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Abstract

Knowledge graph embedding techniques have
emerged as a critical approach for addressing
the issue of missing relations in knowledge
graphs. However, existing methods often suf-
fer from limitations, including high intra-group
similarity, loss of semantic information, and
insufficient inference capability, particularly in
complex relation patterns such as 1-N and N-1
relations. To address these challenges, we in-
troduce a novel KGE framework that leverages
mutual information maximization to improve
the semantic representation of entities and re-
lations. By maximizing the mutual informa-
tion between different components of triples,
such as (h,r) and ¢, or (r,t) and h, the pro-
posed method improves the model’s ability to
preserve semantic dependencies while main-
taining the relational structure of the knowl-
edge graph. Extensive experiments on bench-
mark datasets demonstrate the effectiveness
of our approach, with consistent performance
improvements across various baseline models.
Additionally, visualization analyses and case
studies demonstrate the improved ability of the
MI framework to capture complex relation pat-
terns.

1 Introduction

Knowledge graphs (KGs) represent a structured
form of storing and organizing knowledge, which
has demonstrated immense potential in vari-
ous applications such as search engines (Yang
et al., 2019), intelligent question-answering sys-
tems (Saxena et al., 2022), and recommendation
systems (Wang et al., 2024). KGs are typically
represented as triples (h,r,t), where h denotes
the head entity, r represents the relation, and ¢ de-
notes the tail entity. However, real-world KGs often
contain a significant number of missing relations,
which has led to extensive research on knowledge
graph embedding (KGE).

* Corresponding Author

KGE techniques aim to map entities and rela-
tions into a low-dimensional vector space, enabling
more effective inference and prediction, thereby
addressing the challenge of missing relations in
KGs. This typically involves predicting missing
links within a KG. For instance, given a triple in
the form of (h, 7, ?), the model predicts the correct
tail entity ¢ based on the head entity i and relation
r. Similarly, for (?,r,t), the model predicts the
correct head entity h that based on the relation r
and tail entity ¢. Existing KGE methods perform
geometric operations in the embedding space, trans-
forming entities and relations into actionable vec-
tor representations. For instance, TransE (Bordes
et al., 2013) uses translation operations in real vec-
tor space to represent entities and relations. Com-
plEx (Trouillon et al., 2016) introduces a complex
vector space. QuatE (Zhang et al., 2019) further
employs rotation operations to encode KGs in the
quaternion space.

Despite significant progress made by existing
methods, several key limitations remain. Firstly,
high intra-group similarity is a major concern. For
1-N or N-1 relation patterns, these methods often
embed multiple entities related to the same head
or tail entity in a similar manner, thereby obscur-
ing potential semantic differences between tail or
head entities and limiting the model’s reasoning
capability. Secondly, loss of semantic informa-
tion is prevalent. These methods typically focus
on minimizing the distance between (h, ) and ¢ or
between (¢, 7) and h in the embedding space, em-
phasizing the modeling of structural information
in KGs by employing translation or rotation opera-
tions, while neglecting the preservation of semantic
information. This bias can lead to the omission of
important semantic characteristics of individual en-
tities, thus weakening the model’s performance in
capturing complex semantic relations.

To address these challenges, we propose a novel
KGE approach based on a mutual information
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framework. Mutual information (MI), a measure
of dependency between two variables, enables the
model to capture deep semantic connections be-
tween entities and relations. The motivation for
our method is drawn from its (MI) proven success
in various deep learning tasks. For instance, Do
et al. (2021) demonstrated that maximizing mu-
tual information between different views facilitates
efficient clustering, while Peng et al. (2020) intro-
duced Graphical Mutual Information (GMI) for
graph representation learning, showing that this
technique effectively retains rich structural infor-
mation in unsupervised learning. Furthermore, Wu
et al. (2023) applied mutual information to align
themes across languages in cross-lingual topic mod-
eling, preventing representation degradation and
enabling accurate multilingual topic alignment. In-
spired by these tasks, we leverage mutual informa-
tion maximization to enhance the representation
of semantic information in KGs. By maximizing
the mutual information between different compo-
nents of triples (e.g., (h,7) and ¢, or (r,¢) and h),
our method not only preserves geometric structural
information but also improves the model’s ability
to represent complex semantic relationships. Ex-
perimental results indicate that the proposed KGE
method based on mutual information achieves sig-
nificant performance improvements in KGE tasks.
In summary, our study provides a novel theoretical
foundation and practical approach for KGE, intro-
ducing a mutual information maximization strategy
that enhances the model’s ability to capture com-
plex semantic relationships and improve inference
performance.

2 Related Work

2.1 Knowledge Graph Embedding Methods

Knowledge Graph Embedding (KGE) techniques
transform the entities and relationships in knowl-
edge graphs into low-dimensional vector spaces.
These embeddings are optimized to preserve the
structural and semantic information of the graph.
Early methods, such as TransE (Bordes et al.,
2013), TransH (Wang et al., 2014), TransR (Lin
et al., 2015), PaiRE (Chao et al., 2021) and Com-
poundE (Ge et al., 2023) encode KG embedding
in the Euclidean space. Recent work, Expres-
sivE (Pavlovic and Sallinger, 2023) enhances Eu-
clidean models by modeling relations as geometric
regions, enabling the capture of a wider range of
relational patterns within Euclidean space.

