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Abstract

Multimodal Sentiment Analysis (MSA) with
incomplete data has gained significant attention
recently. Existing studies focus on optimizing
model structures to handle modality missing-
ness, but models still face challenges in robust-
ness when dealing with uncertain missingness.
To this end, we propose a data-centric robust
multimodal sentiment analysis method, Proxy-
Driven Robust Multimodal Fusion (P-RMF).
First, we map unimodal data to the latent space
of Gaussian distributions to capture core fea-
tures and structure, thereby learn stable modal-
ity representation. Then, we combine the quan-
tified modality intrinsic uncertainty to learn sta-
ble multimodal joint representation (i.e., proxy
modality), which is further enhanced through
multi-layer dynamic cross-modal injection to
increase its diversity. Extensive experimental
results show that P-RMF outperforms exist-
ing models in noise resistance and achieves
state-of-the-art performance on multiple bench-
mark datasets. Code will be available at https:
//github.com/aoqzhu/P-RMF.

1 Introduction

Multimodal Sentiment Analysis (MSA) integrates
information from multiple modalities to understand
and recognize human emotions (Singh et al., 2024).
By fusing complementary information, multimodal
learning generates richer joint representation (Xu
et al., 2023). However, in real-world scenarios,
modality data is often missing due to factors such
as background noise, sensor limitations, and pri-
vacy concerns. Data incompleteness significantly
reduces the effectiveness of models trained on com-
plete data (Wang et al., 2023b).

In recent years, many studies (Wang et al.,
2023c; Zhang et al., 2024; Sun et al., 2023b; Li
et al., 2024b) have proposed influential solutions to
the missing data problem in MSA. These methods
can be broadly categorized into two main types:
reconstruction-based methods (Lian et al., 2023;
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Figure 1: The core steps of P-RMF.

Sun et al., 2023b; Zhao et al., 2021) and joint
representation-based methods (Li et al., 2024a,b;
Kim and Kim, 2024). Although these methods have
made significant progress in addressing data in-
completeness, models focusing on model structure
optimization still face challenges in performance
and robustness when handling data with uncertain
missingness. These challenges mainly stem from
distributional discrepancies in incomplete data and
the epistemic uncertainty of deep learning models
(Kendall and Gal, 2017). Moreover, existing mod-
els for incomplete data often fail to balance the
effective processing of complete data.

The randomly missing incomplete data further
increases the arbitrary uncertainty of the data and
the epistemic uncertainty of the model (Kendall and
Gal, 2017). Therefore, we explore whether a data-
centric method, focusing on the core features and
structures of the data, can enhance model robust-
ness to input variations and noise. Inspired by prob-
ability distributions (Ho et al., 2020; Chen et al.,
2022; Yang et al., 2024), we argue that semanti-
cally related data, even across different modalities,
should exhibit similar distributions in the latent
Gaussian space despite varying noise levels. This
latent space constructs regularized, compact, and
semantically consistent representations, abstracting
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high-level features while weakening task-irrelevant
details, thereby enhancing robustness to input vari-
ations and noise. Given the stable and semantically
consistent unimodal representation, should we dis-
regard the intrinsic uncertainty of the data? Prior
studies (Sun et al., 2023a; Yu et al., 2020) highlight
the unique characteristics of unimodal data and the
varying contributions of different modalities to sen-
timent recognition. We argue that the uncertainty
arising from missing noise in heterogeneous data
reflects inter-modal information discrepancies, em-
bodying the distinct properties of each modality.
Thus, we quantify this uncertainty by measuring
feature space distribution discrepancies and inte-
grate it into multimodal fusion to learn dynamic
and robust representation.

Based on the above analysis, we propose Proxy-
Driven Robust Multimodal Fusion (P-RMF) for
robust sentiment analysis under uncertain missing
data. As shown in Fig. 1, P-RMF consists of two
core steps: generate robust proxy modality and
proxy-driven dynamic injection. Specifically, we
employ variational inference and design an inde-
pendent Variational Autoencoder (VAE) for each
modality. The encoder maps data into a Gaussian
distributions latent space, learning its mean and
variance, while the reparameterization trick enables
sampling of latent variables as compact representa-
tion of missing data. The decoder then reconstructs
the complete input, learning to recover missing
information. The variance captures modality uncer-
tainty, whereas the mean provides a stable represen-
tation. By integrating both, We learn a consistent
and stable joint modality representation (i.e., proxy
modality). Finally, with proxy modality as the
dominant, combined with quantized uncertainty,
we enhance its diversity by multi-layer dynamic
cross-modal injection. The main contributions of
this paper are as follows:

• We propose a data-centric robust multimodal
sentiment analysis method to address the ro-
bustness problem under uncertain missing
data. This method learns stable unimodal
representations from missing data and incor-
porates quantization uncertainty to guide the
learning of dynamic and robust multimodal
representation.

• We propose a robust proxy modality gener-
ation module that learns stable data repre-
sentations in a latent space based on Gaus-
sian distributions and generates a robust joint

proxy modality representation by incorporat-
ing quantized uncertainty.

• We propose a proxy modality-driven dy-
namic injection module that incorporates
quantized modality uncertainty, iteratively in-
jecting modality-specific semantics with vary-
ing weights into the proxy modality to en-
hance the diversity of the joint representation.

2 Related Work

Multimodal Sentiment Analysis (MSA) can be cat-
egorized into context-based MSA and noise-aware
robust MSA based on modeling methods. Early
context-based MSA studies assumed that all data
are complete and available during both training
and inference phases (Han et al., 2021; Qian et al.,
2023; Yu et al., 2023; Li et al., 2023b; Zhu et al.,
2024; Zhang et al., 2023). These studies primarily
focused on learning unified multimodal representa-
tions by analyzing intra- and inter-modal contextual
relationships. Despite the progress made by these
methods, incomplete data can significantly reduce
the effectiveness of models trained on complete
data.

