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Abstract

Despite the substantial success of Information
Retrieval (IR) in various NLP tasks, most IR
systems predominantly handle queries and cor-
pora in natural language, neglecting the domain
of code retrieval. Code retrieval is critically
important yet remains under-explored, with ex-
isting methods and benchmarks inadequately
representing the diversity of code in various do-
mains and tasks. Moreover, many models have
begun to overfit existing leaderboards, limiting
their generalizability and real-world applicabil-
ity. Addressing this gap, we introduce COIR
(Code Information Retrieval Benchmark), a
robust and comprehensive benchmark specif-
ically designed to evaluate code retrieval ca-
pabilities. COIR consists of ten meticulously
curated code datasets, all of which have un-
dergone thorough manual inspection and pro-
cessing. These datasets cover eight distinct
retrieval tasks across seven diverse domains,
ensuring a broad and rigorous assessment of
code retrieval performance. We first discuss the
construction of COIR and its diverse dataset
composition. Further, we evaluate ten widely
used retrieval models using COIR, uncover-
ing significant difficulties in performing code
retrieval tasks even with state-of-the-art sys-
tems. To ensure seamless integration, COIR is
released as a user-friendly Python framework,
aligned with the data schema of MTEB and
BEIR for consistent cross-benchmark evalua-
tion. Through COIR, we aim to invigorate re-
search in the code retrieval domain, providing
a versatile benchmarking tool that encourages
further development and exploration of code
retrieval systems1.

1 Introduction

Information retrieval (IR) aims to retrieve rele-
vant information from a large scale corpus. The

*These authors contributed equally to this work.
†Corresponding authors.
1https://github.com/CoIR-team/coir

Benchmark Domain #PL
Retrieval

Tasks
Eval

Package

CoSQA Web Query 1 Text-to-Code ×
CodeSearchNet GitHub Functions 6 Text-to-Code ×

CodeRAG-Bench
Contest, Issue Fixing,

StackOverflow,
GitHub Functions

1
Text-to-Code
Hybrid Code

×

XCodeEval Contest 17
Text-to-Code
Code-to-Code

×

COIR (Ours)

GitHub Functions,
Web Query,

Database, Contest,
Deep Learning,
StackOverflow,

Code Instruction

14

Text-to-Code
Code-to-Code
Code-to-Text
Hybrid Code

✓

Table 1: Comparison between CoIR and other code
retrieval benchmarks. #PL is the number of main pro-
gramming languages used.

advances of pretrained Transformers (Vaswani
et al., 2017) like BERT (Devlin et al., 2019)
and RoBERTa (Liu et al., 2019) enable IR sys-
tems (Wang et al., 2022; Chen et al., 2024; Li
et al., 2023b; Dong et al., 2025a) to leverage rich
semantic embeddings to interpret and fulfill natu-
ral language search queries. Specifically, IR have
successfully improve a wide range of Natural Lan-
guage Processing (NLP) tasks such as Question
Answering (QA) (Kolomiyets and Moens, 2011),
Retrieval-Augmented Generation (RAG) (Liu et al.,
2024; Dong et al., 2024, 2025b; Zhang et al., 2025;
Jia et al., 2024), Information Extraction (Ziembin-
ski, 2015; Sarhan, 2023), Text Summarization (Ma-
halakshmi and Fatima, 2022), Recommender Sys-
tem (Li et al., 2022, 2023a; Lin et al., 2025; Wang
et al., 2024a) and etc. Although proven to be effec-
tive in text retrieval, standard IR methods often fall
short in code retrieval (Husain et al., 2019).

Unlike standard text, code is semi-structured
and inherently logical, consisting of syntactic rules
and semantic information that require specific pars-
ing and understanding. Such distinctive nature
requires the system to adapt and interpret code
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format accurately. Recognizing the importance
of code data, pioneering works such as Code-
BERT (Feng et al., 2020), CodeGPT (Lu et al.,
2021) and UniXcoder (Guo et al., 2022) have con-
ducted pre-training specifically on code corpora.

Code information retrieval is a critical compo-
nent in accelerating development processes and
improving code quality. Efficient code retrieval
helps developers quickly find not only relevant
code snippets, but also related information like
code explanations, bug analyses, code summaries,
and similar code instances. Commercial products
have recently integrated tools for code retrieval,
such as VS Code (Sole, 2019) and GitHub Code
Search. Moreover, code-RAG systems (Zhang
et al., 2023b,a; Choi et al., 2023; Su et al., 2024)
have effectively leveraged on code retrieval to min-
imize hallucinations (i.e., errors in generated code)
by Large Language Models (LLMs), thereby ensur-
ing more accurate and reliable outputs.

Due to the importance of code retrieval, bench-
marks (see Table 1) such as CodeSearchNet (Hu-
sain et al., 2019), CosQA (Huang et al., 2021),
and XcodeEval (Khan et al., 2023), have been pro-
posed to evaluate the code retrieval effectiveness.
Despite these efforts, there remain three principal
limitations: (1) Current benchmarks focus on a
limited number of code retrieval tasks and have
been extensively overfitted by many existing mod-
els. Commonly, these involve using a textual query
to search for corresponding code snippets. How-
ever, the practical needs of code retrieval are far
more diverse. In real-world scenarios, queries and
retrieved corpus can involve both text and code.
One might input a code snippet coupled with bug
information, and seek detailed explanations, sum-
maries, or even fixed code as output. Existing
benchmarks do not adequately cater to such com-
plex and varied query types, limiting the scope of
their applicability and the robustness of the models
tested. (2) there is a noticeable lack of diversity in
data domains. For example, CodeSearchNet exclu-
sively extracts code and code-comment pairs from
GitHub, which represents a specific format of open-
source projects. Similarly, XcodeEval focuses only
on coding related to contest challenges, which may
be overly specialized. Such narrow focus is not
suitable for comprehensive evaluation in broader
coding contexts. (3) there is no standard evaluation
framework for code retrieval, which complicates
the comparison and development of methods in this
field. CodeSearchNet, CosQA, and XcodeEval em-

ploy various types of evaluation metrics tailored to
their specific tasks and formats leading to potential
inconsistencies in measuring model performance
across different benchmarks.

To address the limitations of existing code re-
trieval benchmarks, we introduce COIR (COde
Information Retrieval Benchmark), a more com-
prehensive and versatile benchmark. As summa-
rized in Table 1, COIR surpasses current bench-
marks by offering broader domain coverage, more
diverse retrieval tasks, and a standardized evalu-
ation framework. It includes 10 datasets (8 ex-
isting and 2 newly-curated) and supports 4 pri-
mary retrieval tasks: (1) Text-to-Code, (2) Code-
to-Code, (3) Code-to-Text, and (4) Hybrid Code
Retrieval, with further breakdown into 8 sub-tasks.
The datasets vary in size, ranging from 1K to 1M
documents, with token counts ranging from 37 to
4.4K for queries and 113 to 1.5K for corpus.

We evaluated 10 popular retrieval models on
COIR, revealing that even state-of-the-art models
perform suboptimally, highlighting the complexity
of code retrieval. To simplify evaluation, we also
provide a user-friendly Python framework that inte-
grates seamlessly with BEIR and MTEB, allowing
easy model evaluation via pip installation. Our key
contributions are as follows:

• We present the first benchmark designed to com-
prehensively evaluate code retrieval. This bench-
mark, COIR, integrates 10 datasets and addresses
4 key code retrieval tasks. To achieve this, we
manually collected and curated existing datasets
through a rigorous data cleaning and filtering
process, while also creating two new datasets.