To better capture complex relation patterns,
KGE methods have explored alternative embed-
ding spaces. RotatE (Sun et al., 2019), Com-
plEx (Trouillon et al., 2016) model KGs in the
complex vector space. QuatE (Zhang et al., 2019),
QuatRE (Nguyen et al., 2022), QuatSE (Li et al.,
2022), TransERR (Li et al., 2024) DCNE (Dong
et al., 2024) and DaBR (Wang et al., 2025) extend
this by leveraging quaternion spaces to represent
interactions between entities and relations. These
methods demonstrate significant improvements in
encoding diverse relationship patterns. However,
they often suffer from high intra-group similarity
and limited semantic preservation.

In recent years, contrastive learning-based KGE
methods (Luo et al., 2021; Hu et al., 2024) have
gained attention for learning more discriminative
representations by contrasting positive and negative
samples. While our work also draws on contrastive
learning ideas, it differs by maximizing the mutual
information between the query (h, r) and the target
entity ¢, combined with minimizing conditional en-
tropy, thus presenting an information-theory-driven
optimization objective.

Another key line of KGE research leverages non-
Euclidean embedding spaces, including hyperbolic,
spherical, and mixed-curvature geometries, to bet-
ter capture hierarchy and cyclicity structural pat-
terns. Poincaré Embeddings (Nickel and Kiela,
2017) first demonstrated that hyperbolic space ef-
fectively models hierarchical structures due to its
exponential capacity. Building on this, RefH, RotH,
and AttH (Chami et al., 2020) extend hyperbolic
embeddings with reflection- and rotation-based op-
erators combined with attention mechanisms to
model diverse relation types. HGCN (Chami et al.,
2019) further generalizes graph convolutional net-
works to hyperbolic space using Riemannian ge-
ometry, enabling inductive reasoning over hierar-
chical KGs. To model mixed structural patterns,
DGS (Iyer et al., 2022) embeds cyclic relations in
spherical space and hierarchical ones in hyperbolic
space, linking them via a shared bridge space. Sim-
ilarly, NMM (Iyer et al., 2024) combines spherical
and hyperbolic embeddings to capture homophily
and influence, respectively. Its extension, NMM-
GNN, introduces a non-Euclidean variational au-
toencoder with a space unification loss, achieving
strong results on KG prediction tasks.

Our proposed method builds upon these ap-
proaches by integrating mutual information max-
imization, which enhances the discriminative ca-
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pacity of entity embeddings by aligning relational
contexts more effectively. This work specifically
focuses on models defined in real, complex, and
quaternion spaces, while non-Euclidean embed-
dings are left for future investigation.

2.2 Mutual Information Maximization

Mutual Information (MI) is a fundamental con-
cept in information theory that quantifies the de-
pendency between two random variables. It has
been widely applied across domains to model vari-
able interactions and enhance representation learn-
ing (Bachman et al., 2019; Hjelm et al., 2018;
Kong et al., 2019; Chi et al., 2020; Wu et al.,
2023). For instance, in clustering tasks, maximiz-
ing MI across different data views has been shown
to improve cluster quality by encouraging com-
pact intra-cluster representations and distinct inter-
cluster separations (Do et al., 2021). Similarly, in
topic modeling, methods like InfoCTM (Wu et al.,
2023) leverage MI to align cross-lingual topic rep-
resentations, thereby reducing topic redundancy
and improving coherence. In graph representa-
tion learning, Graphical Mutual Information (GMI)
maximization has been used to preserve both lo-
cal and global graph structure. Furthermore, in
cross-lingual scenarios, maximizing MI prevents
degenerate representations, ensuring robust align-
ment across languages. Song et al. (2024) integrate
global and local knowledge constraints to enhance
the pre-trained language model’s ability to com-
prehend query contexts. These studies illustrate
that MI maximization not only enhances traditional
representation learning tasks but also plays an es-
sential role in cross-domain applications, especially
in multilingual and graph-structured data contexts.
While prior KGE methods focus on improving rela-
tional modeling through enhanced score functions
or embedding spaces, they often neglect the under-
lying semantic dependencies among entities and
relations. Our work introduces a novel perspective
by incorporating MI maximization into the KGE
framework.

3 Methodology

3.1 Problem Setting and Notations

A knowledge graph is typically denoted as G =
(E,R,T), where £, R and T represent the sets of
entities, relations and triples (h, r, t), respectively.
The goal of KGE is to compute a score function
fr(h,t) that assigns higher scores to valid triples

than to invalid ones. Specifically, KGE aims to
learn low-dimensional representations of entities
and relations to facilitate missing link prediction in
KGs. It involves predicting the tail entity ¢ given
a tuple (h,r,7), or conversely, predicting the head
entity h for a tuple (7,7, t).

In traditional KGE methods, such as TransE, en-
tity and relation vector representations are learned
by minimizing an score function. These methods
tend to embed multiple entities associated with the
same head or tail entity into nearby spatial posi-
tions, leading to a high intra-group similarity prob-
lem. This phenomenon is particularly pronounced
when dealing with 1-N and N-1 relations, hindering
the model’s ability to distinguish between different
tail or head entities.