In recent years, many studies (Li et al., 2023a,
2024a; Zeng et al., 2022; Zhang et al., 2024; Sun
et al., 2023b; Li et al., 2024b) have attempted to
solve the missing data problem in MSA by meth-
ods such as data reconstruction networks and joint
representation learning. For example, EMT-DLFR
(Sun et al., 2023b) encouraged the model to learn
semantic information from missing data by per-
forming low-level feature reconstruction. These
reconstruction-based methods focus on comple-
menting missing modalities using existing modal-
ities, but the quality of the reconstructed data is
often difficult to guarantee and is less interpretable.
Therefore, UMDF (Li et al., 2024a) and CorrKD
(Li et al., 2024b) introduced a knowledge distilla-
tion mechanism to learn joint multimodal represen-
tations by optimizing the fusion strategy and model
architecture. Further, LNLN (Zhang et al., 2024)
shows that stabilizing the text-dominant modality
under varying levels of missing noise improves
model robustness, but ensuring the integrity and
quality of the text modality is challenging in multi-
modal data with arbitrary missing uncertainties.

Inspired by LNLN (Zhang et al., 2024), we ar-
gue that the stable dominant modality need not
be confined to the original modality (e.g., text or
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Figure 2: The framework of the P-RMF.

visual), but can instead be represented by the se-
mantic consistency of different modalities in the
high-level feature space. Therefore, we propose a
Proxy-Driven Robust Multimodal Fusion (P-RMF).

3 Methodology

3.1 Overall Framework

Fig. 2 shows the key components and workflow of
the proposed Proxy-Driven Robust Multimodal Fu-
sion (P-RMF) method. P-RMF consists of five
main components: Multimodal Encoder, Proxy
Modality Generation (PMG), Proxy-Driven Dy-
namic Injection (PDDI), Data Reconstruction (DR),
and Sentiment Prediction. During training, P-RMF
jointly inputs complete data and randomly missing
incomplete data. With the joint constraint of KL
divergence loss and variational sample reconstruc-
tion loss, PMG generates a consistent and robust
proxy modality representation by combining the
quantized intrinsic modality uncertainty. The PDDI
incorporates quantized uncertainty to enhance the
diversity of proxy modality representations through
dynamic cross-modal injection iterations in the
multi-layer. In addition, to complement the missing
fine-grained sentiment semantics, P-RMF designs
a reconstructor for each modality to reconstruct the
missing data. During testing, the trained P-RMF is
applied to scenarios involving random intra-modal
and inter-modal missing data to evaluate its robust-
ness and effectiveness.

3.2 Input Construction and Multimodal
Encoder

We conduct experimental analysis on the MOSI
(Zadeh et al., 2016), MOSEI (Bagher Zadeh et al.,
2018) and SIMS (Yu et al., 2020) datasets. To
simulate random data missing scenarios, we follow
the settings of previous work (Zhang et al., 2024),
randomly erasing 0% to 100% of information in
each modality for every sample. Specifically, 0
padding is applied to the erased portions of the
visual and audio modalities, while the text modality
is filled with the unknown word token [UNK].

For feature extraction, this study follows prior
work (Zhang et al., 2024): text modality is en-
coded using BERT (Devlin et al., 2019), visual
features are extracted via OpenFace (Baltrusaitis
et al., 2018), and audio features are obtained us-
ing Librosa (Brian McFee et al., 2015). For a
given multimodal input, Xm ∈ RLm×dm repre-
sents the complete multimodal sequence, while
Hm ∈ RLm×dm denotes the incomplete sequence
with random missing data. Here, m ∈ {t, a, v}
represents the modality type (i.e., text, audio, and
visual), Lm denotes the sequence length, and dm
denotes the feature vector dimension.

3.3 Proxy Modality Generation

Previous studies have shown that maintaining the
integrity of the dominant Modality significantly en-
hances the robustness of the model (Zhang et al.,
2024). Inspired by probability distributions (Ho
et al., 2020; Chen et al., 2022; Yang et al., 2024),
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we learn stable joint multimodal representation
from Gaussian distributions of the data as the dom-
inant Modality.

The key to Gaussian distribution analysis lies
in how to map the data to the parameterized form
of the mean and variance according to the task re-
quirements. To achieve this, we have designed a
Variational Autoencoder (VAE) for each modality,
as shown in Fig. 3. In the VAE framework, the en-
coder learns the parameterized mean u(h) and log-
variance σ2(h) of the input data in the Gaussian-
distributed latent space, and N (u(h), σ2(h)I) rep-
resents the latent distribution of the data. The de-
coder then reconstructs the input data based on
the generated latent variables z output from the
encoder, recovering the core features.

Formally, the variational posterior distribution
of the unimodal feature h can be expressed as
q(z|h) = N [z

∣∣u(h), σ2(h)I] . Thus, for the mul-
timodal representation Hm

n of the n-th sample,
the variational posterior distributions for different
modalities can be expressed as:

q(zmn |hmn ) ∼ N [zmn
∣∣u(hmn ), σ2(hmn )I] (1)

where zmn ,m ∈ {t, v, a} represents the latent vari-
able for modality m of sample n, and I denotes
the identity matrix. To make the learning of the la-
tent space smoother and more stable, we introduce
the Kullback-Leibler (KL) divergence as a regular-
ization term to align the discrepancy between the
posterior distribution q(zmn |hmn ) and the standard

prior distribution p(zmn ) = N (zmn |0, I) . Addition-
ally, we introduce cross-modal KL to align the dis-
tributional representations across modalities. The
total KL constraint is computed as follows:

LKL =
∑

DKL(q(z
m1
n |hm1

n )||q(zm2
n |hm2

n ))

+
∑

DKL(q(z
m
n |hm

n )||p(zmn ))
(2)

where m ∈ M = {t, v, a} and m1 ̸= m2. To
effectively model the latent space, we employ the
reparameterization trick, enabling sampling from
the Gaussian distribution in the latent space. Specif-
ically, the latent variable z is expressed as:

z = u(h) + ε · σ(h), ε ∼ N (0, I) (3)

where ε represents the noise sampled from the
standard normal distribution. With this reparam-
eterization method, we can convert the sampling
process into a conductive operation, which allows
the gradient to be efficiently transmitted via back-
propagation to support model training. The la-
tent variable z, as an abstract representation of
the input data, captures its essential features, re-
flecting the effectiveness and validity of the latent
space parameterization. By evaluating the recon-
struction error between the reconstructed samples
ĥmn = Decoder(zmn ) and the complete data x, we
ensure that the samples generated from the latent
space closely approximate the complete data.

LSR =
1

N

∑

m∈M

N∑

n=1

∣∣∣
∣∣∣xmn − ĥmn

∣∣∣
∣∣∣
2

(4)

where xmn represents the complete data, ĥmn is the
reconstruction of the incomplete input data, and
N is the number of samples. Thus, the total loss
for variational inference in multimodal data can be
formulated as:

LV AE = LKL + LSR (5)

The LV AE constraint ensures effective and con-
sistent stable representations in the latent space.
The mean u(h) of the Gaussian distribution rep-
resents stable features, while the variance σ2(h)
reflects distribution uncertainty. Given the stable
unimodal representation u(hmn ), we compute fu-
sion weights ωm

n for cross-modal representations
based on modality uncertainty σ(hmn ), and apply
them to the joint multimodal representation.

Hp =
∑

m∈M
ωm
n · u(hmn ),

ωm
n = exp(1/σ(hm

n ))∑
m∈M exp(1/σ(hm

n ))

(6)
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where Hp represents the stable joint multimodal
representation, termed the proxy modality.

3.4 Proxy-Driven Dynamic Injection
The proxy modality Hp maintains the stability and
semantic consistency of multimodal data by pre-
serving the core features and structure of the data.
However, the specific features of unimodal data re-
flect the diversity of multimodal representations.
Therefore, we propose the PDDI. As shown in
Fig. 2, the PDDI incorporates quantized uncer-
tainty weights ωm

n to enhance the diversity of proxy
modality representation through dynamic cross-
modal injection iterations in the multi-layer.

As in Fig. 4, we keep the multimodal features
Hm,m ∈ {t, a, v} unchanged and use Cross-
Modal Attention (CMA) to inject multimodal in-
formation. Given the previous layer’s output Hp

l−1

and Hm, CMA is defined as:

Upm
l =softmax(

Qp ·Km

√
dt

) · V m (7)

where Qp = LN(Hp
l−1) ·W

p
Q, Km = LN(Hm) ·

Wm
K , V a = LN(Hm) ·Wm

V , LN is layer normal-
ization. Then, Upm

l ,m ∈ {t, a, v} is weighted by
weights ωm of each modality and combined with
the previous layer’s output Hp

l−1 to obtain Ul.

Ul = LN(Hp
l−1) +

∑

m∈M
ωm · Upm

l (8)

Finally, Ul undergoes layer normalization, a
feedforward neural network (FFNN), and a residual

to obtain the output Hp
l of the current layer.

Hp
l = FFNN(LN(Ul)) + Ul (9)

3.5 Data Reconstruction
To maximize the potential of available data and
reduce information loss due to missing data, we
design a data reconstructor Rm consisting of two
Transformer layers for each modality to rebuild the
missing information. For incomplete data Hm, we
combine the complete data Xm with a mean square
error loss function to optimize the performance of
the reconstructor.

LDR =
1

N

∑

m∈M

N∑

n=1

||xmn − Rm(hmn )||2 (10)

The data reconstruction loss LDR enhances the
model’s ability to capture sentiment information in
the data by minimizing the discrepancies between
the original and reconstructed features, thereby en-
hancing robustness.

3.6 Overall Learning Objectives
We feed the learned robust multimodal joint repre-
sentation Hp

L into a Multi-Layer Perceptron (MLP)
consisting of two fully connected layers and a
ReLU activation function to output the sentiment
prediction. The model is optimized using the L1
loss to minimize sentiment prediction error.

LSP =
1

N

N∑

n=1

|ŷn − yn| (11)

where LSP represents the sentiment prediction loss,
ŷn = MLP(Hp

L) denotes the predicted value for
sample n, and yn represents the label for the sam-
ple.

In summary, our method P-RMF is designed
with three learning objectives: LV AE , LDR, and
LSP . Therefore, the total loss can be expressed as:

L = λ1LSP + λ2LV AE + λ3LDR (12)

where λ1, λ2 and λ3 are weighted hyperparameters.

4 Experiments

4.1 Datasets
We performed a comprehensive experimental anal-
ysis on three widely used public datasets MOSI
(Zadeh et al., 2016), MOSEI (Bagher Zadeh et al.,
2018) and SIMS (Yu et al., 2020). The details of
the datasets are shown in Appendix A.

