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Abstract

The effectiveness of open-domain question an-
swering (ODQA), particularly those employing
a retriever-reader architecture, depends on the
ability to recall relevant documents - a critical
step that enables the reader to accurately ex-
tract answers. To enhance this retrieval phase,
current query expansion (QE) techniques lever-
age pre-trained language models (PLM) to mit-
igate word mismatches and improve the re-
call of relevant documents. Despite their ad-
vancements, these techniques often treat all ex-
panded terms uniformly, which can lead to less-
than-optimal retrieval outcomes. In response,
we propose a novel Recall-oriented Adaptive
Learning (ReAL) method, which iteratively ad-
justs the importance weights of QE terms based
on their relevance, thereby refining term distinc-
tion and enhancing the separation of relevant
terms. Specifically, ReAL employs a similarity-
based model to classify documents into pseudo-
relevant and pseudo-irrelevant sets, and then
optimizes term weights via two tailored loss
functions to maximize the scoring gap between
them. Experiments on four ODQA datasets and
five QE methods show that ReAL consistently
enhances retrieval accuracy and overall end-to-
end QA performance, providing a robust and
efficient solution for improving QE strategies
in ODQA scenarios.

1 Introduction

Open-Domain Question Answering (ODQA) is a
pivotal task in Natural Language Processing (NLP)
that focuses on producing accurate answers to a
broad range of factual questions across diverse
domains (Kwiatkowski et al., 2019). ODQA sys-
tems typically adopt a retriever-reader architecture,
where the retriever finds relevant documents from
the corpus, and the reader extracts or synthesizes
answers (Chen et al., 2017). Although more ad-
vanced retrieval and re-ranking models, such as
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Figure 1: Illustration of query expansion with ReAL.
Traditional QE retrieves documents predominantly con-
taining weakly relevant terms, such as "Friday", "13th",
and "killer". ReAL enhances retrieval by assigning
higher importance to key terms, such as "Jason", "first"
and "Ari", resulting in improved recall and accuracy of
relevant documents.

dual-encoders (Karpukhin et al., 2020; Chen et al.,
2022; Wen et al., 2023), cross-encoders (Chen et al.,
2023a,b) and pairwise ranking prompting (Luo
et al., 2024; Zhuang et al., 2024) are effective,
sparse retrieval models (Salton et al., 1975; Robert-
son and Zaragoza, 2009) are still widely used
for their speed and lack of training requirements,
making them well-suited for large-scale applica-
tions (Thakur et al., 2021; Chen et al., 2021). How-
ever, sparse retrievers often struggle with word
mismatches, leading to suboptimal recall of rele-
vant documents (Mitra and Craswell, 2017) and
undermining ODQA performance, especially given
the reader’s context length limitations (Lewis et al.,
2020). To address this challenge, Query Expansion
(QE) techniques augment the original query with
additional terms (Rocchio Jr, 1971; Lavrenko and
Croft, 2001), bridging the semantic gap. With the
rapid advancement of large pre-trained language
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models (PLMs), their strong generative capabilities
have been increasingly utilized in various informa-
tion retrieval (Li et al., 2023b; Xiong et al., 2024)
and ODQA tasks (Xin et al., 2025; Li et al., 2023d,
2025). In particular, PLM-based QE techniques
utilize these models to enrich the original queries
with semantically relevant terms, thereby enhanc-
ing document recall (Mao et al., 2021; Chuang
et al., 2023; Chen et al., 2024). However, these
methods often generate a broad set of potentially
relevant terms to enrich the original queries without
considering that not all expansion terms are equally
important (Lavrenko and Croft, 2017).
Nevertheless, in the context of using sparse re-
trievers, accurately weighting query terms is of
critical importance because they assign relevance
scores for each term individually. In practice, PLM-
aided query expansions often include many com-
mon terms alongside relevant ones, which intu-
itively should not be weighted the same as more
critical terms. As illustrated by the examples in Fig-
ure 1, the top retrieved document fails to provide an
accurate answer because several expanded terms,
such as "Friday" and "13th", are only weakly rel-
evant and deviate from the original query’s intent,
which is to find information about "Ari Lehman".
Therefore, the shortcoming of these QE approaches
is particularly evident in the inadequate impor-
tance weighting of expanded terms, which can
lead to imbalances where certain terms are either
underemphasized or overemphasized, ultimately
resulting in suboptimal retrieval outcomes. Al-
though traditional QE methods like relevance mod-
els (Rocchio Jr, 1971; Lavrenko and Croft, 2001)
and SPLADE (Formal et al., 2021a,b), assign term
weights as part of the query expansion process,
they are not well-suited for modern PLM-aided ap-
proaches. These methods lack the scalability and
flexibility to capture more nuanced relationships
between terms that PLMs can model effectively.
To address the challenges of inadequate term
weighting and limited retrieval performance in ex-
isting PLM-aided QE methods, we propose Recall-
oriented Adaptive Learning (ReAL), which en-
hances QE by adaptively optimizing a term im-
portance vector for ODQA tasks. ReAL assigns
a one-dimensional weight vector corresponding
to the query terms, which is integrated into the
retrieval model and iteratively refined using rele-
vance signals from a classifier alongside original
term frequency data. First, ReAL employs a rele-
vance classifier to evaluate the relationship between