Specifically, for 1-N relations, given a head en-
tity h and a relation r, there exist multiple tail en-
tities {t1,t2,...,tN} associated with them. The
objective function of traditional embedding meth-
ods usually takes the form:

E(harvt):Hh—'_r_tHv (1)

where h, r, and t represent the embedding vectors
of the head entity, relation, and tail entity, respec-
tively. To minimize the score function, the model
adjusts all tail entity embeddings {t; } to be as close
as possible to h + r. Consequently, these tail entity
embeddings are also very close to each other, i.e.,

Hti—th%(), Vi7j€{1727"-7N}a (2)
which leads to high intra-group similarity, making
it difficult for the model to distinguish between dif-
ferent tail entities. A similar situation applies to
N-1 relations, resulting in high intra-group simi-
larity among head entities. Similarly, models like
RotatE, ComplEx, QuatE, etc. also face these po-
tential issues.

3.2 Mutual Information Maximization for
Reducing Intra-Group Similarity

To address this issue, we introduce a mutual infor-
mation maximization strategy. MI measures the
dependency between two random variables. By
maximizing the mutual information between the
conditional variables and the target variable, the
model can capture richer dependency structures,
thereby enhancing its discriminative ability.
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Proposition 1. Maximizing the mutual informa-
tion I((h,r);t) between (h,r) and t for 1-N rela-
tions and I((r,t); h) between (r,t) and h for N-1
relations reduces the conditional entropy H (t|h,r)
and H (h|r,t), thereby improving the model’s abil-
ity to distinguish between entities.

Proof. Let I((h,r);t) denote the mutual infor-
mation between (h, ) and t. Mutual information
is formally defined as:

I((h,r);t) = H(t) — H(t|h,7), 3)

where H (t) is the entropy of the tail entity, and
H(t|h,r) is the conditional entropy of ¢ given
(h,7).

Maximizing I((h,r);t) is equivalent to mini-
mizing H(t|h,r), as H(t) is independent of the
model parameters because it reflects the marginal
distribution of ¢ determined by the dataset and does
not depend on the conditional relationships that the
model learns.

The conditional entropy H (t|h, ) is defined as:

H(tlh,r) ==Y p(t|h,r)log p(t|h, ), (4)
te&y

where &; is the set of all possible tail entities, and
p(tlh,r) is the probability of selecting t given
(h,r).

By minimizing H (t|h, r), the model reduces the
uncertainty in predicting the tail entity ¢ given the
head entity h and the relation r. This optimiza-
tion encourages the model to assign higher prob-
abilities to the correct ¢ and lower probabilities
to incorrect ones, making p(t|h, ) more focused
and distinctive. As a result, the embeddings of tail
entities {t; } are adjusted to reflect their unique re-
lationships with (h, ), spreading them apart in the
embedding space. This separation reduces over-
lap among similar tail entities, effectively lower-
ing high intra-group similarity and improving the
model’s ability to distinguish between them.

Similarly, for N-1 relations, maximizing
I((r,t); h) is equivalent to minimizing H (h|r,t),
which is defined as:

H(hlr,t) ==Y p(hlr,t)logp(hlr,t), (5)
heé&y

where &, is the set of all possible head entities.
By minimizing H (h|r,t), the model enhances the
discriminability among head entities for a given

(r,t).

In summary, by introducing a mutual informa-
tion maximization strategy and minimizing condi-
tional entropy, we enhance the model’s ability to
capture subtle differences between entities, alleviat-
ing the high intra-group similarity problem in 1-N
and N-1 relations. This method is mathematically
proven to be effective and improves the discrim-
inative capability of entity representations in the
embedding space, thereby promoting the reasoning
performance of the model.

3.3 Mutual Information Lower Bound
Optimization Using InfoNCE

In the previous section, we demonstrated that mu-
tual information can effectively reduce uncertainty
in entity predictions by minimizing conditional
entropy, thereby enhancing the model’s discrim-
inative power. However, directly optimizing mu-
tual information is generally intractable in neural
network-based models. In our approach, we em-
ploy two lower bound to approximate mutual in-
formation maximization, including InfoNCE and
Jensen-Shannon Divergence (JSD).

Since directly computing mutual information
I(U,U) is often infeasible (Song and Ermon,
2019), researchers typically optimize its variational
lower bounds. Among these bounds, the InfoNCE
lower bound (Oord et al., 2018; Logeswaran and
Lee, 2018; Poole et al., 2019) has proven to be
highly effective in practice. The InfoNCE bound is
formally defined as:

I(U, U) > IInfoNCE(Uv U) £

exp(f (@, u1))
Sl exp(f (@, ;)
= —Lcontrast + log N,

Ep(uy.n)p(atuy) 108 +1log N (6)

where U and U represent random variables from
two distinct views. wuj.ny are N samples drawn
from the distribution py;, and  is a positive sample
associated with u; from the distribution D The
pair (@, up) is defined as a positive pair, while the
pairs (4, u;) (j = 2,...,N) are treated as neg-
ative pairs. The function f(x,y), often referred
to as a "critic," measures the similarity between
two representations x and y. The term Lcongrast 1S
widely recognized as the contrastive loss in previ-
ous works (Tian et al., 2020; Chen et al., 2020).
The bound arises from the fact that:

ew(flu)
BN exp(f(auy) @
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Thus, the InfoNCE lower bound I1pfonce (U, U )
is upper-bounded by log N. This implies two key
properties: (i) The InfoNCE bound becomes loose
when the true mutual information I (U, U) signifi-
cantly exceeds log N. (ii) Increasing the number of
negative samples N tightens the bound, providing
a better approximation of the true mutual informa-
tion.