22127



Model
MOSI MOSEI

Acc-2 F1 Acc-5 Acc-7 MAE Corr Acc-2 F1 Acc-5 Acc-7 MAE Corr

MISA 70.33/71.49 70.00/71.28 33.08 29.85 1.085 0.524 75.82/71.27 68.73/63.85 39.39 40.84 0.780 0.503
Self-MM 69.26/70.51 67.54/66.60 34.67 29.55 1.070 0.512 77.42/73.89 72.31/68.92 45.38 44.70 0.695 0.498
MMIM 67.06/69.14 64.04/66.65 33.77 31.30 1.077 0.507 75.89/73.32 70.32/68.72 41.74 40.75 0.739 0.489
CENET 67.73/71.46 64.85/68.41 37.25 30.38 1.080 0.504 77.34/74.67 74.08/70.68 47.83 47.18 0.685 0.535
TETFN 67.68/69.76 63.29/65.69 34.34 30.30 1.087 0.507 67.68/69.76 63.29/65.69 47.70 30.30 1.087 0.508
TFR-Net 66.35/68.15 60.06/61.73 34.67 29.54 1.200 0.459 77.23/73.62 71.99/68.80 34.67 46.83 0.697 0.489
ALMT 68.39/70.40 71.80/72.57 33.42 30.30 1.083 0.498 77.54/76.64 78.03/77.14 41.64 40.92 0.674 0.481
LNLN 70.94/72.55 71.25/72.73 38.27 34.26 1.046 0.527 78.19/76.30 79.95/77.77 46.17 45.42 0.692 0.530

P-RMF 71.53/72.81 71.69/72.93 38.50 34.19 1.038 0.525 78.83/78.14 80.39/79.33 45.87 44.63 0.658 0.589

Table 1: Robustness comparison of overall performance on MOSI and MOSEI under intra-modal missingness.

Model Acc-2 F1 Acc-3 Acc-5 MAE Corr

MISA 72.71 66.30 56.87 31.53 0.539 0.348
Self-MM 72.81 68.43 56.75 32.28 0.508 0.376
MMIM 69.86 66.21 52.76 31.81 0.544 0.339
CENET 68.13 57.90 53.17 22.29 0.589 0.107
TETFN 73.58 68.67 56.91 33.42 0.505 0.387
TFR-Net 68.13 58.70 52.89 26.52 0.661 0.169
ALMT 71.85 76.21 56.47 34.16 0.509 0.372
LNLN 72.73 79.43 57.14 34.64 0.514 0.397

P-RMF 73.64 74.65 54.75 34.83 0.500 0.414

Table 2: Robustness comparison of overall performance
on SIMS under intra-modal missingness.

4.2 Implementation Details
Evaluation Metrics. MOSI and MOSEI: Acc-2,
Acc-5, Acc-7, F1 scores, MAE, and Corr. SIMS:
Acc-2, Acc-3, Acc-5, F1 scores, MAE, and Corr.
Appendix B provides detailed of the metrics.

Experimental Setup: Detailed Experimental
Setup and parameters are provided in Appendix B.

4.3 Baselines
We conduct a fair comparison with several ad-
vanced and state-of-the-art methods, including
complete-modality methods: MISA (Hazarika
et al., 2020), Self-MM (Yu et al., 2021), MMIM
(Han et al., 2021), CENET (Wang et al., 2022),
TETFN (Wang et al., 2023a), ALMT (Zhang et al.,
2023), CubeMLP (Sun et al., 2022), and DMD (Li
et al., 2023b); as well as missing-modality meth-
ods: TFR-Net (Yuan et al., 2021), LNLN (Zhang
et al., 2024), MCTN (Pham et al., 2019), TransM
(Wang et al., 2020), SMIL (Ma et al., 2021), GCNet
(Lian et al., 2023), and CorrKD (Li et al., 2024b).

4.4 Robustness Comparison
We evaluate the robustness and effectiveness of
P-RMF under two scenarios: Intra-modal missing-
ness and Inter-modal missingness.

Robustness Comparison for Intra-modal
Missingness. Following previous work (Zhang
et al., 2024), we set the missing rate to predefined
values ranging from 0 to 0.9, with an increment of
0.1, to simulate the test conditions of intra-modal
random missingness. For each method, we calcu-
late the average results at different missing rates,
reflecting the model’s overall performance under
varying noise levels. More detailed test results are
provided in Appendix D.

Tables 1 and 2 show the average robustness
evaluation results of different models on the MOSI,
MOSEI, and SIMS datasets under varying intra-
modal missingness. As shown in these tables, P-
RMF significantly outperforms existing models in
noise resistance and achieves SOTA or competitive
results across multiple evaluation metrics.

As shown in Table 1, compared to the SOTA
missing-modality method LNLN, P-RMF improves
all metrics on the MOSI and MOSEI datasets by
an average of 0.36% and 2.46%, respectively. This
indicates that P-RMF, with its proxy-dominated
joint multimodal representation, outperforms the
LNLN text-dominated approach in noise resistance.
However, P-RMF achieves only suboptimal perfor-
mance on metrics such as Acc-7, possibly due to
an imbalance in data distribution. For example, in
the MOSEI dataset, 67.85% of sentiment values
fall within the range of -1 to 1, with imbalances fur-
ther exacerbated in noisy scenarios. Since P-RMF
focuses more on learning consistent features, the
imbalanced distribution increases its difficulty in
learning fine-grained tasks when data is missing.

As shown in Table 2, P-RMF achieves signifi-
cant improvements in several metrics on the SIMS
dataset. Compared with the suboptimal results of
LNLN, P-RMF improves 1.25% and 4.28% on Acc-
2 and Corr, respectively, which verifies its robust-
ness under different noise scenarios. However, the
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Dataset Model
Testing Condition

{t} {a} {v} {t, a} {t, v} {a, v} {t, a, v} Avg.