expanded queries and initial retrieved documents,
categorizing them into pseudo-relevant and pseudo-
irrelevant sets. Next, ReAL optimizes the weight
vector to consistently maximize the score disparity
between the pseudo-relevant documents and the
pseudo-irrelevant ones through two designed loss
functions. Extensive experiments on four widely-
used ODQA datasets and five popular QE methods
demonstrate that ReAL not only improves retrieval
recall but also enhances the overall performance of
end-to-end QA systems.

Our contributions are three-fold: 1) We intro-
duce a recall-oriented adaptive learning method
ReAL!, which accounts for the varying importance
of expansion terms, leading to more accurate re-
trieval. 2) Extensive experiments show that ReAL
improves both retrieval quality and end-to-end QA
performance across diverse datasets, highlighting
its utility in practical applications. 3) Compared to
previous PLM-aided QE methods, ReAL assigns
importance level to the expanded query terms, aid-
ing in the analysis of their role in retrieval.

2 Related Work
2.1 Query Expansion for ODQA

Query expansion (QE) has long been a central
technique in information retrieval for enhancing
retrieval by enriching queries with related terms
(Croft et al., 2009; Carpineto and Romano, 2012).
Especially, with the development of pre-trained
language models (PLM) in various natural lan-
guage processing tasks (Li et al., 2023a,c), cur-
rent QE methods have shifted towards using these
models to generate contextually relevant expan-
sions (Zheng et al., 2020; Brown et al., 2020;
Naseri et al., 2021). Researches like GAR (Mao
et al., 2021) and EAR (Chuang et al., 2023) have
leveraged sequence-to-sequence models to im-
prove the retrieval accuracy in Open-Domain Ques-
tion Answering (ODQA) tasks. Building on this
foundation, large language models (LLMs) have
further advanced QE for ODQA. Methods like
Query2Doc (Wang et al., 2023) and AGR (Chen
et al., 2024) utilize LLMs to generate more se-
mantically enriched expansions that resolve word
mismatch issues to QDQA tasks.

However, these PLM-aided QE methods often
struggle with the static selection and weighting of
expanded terms, leading to suboptimal retrieval per-

'Our code and data are publicly available at https://
github.com/process-cxr/ReAL.
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Figure 2: Overview of ReAL. Firstly an initial set of documents is retrieved through sparse retriever with expand
query. Then an iterative optimization through a recall-oriented adaptive learning is used for term importance vector.

formance. Our approach, ReAL, addresses this by
introducing an adaptive learning process that opti-
mizes term importance based on relevance signals,
resulting in improved retrieval effectiveness.

2.2 Term Weighting in Sparse Retrieval

Sparse retrieval methods are foundational to many
information retrieval systems, widely adopted for
their simplicity and efficiency. These methods of-
fer a straightforward approach to retrieving rele-
vant documents (Salton and Buckley, 1988; Robert-
son and Zaragoza, 2009), making them particularly
well-suited for large-scale applications where re-
trieval speed is crucial. However, when integrated
with modern PLM-aided QE methods, they strug-
gle with dynamically adapting term importance
based on the relevance of retrieved documents (Lv
and Zhai, 2011). Although traditional studies about
term weighting in sparse retrieval like relevance
models (Lavrenko and Croft, 2001) and SPLADE
(Formal et al., 2021a,b), assign term weights as
part of the query expansion process, they are not
well-suited for PLM-aided QE approaches.

In contrast, ReAL offers a more efficient, adap-
tive learning strategy based on relevance-aware
feedback. This allows for real-time adjustments
with minimal computational overhead, enhancing
retrieval precision in ODQA tasks and the perfor-
mance of end-to-end QA systems.

3 Method

3.1 Overview

As shown in Figure 2, given an original query
q and its query expansion g, generated by a QE

technique such as Query2Doc (Wang et al., 2023),
the final input query g of ReAL is a concate-
nation of ¢ and ¢., containing m query terms:
7 = g+ q = {ti,te,...,tm}. ReAL first
utilizes a sparse retriever capable of providing
token-level scores to retrieve the top-n relevant
documents Dy = {d,d>,...,d,} from the cor-
pus, while obtaining a token-level scores vector
as S = [S4;, Sy, ... ,St,]. However, the initial
vector Sz, while indicative of statistical impor-
tance, is not differentiable and poses challenges
for dynamic optimization through feedback sig-
nals. Therefore, ReAL introduces a weight vector
W5 = [Wy,, Wy, ..., Wy, ] as an additional factor
to enable dynamic adaptation. Ultimately, the op-
timized query ¢, along with the optimized weight
vector wlqa“ in adaptive learning, is applied to cal-
culate the score for each document dj, via Eq. 1,
improving the final retrieval precision of bq.