Despite its bias, the InfoNCE lower bound has
much lower variance compared to other unbiased
mutual information estimators (Poole et al., 2019).
This low-variance property ensures stable training,
making InfoNCE a practical and reliable choice
for mutual information maximization in neural
network-based frameworks.

Specifically, we aim to maximize the mutual
information I((h,r);t) between (h,r) and ¢, as
well as the mutual information I((r,t); h) between
(r,t) and h. To maximize the mutual information
between (h,r) and t, we leverage a contrastive
learning strategy to improve the model’s represen-
tation of tail entities. Specifically, the positive pair
(h,r,tT) is sampled from real triples in the knowl-
edge graph, while the negative pairs (h,r,t™) are
generated by randomly replacing the tail entity.
The sample set S is defined as follows:

S ={(h,r,t*), (h, 7, t7), (h,7,15),
(o ),

where (h,r,t") is the positive sample, and
{(h,r,t7), (h,rt5),...,(h,7t,)} are n nega-
tive samples. To optimize the distinction between
positive and negative samples, we define the fol-
lowing contrastive learning loss function:

()

(hyr)—=t _
‘ccontrast -

exp(f(h,r,t"))

exp(f(h,r,t+)) + 31 exp(f(h,r,t;))]

©))
where f(h,r,t) represents the matching score be-
tween the head entity and relation for the tail entity.
By minimizing this loss function, we effectively
maximize a lower bound on the mutual informa-
tion between (h,r) and t, thereby improving the
model’s ability to predict tail entities given the head
entity and relation.

Similarly, for the relation and tail entity pair
(r,t), we aim to maximize the mutual information
between them and the head entity A, denoted as
I((r,t); h). We define the sample set as follows:

—Eg (log

S ={(r,t,h"), (r,t,h]), (r,t,hy),
con(rt hy) )

and the corresponding contrastive learning loss
function is:

(10)

(rt)—=h _
‘Ccontrast -

exp(f(r,t, h+))
exp(f(r. 6. 1) + Sory exp(f(r 6. 1))
(11)
By minimizing this loss function, the model max-
imizes the mutual information between (r,¢) and
h, thus enhancing the ability to distinguish among
head entities. The total contrastive learning ob-
jective is given by the weighted sum of the two
parts:

—Eg [log

Liotal = Alcc(:gﬁ:r)a:t + )‘2£££;1tt)r¥thv (12)
where \; and A, are weight parameters used to
balance the two mutual information maximization
objectives.

The final optimization objective combines the
original loss of the KGE models with the mutual in-
formation maximization strategies described above.
Specifically, the total loss can be expressed as:

»Cﬁnal = »CKGE + ['totalp (13)

where Lkgg represents the original loss function of
the baseline KGE models, and Lo, is the mutual
information-based InfoNCE defined in the previous
section. By combining the structural loss L and
the mutual information maximization loss Liyal,
the model simultaneously preserves the structural
characteristics of the knowledge graph while en-
hancing the semantic distinctions between entities
and relations.

3.4 Mutual Information Lower Bound
Optimization Using JSD

To further enhance the model’s ability to capture
the complex dependencies between entities and
relations in a knowledge graph, we propose an
alternative optimization approach using Jensen-
Shannon Divergence (JSD) to estimate the mutual
information lower bound. JSD is a symmetric and
effective metric that can measure the difference be-
tween two probability distributions. In my work, I
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aim to estimate and maximize the mutual informa-
tion between the joint representation of the head en-
tity and relation (H,) and the representation of the
tail entity (Hr)), using a JSD-based lower bound
estimator. Specifically, the joint representation of
the head entity and relation H, and the representa-
tion of the tail entity Hr) are treated as two random
variables whose representations are drawn from po-
tentially different distributions, and the goal is to
capture their correlations by maximizing mutual in-
formation. According to the theoretical foundation
provided by MINE (Mutual Information Neural
Estimation) (Belghazi et al., 2018), the mutual in-
formation can be estimated through a lower bound:

I(Hg;Hypy) > Iisp(Hy; Hypy).  (14)
To this end, we introduce the Jensen-Shannon
Mutual Information Estimator as follows:

IAG(JSD)(Hq’ H7)) := Ep[—sp(Tp(Hy, Hipy))]

—Ep[sp(Ty(Hy, Hp))),
(15)

Where H, represents the joint representation of the
head entity and relation, and H 7 represents the
tail entity’s representation. Hf] is a representation
sampled from other queries in the same mini-batch,
serving as a negative sample. The function Ty(-),
parameterized as a neural network or designed
based on a scoring function in KGE models, serves
as a discriminator to assign a compatibility score
to the input representations. sp(x) = log(1 + e*)
is the softplus activation function, used to ensure
non-negativity and smooth gradient calculation.

Our optimization goal is to maximize the above
mutual information lower bound to enhance the
model’s representation learning. The optimization
objective is given by:

Z f(gJSD) (sz : Hbj ),

0 = arg max (7]
b;eG

1
@ (16)
where b; is mini batch from training dadsets. To
optimize the model parameters, we define the fol-
lowing loss function:

Lisp=Y (Ej —E}),
bjeG

A7)

where Eéj represents the expectation for the query
and tail entity, and EéD " denotes the expectation
for negative distribution. The final optimization
objective is obtained by integrating the JSD-based
loss into the original KGE framework as follows:

Lfinal = LxGE + A\3Ljsp, (18)

where A3 is a weighting coefficient. By minimizing
this loss function, the model effectively enhances
its ability to distinguish between positive and nega-
tive samples and maximizes the mutual information
between entities and relations, thereby improving
the quality of knowledge embeddings.