MOSI

Self-MM 67.80 40.95 38.52 69.81 74.97 47.12 84.64 60.54
CubeMLP 64.15 38.91 43.24 63.76 65.12 47.92 84.57 58.24

DMD 68.97 43.33 42.26 70.51 68.45 50.47 84.50 61.21
MCTN 75.21 59.25 58.57 77.81 74.82 64.21 80.12 70.00
TransM 77.64 63.57 56.48 82.07 80.90 67.24 82.57 72.92
SMIL 78.26 67.69 59.67 79.82 79.15 71.24 82.85 74.10
GCNet 80.91 65.07 59.67 84.73 83.58 70.02 83.20 75.31
CorrKD 81.20 66.52 60.72 83.56 82.41 73.74 83.94 76.01

P-RMF 81.36 71.44 70.32 82.10 81.94 73.11 84.37 77.81

MOSEI

Self-MM 71.53 43.57 37.61 75.91 74.62 49.52 83.69 62.35
CubeMLP 67.52 39.54 32.58 71.69 70.06 48.54 83.17 59.01

DMD 70.26 46.18 39.84 74.78 72.45 52.70 84.78 63.00
MCTN 75.50 62.72 59.46 76.64 77.13 64.84 81.75 71.15
TransM 77.98 63.68 58.67 80.46 78.61 62.24 81.48 71.87
SMIL 76.57 65.96 60.57 77.68 76.24 66.87 80.74 72.09
GCNet 80.52 66.54 61.83 81.96 81.15 69.21 82.35 74.79
CorrKD 80.76 66.09 62.30 81.74 81.28 71.92 82.16 75.18

P-RMF 81.91 75.91 73.19 84.61 85.17 76.88 85.48 80.45

Table 3: Performance comparison under varying inter-modal missingness conditions on MOSI and MOSEI. For
example, the symbol "{t}" indicates that only the text modality is available.

F1 performance of P-RMF is inferior to that of
LNLN. As can be seen from Fig. 5(c) and (f), the
F1 performance of LNLN improves as the missing
rate increases while the MAE performance contin-
ues to decrease. This suggests that the LNLN is
biased in the face of missing data and the unbal-
anced data makes the model tend to perform lazy
behavior in high-noise scenarios, i.e., predicting a
higher proportion of categories in the training set
(Zhang et al., 2024). This shows that the model
struggles to learn effective predictive knowledge
and instead relies on lazy to maintain accuracy.

Fig. 5 shows the performance curves of several
advanced methods under different missing rates,
providing an intuitive reflection of model robust-
ness. It can be observed that as the missing rate
increases, the performance of all models declines.
Model structures optimized for modal missingness
(e.g., TFR-Net) show a significant drop in robust-
ness under varying levels of random data missing-
ness. However, we proposed P-RMF consistently
outperforms other models in most cases, demon-
strating exceptional robustness.

Robustness Comparison for Inter-modal
Missingness. Following previous work (Li et al.,
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Figure 5: Performance curves of various missing rates.
(a), (b) and (c) is the F1 curves on MOSI, MOSEI and
SIMS. (d), (e) and (f) is the MAE curves on MOSI,
MOSEI and SIMS.

2024b), we removed entire modalities from sam-
ples in the MOSI and MOSEI datasets to simulate
inter-modal missingness test conditions. We eval-
uate model performance in different inter-modal
missingness scenarios using the F1 score. Results
for other metrics can be found in Appendix E.

The following key conclusions can be drawn
from Table 3: (i) Inter-modal missingness leads to
performance degradation across all models, indicat-
ing that complementary information from hetero-
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Method Acc-2 F1 Acc-5 Acc-7 MAE Corr

P-RMF 71.53 / 72.81 71.69 / 72.93 38.50 34.19 1.038 0.525
w/o PMG 70.38 / 71.79 70.54 / 71.82 37.35 33.53 1.055 0.517
w/o PDDI 71.24 / 72.15 71.10 / 72.34 34.49 30.95 1.107 0.476
w/o DR 71.51 / 72.07 71.76 / 72.14 35.85 32.10 1.066 0.526

Table 4: Ablation experiments on MOSI.

geneous modalities enhances sentiment semantics
in joint representation; (ii) The performance of the
text modality outperforms other modalities, sug-
gesting that the text modality contains more rich
knowledge information; (iii) Our proposed P-RMF
exhibits significantly better noise resistance under
different inter-modal missingness conditions com-
pared to other models. Compared with the subopti-
mal model CorrKD, P-RMF improves the average
performance on the MOSI and MOSEI datasets by
2.37% and 7.01%, respectively; (iv) Existing train-
ing models for missing data perform well in robust-
ness tests for missing modalities, while complete
modality training models perform better in com-
plete modality tests. Our method, P-RMF, demon-
strates optimal robustness in modality missing sce-
narios and high performance in complete modality
scenarios. For example, in the complete modal test
on MOSEI, P-RMF achieves an F1 score of 85.48,
improving by 0.83% over the second-best method,
DMD (a complete modality method).

4.5 Ablation Study
To investigate the contribution of the core modules
of P-RMF, we conducted ablation experiments on
MOSI, calculating the average test results across
different missing rates.

As shown in Table 4, removing different mod-
ules of P-RMF leads to a decrease in overall per-
formance. Specifically, when the PMG module is
removed, binary classification tasks (such as Acc-2
and F1) show a significant decline, while multi-
class tasks (such as Acc-5 and Acc-7) remain rela-
tively stable. In contrast, removing the PDDI mod-
ule has the opposite effect compared to removing
PMG. This indicates that the PMG module helps
to learn stable and consistent multimodal represen-
tation, while the introduction of PDDI enhances
the diversity of the joint representation by injecting
unimodal feature information into the proxy joint
representation generated by PMG. Thus, PDDI and
PMG complement each other to guarantee stability
across different tasks. In addition, Fig. 6 shows
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Figure 6: Ablation results of different various missing
ratios on MOSI.

the experimental results of P-RMF ablation on the
MOSI dataset with different missing rates.