Sk = Retriever(q, Wg, di,) = Z Wy, X St
t;€qndy
ey
where ¢ N dj, means the shared terms for expanded
query g and document d.

3.2 Adaptive Learning

Relevance Classifier The relevance classifier
plays a pivotal role in the ReAL framework by
assessing the relevance of retrieved documents
Dg = {di,ds,...,d,} based on the expanded
query g. It categorizes Dy into pseudo-relevant
(Dpr) and pseudo-irrelevant (D),;) sets. This classi-
fication process continues until D, contains s rele-
vant documents and D,,; holds the remaining n — s
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documents. The output of the relevance classifier
provides foundational feedback for the subsequent
optimization process. By analyzing the distribu-
tional differences in document terms between the
Dy, and D,; sets, as well as their respective sub-
sets, the term weights of important query words are
dynamically adjusted during optimization. Various
types of relevance classifiers can be employed in
the ReAL framework and comparative performance
is discussed in Section 4.3.

Loss Function Design To optimize the term im-
portance vector based on the relevance classifier’s
output, we propose two complementary loss func-
tions: Distinction of Slight Related Term and Sep-
aration of Clear Relevant Term. These functions
work together to ensure that key query terms are
prioritized while avoiding overfitting to incorrect
terms.

Distinction of Slight Related Term establishes a
broad separation between relevant and irrelevant
documents. It ensures that query terms appearing
exclusively in D, and not in D,,;, are assigned
higher weights. These terms, which are typically
common across many relevant documents, play a
crucial role in enhancing retrieval accuracy. This
design is implemented through the following loss
function, which penalizes cases where D), does
not consistently achieve higher scores than D,,;.

Lpis = Z Z —log (Sig(si —s;)) (2)
di€Dpr d;€Dpi

where s; is the revised retrieval score of document
d; as defined in Eq. 1, and Sig is the sigmoid func-
tion to adjust the score difference into [0, 1].

Separation of Clear Relevant Term further re-
fines the optimization by narrowing the focus to
the most relevant terms. This function specifically
targets terms that appear in the most relevant doc-
uments Dér but are unlikely to be present in the
bottom-ranked pseudo-irrelevant documents Dfn‘-
By emphasizing these critical terms, it increases
their weight, ensuring they are properly prioritized.
The loss function is formulated as:

Lsep = Z Z maX<O,1—Si;Sj>

d; eD;}r dj ED;L-

3)
where 7 is the score difference between the median
scores of document sets wa and D:Zi.

While Lg,, focuses on a narrow set of highly
relevant terms, it can lead to bias, especially if in-
correct answer related terms are overly emphasized.

To mitigate this risk, £ p;s provides a broader ad-
justment to the term weights, ensuring that the im-
portance of relevant terms is not overestimated at
the cost of others. Together, these two loss func-
tions complement each other: £p;; ensures a wide,
foundational separation, while Lg, sharpens the
focus on the most crucial terms, avoiding bias and
overfitting. The effectiveness of both functions is
discussed in Section 4.3.

3.3 Iterative Optimization

Given an expanded query ¢ and the retrieved
document list Dz = {di,ds,...,d,} by the
)

retrieval model with initial scores SJ(DOa =
[sﬁo) ,séo) ) .,sglo)] for each document, we ini-

tialize the term importance vector as Wg)) =
[1,1,...,1],,, and iteratively optimize it by min-
imizing a combined objective of Eq. 2 and Eq. 3

with a weight factor « € [0, 1] as in Eq. 4.
‘CReAL =aX »CDis + (1 - Oé) X ['Sep (4)

During the ¢-th iteration, we compute the doc-
ument scores using the term importance vector
Wg_l) from the previous iteration, and update
it using a gradient descent algorithm with learning
rate [r as in Eq. 5. The iteration continues until the
loss converges (i.e., E?@AL — ﬁg;ﬂl < §) or the
maximum number of steps is reached (i.e., 2 = N).

OLigar

W — Wi g ke
8Wé171)

®)

After stopping the iteration, the optimized term
importance vector Wéj ) undergoes a scaling oper-
ation, including proportional adjustment and aver-
aging regression. This operation restores the im-
portance of certain key terms whose significance
may have diminished during optimization due to
frequent occurrence.

(0)
deEDask. % Wg) _’_W£0)
Saen oy 1 T W

2

last
Wihest — ©6)

where sl(j ) is the weighted retrieval score for docu-
)]
q
The final weight vector Wla‘“t is then used in a
new retrieval round to obtain more relevant docu-
ments, improving both retrieval precision and over-

all end-to-end QA performance.

ment dj, € Dy using term importance vector W.