4 Experiments

4.1 Datasets

To evaluate the effectiveness of the proposed meth-
ods, we conduct experiments on two widely used
benchmark datasets for knowledge graph embed-
ding tasks: WN18RR (Dettmers et al., 2018) and
FB15K-237 (Toutanova and Chen, 2015). A sum-
mary of these datasets is presented in Appendix A.

4.2 Evaluation Protocol

Following the standard link prediction evaluation
protocol used in previous studies, we evaluate the
proposed approaches by ranking each test triple
against all possible substitutions of head and tail
entities: (h',r,t) and (h,r,t"), Vh',t' € €, where
€ is the set of all entities in the knowledge graph.
We follow the standard evaluation protocol, includ-
ing metrics such as Mean Reciprocal Rank (MRR)
and Hits@K (K =1, 3, 10), which are widely used
in knowledge graph completion tasks. MRR mea-
sures the average reciprocal rank of the ground-
truth entity in the ranked list of predictions. Higher
MRR values indicate better ranking performance.
Hits@K calculates the proportion of test triples for
which the ground-truth entity appears in the top K
predictions.

S Results and Analysis
5.1 Overall Results

In this section, We select representative works
from different representation spaces to validate the
effectiveness of our proposed model: TransE (Bor-
des et al., 2013) in the real space, RotatE (Sun
et al., 2019) and ComplEx (Trouillon et al., 2016)
in the complex space, QuatE (Zhang et al., 2019)
in the quaternion space, and CP (Lacroix et al.,

22157



WN18RR FB15K-237
MRR Hits@1 Hits@3 Hits@10 | MRR Hits@1 Hits@3 Hits@10
TransE (Bordes et al., 2013) 19.46 348 32.39 46.28 2871  19.89 31.63 46.68
TransE-MI 20.50  2.09 36.07 48.61 | 30.28 21.56  33.38 47.61
CP (Lacroix et al., 2018) 41.60 39.34 42.36 45.88 26.74  18.93 28.90 42.59
CP-MI 42.12 38.64  42.96 49.27 | 29.69 21.77 32.28 45.46
RESCAL (Nickel et al., 2011) 42.81 40.87 43.41 46.51 29.75 2148 32.67 46.16
RESCAL-MI 4336 4140  44.37 49.12 | 29.83 2190 3240 45.43
ComplEx (Trouillon et al., 2016) 43.22  41.07  43.78 47.53 | 2838  20.31 30.89 44.76
ComplEx-MI 43.61 41.24 44.40 47.93 31.28  22.76 34.10 48.40
RotatE (Sun et al., 2019) 4351 4131 4424 48.01 | 27.61 19.68  29.78 43.88
RotatE-MI 4370 41.19  44.46 48.82 | 31.15 22.80 34.08 47.88
QuatE (Zhang et al., 2019) 4474 4239 4556 4927 | 30.61 22.14 3351 47.51
QuatE-MI 45.08 4220  45.90 50.65 | 32.21 2344 3520 50.07
Table 1: Link prediction results on WN18RR and FB15K-237 datasets based on InfoNCE.
WN18RR FB15K-237
MRR Hits@1 Hits@3 Hits@10 \ MRR Hits@1 Hits@3 Hits@10
TransE (Bordes et al., 2013) 19.46 3.48 32.39 46.28 28.71 19.89 31.63 46.68
TransE-MI 19.26 3.40 31.80 46.20 2991 21.24 32.99 47.08
CP (Lacroix et al., 2018) 41.60 39.34 42.36 45.88 26.74  18.93 28.90 42.59
CP-MI 4246 40.11  43.30 47.00 | 28.87 21.17  31.37 44.21
RESCAL (Nickel et al., 2011) 42.81  40.87 43.41 46.51 29.75 2148 32.67 46.16
RESCAL-MI 4299 4083  43.86 47.02 | 2994 2196  32.56 45.77
ComplEx (Trouillon et al., 2016) 43.22  41.07  43.78 47.53 | 2838  20.31 30.89 4476
ComplEx-MI 43.88 41.38 44.70 48.61 3049 22.14 33.42 47.21
RotatE (Sun et al., 2019) 4351 4131 44.24 48.01 | 27.61 19.68  29.78 43.88
RotatE-MI 44.08 4134  45.28 49.46 | 30.81 22.58  33.50 47.20
QuatE (Zhang et al., 2019) 4474 4239 4556 4927 | 30.61 22.14 3351 47.51
QuatE-MI 45.02 4236  45.90 50.24 | 32.01 2333  34.90 49.56

Table 2: Link prediction results on WN18RR and FB15K-237 datasets based on JSD.