As observed in Fig. 6, even at lower missing
rates, removing the PMG module leads to a sig-
nificant drop in F1 performance, indicating that
the PMG module contributes to the model’s stabil-
ity. When the PDDI module is removed, F1 perfor-
mance remains relatively stable, but the MAE value
is higher, suggesting that the absence of PDDI in-
creases prediction errors.

5 Conclusion

This paper proposes a data-centric robust multi-
modal sentiment analysis method, Proxy-Driven
Robust Multimodal Fusion (P-RMF). P-RMF
shows outstanding robustness in both uncertain
missing and complete multimodal data scenarios.
Specifically, P-RMF learns stable modality repre-
sentation from the latent space of the data’s Gaus-
sian distribution and quantifies intrinsic modal-
ity uncertainty to obtain stable and robust multi-
modal joint representation (i.e., proxy modality). In
the proxy-driven cross-modal injection framework,
modality-specific features with varying weights is
iteratively injected into the proxy modality, enhanc-
ing its diversity representation. Comprehensive
experiments demonstrate that P-RMF outperforms
existing models in noise resistance and robustness.
P-RMF considers both the consistency of data dis-
tribution and intrinsic uncertainty, offering a novel
method for robust MSA with incomplete data.
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Limitations

Although P-RMF achieves performance improve-
ments in exploring robust multimodal representa-
tion of arbitrarily uncertain missing data, there are
still some limitations that need to be addressed or
clarified in future work. Firstly, due to limitations
in resources and experimental conditions, we did
not replicate all baseline methods but instead re-
ferred to the detailed test results from (Zhang et al.,
2024) and (Li et al., 2024b) in various missing data
scenarios. To ensure fairness in the experiments,
we used the same datasets and experimental design
as in (Zhang et al., 2024) and (Li et al., 2024b),
with the complete experimental setup and detailed
results provided in Appendices B, D, and E. Sec-
ondly, while this paper simulates both inter-modal
and intra-modal missing scenarios, real-world en-
vironments may involve more complex joint miss-
ingness, which imposes higher demands on model
performance and offers opportunities for future op-
timization. Finally, although P-RMF achieves sig-
nificant improvement in overall robustness, P-RMF
does not always outperform other methods in some
metrics due to the stochastic nature of the missing
data noise. It is also worth investigating how to bal-
ance the performance of the model under different
noise levels in the future.
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A Datasets

MOSI. The MOSI dataset consists of speakers ex-
pressing their opinions on topics such as movies
across 93 YouTube videos, containing 2,199 video
clips with sentiment annotations. The sentiment
intensity of each clip is labeled on a scale from -3
(strongly negative) to +3 (strongly positive).

MOSEI. The MOSEI dataset is an extended ver-
sion of MOSI, covering 250 different topics and
containing 22,856 annotated video clips. The sen-
timent annotation method is the same as that of
MOSI.

SIMS. The SIMS dataset consists of 2,281 video
clips. Each sample has one multimodal sentiment
label and three unimodal sentiment labels, with
sentiment scores ranging from -1 (negative) to +1
(positive).

The statistics of these datasets are summarized
in Table 5.

B Implementation Details

Evaluation Metrics: For the MOSI and MOSEI
datasets, we report binary classification accuracy
(Acc-2), five-class classification accuracy (Acc-5),
seven-class classification accuracy (Acc-7), as well
as F1 scores and mean absolute error (MAE) asso-
ciated with Acc-2. The Acc-2 and F1 scores are
reported in two forms, using the split marker "-/-
": the first score represents negative/non-negative
(including 0), and the second score represents nega-
tive/positive. For the SIMS dataset, we report Acc-
2, Acc-3, Acc-5, F1 scores, MAE, and correlation
(Corr). Acc-2, Acc-3, Acc-5, and Acc-7 represent
the percentage of correct predictions within their
respective sentiment intervals. For example, Acc-7
indicates the accuracy across seven sentiment inter-
vals from -3 to +3. Except for MAE, higher values
for all metrics indicate better model performance.

Experimental Setup: All models are trained
using the PyTorch framework on an NVIDIA RTX
A40 with 60GB of memory. For each dataset, train-
ing is performed with different random seeds (1111,
1112, and 1113), and results are averaged. The
Adam optimizer is used, with BERT as the back-
bone. The learning rate is set to 1e-4, the batch
size to 32, and training lasts for 100 epochs. Dur-
ing each epoch, 50% of the training samples are
randomly selected, and for each modality, a ran-
dom percentage of information (from 0% to 100%)
is erased to simulate data missingness. Detailed
parameters are provided in Table 6.

C Efficiency Analysis

Table 7 shows the computational overhead of the
proposed P-RMF model on the MOSI dataset
(Zadeh et al., 2016), and compares it with the state-
of-the-art model LNLN (Zhang et al., 2024) for
incomplete modality under the same experimen-
tal setup. Compared to LNLN, P-RMF achieves a
shorter runtime per epoch while maintaining a sim-
ilar number of parameters, indicating that its model
structure is more optimized and computationally
efficient.

D Robustness Evaluation of P-RMF
under Intra-modal Missingness

Following previous work (Zhang et al., 2024), we
set the missing rate to predefined values ranging
from 0 to 0.9, with an increment of 0.1, to simulate
the test conditions of intra-modal random missing-
ness. Like previous work(Zhang et al., 2024), we
did not evaluate at r = 1.0, as this would imply com-
plete data erasure from each modality, rendering
the experiment non-informative.

Tables 8, 9, and 10 present the detailed results
of the robustness tests for our model, P-RMF, on
the MOSI, MOSEI, and SIMS datasets under vari-
ous data missing rates. It can be observed that the
model performance decreases continuously with
the increase of missing rate. This is primarily due
to the increase in missing modality rates, which
not only reduces the available information for the
model but also introduces indirect issues such as
distribution shifts, weakened feature correlations,
and amplified noise. The combined impact of these
factors leads to a continuous decline in model per-
formance, making it challenging for the model to
maintain stable, state-of-the-art results.