22142



Dataset Natural Questions TriviaQA WebQuestion CuratedTREC
Method Hit@20 Hit@100 Hit@20 Hit@100 Hit@20 Hit@100 Hit@20 Hit@100
w/o QE 62.99 78.22 76.40 83.04 62.30 75.49 80.69 89.91
+ ReAL 65.59 79.36 77.51 83.85 65.35 77.21 83.43 91.21
Query2Doc  71.77 83.96 79.26 84.81 75.39 83.21 89.91 93.94
+ ReAL 73.43 84.71 80.11 85.54 76.62 83.65 90.78 94.38
GAR 74.40 83.60 73.56 81.60 66.14 77.31 82.85 90.34
+ ReAL 76.23 85.01 75.87 82.56 68.11 78.69 84.73 91.79
EAR-RI 72.57 83.51 78.21 84.27 64.86 78.64 85.59 92.79
+ ReAL 74.13 84.35 79.17 84.73 66.98 79.43 87.61 93.18
EAR-RD 75.45 84.12 79.55 84.47 68.01 79.57 89.19 93.37
+ ReAL 76.84 85.04 80.07 84.96 69.19 80.56 90.05 93.69
AGR 77.25 85.76 81.87 86.01 74.55 82.82 93.37 94.95
+ ReAL 78.14 86.04* 82.43 86.39* 75.25 83.23 93.80 95.39

Table 1: Hit@F£ retrieval accuracy (%) on test sets across four open-domain QA datasets. “+ ReAL” indicates the
application of our ReAL method to various QE approaches or original queries (w/o QE). All improvements are
statistically significant at p < 0.01 according to the paired t-test, except for those marked with * where p < 0.1.

4 Experiments

4.1 Experimental Setup

Datasets For the evaluation, we select four di-
verse datasets pertinent to ODQA task, includ-
ing Natural Questions (NQ) (Kwiatkowski et al.,
2019), TriviaQA (Trivia) (Joshi et al., 2017), We-
bQuestions (WebQ) (Berant et al., 2013), and Cu-
ratedTREC (TREC) (Baudis and Sedivy, 2015).
A comparative analysis is conducted to assess
the improvements achieved by the ReAL method
across different PLM-aided QE approaches, with
a focus on its impact on sparse retriever perfor-
mance across all datasets. Furthermore, within the
Retriever-Reader framework for ODQA, we eval-
uate the end-to-end performance of ReAL on NQ
and TriviaQA, measuring its overall effect on the
complete ODQA pipeline.

Details of ReAL In this study, we adopt the
BM25 model (Robertson and Zaragoza, 2009) as
the retriever, due to its widespread use and efficient
retrieval speed, particularly for models that pro-
vide token-level scores. As for the relevance classi-
fier, our primary implementation employs a cross-
encoder model, specifically the “cross-encoder/ms-
marco-MiniLM-L-12” provided by Sentence Trans-
formers (Reimers and Gurevych, 2019). In addi-
tion, we evaluate two alternative sources of rel-
evance signals: a bi-encoder model “BAAl/bge-
base-en-v1.5” (Xiao et al., 2023), and a large
language model “Mistral-7B-Instruct-v0.2” (Jiang

et al., 2023). These variants are analyzed in Sec-
tion 4.3 to assess their impact on retrieval perfor-
mance within the ReAL framework. During the
iterative optimization process, the gradient descent
optimization algorithm Adam (Kingma and Ba,
2015) is used, the number of pseudo-relevant doc-
uments s used in L£p;s objective is set as 30, the
range parameter c for defining the top and bottom
documents in the Lg., objective is set as 10, the
loss weighting factor « is set to 0.5, and the learn-
ing rate [r is configured at 0.5. The influence of
these hyper-parameters is thoroughly analyzed in
Section 4.3. Additionally, we use the Fusion-in-
Decoder (FiD) model (Izacard and Grave, 2021) as
the reader for end-to-end QA experiments.

Baselines We evaluate the performance of the
ReAL method based on five retrieval approaches
that process the original query ¢ in different ways:
w/o QE means directly using BM25 (Robertson
and Zaragoza, 2009) model to retrieve without per-
forming query expansion; GAR (Mao et al., 2021)
adopts three types of query expansion generators
based on trained seq2seq models; EAR (Chuang
et al., 2023) further uses trained query rankers to re-
organize the QEs by GAR; Query2doc (Wang et al.,
2023) uses LLMs to generate answer-oriented pas-
sages as QEs; and AGR (Jagerman et al., 2023)
proposes a multi-step generation framework with
quality control mechanisms to produce more re-
fined expansions. To ensure a fair comparison, we
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Dataset Natural Questions

