Beijing is the second largest city in China."}

Beijing, located in the north of North China Plain, is the 
capital of the People's Republic of China and the political 
and cultural center of the country. Beijing has a population 
of over 21.54 million (2020 data), making it the second 
largest city in China.

Response

Response

Figure 6: DPO-series Data Construction.

depicted in Figure 6, the prompt is shown as fol-
lows:

#Task Description:
{task_description}

#Constraints:
{constraint}

#Input:
{input}

#Ref:
The provided answer is: {response}
According to #Task Description, #Constraints and

#Input, please generate a Worse answer in terms of com-
plying with the #Constraint than the provided one.

Please ONLY output the answer.

D IOPO Data Construction

We construct IOPO training data based on TRACE

training set by the following steps (the detailed
process is shown in Figure 7):

Step 1: prompting Qwen2-72B-Instruct to gen-
erate new constraints by “add”, “remove”, and “re-
vise” operations, making the response not comply
with the new constraints, and then the task descrip-
tion, new constraints, and input are combined to
form x2. The corresponding prompt is as follows:
x2 Generation Prompt:

#Task Description:
{task_description}

#Constraints:
{constraint}

#Input:
{input}

#Ref:
The provided answer is: {response}

According to #Task Description, #Constraints and
#Input, please {OP} items of original CONSTRAINTS to
generate the new CONSTRAINTS, making the provided
answer NOT comply with the new CONSTRAINTS.

Please ONLY output the new CONSTRAINTS.

OP can be randomly selected from {“ADD new
items into the”, “DELETE partial”, “REVISE spe-
cific”} according to a uniform distribution.

Step 2: For instruction x2, we prompt Qwen2-
72B-Instruct to generate the corresponding re-
sponse y2. The prompt is Response Generation
Prompt.

Step 3: We finally prompt Qwen2-72B-Instruct
to evaluate the response y2, and only keep the full-
score ones. The prompt is Response Evaluation
Prompt.

Finally, we prompt Qwen2-72B-Instruct to
check the rationality of the group pairs (<x1, y1>,
<x2, y2>, <x1, y2>, <x2, y1>).

E IOPO Variant

In fact, when implementing IOPO in the business
applications, we can adopt the following simplifi-
cation by omitting Π2(πθ) in Eq.9 for less memory
usage:

LIOPO∗(πθ) = −Ei∼D

{
log

[
σ

(
2β log

πθ(y1|x1)

πref(y1|x1)

− β log
πθ(y2|x1)

πref(y2|x1)
− β log

πθ(y1|x2)

πref(y1|x2)

)]}

i =< x1, y1, x2, y2 >
(11)

After simplification, the memory usage is approx-
imately 1.5 times that of DPO, and the perfor-
mance achieves average increase of 2.03% com-
pared to DPO, decreases by 0.48% compared to
before IOPO simplification.

F Compared to Mainstream LLMs

As shown in Table 7, we evaluate some main-
stream closed-sourced/SOTA models, including
OpenAI o1 (Jaech et al., 2024), DeepSeek-R1 (Guo
et al., 2025), and Claude-3.5-Sonnet (Anthropic,
2024), and observe that: (1) Our benchmark
TRACE provides the consistent rank (Claude-3.5-
Sonnet > o1 > DeepSeek-R1) as existing bench-
marks IFEval, CFBench, and COMPLEXBENCH,
confirming the data’s quality. (2) Larger closed-
sourced/SOTA models have better performance
than 7B/8B weaker models. However, the proposed
algorithm IOPO significantly narrows the gap be-
tween closed-sourced/SOTA models and 7B/8B
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Score

(0-10)

Full Score

Generation
prompt

Response Evaluation prompt

Can you introduce Beijing to me?