• Our evaluation of 10 popular retrieval systems
reveals that even state-of-the-art models struggle
in code retrieval. Through experimental analysis,
we demonstrate that LLM-based retrieval models
have the potential to pave the way for new di-
rections in code and text retrieval. Additionally,
our findings indicate that many existing models
have already overfitted to current leaderboards,
highlighting the necessity for more generalizable
and robust retrieval approaches.

• We offer a robust community around COIR, pro-
viding convenient evaluation tools, leaderboards,
and other resources that facilitate the rapid ad-
vancement of code retrieval models.
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Hybrid Code
Retrieval

14 main languages:
python, sql, go, java, js, 
c, css, php, c++, html, 
rust, shell, swift, ruby

Multi-turn Code QA
- Query: question in text/code
- Docs: answer in text/code

Single-turn Code QA
- Query: question in text/code
- Docs: answer in text/code

Text-to-Code
Retrieval
Code Contest Retrieval

- Query: problem description
- Docs: code solution
Web Query Code Retrieval
- Query: web queries in text
- Docs: code snippet

Text-to-SQL Retrieval
- Query: question in text
- Docs: SQL queries

Code-to-Text
Retrieval
Code Summary Retrieval

- Query: code snippet
- Docs: code summary

Code-to-Code
Retrieval
Code Context Retrieval
- Query: former part of  code
- Docs: latter part of  code

Similar Code Retrieval
- Query: code in one lang
- Docs: code in another lang

CoIR Benchmark

4 main tasks 
8 sub-tasks
10 datasets

Figure 1: Overview of COIR benchmark.

2 Related Work

Existing Benchmarks. BEIR (Thakur et al., 2021)
and MTEB (Muennighoff et al., 2023) have sig-
nificantly advanced retrieval and embedding mod-
els across diverse text-based tasks but lack dedi-
cated evaluations for code retrieval. Existing code
benchmarks, such as CodeSearchNet (Husain et al.,
2019), CosQA (Huang et al., 2021), and XcodeE-
val (Khan et al., 2023), suffer from limitations in
task diversity, domain coverage, and evaluation
consistency. Notably, CodeSearchNet has been
extensively used, leading to overfitting in many
models. In contrast, COIR introduces a broader
range of code retrieval tasks and a unified evalua-
tion framework for standardized benchmarking.

Retrieval Models. Dense retrievers, which en-
code text into high-dimensional representations,
are central to information retrieval (IR). Key meth-
ods include DPR (Karpukhin et al., 2020), Con-
triever (Izacard et al., 2022), E5 (Wang et al., 2022),
GTE (Li et al., 2023b), BGE (Xiao et al., 2023), and
BGE-M3 (Bai et al., 2024), with recent advances
leveraging LLMs, such as E5-Mistral (Wang et al.,
2024b) and OpenAI-Ada-002 .

However, most research focuses on QA datasets
like MS-Marco (Nguyen et al., 2016), with lim-
ited work on code retrieval. While models like
CodeBERT (Feng et al., 2020), Voyage-Code-002,
and UniXCoder (Guo et al., 2022) exploit program-
ming language structures, neural retrieval for code
remains underexplored. By providing benchmarks
for code retrieval , we aim to stimulate innovation
and advance state-of-the-art techniques in this area.

3 The COIR Benchmark

3.1 Desiderata

COIR provides a one-stop zero-shot evaluation
benchmark for diverse code retrieval tasks, en-
suring comprehensive assessment through well-
curated tasks and datasets. To streamline eval-
uation, COIR includes a one-click, end-to-end
pipeline with three key features:

(1) Diversity: COIR assesses models across 4
primary tasks, 8 sub-tasks, 10 datasets, and 14 pro-
gramming languages (Figure 1). (2) Usability: Un-
like traditional evaluations that require manual cod-
ing and result collection, COIR offers an automated
pipeline for both open-source and proprietary mod-
els, supporting metrics such as nDCG, precision,
recall, and MAP. Results are stored in JSON format
for easy access. (3) Overfitting Mitigation: Many
models overfit to benchmarks like CodeSearchNet,
leading to inflated performance with limited gen-
eralization. COIR alleviates this by incorporating
diverse tasks and datasets, offering a more reliable
evaluation. Dataset statistics are in Table 2, with
preparation details in B.1.

3.2 Overview of COIR Tasks

In this section, we present an overview of each
task in COIR. For each task-specific dataset, we
manually inspect and filter out instances that lack
valid answers, exhibit ambiguity, contain irrelevant
information, etc. The rationale for selecting each
dataset, along with the detailed manual filtering
process, is provided in Appendix B.1.
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Main Task Sub Task Domain Dataset Language #Query
(train/dev/test) #Corpus LQuery LCorpus

Text-to-Code
Retrieval

Code Contest
Retrieval

Code
Contest APPS py 5k/-/3.8K 9K 1.4K 575

Web Query to
Code Retrieval

Web
query CosQA py 19k/-/500 21K 37 276

Text to SQL
Retrieval Database Synthetic

Text2SQL sql 100k/-/6K 106K 83 127

Code-to-Text
Retrieval

Code Summary
Retrieval

Github
Fuctions CodeSearchNet go, java, js

php, py, ruby
905k/41k/53K 1M 594 156

Code-to-Code
Retrieval

Code Context
Retrieval

Github
Fuctions

CodeSearchNet
-CCR† go, java, js

php, py, ruby
905k/41k/53K 1M 154 113

Similar Code
Retrieval

Deep
Learning

CodeTrans
Ocean-DL py 564/72/180 816 1.6K 1.5K

Contest CodeTrans
Ocean-Contest c++, py 561/226/446 1K 770 1.5K

Hybrid Code
Retrieval

Single-turn
Code QA

Stack
Overflow

StackOverflow
QA† miscellaneous 13k/3k/2K 20K 1.4K 1.2K

Code
Instruction

CodeFeedBack
-ST

html, c, css, sql
js, sql, py, shell
ruby, rust, swift

125k/-/31K 156K 722 1.5K

Multi-turn
Code QA

Code
Instruction

CodeFeeback
-MT miscellaneous 53k/-/13K 66K 4.4K 1.5K

Table 2: Statistics of datasets in COIR benchmark. # is the quantity of query/corpus instances. L(·) refers to the
average numbers of words per query/corpus. Datasets marked by † are created by us.

3.2.1 Main Task I: Text-to-Code Retrieval
Code Contest Retrieval. Code contest retrieval
involves retrieving relevant code solutions for cod-
ing problems described in natural language, a chal-
lenging task due to the complexity of language
and code, as well as the gap between human and
machine languages. For this, we use the APPS
dataset (Hendrycks et al., 2021), a diverse collec-
tion of problems from platforms like Codewars,
AtCoder, Kattis, and Codeforces.

Web Query Code Retrieval. Web query code
retrieval focuses on retrieving relevant code snip-
pets based on concise web queries, typically
just a few words. For this task, we use the
CosQA (Huang et al., 2021) dataset, containing
20.6k labeled pairs of textual queries and Python
functions.

Text-to-SQL Retrieval. Text-to-SQL is a key
task in code generation, requiring models to gener-
ate SQL queries from natural language questions.
We use the Synthetic Text-to-SQL dataset (Meyer
et al., 2024), the largest and most diverse synthetic
dataset, with around 106k examples.

3.2.2 Main Task II: Code-to-Text Retrieval
Code Summary Retrieval. Code summary re-
trieval evaluates a model’s ability to use code to

retrieve code summaries or annotations. For this
task, we employ the CodeSearchNet dataset (Hu-
sain et al., 2019), which consists of numerous code
functions accompanied by code comments. This
dataset spans six programming languages and in-
cludes over one million documents, providing a
rich source of information for evaluating model
performance.