2018) and RESCAL (Nickel et al., 2011) based
on tensor decomposition methods. Table 1 and
Table 2 present the link prediction results on the
WN18RR and FB15K-237 datasets, showcasing
the performance improvements of models when in-
corporating the MI maximization framework, both
using the InfoNCE lower bound and JSD lower
bound. All models were trained within a unified
framework, with a dimension of 100, a maximum
of 50 epochs, and no additional regularization func-
tions. All experimental results are derived from
our experiments. In most cases, the MI maximiza-
tion approach consistently outperforms baseline
models, with the “Model-MI” versions achieving
higher MRR and Hits@K (K =1, 3, 10) across all
evaluated models. In both datasets, the consistent

performance improvements can be attributed to the
MI framework’s ability to retain semantic depen-
dencies between entities and relations, resulting in
richer and more robust representations. The results
validate the effectiveness of the MI maximization
approach in enhancing the performance of KGE
models.

5.2 Complex Relations Modeling

Table 3 presents the results of the MI-enhanced
models on two types of complex relation patterns,
1-N and N-1, on the FB15K-237 dataset. For 1-
N relations, where a single head entity is associ-
ated with multiple tail entities, the MI framework
significantly improves performance. For exam-
ple, TransE-MI achieves an MRR of 30.17, com-
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FB15K-237
1-N N-1

MRR H@l H@l0 MRR H@l H@I0
TransE 26.28 16.07 47.84 3223 2347 50.20
TransE-MI 30.17 19.87 5132 34.77 25.73 52.63
CP 2530 1594 4489 3134 23.03 48.10
CP-MI 30.51 20.87 5026 35.12 26.72 51.79
RESCAL 28.29 1841 4823 33.84 2526 50.56
RESCAL-MI 30.51 20.88 50.12 35.31 2693 51.76
ComplEx 27.19 17.52 4728 3259 24.17 4945
ComplEx-MI  31.11 2096 5191 36.10 27.35 53.68
RotatE 2595 1645 4593 31.74 2346 4854
RotatE-MI 3150 21.43 5234 36.15 2748 53.54
QuatE 29.69 1946 50.61 3498 26.15 5238
QuatE-MI 31.82 21.47 5346 36.56 27.70 54.53

Table 3: Link prediction results on Different Relation
Types (1-N and N-1) on FB15K-237.

pared to 26.28 for TransE, while Hits @ 10 increases
from 47.84 to 51.32. Similarly, ComplEx-MI and
RotatE-MI improve MRR from 27.19 to 31.11 and
from 25.95 to 31.50, respectively. These improve-
ments highlight the MI framework’s ability to re-
duce high intra-group similarity among tail entities
by better preserving semantic distinctions.

For N-1 relations, where multiple head entities
share the same tail entity, the MI-enhanced models
again show consistent improvements. TransE-MI
increases MRR from 32.23 to 34.77, and Hits@ 1
rises from 23.47 to 25.73, demonstrating improved
precision in ranking head entities. More advanced
models, such as RESCAL-MI, show notable gains,
with MRR increasing from 33.84 to 35.31 and
Hits@1 improving from 25.26 to 26.93. These re-
sults demonstrate that the MI framework enhances
the performance of knowledge graph embedding
models by better capturing complex relational de-
pendencies and improving the entity and relation
representations.

5.3 Visualization Analysis

Figure 1 illustrates the T-SNE (Van der Maaten and
Hinton, 2008) visualization of tail entity embed-
dings for various models before and after applying
MI maximization. In this visualization, each point
represents a tail entity, and points of the same color
belong to tail entities that share the same (h,r)
context (1-N relations). Across all baseline models,
embeddings before MI enhancement display signif-
icant overlap among points of different colors, indi-
cating high intra-group similarity and insufficient
semantic distinction between tail entities. After

incorporating the MI framework, the embeddings
demonstrate a more distinct clustering structure for
tail entities within the same (h,r) context, with
reduced overlap between different clusters. For
example, TransE-MI exhibits a clearer separation
of clusters compared to TransE, while RESCAL-
MI and QuatE-MI show tighter and more coherent
clusters, reflecting their enhanced ability to cap-
ture semantic dependencies and mitigate high intra-
group similarity. Overall, these results demonstrate
that the MI framework effectively enhances the
semantic relationships between entities and rela-
tions, resulting in more meaningful representations.
Please refer to Appendix D for additional model
visualizations.

(a) TransE (b) TransE-MI

(c) RESCAL (d) RESCAL-MI

RIETS
R

&

(e) QuatE (f) QuatE-MI

Figure 1: Visualization of the embeddings of tail entities
using T-SNE. A point represents a tail entity. Points in
the same color represent tail entities that have the same
(h, r) context (1-N).

5.4 A Case Study

To provide deeper insights into the impact of
MI maximization on knowledge graph embedding
models, we present a case study on the FB15K-237
dataset. Table 4 illustrates the result of RotatE and
RotatE-MI in predicting the tail entity for the query
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Query ‘ (Dena Higley, people/person/profession, ?)

Answer ‘ writer

Model | RotatE RotatE-MI

Rank 1 | actor * writer

Rank 2 | film director actor

Rank 3 | author television producer
Rank 4 | * writer journalist

Rank 5 | television producer | film director

Rank 6 | journalist author

Table 4: A Case Study of Tail Prediction on FB15K-237.
The e refers to the correct answer.

(Dena Higley, people/person/profession, ?), where
the correct answer is writer. For the baseline model,
RotatE ranks writer in the fourth position, behind
other incorrect predictions such as actor, film di-
rector, and author. In contrast, the MI-enhanced
model, RotatE-MI, successfully ranks writer at the
top position. The improvement can be attributed
to the mutual information framework, which bet-
ter preserves the semantic dependencies between
entities and relations. By maximizing the mutual in-
formation between (h, ) and ¢, the MI framework
enables the model to better capture the relational
context of the query and reduce confusion among
closely related professions such as actor and au-
thor. Overall, the results validate the effectiveness
of mutual information maximization in improving
the precision of tail entity predictions in knowledge
graph completion tasks.