TriviaQA

Method EM@20 EM@100 LLM@20 LLM@100 EM@20 EM@100 LLM@20 LLM@100
w/o QE 36.93 45.26 55.51 62.02 64.08 69.03 69.66 73.98
+ ReAL 39.06 46.45 57.34 63.19 65.45 69.54 70.94 74.74
Query2Doc ~ 43.57 49.64 63.49 68.00 67.35 70.33 73.11 75.74
+ ReAL 45.10 50.50 64.79 69.14 68.27 70.63 74.19 76.26
GAR 46.09 50.42 63.79 68.03 59.64 65.17 65.04 69.97
+ ReAL 47.06 51.22 64.82 68.50 61.99 66.82 67.26 71.65
EAR-RI 44.79 49.17 62.79 66.12 65.54 69.51 71.13 74.15
+ ReAL 45.71 49.64 63.43 66.68 66.56 69.89 71.76 74.95
EAR-RD 46.29 49.92 63.40 66.86 66.69 69.62 71.75 74.49
+ ReAL 47.04 50.44 64.68 67.84 67.22 70.08 72.63 75.03
AGR 48.53 51.47 67.83 69.97 70.33 72.20 75.61 77.03
+ ReAL 49.34 51.91 68.67 70.53 70.79 72.48 76.18 77.57

Table 2: End-to-end performance on the NQ and TriviaQA test datasets. @20/100 refers to the evaluation setup
where the top-20 or top-100 retrieved documents are fed into the FiD model, with EM representing the exact match
metric and LLM denoting the evaluation metric based on a large language model (Mistral-7B). All improvements
are statistically significant at p < 0.01 according to the paired t-test.

keep the hyper-parameters and semantic similar-
ity model configurations consistent across all QE
methods when combined with ReAL.

Metrics Building on prior research in ODQA, we
employ two traditional metrics (Mao et al., 2021)
and a novel LLMs-based metric (Kamalloo et al.,
2024) within the retriever-reader task paradigm.
For retrieval accuracy, Hit@k is defined as the pro-
portion of queries in which at least one relevant
answer span appears within the top-k retrieved doc-
uments. For end-to-end QA performance, exact
match score EM @k is employed, assessing the pro-
portion of instances where the predicted answer
span exactly matches one of the ground-truth an-
swers after string normalization. Meanwhile, to
address the limitations of string-matching evalua-
tion, LLM @k metric implemented by qa-eval (Ka-
malloo et al., 2024) based on Mistral-7B-Instruct-
v0.2 (Jiang et al., 2023) is used, it reflects the pro-
portion of instances in which LLM with few-shot
prompting determines that the predicted answer
correctly aligns with the ground-truth content.

4.2 Results

Retrieval Evaluation As shown in Table 1, we
assess ReAL’s performance across four datasets un-
der different baseline methods. For the WebQues-
tions and CuratedTREC experiments, GAR and
EAR utilized seq2seq models transferred from the
NQ dataset. The key findings from the retrieval

evaluations are summarized as follows:

1) ReAL consistently enhances retrieval per-
formance over all baseline methods. ReAL
shows notable gains in retrieval accuracy, mea-
sured by Hit@20 and Hit@100, across various
datasets and baseline methods, including direct
retrieval without QE, supervised QE models like
GAR and EAR, and LLM-based approaches such
as Query2Doc and AGR. For instance, on the NQ
dataset, ReAL achieves Hit@20 improvements be-
tween 0.9% and 2.6%, and even for Hit@100,
where baseline values are already high, ReAL
yields gains of 0.3% to 1.5%. Similar improve-
ments are observed across other datasets, demon-
strating ReAL’s consistent effectiveness in optimiz-
ing query expansion and enhancing retrieval out-
comes across different QE methods and datasets.

End-to-End QA Evaluations As shown in Ta-
ble 2, we performed end-to-end QA evaluations
using the Natural Questions and TriviaQA datasets.
In addition to traditional exact match metrics,
we employed automated evaluation using LLMs
(Leval@20/100) for a more comprehensive assess-
ment of answer quality. The key observations from
these evaluations are as follows:

2) ReAL provides notable improvements in
end-to-end QA performance across various
datasets. This is evident from the EM score im-
provements on both the Natural Questions and Triv-
iaQA datasets. On NQ, for example, ReAL im-
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Figure 3: The impact of hyper-parameters on the performance of ReAL in terms of Hit@20 and Hit@ 100, including
the number of pseudo-relevant documents s, the loss weighting factor «, the range parameter c for defining top and

bottom documents, and the learning rate [r.

proves EM @20 by approximately 0.8% to 2.1%
across various baseline methods, demonstrating
substantial benefits for ODQA tasks. Meanwhile,
ReAL also shows gains in EM @100, with improve-
ments of approximately 0.5% to 1.2%. These en-
hancements are consistently observed on TriviaQA
as well, underscoring ReAL’s capacity to deliver
more accurate answer predictions and elevate over-
all end-to-end QA performance.