3.2.3 Main Task III: Code-to-Code Retrieval
Code Context Retrieval. Code context retrieval
is the task of retrieving the most relevant code
segment that completes a given initial segment of
code. This task is critical for code completion pur-
poses. Here we modify the original CodeSearchNet
dataset (Husain et al., 2019) to better suit our needs.
Specifically, for each code snippet or function in
CodeSearchNet, we randomly divide the code into
two segments: (1) the initial segment serves as our
query, and (2) the remaining segment forms the
target corpus to be retrieved for this query. The
length of each query is uniformly and randomly
selected to comprise between 40% and 70% of the
total number of characters in the original code.

Similar Code Retrieval. In the task of similar
code retrieval, the primary objective is to assess
a model’s ability to retrieve similar code snippets.
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Specifically, given a code snippet in one program-
ming language or deep learning framework, the
model needs to retrieve semantically equivalent
code in a different language or framework. We uti-
lize the CodeTransOcean dataset (Yan et al., 2023)
for this purpose, creating two sub-datasets for sim-
ilar code retrieval. These sub-datasets are named
“CodeTransOcean-DL” and “CodeTransOcean-
Contest”, with the suffix indicating their respec-
tive domains. The “CodeTransOcean-DL” sub-
set contains code written in different deep learn-
ing frameworks within the same programming
language, such as TensorFlow and Paddlepaddle.
Whereas the “CodeTransOcean-Contest” subset in-
cludes code written in different programming lan-
guages, such as Python and C++, for the same
coding contest or competitive programming prob-
lem.

3.2.4 Main Task IV: Hybrid Code Retrieval
Single-turn Code Question Answer Retrieval.
In single-turn code question-answering (QA), a
retrieval model is required to find the correspond-
ing answer for a given natural language question.
Both the question and the answer typically con-
sist of a mix of text and code snippets. For this
task, we use two code QA datasets: StackOver-
flow QA 2 and CodeFeedQA (Zheng et al., 2024).
The StackOverflow QA is derived from the orig-
inal StackOverflow dataset by pairing questions
with their highest upvoted answers, resulting in
19, 931 pairs. Additionally, we sampled 1, 202
query instances to validate the retrieval model’s
performance. The CodeFeedQA is a synthesized
code instruction dataset generated by LLMs. From
this dataset, we sampled 20% of the queries to as-
sess the model’s performance.

Multi-turn Code Question Answer. In multi-
turn code question-answer retrieval, the retrieval
model must effectively utilize the context from mul-
tiple dialogue turns to accurately retrieve the an-
swer for the subsequent turn. This task is challeng-
ing due to the extensive dialogue context, which
can exceed 4, 000 tokens, whereas most current re-
trieval models are limited to a context length of 512
tokens. Specifically, we employ the CodeFeedback
multi-turn question-answer dataset, with dialogues
generated by LLMs. Our test set comprises a total
of 13, 227 queries and 66, 383 corpus.

2https://www.kaggle.com/datasets/
stackoverflow/stacksample/data

3.3 Dataset and Diversity Analysis
In addition to the multitude of tasks, the datasets
in COIR also encompass a broad array of program-
ming languages, such as Python, Java, and SQL,
each featuring unique attributes. The distribution
of these programming languages is long-tailed, as
depicted in the bar graph in Figure 2. Despite this,
the datasets maintain diversity, originating from
varied sources including code contest websites,
GitHub repositories, StackOverflow responses, etc.
To quantify the diversity of COIR, we calculated
the weighted Jaccard similarity scores on unigram
word overlap across all dataset pairs, displayed
in a heatmap in Figure 2 (see Appendix C.2 for
calculation details). The heatmap reveals gener-
ally low Jaccard similarity scores among dataset
pairs, with notable exceptions being CodeFeedback
Single-Turn (CodeFeedback-ST) and CodeFeed-
back Multi-Turn (CodeFeedback-MT), which are
derived from the same domain. This signifies the
challenge of COIR as a benchmark. For optimal
performance, a method must not only excel in ma-
jor programming languages but also exhibit robust
generalization ability across various domains.

3.4 COIR Evaluation Software
To advance the evaluation of code retrieval capa-
bilities, we introduce a streamlined, user-friendly
Python framework for the COIR benchmark evalu-
ation. This framework is installable via pip using
the command pip install and features a straight-
forward script that evaluates model performance
across multiple datasets, outputting results in JSON
format. Meanwhile, COIR is compatible with sev-
eral popular open-source frameworks, including
HuggingFace and Sentence-Transformers, as well
as API-based models such as OpenAI-Ada-002 and
Voyage-Code-002. In line with BEIR and MTEB,
all datasets have been standardized into a uniform
format, facilitating the use of MTEB and BEIR
frameworks for evaluating COIR.

4 Experiment Setup

In this section, we evaluate and analyze the per-
formance of the current state-of-the-art retrieval
models on the eight subtasks of the COIR bench-
mark. More details can be found in Appendix D.

Benchmarked Models. To comprehensively
evaluate the capabilities of various state-of-the-
art retrieval models for code retrieval tasks, we
select 10 different retrieval models. For sparse
retrieval, we utilized BM25 (Robertson et al.,
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Figure 2: Jaccard similarity and Programming Language Distributions of COIR.

1994). For open-source dense models, we in-
cluded E5-Base (Wang et al., 2022), GTE-Base (Li
et al., 2023b), BGE-Base (Xiao et al., 2023), Con-
triever (Izacard et al., 2022), E5-Mistral (Wang
et al., 2024b), BGE-M3 (Chen et al., 2024), and
UniXcoder (Guo et al., 2022). For proprietary mod-
els, we included OpenAI-Ada-002 3 and Voyage-
Code-002 4. Notably, both UniXcoder and Voyage-
Code-002 have been pre-trained on code data, mak-
ing them robust baselines for comparison.

Implementation Details. For all open-source
dense retrieval models, we set the input length of
both queries and the corpus to 512. For propri-
etary models such as Voyage-Code-002, due to the
constraint of tokens per minute (TPM), we set the
length of the queries to 256 and the corpus to 512.
Following previous work (Wang et al., 2024b), we
utilize (i) last token pooling for E5-Mistral, and (ii)
mean pooling for other models, to obtain seman-
tic vector representations. Cosine similarity is em-
ployed to calculate the similarity between the query
and corpus for ranking. Following BEIR (Thakur
et al., 2021), we use NDCG@10 to evaluate the per-
formance of retrieval models. For comprehensive
evaluation, our scripts also provide metrics such as
MAP, Recall, and Precision.

5 Results and Analysis

5.1 Main Results
Table 3 showcases the performance of existing em-
bedding models on the COIR benchmark. From
the table, several conclusions can be drawn:

3https://platform.openai.com/docs/guides/
embeddings

4https://blog.voyageai.com/2024/01/23/
voyage-code-2-elevate-your-code-retrieval/

No Single Model Dominates Across All Tasks.
Despite Voyage-Code-002 achieving the highest
mean score of 56.26 on the benchmark, it does
not universally surpass other models in every task.
Models like E5-base and E5-Mistral exhibit su-
perior performance in specific retrieval sub-tasks.
This highlights the COIR benchmark’s complexity
and suggests that different models excel in different
facets, catering to varied task requirements.

Demonstration of Benchmark Diversity and
Challenge. Models achieving top performance
in mainstream text retrieval benchmarks, such as
E5-Mistral, do not consistently excel across COIR
sub-tasks. For example, E5-Mistral scores highly
in CodeTrans-Contest and StackOverflow QA but
shows only median performance in APPS and
CosQA for Text-to-Code tasks, and falls behind
E5-base in CodeFeedBack-MT. This variation un-
derscores the COIR benchmark’s challenge and the
need for adaptive, robust code retrieval capabilities.