1. The generated answer format needs to be JSON;

2. The generated answer must be objective facts and cannot

contain any subjective opinions or guesses;

3. All characters need to be encoded in UTF-8 to ensure

support for multilingual responses;

… …

… …

Task Description

Constraints

{"data": "Beijing, located in the north of the North China 
Plain of * * China * *, is the capital of the People's 
Republic of China and the political and cultural center of the 
country. With a population of more than * * 21.54 million * 
* (2020 data), Beijing is the second largest city in China."}Response

Input

Can you introduce Beijing to me?

1. The format of the generated answer needs to be
Markdown, …;

2. The generated answer must be objective facts and cannot

contain any subjective opinions or guesses;

3. All characters need to be encoded in UTF-8 to ensure

support for multilingual responses;

… …

… …

Task Description

Constraints

**Beijing**, as the capital of the People‘s Republic of 
China … … 
###Historical evolution
The history of Beijing can be traced back to the Zhou 
Dynasty … Response

Input

Response 
Generation

prompt

Figure 7: IOPO Data Construction.

Model Method TRACE IFEval CFBench COMPLEXBENCH

IF-S IF-M S-Acc L-Acc CSR ISR PSR DRFR

Qwen2-7B

Instruct 72.5 54.5 51.6 56.4 75.8 39.1 50.2 68.1

SFT 76.0 56.1 52.3 54.2 77.8 40.4 52.9 68.2

PPO 77.0 57.7 51.4 53.8 76.2 38.8 50.6 68.6

ORPO 77.9 61.7 53.1 56.9 79.7 45.9 57.0 69.1

SimPO 78.3 63.6 52.2 57.6 78.4 45.0 57.6 67.8

DPO 79.0 67.2 52.7 58.2 80.0 45.1 57.9 70.9

IOPO (Ours)Improv. 82.0↑3.0 68.9↑1.7 59.9↑7.2 63.6↑5.4 80.7↑0.7 47.0↑1.9 58.7↑0.8 72.6↑1.7

Llama3.1-8B

Instruct 67.5 52.9 74.3 78.6 71.4 35.7 46.9 63.2

SFT 75.5 62.9 71.0 74.1 78.4 43.2 54.7 68.2

PPO 75.0 57.3 69.9 72.3 75.9 40.9 50.7 68.1

ORPO 77.0 63.1 72.3 77.3 79.4 46.6 57.2 69.6

SimPO 76.3 64.5 71.2 76.6 80.6 47.8 58.7 70.2

DPO 79.0 69.2 71.5 76.5 80.8 48.1 59.8 70.8

IOPO (Ours)Improv. 81.5↑2.5 70.7↑1.5 78.2↑6.7 81.0↑4.5 81.8↑1.0 49.9↑1.8 61.1↑1.3 71.8↑1.0

Mainstream
LLMs

OpenAI o1 85.2 74.7 84.6 89.7 86.7 62.4 72.1 81.3

DeepSeek-R1 (671B) 84.1 73.8 83.5 89.4 86.5 62.1 71.9 78.7

Claude-3.5-Sonnet 87.9 76.3 86.7 90.5 87.1 62.6 72.3 82.6

Table 7: Performance on TRACE, IFEval, CFBench, and COMPLEXBENCH.

base weaker models, especially on in-domain
TRACE data. This inspires us to construct more
diverse high-quality data and more advanced al-
gorithm for enabling weaker models to achieve
similar performance to larger-scale models.

G Derivation for p(G1 ≻ G2)

As described in Eq. 6 as follows:

p(G1 ≻ G2) =
er(x1,y1)+r(x2,y2)

er(x1,y1)+r(x2,y2) + er(x1,y2)+r(x2,y1)

(12)
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As described in Eq. 4, the reward function
r(x, y) can be represented by the policy model πr
as follows:

r(x, y) = β log
πr(y|x)
πref(y|x)

+ β logZ(x) (13)

Combining above equations, we can derive that:
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where the notations p∗ and π∗ are, respectively,
equivalent to p(·) and πθ in the main text.
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