6 Conclusion

In this study, we proposed a mutual information
maximization framework to address challenges in
KGE, such as high intra-group similarity and se-
mantic information loss. By enhancing the mutual
information between relational components, our
approach improves the discriminative power of en-
tity and relation embeddings. Experimental results
demonstrate that MI-enhanced models outperform
their baselines in link prediction metrics like MRR
and Hits@K. Improved clustering and semantic
separation in the embedding space further validate
the framework’s effectiveness in handling complex
1-N and N-1 relation patterns. In conclusion, our
MI framework provides a general and effective
enhancement to KGE models, improving both se-
mantic representation and reasoning capabilities.

Limitations

In this study, we explore the integration of mutual
information maximization into knowledge graph
embedding tasks to address challenges like high
intra-group similarity and semantic information
loss. Similar to most existing KGE models, our
method cannot generalize to unseen entities that
were absent during training, which remains an im-
portant direction for future research.
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A Statistics of the Benchmark Datasets

We summarize the detailed information of these
datasets in Table 5.

WNI1S8RR WNI8RR is a subset of WordNet,
which is a lexical database of English. The dataset
was designed to address issues of test set leakage
in the original WN18 dataset. It contains 93,003
triples split into 86,835 for training, 3,034 for val-
idation, and 3,134 for testing. WN18RR focuses
on more challenging reasoning tasks by exclud-
ing reversible relations and ensuring that the eval-
uation requires compositional reasoning. Entities
represent synsets, and relations describe lexical or
semantic connections between synsets.

FB15K-237 FB15K-237 is derived from Free-
base, a large-scale knowledge graph containing
real-world facts. Similar to WN18RR, FB15K-
237 addresses test set leakage by removing near-
duplicate triples from the original FB15K dataset.
It consists of 310,116 triples with 14,541 entities
and 237 relations, split into 272,115 for training,
17,535 for validation, and 20,466 for testing.

Dataset I€] |R| #Train #Valid #Test
WNI8RR 40,943 11 86,835 3,034 3,134
FB15K-237 14,541 237 272,115 17,535 20,466

Table 5: Statistics of the WN18RR and FB15K-237.

B Experimental Setup

We implemented our model using Python and Py-
Torch library. All experiments are trained on a
single NVIDIA Tesla V100 with 32GB memory.
We use Adagrad (Duchi et al., 2011) optimizer and
the best hyperparameters based on the performance
on the validation datasets. The learning rate is set
in [0.1, 0.01] in all cases, the embedding dimension
dis setin [100, 512, 1000, 2000], the batch size is
set in [200, 1000]. The best models are selected by
early stopping on the validation datasets, and the
max epoch is 50. We search the weights A;, Ay and
A3 in Eq. 12 and Eq. 18 in [1, 0.1, 0.01,0.001]. We
search the temperature 7 for InfoNCE in [0.2, 0.5,
0.8, 1.0].

In our implementation, we employ a self-
supervised contrastive learning framework. By
optimizing contrastive losses such as InfoNCE or
JSD, this framework aims to maximize the mu-
tual information lower bound I(zp,;z),). Here,

Zn = ¢(ep,e,) is the composed query represen-
tation derived from an input triplet (h, 7, txey ), and
z}, = ¢(en, ey) is its positive counterpart.

The theoretical rationale for this approach, con-
necting the optimization of I(z,;z),.) to the KGE
objective related to tyey, is as follows. Maximiz-
ing I(zy,; z,,.) through InfoNCE forces the query
representation zy,. to be invariant to augmentations.
We hypothesize that these augmentations are specif-
ically designed to perturb features that are irrele-
vant to fyey, allowing the model to focus on the
core semantic features of zj,. that are crucial for
predicting fxey. This process can be understood as
the "purification" of zp,., which reduces the influ-
ence of noise and non-essential information, thus
enhancing the model’s ability to capture and repre-
sent the dependencies between (h, ) and tey.

In this study, the KGE task aims to optimize
zp, for accurate prediction of fyey. From an
information-theoretic perspective, this corresponds
to maximizing I (z,; tkey), Which can be achieved
by minimizing the conditional entropy H (txey|Zn),
thereby reducing prediction uncertainty. Hence,
by refining zy, through mutual information max-
imization, we enhance its ability to capture rele-
vant dependencies, directly improving KGE per-
formance. Thus, by optimizing I(z,;z},.), we
indirectly enhance I(zj,; tey) by "purifying" zj,.,
making it more robust and semantically focused.
Our code is available at https://github.com/
dellixx/KGE-MI.