Effectiveness of Code-Specific Optimization.
Models specialized for code retrieval, like Voyage-
Code-002, achieve strong results on COIR, high-
lighting the impact of tailored optimization.
Voyage-Code-002 excels in both Text-to-Code and
Code-to-Text tasks, demonstrating the benefits of
domain-specific training.

Figure 3 presents box plots for each model.
Voyage-Code-002 achieves the highest average
performance but with high variance, suggesting
weaker generalization. In contrast, BGE-M3 shows
better robustness with the lowest variance despite
its moderate performance. This highlights the CoIR
dataset’s challenge and its value as a benchmark
for code retrieval research.

22079

https://platform.openai.com/docs/guides/embeddings
https://platform.openai.com/docs/guides/embeddings
https://blog.voyageai.com/2024/01/23/voyage-code-2-elevate-your-code-retrieval/
https://blog.voyageai.com/2024/01/23/voyage-code-2-elevate-your-code-retrieval/


Task (→) Text-to-Code Code-to-Text Code-to-Code Hybrid Code
Avg

Model (param.) ↓ Apps CosQA
Synthetic Code Code CodeTrans StackOver CodeFeedBack
Text2sql SearchNet SN-CCR -Contest -DL Flow QA -ST -MT

BM25 0.95 13.96 16.92 26.75 34.69 50.13 8.69 56.80 54.32 34.73 29.79
Contriever (110M) 5.14 14.21 45.46 34.72 35.74 44.16 24.21 66.05 55.11 39.23 36.40
E5-base (110M) 11.52 32.59 52.31 67.99 56.87 62.50 21.87 86.86 74.52 41.99 50.90
BGE-Base (110M) 4.05 32.76 45.59 69.60 45.56 38.50 21.71 73.55 64.99 31.42 42.77
GTE-Base (110M) 3.24 30.24 46.19 43.35 35.50 33.81 28.80 62.71 55.19 28.48 36.75
UniXcoder (123M) 1.36 25.14 50.45 60.20 58.36 41.82 31.03 44.67 36.02 24.21 37.33
BGE-M3 (567M) 7.37 22.73 48.76 43.23 47.55 47.86 31.16 61.04 49.94 33.46 39.31
E5-Mistral (7B) 21.33 31.27 65.98 54.25 65.27 82.55 33.24 91.54 72.71 33.65 55.18
OpenAI-Ada-002 8.70 28.88 58.32 74.21 69.13 53.34 26.04 72.40 47.12 17.74 45.59
Voyage-Code-002 26.52 29.79 69.26 81.79 73.45 72.77 27.28 87.68 65.35 28.74 56.26

Table 3: NDCG@10 score of various retrievers on COIR. The best score is marked in boldface.
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Figure 3: The box plots of all model performances on
COIR benchmark.

5.2 Analysis of Retrieval Efficiency

In practical industrial settings, efficiency is also a
critical factor for evaluating retrieval model. Fac-
tors such as embedding latency for query/corpus,
retrieval latency from all embeddings, and the phys-
ical memory footprint of the index are critical. In
this section, we analyze the efficiency of the current
retrieval model using a portion of the COIR dataset,
designated as CodeFeedBack-ST, which comprises
156k corpus and 31k queries. For embedding la-
tency, we record the time taken by each model to
process a batch of data. This time was then divided
by the number of samples in the batch to derive the
average embedding time per sample. For retrieval
latency, we measure the averaged retrieval time
of all queries, where each query is tasked with re-
trieving 1,000 documents. The latency results are
presented in Table 4.

Trade-off between Accuracy and Latency.
High-performing models like E5-Mistral with ex-
cellent accuracy, suffer from noticeable embedding
latency. Specifically, E5-Mistral’s average embed-
ding latency is 1840ms per sample, significantly
higher than other evaluated models. This discrep-
ancy highlights the common trade-off in retrieval

CodeFeedBack-ST
156k corpus & 31k queries

Embed
Latency

Retrieval
Latency Index

Rank Model Dim. GPU GPU Size

9 Contriever 768 7.8ms 38.1µs 0.3G
3 E5-Base 768 7.4ms 38.1µs 0.3G
5 BGE-Base 768 7.6ms 38.1µs 0.3G
8 GTE-Base 768 7.8ms 38.1µs 0.3G
7 UniXcoder 768 7.7ms 38.1µs 0.3G
6 BGE-M3 1024 31.4ms 42.9µs 0.6G
2 E5-Mistral 4096 1840ms 115.5µs 2.3G
4 OpenAI-Ada-002 1536 - 56.8µs 0.9G
1 Voyage-Code-002 1536 - 56.8µs 0.9G

Table 4: The average embedding/retrieval latency per
instance using CodeFeedBack-ST. We retain models
that have rankings in both BEIR and COIR.

systems: higher accuracy often comes at the ex-
pense of increased latency.

Index Size Considerations. Index sizes vary
significantly across different models. Simpler mod-
els such as Contriever, E5-Base, BGE-Base, GTE-
Base, and UniXcoder have relatively small index
sizes, around 0.3GB. In contrast, more complex
models like E5-Mistral, OpenAI-Ada-002, and
Voyage-Code-002 have larger index sizes ranging
from 0.6GB up to 2.3GB. This suggests a trade-
off between accuracy and memory demands. Ad-
vanced models with better performance is at the
cost of more memory, which could be a limitation
in resource-constrained environments.

5.3 Input Length Impact on Code Retrieval

This section examines how input length affects the
performance of code retrieval tasks. We analyze
results using four datasets: CodeFeedBack-MT,
CodeTransOcean-DL, APPS, and StackOverflow
QA. Each dataset has an average query and corpus
length that exceeds 1,000 words. We utilize two
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models, GTE and BGE-M3, both of which have
been optimized for long documents and support
context length of 8k tokens. We experiment on two
settings, with input length capped at 512 and 4,096
respectively. Note that tokens beyond the cap will
be truncated. We report the results in Table 5.

Model Code Code APPS Stack
(input #tokens) FB-MT TO-DL OF-QA

GTE (512) 28.48 28.80 3.24 62.71
GTE (4k) 51.32 27.33 5.08 78.63

BGE-M3 (512) 33.46 31.16 7.37 61.04
BGE-M3 (4k) 27.49 32.75 6.80 56.53

Table 5: Effects of different input length.

Impact of Input Length on Model Perfor-
mance. For GTE model, extending the input
length from 512 to 4,096 shows notable improve-
ments in retrieval performance across most datasets.
Specifically, retrieval scores in CodeFeedBack-MT
and StackOverflow QA increase significantly from
38.20 to 51.32, and from 64.36 to 78.63, respec-
tively. In contrast, the BGE-M3 model shows in-
consistent results. CodeTransOcean-DL shows a
slight improvement in scores from 31.16 to 32.75,
whereas scores for CodeFeedBack-MT fall from
33.46 to 27.49. One possible reason can be that:
although BGE-M3 has been optimized for long doc-
uments, the significant differences between code
data and text data result in a performance degrada-
tion as the document length increases.
5.4 Comparison of COIR and BEIR Rankings

Model Rank

CoIR BEIR

Contriever 7 7
GTE-Base 6 2
BGE-M3 5 6

BGE-Base 4 3
OpenAI-Ada-002 3 5

E5-Base 2 4
E5-Mistral 1 1

Table 6: Retriever rankings in CoIR and BEIR.

This section evaluates seven retrieval models
across COIR and BEIR, adjusting rankings for
consistency while excluding voyage-code-002 and
UniXcoder due to their code-specific pretraining.
We analyze key ranking shifts and patterns.