E Robustness Evaluation of P-RMF
under Inter-modal Missingness

Following previous work (Li et al., 2024b), we re-
moved entire modalities from samples in the MOSI
and MOSEI datasets to simulate inter-modal miss-
ingness test conditions.

Tables 11, 12, and 13 present the robustness
evaluation results of our model, P-RMF, on the
MOSI, MOSEI, and SIMS datasets under inter-
modal missing conditions. It can be observed that
model performance generally improves with the
increase in modality information. The performance
of the text modality typically surpasses that of other
unimodal, indicating that the text modality contains
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Dataset Speaker Video clip Train Valid Test Language
MOSI 93 2199 1284 229 686 English
MOSEI 1000 22856 16326 1871 4659 English
SIMS 474 2281 1368 456 457 Chinese

Table 5: Dataset statistics.

Hyper-parameter MOSI MOSEI SIMS
dt 768 768 768
da 5 74 33
dv 20 35 709
L 4 4 4

λ1, λ2, λ3 1,0.5,0.1 1,0.5,0.1 1,0.5,0.1
Batch size 32 32 32

Epoch 100 100 100
Optimizer Adam Adam Adam

Vector Length T 8 8 39
Learning rate 1e-4 1e-4 1e-4

Fully connected layer 128 128 128

Table 6: Hyper-parameters setting.

Model Parameters Time / Epoch

P-RMF 117 M 18 s
LNLN 116 M 24 s

Table 7: Computational overhead.

richer knowledge information. It is worth noting
that in all test scenarios across the datasets, even
though the Acc-2 or F1 scores improve, the model’s
other performance metrics significantly drop when-
ever the text modality is missing. For example, in
Table 13, under testing conditions such as {a}, {v},
or {a,v}, although the F1 score is higher, metrics
like Acc-5, Acc-7, MAE, and Corr see a notable de-
cline. This indicates that missing the text modality
causes the model to lose crucial semantic infor-
mation, while the sentiment cues provided by the
audio and visual modalities are relatively weak and
cannot compensate for the loss of the text modality.
Therefore, even with a higher F1 score in binary
classification tasks, due to the loss of key features,
the model’s performance in more complex multi-
classification and regression tasks still significantly
declines.

F Independent ablation on MOSI.

Independent ablation of the three loss functions in
the Proxy Modality Generation (PMG) module, As
shown in Table 14. SA, CMA, and SR represent

Standardized Alignment, Cross-Modal Alignment,
and Sample Reconstruction within the PMG mod-
ule.

G Hyperparameter sensitivity analysis.

The model has three λ1, λ2, λ3 weight hyperparam-
eters. Preliminary tests showed that it was difficult
to find a set of hyperparameters that performed
optimally across all datasets. Based on prior ex-
perience [1], we set the main task weight λ1 to 1
and the reconstruction loss weight λ3 to 0.1. We
mainly analyzed the impact of different weights λ2

for constraint losses in Proxy Modality Generation.
The detailed analysis is shown in Table 15.

22135



Missing Rate r
MOSI

Acc-2 F1 Acc-5 Acc-7 MAE Corr

0.0 82.65 / 84 15 82.69 / 84 37 48 83 44 31 0.726 0.782
0.1 81.34 / 82 62 81.35 / 82 89 47 52 42 13 0.800 0.730
0.2 78.13 / 79 57 78.11 / 80 97 44 75 40 38 0.853 0.668
0.3 75.80 / 76 83 75.82 / 79 27 42 71 39 21 0.922 0.621
0.4 73.76 / 75 46 74.09 / 77 71 40 67 35 59 1.001 0.584
0.5 71.28 / 73 02 71.66 / 73 33 37 90 33 67 1.077 0.523
0.6 67.35 / 68 75 67.64 / 68 64 33 24 29 30 1.147 0.432
0.7 65.16 / 66 16 65.33 / 64 69 32 94 27 84 1.229 0.383
0.8 61.08 / 62 04 61.22 / 60 76 29 74 25 97 1.275 0.316
0.9 58.75 / 59 45 59.01 / 56 66 26 68 23 49 1.346 0.212

Avg. 71.53 / 72.81 71.69 / 72.93 38.50 34.19 1.038 0.525

Table 8: Robustness evaluation results of P-RMF on MOSI under various rates of intra-modal missing data.

Missing Rate r
MOSEI

Acc-2 F1 Acc-5 Acc-7 MAE Corr

0.0 83.62 / 85.20 83 68 / 85.48 52.09 49 77 0.539 0.767
0.1 82.79 / 83.98 82 94 / 84.37 51.45 49 04 0.556 0.748
0.2 82.25 / 82.97 82 58 / 83.37 49.35 47 91 0.576 0.722
0.3 80.88 / 81 26 81 40 / 81.86 47.78 45 95 0.611 0.683
0.4 79.76 / 79 97 80 58 / 80.74 46.73 45 59 0.631 0.653
0.5 78.64 / 78 62 79 74 / 79.49 44.90 43 94 0.666 0.601
0.6 77.44 / 76 11 78 97 / 77.58 43.12 42 26 0.703 0.545
0.7 75.87 / 74 64 78 12 / 75.88 42.41 41 73 0.733 0.481
0.8 74.46 / 70 75 77 91 / 73.03 41.00 40 46 0.764 0.401
0.9 72.59 / 67 86 77 95 / 71.51 39.90 39 62 0.805 0.289

Avg. 78.83 / 78.14 80.39 / 79.33 45.87 44.63 0.658 0.589

Table 9: Robustness evaluation results of P-RMF on MOSEI under various rates of intra-modal missing data.