C Additional Experimental Results

Table 6 and Table 7 report the link prediction re-
sults on the WN18RR and FB15K-237 datasets,
where the MI maximization framework is imple-
mented using both InfoNCE and JSD lower bounds.
Across all baseline models, the “Model-MI” ver-
sions consistently outperform their original coun-
terparts in terms of metrics. We further enhance the
performance of our models by incorporating addi-
tional regularization functions, which help to better
capture the dependencies between entities and rela-
tions. The results for baseline models are derived
from the original papers. On WN18RR, ComplEx-
MI and RotatE-MI achieve significant gains in both
MRR and Hits@K. Similar trends are observed on
FB15K-237, with notable improvements in MRR
and Hits@10 for models such as TransE-MI and
QuatE-MI. The JSD-based models also show con-
sistent improvements across both datasets. For ex-
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WN18RR FB15K-237
MRR Hits@1 Hits@3 Hits@10 | MRR Hits@1 Hits@3 Hits@10
TransE (Bordes et al., 2013) 226 - 501 294 - - 465
TransE-MI 244 .055 407 516 .308 218 .340 491
CP (Lacroix et al., 2018) 438 414 .445 485 333 247 .363 .508
CP-MI 466 421 480 .559 367 271 404 557
RESCAL (Nickel et al., 2011) 455 419 461 493 353 264 .385 528
RESCAL-MI .509 466 .526 .590 368 272 .406 .550
ComplEx (Trouillon et al., 2016)  .460 428 473 522 .346 .256 .386 525
ComplEx-MI 498 453 516 .583 .355 261 .393 542
RotatE (Sun et al., 2019) 476 428 492 571 338 241 375 533
RotatE-MI 496 453 512 577 354 262 .390 .539
QuatE (Zhang et al., 2019) 481 436 .500 564 311 221 342 495
QuatE-MI 490 447 .504 574 .348 255 381 534

Table 6: Link prediction results on WN18RR and FB15K-237 datasets based on InfoNCE.

WNI18RR FB15K-237
MRR Hits@l Hits@3 Hits@10 | MRR Hits@l Hits@3 Hits@10
TransE (Bordes et al., 2013) 226 - 501 294 - - 465
TransE-MI .240 .053 .398 514 .303 211 .336 487
CP (Lacroix et al., 2018) 438 414 445 485 .333 247 .363 .508
CP-MI 462 420 478 .550 362 .268 401 .545
RESCAL (Nickel et al., 2011) 455 419 461 493 .353 264 .385 528
RESCAL-MI 502 463 521 .588 .364 270 .397 .548
ComplEx (Trouillon et al., 2016)  .460 428 473 522 .346 256 .386 525
ComplEx-MI 489 444 .509 .580 355 261 .393 .542
RotatE (Sun et al., 2019) 476 428 492 571 338 241 375 533
RotatE-MI 491 450 .508 .566 .346 .260 .388 534
QuatE (Zhang et al., 2019) 481 436 .500 564 311 221 .342 495
QuatE-MI 488 446 .503 562 .347 .249 .376 532

Table 7: Link prediction results on WN18RR and FB15K-237 datasets based on JSD.

ample, TransE-MI achieves an MRR of 0.240 on
WNI18RR, a 6.2% increase over TransE. JSD opti-
mization benefits advanced models like ComplEx-
MI and RotatE-MI, improving their ability to cap-
ture entity-relation dependencies more effectively.
On FB15K-237, QuatE-MI achieves an MRR of
0.347, demonstrating its ability to improve tail en-
tity prediction precision.

D Additional Visualization and Analysis

Figure 2 presents the visualization of tail entity
embeddings for CP (MI), ComplEx (MI), and Ro-
tatE (MI) models before and after applying MI
maximization. Each point represents a tail entity,
and points of the same color correspond to tail
entities sharing the same (h, ) context (1-N rela-
tions). For the baseline models (CP, ComplEx, and

RotatE), the embeddings show substantial overlap
among points of different colors, indicating high
intra-group similarity and a lack of semantic dis-
tinction between tail entities. After incorporating
the MI framework, the enhanced models (CP-MI,
ComplEx-MI, and RotatE-MI) exhibit clearer and
more distinct clustering structures. Specifically,
tail entities within the same (h, ) context are more
tightly grouped, while points from different groups
are more effectively separated. For example, CP-
MI and ComplEx-MI display better-defined clus-
ter boundaries compared to their original versions,
while RotatE-MI achieves a significant reduction in
intra-group overlap, resulting in highly distinguish-
able clusters. These results highlight the ability of
the MI framework to improve the semantic organi-
zation of embeddings, leading to more meaningful
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(a) CP (b) CP-MI

(c) ComplEx (d) ComplEx-MI

(e) RotatE (f) RotatE-MI

Figure 2: Visualization of the embeddings of tail entities
using T-SNE for CP (MI), ComplEx (MI) and RotatE
(MI). A point represents a tail entity. Points in the same
color represent tail entities that have the same (h, r)
context (1-N).

and discriminative representations.

Figure 3 illustrates the visualization of head
entity embeddings for various models under the
N-1 context before and after applying MI max-
imization. In the baseline models, embeddings
show significant overlap among different groups
(colors), indicating low discriminability of head
entities. After incorporating the MI framework,
the enhanced models (e.g., TransE-MI, RESCAL-
MI, and RotatE-MI) exhibit better separation and
clearer clustering, effectively reducing intra-group
similarity and improving the differentiation of head
entity representations.
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(a) TransE (b) TransE-MI (c) CP (d) CP-MI
L ]

(e) RESCAL

(g) ComplEx

(i) RotatE

(j) RotatE-MI

(k) QuatE

(1) QuatE-MI

Figure 3: Visualization of the embeddings of head entities using T-SNE. A point represents a head entity. Points in
the same color represent head entities that have the same (r, ¢) context (N-1).
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