Key Insights. E5-Mistral consistently ranks first
in both benchmarks, demonstrating robust perfor-
mance in text and code retrieval. However, GTE-

Base drops from 2nd in BEIR to 6th in COIR, in-
dicating that strong text retrieval does not ensure
effective code retrieval. Conversely, E5-Base ranks
higher in COIR than in BEIR, suggesting better
adaptation to code-related tasks.

These results underscore the necessity of special-
ized benchmarks like COIR. While some models
maintain stable rankings, others exhibit notable
shifts, highlighting distinct challenges of code re-
trieval that general text benchmarks may overlook.

5.5 Overfitting in CodeSearchNet and How
COIR Helps

5 0 5 10 15 20 25 30
Difference (CodeSearchNet - COIR)

BM25

Contriever (110M)

E5-base (110M)

BGE-Base (110M)

GTE-Base (110M)

UniXcoder (123M)

BGE-M3 (567M)

E5-Mistral (7B)

OpenAI-Ada-002

Voyage-Code-002

Score Difference Between CodeSearchNet and COIR

Figure 4: Overfitting in CodeSearchNet: Evidence from
Score Differences. The values in the bar chart represent
the scores of CodeSearchNet minus the scores of COIR.

Figure 4 compares the performance of Code-
SearchNet and COIR across various retrieval mod-
els. Most models score significantly higher on
CodeSearchNet, indicating a strong overfitting ten-
dency. Notably, OpenAI-Ada-002 and Voyage-
Code-002 show large performance gaps, suggest-
ing these models may have already overfitted to
CodeSearchNet.

In contrast, COIR provides a more balanced
evaluation, mitigating overfitting. Among all mod-
els, E5-Mistral (7B) achieves the smallest perfor-
mance gap while maintaining strong scores on
both benchmarks, demonstrating that LLM-based
retrieval models can effectively reduce overfit-
ting. These results highlight COIR ’s role in ensur-
ing a more robust and generalizable benchmark.

6 Conclusion

In this paper, we introduce COIR, a comprehensive
benchmark for code retrieval. COIR encompasses
4 distinct and 8 fine-grained retrieval tasks, sup-
ports 14 programming languages, and integrates 10
diverse datasets with over 2 million code snippets.
Furthermore, we evaluate the performance of 10
retrieval models on COIR, revealing that even state-
of-the-art models struggle, underscoring its chal-
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lenging nature. Additionally, our analysis suggests
that many existing models have overfitted to current
leaderboards, highlighting the need for more gener-
alizable and robust retrieval approaches. Moreover,
we emphasize the promise of LLM-based retrieval
models as a potential direction for future advance-
ments. With COIR, we aim to foster progress in
code retrieval, encouraging researchers to develop
more effective and resilient models to benefit the
community.

7 Limitations

Even though we cover a wide range of tasks and
domains in COIR, no benchmark is perfect and
each set of benchmark has its own limitations. It is
crucial to make the limitations explicit in order to
better interpret (1) retrieval results on these bench-
mark datasets and (2) to curate a better benchmark
in the future that complements existing benchmarks
in the field.

1. Multilingual Tasks: Although we aim for a
diverse retrieval evaluation benchmark, due to
the limited availability of multilingual retrieval
datasets for code information retrieval , all
datasets covered in the COIR benchmark are
currently English. Future work could include
multi- and cross-lingual tasks and models.

2. Multi-faceted Search: Due to the existing
paradigm that heavily emphasizes on semantic-
based information retrieval, our benchmark
mainly focuses on queries that aim to bench-
mark retrieval performance solely based on tex-
tual information. However, real-world informa-
tion needs is often complex and could possibly
rely on various corpus meta-data, especially so
in code datasets where meta-data could play a
huge role. For instance, the versioning of pro-
gramming language or software libraries could
make a huge difference to whether a functioning
code snippet is retrieved. In essence incorporat-
ing queries that are multi-faceted can more ac-
curately reflect real-world informational needs.

3. n-ary Match: With each query corresponding
to exactly one ground-truth corpus, we dismiss
the real-world informational needs where (1) a
single query is could be relevant to multiple co-
pora and (2) the informational needs of a single
query can only be satisfied by multiple corpora
simultaneously.

Dedicating a particular section of COIR for n-
nary / list-wise labels for each query would al-
low us to address how model perform on in-
formational needs that are diverse and further
enhance the diversity of tasks of the benchmark.

8 Ethical Considerations

We ensure that the distribution of each dataset com-
plies with the corresponding licenses, all of which
are listed below:

• APPS: Provided under “MIT License” for non-
commercial research purposes.

• CodeTransOcean: Provided under Apache Li-
cense 2.0 license.

• CodeSearchNet: Provided under “MIT Li-
cense” for non-commercial research purposes.

• CoSQA: Provided under “MIT License” for
non-commercial research purposes.

• Synthetic Text2sql: Provided under Apache
License 2.0 license.

• Code-Feedback: Provided under Apache Li-
cense 2.0 license.

• CodeFeedback-Filtered-Instruction: Provided
under Apache License 2.0 license.

• Stackoverflow QA: Provided under CC-BY-
SA 3.0 license.
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A Dataset Filtering and Cleaning Process

The dataset used for code retrieval tasks must be of
high quality, diverse, and appropriately challeng-
ing to ensure the development of robust models.
To this end, we implemented a multi-stage filter-
ing and cleaning process that removes irrelevant,
incomplete, or overly simplistic code snippets, en-
suring the dataset is representative of real-world
programming tasks.

A.1 Difficulty

To ensure that each selected dataset presents an
appropriate level of difficulty, we have curated a
large collection of datasets. For datasets that are
overly simplistic and fail to effectively differenti-
ate between model capabilities, we have opted to
discard them. The performance of models on these
overly simple datasets is summarized in Table 7.

A.2 Deduplication

The first step involved identifying and removing
duplicate code snippets. Duplicate examples can
distort the model’s performance by introducing re-
dundancy, which may lead to overfitting. Using
hash-based techniques, we identified exact dupli-
cates. This ensured that each code snippet in the
dataset was unique and contributed distinct infor-
mation.

A.3 Alignment

For code retrieval tasks, the alignment between the
code and its associated natural language descrip-
tion is critical. We filtered out examples where
comments or documentation were missing, incom-
plete, or irrelevant to the functionality of the code.
This step ensured that the dataset only contained ex-
amples with high-quality, informative descriptions
that could aid in retrieval tasks.

B Dataset Details

B.1 Reasons for Dataset Selection

• APPS: A challenging dataset where state-
of-the-art retrieval models achieve an
NDCG@10 of only 26.52, highlighting its
difficulty.

• CosQA: The largest web-based query-to-code
dataset, featuring meticulously crafted queries
to enhance retrieval performance.

• Synthetic Text-to-SQL: The largest synthetic
text-to-SQL dataset, enabling robust evalua-
tion of SQL generation models.

• CodeSearchNet: A widely used code re-
trieval dataset covering six programming lan-
guages, with a corpus of 1 million documents.

• CodeSearchNet-CCR: Specifically designed
for the Code Context Retrieval task, which
is crucial for improving code completion sys-
tems.
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Model (NDCG@10) Human-eval XcodeEval (sampled 13k) mbpp

E5-Base-v2 92.41 89.59 95.43
BGE-Base-en-v1.5 93.45 88.47 92.41
GTE-Base-en-v1.5 91.54 87.54 94.45
UniXcoder 92.44 90.85 90.56

Table 7: Model performance comparison on Simple Dataset

• CodeTransOcean-DL & CodeTransOcean-
Contest: Well-suited for Similar Code Re-
trieval, encompassing deep learning imple-
mentations and competitive programming so-
lutions across multiple languages.

• StackOverflow QA: Reflects real-world de-
veloper queries, making it ideal for evaluating
models that retrieve answers based on com-
plete questions.