Missing Rate r
SIMS

Acc-2 F1 Acc-3 Acc-5 MAE Corr

0.0 78.34 79.69 60.61 38.95 0.441 0.550
0.1 77.24 78.88 59.52 37.72 0.454 0.530
0.2 76.23 77.46 59.30 37.05 0.460 0.512
0.3 75.66 75.89 56.89 36.89 0.475 0.483
0.4 75.32 76.30 55.8 36.54 0.482 0.472
0.5 73.61 74.83 54.83 34.79 0.495 0.404
0.6 72.12 73.32 53.05 33.92 0.515 0.383
0.7 71.58 72.22 52.52 32.23 0.531 0.369
0.8 69.51 70.35 49.89 31.07 0.568 0.269
0.9 66.77 67.54 45.08 29.10 0.581 0.168

Avg. 73.64 74.65 54.75 34.83 0.500 0.414

Table 10: Robustness evaluation results of P-RMF on SIMS under various rates of intra-modal missing data.
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Testing Condition
MOSI

Acc-2 F1 Acc-5 Acc-7 MAE Corr

{l} 80.90 / 81.01 80.89 / 81.36 47.46 42.57 0.777 0.759
{a} 55.03 / 56.85 71.72 / 71.44 20.99 20.55 1.367 0.107
{v} 54.96 / 56.01 70.72 / 70.32 20.26 19.83 1.368 0.099

{l, a} 81.05 / 82.16 81.03 / 82.10 48.69 43.29 0.776 0.760
{l, v} 80.90 / 82.01 80.89 / 81.94 48.40 43.15 0.777 0.759
{a, v} 55.95 / 58.42 71.98 / 73.11 20.85 20.41 1.366 0.109

{l, a, v} 82.65 / 84.15 82.69 / 84.37 48.83 44.31 0.726 0.782
Avg. 70.21 / 71.52 77.13 / 77.81 36.50 33.44 1.022 0.482

Table 11: Robustness evaluation results of P-RMF under inte-modality missingness on the MOSI dataset.

Testing Condition
MOSEI

Acc-2 F1 Acc-5 Acc-7 MAE Corr
{l} 81.52 / 82.26 82.11 / 81.91 50.46 49.09 0.562 0.757
{a} 71.02 / 62.85 83.06 / 75.91 41.74 41.25 0.838 0.115
{v} 70.52 / 61.77 82.14 / 73.19 33.68 33.59 0.828 0.209

{l, a} 83.58 / 84.62 83.60 / 84.61 50.42 49.04 0.565 0.757
{l, v} 83.52 / 85.20 83.49 / 85.17 51.87 49.41 0.559 0.765
{a, v} 70.68 / 63.34 82.16 / 76.88 37.63 33.59 0.822 0.211

{l, a, v} 83.62 / 85.20 83.68 / 85.48 52.09 49.77 0.539 0.767
Avg. 77.78 / 75.03 82.89 / 80.45 45.41 43.68 0.673 0.512

Table 12: Robustness evaluation results of P-RMF under inte-modal missingness on the MOSEI dataset.

Testing Condition
SIMS

Acc-2 F1 Acc-3 Acc-5 MAE Corr
{l} 77.90 79.37 60.34 38.29 0.441 0.550
{a} 69.37 81.91 54.27 21.66 0.640 0.052
{v} 69.37 81.91 54.27 21.44 0.639 -0.013

{l, a} 77.02 78.22 60.61 38.29 0.440 0.537
{l, v} 78.12 79.87 60.39 38.29 0.442 0.537
{a, v} 69.37 81.91 54.27 21.44 0.636 0.021

{l, a, v} 78.34 79.69 60.61 38.95 0.441 0.550
Avg. 74.21 80.41 57.82 31.19 0.526 0.319

Table 13: Robustness evaluation results of P-RMF under inte-modal missingness on the SIMS dataset.

Method Acc-2 F1 Acc-5 Acc-7 MAE Corr

P-RMF 71.53 / 72.81 71.69 / 72.93 38.50 34.19 1.038 0.525
w/o PMG 70.38 / 71.79 70.54 / 71.82 37.35 33.53 1.055 0.517
w/o SA 70.84 / 72.11 70.98 / 72.16 37.88 33.87 1.134 0.516
w/o CMA 70.77 / 71.79 70.54 / 71.82 37.76 33.53 1.120 0.508
w/o SR 71.35 / 71.55 71.14 / 71.46 38.17 33.80 1.033 0.520

Table 14: Independent ablation on MOSI.
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λ2 Acc-2 F1 Acc-5 Acc-7 MAE Corr

0.1 71.20 / 72.44 71.31 / 72.65 37.97 34.15 1.055 0.500
0.2 71.43 / 72.65 71.50 / 72.77 38.31 33.88 1.053 0.507
0.3 71.50 / 72.76 71.63 / 72.78 38.33 34.11 1.047 0.515
0.4 71.42 / 72.73 71.34 / 72.51 38.62 34.02 1.039 0.522
0.5 71.53 / 72.81 71.69 / 72.93 38.50 34.19 1.038 0.525
0.6 71.51 / 72.80 71.57 / 72.88 38.55 34.11 1.033 0.526
0.7 71.55 / 72.77 71.66 / 72.63 37.99 33.75 1.040 0.516
0.8 71.44 / 72.61 71.22 / 72.56 38.33 34.01 1.051 0.514
0.9 71.32 / 72.53 71.27 / 72.44 37.66 33.55 1.063 0.505
1.0 71.43 / 74.56 71.33 / 72.62 37.87 33.76 1.056 0.508

Table 15: Hyperparameter sensitivity analysis.
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