3) LLMs-based QA evaluation further high-
lights the refined quality of ReAL in end-to-end
tasks. The incorporation of LLMs for semantic-
level evaluation offers a more comprehensive as-
sessment of answer quality. A comparison of
Leval @20/100 with EM@20/100 demonstrates
that the LLM-based method more accurately eval-
uates cases where the generated answer partially
aligns with the ground truth, capturing subtleties
that traditional metrics may miss. Under this ad-
vanced evaluation approach, ReAL continues to de-
liver substantial improvements across all baseline
methods on both the NQ and TriviaQA datasets,
reinforcing its positive impact. These results fur-
ther confirm that ReAL’s optimization of the query
term weighting vector effectively improves overall
end-to-end performance in ODQA tasks.

4.3 Analysis

In this section, all analysis experiments are con-
ducted on a randomly sampled subset of 500
queries from the NQ dev dataset, with Query2Doc
employed as the query expansion method.

Ablation Study To better comprehend the utility
of ReAL, we perform ablation studies to exam-
ine the contribution of key components within the
method. Specifically, we establish three variants
to investigate the necessity of each component: a)
w/o Lp;s means only the L., loss is applied dur-

Method Hit@100 EM@100 LLM@100
Query2Doc 81.2 45.2 65.2
+ ReAL 83.0 47.4 67.4
w/o Lpis 81.6 46.4 65.8
w/o Lsep 82.0 46.8 66.2
w/o Scale 80.4 45.0 64.8

Table 3: Ablation study results of ReAL on the adaptive
learning losses and scaling operation.

ing iterative optimization; b) w/o Ls., means only
the L p;s loss is used; ¢) w/o Scale means the post-
processing of scale operation on the term impor-
tance vector is omitted after iterative optimization.

From Table 3, we can draw the following con-
clusions: a) ReAL outperforms the variants lacking
certain components, validating the effectiveness of
the complete ReAL method. The full configura-
tion demonstrates a more substantial improvement
in both sparse retrieval accuracy and end-to-end
QA performance when compared to its incomplete
counterparts. b) While each loss function indi-
vidually contributes to some improvements, their
combined use proves more effective in refining the
term importance vector during iterative optimiza-
tion, allowing the weighted query to better align
with relevant documents. c) The post-processing
of scale operation is crucial to the effectiveness of
ReAL. Ablation results indicate that ReAL with-
out this operation even performs worse than when
ReAL is not applied. Through analysis of the up-
dated weight vectors, we observe that the signif-
icance of certain important terms, which appear
in both relevant and non-relevant documents, is
reduced during iterative optimization due to their
frequent occurrence. The scaling operation, similar
to a residual connection, restores the importance
of these terms, ensuring that the term importance
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Group Setting Good Bad #Query
top-30 24.8% 13.6% 368/132
top-50 23.1% 12.7% 389/111
top-100 26.1% 10.6% 406/94

Table 4: The impact of initial retrieval quality for ReAL.
“Good” initial retrieval includes at least one ground-truth
document in the top-k retrieved documents, while “Bad”
initial retrieval does not.

Method Hit@20 Hit@100
Query2Doc 69.0 81.2
+ ReAL (w/ LLM) 74.0 83.0
+ ReAL (w/ CE) 72.2 83.0
+ ReAL (w/ BE) 70.6 82.0

Table 5: The impact of relevance classifiers in ReAL,
including large language model (LLM), cross-encoder
(CE), and bi-encoder (BE) models.

vector accurately captures the relevant terms for
optimized query performance.

Hyper-Parameter Sensitivity We further inves-
tigate the sensitivity of ReAL’s performance to four
key hyper-parameters during the iterative optimiza-
tion phase, as detailed in Section 4.1. The experi-
ments presented in Figure 3 demonstrate that for
parameters s and ¢, a moderate increase in the num-
ber and range of pseudo-relevant document sets
improves retrieval performance, while excessive
values degrade it due to the inclusion of irrele-
vant documents. Accordingly, we set s = 30 and
c¢ = 10 as the optimal configuration. For hyper-
parameters « and [r, we found that a higher «
favoring the £p;s improves Hit@20 but reduces
improvements in Hit@100. To balance these ef-
fects, we set a to 0.5. Additionally, we observed
that the learning rate (Ir) influences the effective-
ness of the iterative optimization. Setting Ir to 0.5
yields a better retriever performance while reduc-
ing the number of iterations and accelerating the
optimization process.