• CodeFeedBack-ST: A high-quality synthetic
QA dataset, beneficial for retrieval-augmented
generation and large language models.

• CodeFeedBack-MT: Designed for Multi-turn
Code QA, presenting a significant challenge
due to its extensive dialogue context exceed-
ing 4,000 tokens—far beyond the typical 512-
token limit of most models.

Examples of queries and corpora present in each
dataset can be viewed in tables 8 and 9.

B.2 Text-to-Code Retrieval Datasets
APPS (Hendrycks et al., 2021). The original APPS
dataset is a code generation dataset derived from
programming problems shared on open-access sites
frequented by programmers, including Codewars,
AtCoder, Kattis, and Codeforces, where each ex-
ample consists of a question description and its
corresponding code solution. To adapt the origi-
nal APPS dataset for retrieval, we use the original
problem descriptions as the query to retrieve from a
corpus of all code solutions. We retain the original
dataset’s train-test split and remove examples that
do not have a corresponding code solution, result-
ing in a total of 5,000 samples for the training set
and 3,765 samples for the test set.

CoSQA (Huang et al., 2021). The CosQA
dataset comprises 20,604 human-annotated labels
for pairs of natural language web queries and cor-
responding code snippets. We retain the original
train/dev/test dataset splits of 19,604/500/500 and
utilize the natural language web queries as queries

to retrieve from a corpus of all code snippets as
intended in CoSQA.

Synthetic Text2Sql (Meyer et al., 2024). The
Synthetic Text2Sql dataset is a comprehensive col-
lection of high-quality synthetic Text-to-SQL sam-
ples, meticulously designed and generated using
Gretel Navigator 5. Each example consists of the
following: (1) a problem description which can be
resolved using SQL (2) information on the schema
of relevant tables used (3) the corresponding SQL
code solution (4) meta-data revolving problem de-
scribed, for instance the type of domain or industry
the problem falls under (e.g. healthcare, aerospace
etc.) and the nature of the task at hand (e.g. re-
porting, analytics, dashboarding etc.). Here we
use the natural language question description as
the query to retrieve from a corpus of correspond-
ing SQL code solutions. We follow the train-test
split provided by Gretel where the 105,851 queries
are divided into 100,000 queries for train and the
remaining 5,851 for test.

B.3 Code-to-Code Retrieval Datasets

CodeSearchNet-CCR (Husain et al., 2019).
CodeSearchNet-Code Context Retrieval (CCR) is
modified from the original CodeSearchNet dataset
with 1 million (docstring, code) pairs sourced from
open-source repositories hosted on GitHub. For
each example present in the dataset, we randomly
divide each code function into two code segments
where all the initial segment serves as our query and
all latter segments forms the corpus to be retrieved
using the corresponding initial segment. The length
of each query is uniformly and randomly selected
to comprise between 40% and 70% of the total
number of characters in the original code or func-
tion. We retain the original train/dev/test split of
905k/41k/53k and also retain the partition by their
respective language from CodeSearchNet.

CodeTransOcean-DL (Yan et al., 2023).
CodeTransOcean-DeepLearning (DL) is derived
from the DLTrans, a dataset featured in the Code-

5https://docs.gretel.ai/
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Dataset Query Relevant-Corpus Granularity
Te

xt
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ry

to
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e
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pu
s

Apps You are playing a very popular game called Cubecraft. Ini-
tially, you have one stick and want to craft k torches. <Text
omitted for brevity> For each test case, print the answer:
the minimum number of trades you need to craft at least
k torches. The answer always exists under the given con-
straints. <Example Test Case Omitted>

for haaghfj in range(int(input())):
x,y,k = list(map(int,input().split()))
print(k + (y * k + k - 1 +x-2) // (x -

1))

Function

CosQA python adjacency matrix from edge list def get_adjacent_matrix(self):
edges = self.edges
num_edges = len(edges) + 1
adj = np.zeros([num_edges, num_edges])
for k in range(num_edges - 1):

adj[edges[k].L, edges[k].R] = 1
adj[edges[k].R, edges[k].L] = 1

return adj

Function

Synthetic
Text2Sql

Which buildings in the UK have both a green roof and solar
panels installed?

SELECT b.name
FROM Building b JOIN GreenRoof gr ON

b.id = gr.building_id JOIN
SolarPanel sp ON

b.id = sp.building_id
WHERE b.country = `UK';

Entire Code

C
od

e
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ry

to
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e

C
or
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s

CodeSe-
archNet
-CCR

def get_cumulative_spend(key):
"""
Get the sum of spending for this category
up to and including the given month.
"""
query = (`ROUND(SUM(total_ex_vat), 2)

AS total ' `FROM {table} '
`WHERE date <= "{year}-{month:02}-01" '
`AND lot="{lot}" '
`AND customer_sector="{sector}" '
`AND supplier_type="{sme_large}"'.

format(
table=_RAW_SALES_TABLE,
year=key.year,
month=key.month,

lot=key.lot,
sector=key.sector,
sme_large=key.sme_large))

logging.debug(query)
result = scraperwiki.sqlite.select(query)
logging.debug(result)
value = result[0][`total']
return float(result[0][`total']) if value
is not None else 0.0

Code
Snippet

CodeTrans
Ocean-DL

import tensorflow as tf
from d2l import tensorflow as d2l
net = tf.keras.models.Sequential([tf.

keras. layers. Flatten(), tf.keras.
layers. Dense(256, activation='relu'),

tf.keras.layers.Dense(10)])
batch_s, lr, num_epochs = 256, 0.1, 10
loss = tf.keras.losses.

SparseCategoricalCrossentropy()
trainer = tf.keras.optimizers.SGD(lr)
train_iter, test_iter =

d2l.load_data_fashion_mnist(batch_s)
d2l.train_ch3(net, train_iter, test_iter,
loss, num_epochs, trainer

from d2l import paddle as d2l
import paddle
from paddle import nn
net = nn.Sequential(nn.Flatten(),

nn.Linear(784, 256), nn.ReLU(),
nn.Linear(256, 10))

for layer in net:
if type(layer) == nn.Linear:

weight_attr =
paddle.framework.ParamAttr(

initializer=paddle.nn.initializer.
Normal(mean=0.0, std=0.01))
layer.weight_attr = weight_attr

batch_size, lr, num_epochs = 256, 0.1, 10
... Code truncated for brevity

Entire Code

CodeTrans
Ocean-
Contest

def setup():
println(distance("kitten", "sitting"))

def distance(a, b):
costs = []
for j in range(len(b) + 1):

costs.append(j)
for i in range(1, len(a) + 1):

costs[0], nw = i, i - 1
for j in range(1, len(b) + 1):

cj=min(1+min(costs[j],costs[j-1]),
nw if a[i-1]==b[j-1] else nw+1)

nw, costs[j] = costs[j], cj
return costs[len(b)]

#include <algorithm>
#include ...
template <typename StringType>
size_t levenshtein_distance(const

StringType& s1, const StringType& s2) {
const size_t m = s1.size();
const size_t n = s2.size();
if (m == 0) return n;
if (n == 0) return m;
std::vector<size_t> costs(n + 1);
std::iota(costs.begin(),costs.end(),0);
size_t i =...

... Code truncated for brevity}

Entire Code

Table 8: Examples of queries and relevant corpora for 6 datasets related to Text-to-Code and Code-to-Code retrieval
(i.e. Apps, CosQA, Synthetic Text2sql, CodeSearchNet-CCR, CodeTransOcean-DL, and CodeTransOcean-Contest)
in COIR. For brevity, we omit or truncate some portion of the query and corpus.