Initial Retrieval Impact To better understand
the dependency of ReAL on the quality of initial
retrieval, we conduct a comparative analysis fo-
cusing on this aspect. Specifically, we conduct a
comparative analysis by categorizing queries into
two groups, Good and Bad, based on whether the
initial retrieval can successfully retrieve relevant
documents into top-30/50/100 results. We compare
the retrieval results of the Query2Doc QE method

Query Length Gen. Retr. ReAL-Cls ReAL-Iter
=~ 10 tokens 0.27s 0.26s 0.44s
= 60 tokens 0.65s  0.80s 0.3s 1.07s
= 110 tokens 1.27s  1.95s 0.33s 1.67s

Table 6: Computational latency of ReAL in different
stages, including query expansion (Gen.), sparse re-
trieval (Retr.), cross-encoder relevance classification
(ReAL-Cls) and iterative optimization (ReA-Iter).

before and after applying ReAL to the QE terms
and calculate improvement rates for each group
to assess the impact of initial retrieval quality on
the effectiveness of ReAL. As seen in Table 4, the
results confirm that ReAL’s performance is influ-
enced by the quality of the initial retrieval, as im-
provements in the Good group were consistently
double or more compared to those in the Bad group
across all group settings. Nevertheless, despite vari-
ations in initial retrieval quality, ReAL consistently
enhanced retrieval performance, further validating
its effectiveness.

Relevance Model Impact As seen in Table 5,
we conduct a comparative analysis of three rele-
vance models within the ReAL framework on the
NQ dev dataset, to assess their impact on retrieval
performance combined with QE, including the bi-
encoder model (i.e., “BAAl/bge-base-en-v1.5”),
the cross-encoder model (i.e., “cross-encoder/ms-
marco-MiniLM-L-12" in Sentence Transformers),
and the large language model (LLM, i.e., Mistral-
7B-Instruct-v0.2). The results reveal that all three
models effectively serve as relevance classifiers in
ReAL, enhancing retrieval accuracy and demon-
strating the framework’s effectiveness. Specifically,
the LLM with prompt-based natural language in-
ference deliver the highest performance, followed
by the cross-encoder models, with the bi-encoder
models being less effective. However, considering
the higher latency of LLMs, which require multiple
inference steps, we select the cross-encoder model
in this study, offering a balance between accuracy
and efficiency.

Computational Latency We report the compu-
tational latency of ReAL in Table 6, which cor-
relates with input query token length. The ana-
lyzed queries have an average length of approxi-
mately 10 tokens, with expanded queries reaching
around 60 and 110 tokens, depending on the max-
token generation parameter in Query2Doc. Latency
is evaluated across four stages: query expansion
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Method + Rerank + ReAL
w/o QE 78.22 79.36
Query2Doc 83.96 84.71
GAR 83.60 85.01
EAR-RI 83.51 84.35
EAR-RD 84.12 85.04
AGR 85.76 86.04

Table 7: Comparison of Hit@ 100 results on NQ test set
using Rerank and ReAL.

(Gen), sparse retrieval (Retr), cross-encoder rele-
vance classification (ReAL-Cls), and iterative opti-
mization (ReAL-Iter). The iterative optimization
typically involves 50-90 iterations, each taking mil-
liseconds due to the low-dimensional token weight
vector, resulting from the retriever’s tokenization.
As the dimensionality of the weight vector corre-
sponds to the reduced number of query tokens, the
optimization occurs in a compact space, keeping
the overall latency within acceptable limits. This
increase in latency is balanced by the significant
improvements in retrieval accuracy and end-to-end
QA performance.

4.4 More Discussion

ReAL vs Rerank While re-ranking methods, us-
ing relevance classifiers as rerankers, reorder the
top-ranked documents to improve retrieval accu-
racy, they are limited in scope. Re-ranking only
refines the order within the static top-k documents,
without expanding the set of retrieved documents.
In contrast, ReAL dynamically optimizes query
term weights during retrieval, allowing the frame-
work to retrieve more relevant documents that may
not have been included in the initial set. The advan-
tage of ReAL is its ability to identify and retrieve
additional relevant documents through iterative op-
timization, rather than just reordering existing re-
sults. This is demonstrated in the comparison in
Table 7 between re-ranking and ReAL based on the
same cross-encoder model (i.e., “cross-encoder/ms-
marco-MiniLM-L-12” available in Sentence Trans-
formers), where ReAL leads to higher retrieval
accuracy, showing its potential to enhance retrieval
performance by extending the scope of relevant
document retrieval.

Future Extensions of ReAL. While ReAL has
proven effective with sparse retrieval models, its
framework is highly adaptable to more advanced
architectures, such as dense or neural retrieval mod-

els. Specifically, we can replace the token-weight
vectors in sparse retrieval with dense representa-
tions, allowing ReAL to optimize term weights
based on dense retrieval scores. This integration
has the potential to improve retrieval performance
in large-scale ODQA tasks, enhancing both accu-
racy and scalability. The ability to work seamlessly
with both sparse and dense retrievers would make
ReAL a versatile solution for a broader range of
retrieval systems, addressing emerging challenges
in future research.