TransOcean benchmark which focuses on code
translation. The original dataset consists of pairs of
semantically equivalent deep learning code written
using different deep learning libraries namely Ten-

sorflow, Pytorch, PaddlePaddle and MXNet. For
each pair of data, we use one of the codes in one
of the framework as query to retrieve its counter-
part written in a different framework. We follow
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Dataset Query Relevant-Corpus Granularity
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s CodeSe-
archNet

def precedes(self, other):
"""Returns a boolean indicating whether
this element precedes other element"""
try:

ancestor = next(commonancestors(
AbstractElement, self, other))

except StopIteration:
raise Exception("Elements share
no common ancestor")

# now we just do a depth first search
# and see who comes first
def callback(e):

.... Code truncated for brevity

Returns a boolean indicating whether this element pre-
cedes the other element

Document
String

H
yb

ri
d

C
od

e
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pu
s

StackOver
Flow QA

With Rust Regular Expressions, how can I use named cap-
ture groups preceding a string? I’m using the sd tool which
uses rust regular expressions, and I am trying to use it
with a named capture group, however... <Text ommitted
for brevity> Here is a contrived example to illustrate it:
echo `abc' | sd -p `(?P<cg>b)' `$cgB'
# outputs: ac
# desired output: abBc
echo `abc' | sd -p `(?P<cg>b)' `$cg B'
# outputs as expected: ab Bc
# however, places a space there

I’ve tried $<cg>B, $cg(B), $cg0B, all don’t give abBc.
I’ve also checked the rust regex docs however the x flag, and
other techniques seem only applicable to the search pattern,
not the replace pattern.

We don’t need the sd tool to reproduce this behavior.
Here it is in pure Rust:
let re = regex::Regex::new(r"(?P<n>b)")

.unwrap();
let before = "abc";
assert_eq!(re.replace_all(before, "$nB"),

"ac");
assert_eq!(re.replace_all(before, "${n}B"),

"abBc");

The brace replacement syntax isn’t described in the front
documentation but on that of the replace method:
The longest possible name is used. e.g., $1a looks up
the capture group named 1a and not the capture group
at index 1. To exert more precise control over the name,
use braces, e.g., ${1}a. <Text omitted for brevity>

Code Snippet
mixed with text

CodeFeed
Back-ST

user: How would you extend the following code to add the
features “undo" and “redo" while maintaining a constant
time complexity for adding items?
def add_item(item, list):

list.append(item)
def undo(list):

if len(list) > 0:
list.pop()

def redo(undone_list, list):
if len(undone_list) > 0:

item = undone_list.pop()
list.append(item)

assistant: To add the features "undo" and "redo" while
maintaining a constant time complexity for adding items,
you can use ... Here’s an extended version of the code:
def add_item(item, item_list, undone_list,

redone_list):
item_list.append(item)
redone_list.clear() # Clear the

# redone_list as new item is added
def undo(item_list, undone_list,

redone_list):
if len(item_list) > 0:

.... Code omitted for brevity

In this version, we add three new parameters to the func-
tions: ‘undone_list’... <Text omitted for brevity>

Code Snippet
or Functions

mixed with text

CodeFeed
Back-MT

user: Convert a given 2D point to the polar representation.
The point has coordinates (x,y), where x and y are integers
between -1000 and 1000, inclusive. Additional Requirement:
...<Text omitted for brevity>

assistant: To convert a 2D point to polar representation, we
need to calculate the polar coordinates (r, theta) using the
given Cartesian coordinates (x, y).

We can use the arctangent function to calculate the value of
theta. <Text omitted for brevity> Now, let’s write the code
to convert the given 2D point to polar representation using
the atan2 function in Python:
import math
def convert_to_polar(x, y):

r = math.sqrt(x*x + y*y) # calculating the
distance from the origin

theta = math.atan2(y, x) # calculating the
angle in radians using atan2 function

return (r, theta)
... Code truncated for brevity

user: <Text omitted for brevity>,

assistant: <Text omitted for brevity>,

user: Please generate the code to meet the original require-
ments without using arithmetic operations. Clarifying com-
ments and documentation will also be appreciated.

assistant: I apologize for any misunderstanding, but con-
verting from Cartesian coordinates to polar coordinates
inherently requires mathematical operations – notably,
addition, multiplication, and trigonometric operations.
These are defined by the mathematical formulas for con-
verting between the two coordinate systems:

r = sqrt(x2 + y2), theta = atan2(y, x)

These formulas can’t be implemented without using
arithmetic operations, due to their inherent mathematical
nature. As per your requirement of not using any arith-
metic operations to solve this problem, it’s essential to
understand that it would be impossible to convert to po-
lar coordinates, as the problem mainly depends on these
arithmetic operations. Again, I emphasize that this kind
of computation relies heavily on arithmetic operations,
and it is a significant constraint that would make finding
a software or coding solution impossible. However, if
there’s any related issue or a different problem you need
assistance with, I would be more than happy to assist!"

Code Snippet
or Functions

mixed with text

Table 9: Examples of queries and relevant corpora for 4 datasets related to Code-to-Text and Hybrid Code retrieval
(i.e. CodeSearchNet, StackOverflow QA, CodeFeedback-ST and CodeFeedback-MT) in COIR. For brevity, we omit
or truncate some portion of the query and corpus

the original train/dev/test split of 564/72/180 in
CodeTransOcean-DL.

CodeTransOcean-Contest (Yan et al.,
2023). Similar to CodeTransOcean-DL, the
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CodeTransOcean-Contest dataset is derived
from the MultilingualTrans dataset in the Code-
TransOcean benchmark. The dataset features
a collection of code for various problems, for
instance binary tree traversal, sorting algorithms,
written in various languages featured in Rosetta
Code 6, a programming chrestomathy website. In
CodeTransOcean-Contest, we focus on retrieving
semantically equivalent C++, Python code pairs
as these two languages differs greatly in terms
of syntax and language features. We filter the
examples in MultilingualTrans that does not
contain any C++ nor Python code pairs and we
use the Python code in each pair as queries to
retrieve its counterpart from all C++ code in the
filtered dataset. We retain the dataset split as
in MultilingualTrans resulting in a 561/226/221
examples for train/dev/test respectively.

B.4 Code-to-Text Retrieval Datasets
CodeSearchNet (Husain et al., 2019). The Code-
SearchNet is a dataset consisting of 1 million (doc-
string, code) pairs sourced from open-source repos-
itories hosted on GitHub. It contains code and
documentation for several programming languages.
Instead of retrieving relevant code from the orig-
inal description, we reverse the roles of the doc-
string and code by retrieving the relevant docstring
using the code as a query. We follow the original
CodeSearchNet train/dev/test split of 905k/41k/53k
and also retain the partition by their respective lan-
guage.

B.5 Hybrid Code Retrieval Datasets
StackOverflow QA7. We modify the original
StackOverflow dataset from Kaggle 8, which con-
tains questions posted by users, the correspond-
ing highest voted answer to the user’s questions
and tags pertaining to the user’s questions. Both
the question and the answer typically consist of a
mix of text and code snippets. Out of a total of
1,048,576 questions, we randomly sample 19,931
questions and their corresponding answers from
the StackOverflow QA dataset. We use the ques-
tions raised by the users as a query to retrieve the
corresponding answer from other correct answers
posted by users. We randomly split the data into
train/dev/test sets with a 13,951/3,986/1,994 split
respectively.

6https://rosettacode.org/wiki/Rosetta_Code
7https://www.kaggle.com/datasets/stackoverflow/stacksample/data
8https://www.kaggle.com/

CodeFeedBack-ST (Zheng et al., 2024). We uti-
lize data from CodeFeedback-Filtered-Instruction
to generate retrieval dataset for CodeFeedBack-ST.
CodeFeedback-Filtered-Instruction is a collection
of instruction-tuning datasets where a language
model takes cue from user’s instruction in order to
generate code to fulfil the user’s instructions. The
dataset consists of pairs of users instruction and the
response to be expected from an assistant where
both the user’s instructions and the assistant’s re-
sponse could contain a mixture of text and code
snippets. We use the user’s instructions as query
to retrieve the corresponding relevant expected as-
sistant’s reply. Of the 156,526 examples present,
we split the train and test dataset into 125,221 and
31,307 train and test examples respectively.

CodeFeedBack-MT (Zheng et al., 2024). We
utilize examples from Code-Feedback dataset to
generate retrieval dataset for CodeFeedBack-Multi
Turn (MT). Code-Feedback is a collection of
instruction-tuning datasets involving simulated
multi-turn dialogues between 2 LLMs; one plays
the role of a user and the other plays the role of
assistant. To ensure that that the generated replies
of the assistant are of high quality, the LLM play-
ing the role of assistant is aided by code compilers
alongside multiple generation attempts to arrive at
a desirable response. Each example comprises a
sequence of exchanges alternating between the user
and assistant, starting with the user and ending with
the assistant. To construct CodeFeedBack-MT, we
split each sequence into 2 portions, the first portion
consists of the initial dialogue history, prior to the
last reply by the assistant, and second part is made
up of the final reply by the assistant. We use the
initial portion of the dialogue as query to retrieve
the corresponding reply by the assistant. We split
the dataset into 53,106 and 13,277 for train and test
respectively.

C Metric

C.1 NDCG Metric

Normalized Discounted Cumulative Gain (NDCG)
is a popular metric used to evaluate the quality of
rankings, particularly in information retrieval and
recommender systems. It measures the usefulness,
or gain, of an relevant item based on its position
in the result list, discounted logarithmically by the
position.

The Discounted Cumulative Gain (DCG) is the
sum of the gains of relevant items, discounted log-
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arithmically by their positions in the ranking. The
normalized version, NDCG, compares the DCG
of the ranked list to the DCG of the ideal ranking.
This normalization ensures that the score is within
the range [0, 1].

DCG Calculation:
The DCG at position p is calculated as:

DCGp =

p∑

i=1

2reli − 1

log2(i+ 1)

where reli is the relevance score of the item at
position i.

IDCG (Ideal DCG) Calculation:
The Ideal DCG (IDCG) is the DCG of the ideal

ranking. This is calculated by sorting all items by
their relevance scores in descending order and then
computing the DCG using the same formula.

IDCGp =

p∑

i=1

2rel
∗
i − 1

log2(i+ 1)

where rel∗i is the relevance score of the item at
position i in the ideal ranking.

NDCG Calculation:
The NDCG at position p is the ratio of the DCG

at position p to the IDCG at position p:

NDCGp =
DCGp

IDCGp

This normalization ensures that NDCG values
are bounded between 0 and 1, making comparisons
across different queries or datasets meaningful.

By evaluating the NDCG, we can get a sense of
how well our ranking system is performing relative
to the best possible ranking. This is particularly
useful when the relevance varies across items and
lower-ranked items are less likely to be seen and
thus should contribute less to the overall evaluation
metric.

C.2 Weighted Jaccard Similarity

The weighted Jaccard similarity J(S, T ) (Ioffe,
2010) is calculated as the unique word overlap for
all words present in both the datasets. We define
the normalized frequency for an unique word k in a
dataset to be the frequency of word k divided over
the sum of frequencies of all words in the dataset.

Let Sk be the normalized frequency of word k
in the source dataset S and Tk for the target dataset
T respectively. The weighted Jaccard similarity
between S and T is defined as:

J(S, T ) =

∑
k min(Sk, Tk)∑
k max(Sk, Tk)

where the sum is over all unique words k present
in datasets S and T .

D Implementation Details

D.1 Implementation Environments
The experimental setup for performance and effi-
ciency evaluation was conducted utilizing a Tesla
V100 GPU with 32GB of memory and Intel Ti-
tan CPU and CUDA 11.2. The versions of the
software utilized in this study are PyTorch 2.0.1
and Transformers 4.38.1. We utilized the Faiss
IndexFlat(Johnson et al., 2021) to store vector em-
bedding index.

D.2 Retriever Resources
The huggingface models or API used of retrieval
model used in COIR is listed in Table 10.

D.3 Dataset Resources
The urls of dataset resources used in COIR is listed
in Table 11.

E Dataset Explanation of Reality

It is important to note that the current settings align
with prevalent code retrieval benchmark method-
ologies in the field, such as CodeSearchNet and
CoSQA, where the retrieved documents are con-
sidered the final answers to queries. Addition-
ally, we have considered scenarios where retrieval
serves as a stepping stone rather than just an end-
point. Specifically, our code-to-text and code-to-
code tasks are designed to evaluate the model’s
ability to retrieve relevant text and code snippets
that supplement and enhance the final answer.

Furthermore, we have developed a new dataset
from Stack Overflow. This dataset is carefully cu-
rated and filtered from the original Stack Overflow
dump. In this dataset, the provided answers are
not always the final solution to the queries. In-
stead, they may represent a strategy for solving the
problem or serve as a component of the solution,
thus reflecting the nuanced and iterative nature of
real-world code generation and retrieval tasks.

F Clarification of Innovation

We are not merely integrating existing datasets;
rather, we are introducing new datasets and tasks.
CodeSearchNet-CCR and StackOverflowQA are
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Model Public Model Checkpoints (Link)

Contriever https://huggingface.co/facebook/contriever-msmarco
E5-base https://huggingface.co/intfloat/e5-base-v2
BGE-Base https://huggingface.co/BAAI/bge-base-en-v1.5
GTE-Base https://huggingface.co/Alibaba-NLP/gte-base-en-v1.5
UniXcoder https://huggingface.co/microsoft/unixcoder-base
BGE-M3 https://huggingface.co/BAAI/bge-m3
E5-Mistral https://huggingface.co/intfloat/e5-mistral-7b-instruct
OpenAI-Ada-002 https://openai.com/
Voyage-Code-002 https://www.voyageai.com/

Table 10: Publicly available model links used for evaluation in COIR.

Corpus Website (Link)

APPS https://huggingface.co/datasets/codeparrot/apps
CoSQA https://github.com/microsoft/CodeXGLUE/tree/main/Text-Code/NL-code-search-WebQuery
Synthetic Text2sql https://huggingface.co/datasets/gretelai/synthetic_text_to_sql
CodeSearchNet https://huggingface.co/datasets/code-search-net/code_search_net
CodeTransOcean https://huggingface.co/datasets/WeixiangYan/CodeTransOcean
Code-FeedBack https://huggingface.co/datasets/m-a-p/Code-Feedback
CodeFeedBack-Filtered-Instruction https://huggingface.co/datasets/m-a-p/CodeFeedback-Filtered-Instruction

Table 11: Corpus Name and Link used for datasets in COIR.

datasets we created ourselves. StackOverflowQA
was extracted from the original StackOverflow
dump, and we introduced this dataset to ensure
that the simulated tasks closely mirror real-world
scenarios, such as searching for answers when en-
countering code issues.

Additionally, we introduced a new task, Code
Context Retrieval, which involves retrieving the
most relevant code segment that completes a given
initial segment of code. This task is critical for code
completion purposes, and the CodeSearchNet-CCR
dataset was specifically created for this task.

Previously, only CosQA and CodeSearchNet
were straightforwardly usable as code retrieval
benchmarks. We have supplemented these with
eight additional datasets, which we meticulously
cleaned, manually filtered, and standardized. This
process was quite labor-intensive.
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