5 Conclusion

In this paper, we introduce ReAL, a recall-oriented
adaptive learning method that enhances query ex-
pansion through an adaptive learning based on rel-
evance feedback, allowing for more precise align-
ment between query terms and relevant documents.
This method addresses the limitations of current
QE approaches, which often fail to account for the
contextual significance of expanded terms, lead-
ing to suboptimal retrieval results. By adopting
an adaptive learning strategy, ReAL improves the
retrieval accuracy of sparse retrievers and enhances
the overall performance of end-to-end QA systems,
making it an practical solution for ODQA tasks.
Future work will explore extending ReAL’s appli-
cability to more complex retrieval architectures and
integrating it with deep retrieval models to further
improve retrieval and QA performance.

Limitations

In this work, we focus on the combination of sparse
retrieval (BM25) and current PLM-aided query
expansion (QE), which is a prevalent and widely
adopted approach in open-domain question answer-
ing. But actually, our ReAL framework is adapt-
able to a broader range of retrieval methods, ow-
ing to its design, which incorporates a term impor-
tance vector at the query level, facilitating seamless
integration with additional retrieval models, such
as dense retrieval models (e.g., CoIBERT (Khat-
tab and Zaharia, 2020)) and neural sparse retrieval
models (e.g., SPLADE (Lassance et al., 2024)).
Besides, given the computational constraints, the
investigation is limited to widely used QE methods
and smaller query token sizes, thereby restricting a
comprehensive exploration of ReAL’s full potential.
With increased computational resources, it enables
ReAL to better handle more complex and longer
queries across diverse retrieval settings.
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A Dataset Information

Natural Questions (NQ) (Kwiatkowski et al.,
2019) is a widely-used question answering dataset
composed of real, anonymized queries submitted
to Google. It contains 79,168 examples for train-
ing, 8,757 for development, and 3,610 for testing,
making it a valuable resource for evaluating QA
models on real-world search engine queries.

TriviaQA (Trivia) (Joshi et al., 2017) is a large-
scale question answering dataset that includes over
950,000 question-answer pairs drawn from 662,000
Wikipedia articles and other web documents. It con-
sists of 60,413 training examples, 8,377 develop-
ment examples, and 11,313 test examples, offering
a rich and diverse set of questions that challenge
the breadth and adaptability of QA models.

WebQuestions (WebQ) (Berant et al., 2013) de-
signed for question answering tasks, utilizes Free-
base as its underlying knowledge base and con-
sists of 6,642 question-answer pairs. This dataset
was developed by sourcing questions through the
Google Suggest API, followed by obtaining corre-
sponding answers via Amazon Mechanical Turk. It
is structured with an original split of 3,778 training
examples and 2,032 testing examples. All answers
are defined as Freebase entities.

CuratedTREC (TREC) (Baudis and Sedivy,
2015) is a benchmark dataset for QA systems, de-
rived from TREC-8 (1999) to TREC-13 (2004)
competitions. It includes 694 annotated entries,
providing a concise yet focused set of examples
that serve as a standard for evaluating QA system
accuracy under controlled conditions.

B Evaluation on Information Retrieval
Benchmarks

While our primary investigation focuses on PLM-
aided query expansion within the context of ODQA,
we additionally evaluated the broader applicability
of the proposed ReAL method in general informa-
tion retrieval tasks. For this purpose, we conducted
experiments on two representative ad-hoc retrieval
datasets, namely TREC-DL-2019 (Craswell et al.,
2020) and TREC-DL-2020 (Craswell et al., 2021),
both constructed from the MS MARCO corpus
and widely used for benchmarking document rank-
ing systems. In these supplementary experiments,
we adopted the same QE generation pipeline as
described in the main text. Query expansion
terms were generated by an LLM (i.e., Mistral-
7B-Instruct-v0.2) in a zero-shot setting, and sub-

sequently reweighted using the ReAL framework
without any additional fine-tuning. Table 8 presents
the retrieval performance in terms of NDCG@ 10,
MRR, and MAP.

Method NDCG@10 MRR MAP
TREC-DL-2019

BM25 50.58 82.45 2993

+ ReAL 53.27 86.65 31.87

+ QE 57.57 88.29 35.46

+ QE + ReAL 61.69 90.89 35.96
TREC-DL-2020

BM25 47.96 82.69 30.27

+ ReAL 53.67 87.96 32.74

+QE 51.04 85.00 32.34

+ QE + ReAL 55.47 86.45 37.70

Table 8: Retrieval performance on general Information
Retrieval (IR) datasets. ReAL consistently improves
results over baselines. All improvements are statistically
significant at p < 0.01 according to the paired t-test.

The experimental results confirm that ReAL con-
sistently improves retrieval performance across all
evaluation metrics. Notably, the performance gains
are more pronounced when ReAL is applied in
combination with query expansions generated by
LLMs. These findings underscore the potential of
ReAL as a general-purpose term weighting frame-
work that extends beyond ODQA, offering promis-
ing applicability to a wider range of information
retrieval tasks.
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